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Abstract: In Tikhonov-type regularization for ill-posed problems with noisy data, the penalty
functional is typically interpreted to carry a-priori information about the unknown true solution. We
consider in this paper the case that the corresponding a-priori information is too strong such that the
penalty functional is oversmoothing, which means that its value is infinite for the true solution. In
the case of oversmoothing penalties, convergence and convergence rate assertions for the regularized
solutions are difficult to derive, only for the Hilbert scale setting convincing results have been
published. We attempt to extend this setting to `1-regularization when the solutions are only in `2.
Unfortunately, we have to restrict our studies to the case of bounded linear operators with diagonal
structure, mapping between `2 and a separable Hilbert space. But for this subcase, we are able to
formulate and to prove a convergence theorem, which we support with numerical examples.
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1. Introduction

In this paper we consider the problem of finding a stable approximate solution to the ill-posed linear
operator equation

Ax = y, (1.1)

where A : X := `2 → Y is a bounded linear operator with non-closed range, i.e., range(A) , range(A),
in the separable Hilbert space Y with norm ‖ · ‖. We recall that for 1 ≤ p ≤ ∞ the spaces `p are Banach
spaces consisting of (infinite) series x = {xi}

∞
i=1 with norms ‖x‖`p = p

√∑∞
i=1 |xi|

p for 1 ≤ p < ∞ and
‖ · ‖`∞ = supi∈N |xi|. For p = 2 one obtains a Hilbert space. We assume that in (1.1) only noisy data yδ

is available satisfying the inequality
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||y − yδ|| ≤ δ (1.2)

with known noise level δ > 0. In order to determine a stable solution to (1.1) from the noisy data,
regularization is required. We are searching for approximations xδα of the exact solution x† with Ax† = y
based on the noisy data yδ, which are calculated as `1-regularized solutions

xδα := arg min
x∈`2

{
1
2
||Ax − yδ||2 + α||x||`1

}
(1.3)

with regularization parameters α > 0. This approach was extensively studied in the last decade and
we refer to the brief discussion in Section 4. We remark that the Banach space `1 is non-reflexive,
which makes its analysis challenging. In particular, it was shown in [3, Prop 3.3] that (1.1) is always
ill-posed when the domain of A is restricted to `1 and Y is a reflexive Banach space. On the other
hand, `1-regularization in the case ‖x†‖`1 < ∞ is well understood as a prominent version of sparsity
promoting regularization. Hence, it seems to be of great interest whether the `1-regularization also
makes sense in the oversmoothing case, which is characterized by the fact that x† ∈ `2 \ `1 such that
‖x†‖`1 = ∞. The scenario of oversmoothing regularization has, to the best of the authors knowledge,
only been treated in the setting of regularization in Hilbert scales, see Section 2. There, the specific
structure of the problem yields link conditions as tools to jump between different scale levels and thus
to handle the occurring analytical problems arising from the oversmoothing character of the penalty.
For other space settings the corresponding tools are missing, and this paper is an attempt to overcome
this deficit. We therefore stress that in this paper we are not interested in specific applications, nor in
improving any sort of reconstruction quality. Equation (1.1) and procedure (1.3) merely constitute a
new trial case for modeling the oversmoothing regularization.

Let us now discuss our motivation for investigating this regularization idea. As we will see in our
model problem, oversmoothing `1-regularization already has one advantage over the classical Tikhonov
regularization with penalty ‖ · ‖2

`2 , i.e.,

xδα := arg min
x∈`2

{
1
2
||Ax − yδ||2 + α||x||2

`2

}
. (1.4)

Namely, it does not suffer from the saturation effect of the `2-regularized approach, and the proposed
a priori choice of the regularization parameter coincides with the discrepancy principle for all cases
under consideration. Hence, one motivation for oversmoothing regularization are possibly improved
convergence properties. But there are more potential benefits. An oversmoothing penalty might yield
an easier optimization problem. For example, when x† ∈ `p \ `2 with p > 2, classical Tikhonov
regularization (1.4) would be oversmoothing. However, since it is much easier to find the minimizer of
the `2-penalized Tikhonov functional (which corresponds to solving a linear system) than minimizing
a functional with arbitrary `p-penalty, the former might be preferred. A third aspect for oversmoothing
regularization is feature extraction. In terms of our model problem, `1-regularization is known to yield
sparse regularized solutions, i.e., only finitely many components are non-zero. As we will see later,
`1-regularization in some sense selects the best (least) discretization level to achieve a certain residual.
Therefore, the approximate solutions need less storage space than `2-regularized solutions. In general,
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other features than sparsity could be of interest. Finally, the analysis of oversmoothing regularization
is challenging and might provide new insights for general regularization approaches.

The paper is organized as follows: In Section 2 we sketch the existing results on oversmoothing
regularization in Hilbert scales. We proceed with properties of `1-regularized solutions and discuss
their implications in Section 3. After that we move to convergence rates for `1-regularization
including the oversmoothing case in Section 4. In this context, we restrict our studies to diagonal
operators and present a specific simplified model problem, which is the basis for the subsequent
numerical experiments. In Section 5 we compare our derived convergence rates with the ones known
from classical Tikhonov regularization with `2-penalty. Finally, numerical experiments supporting the
theoretical results are presented in Section 6.

2. Literature survey

To the best of the authors knowledge, oversmoothing regularization has so far only been investigated
in the setting of regularization in Hilbert scales, starting with the seminal paper by Natterer [6]. There,
Natterer considers a linear problem (1.1) between Hilbert spaces X and Y. The regularized solutions
are obtained by the minimization problem

xδα := arg min
x∈X

{
||Ax − yδ||2 + α||x||2p

}
, (2.1)

where the penalty is a norm in a Hilbert scale. In this context, a family {Xs}s∈R of Hilbert spaces with
X0 := X is called Hilbert scale if Xt ⊆ Xs whenever s < t and the inclusion is a continuous embedding,
i.e., there exists cs,t > 0 such that ||x||s ≤ cs,t||x||t. The Hilbert scale is induced by an unbounded, self-
adjoint, and strictly positive definite operator T in X such that ‖x‖s := ‖T sx‖X, s ∈ R, defines a norm in
Xs.

Under the noise model (1.2) in combination with the smoothness assumption ||x†||q ≤ ρ for some
q > 0, and provided that there exists some a > 0 such that with two constants m,M > 0 and for all
x ∈ X the inequality chain

m||x||−a ≤ ||Ax|| ≤ M||x||−a (2.2)

holds true, Natterer shows in [6] the error estimate

‖xδα − x†‖X ≤ Cδ
q

a+qρ
a

a+q (2.3)

whenever the penalty smoothness p in (2.1) is sufficiently high, in the sense that p ≥ (q− a)/2, and for
the a-priori parameter choice

α(δ) = c(ρ)δ
2(a+p)

a+q (2.4)

with appropriately chosen constant c(ρ) > 0. It is interesting that here the index p, which characterizes
the smoothness of the penalty in (2.1), is limited for obtaining the rate result (2.3) by a lower bound,
but not by an upper bound. Really, Natterer states that “there is nothing wrong with high order
regularization, even well above the order of the smoothness of the exact solution”. Even though x†

may have arbitrarily small q-norms with q > 0, one still obtains the order optimal rate of convergence.
The only adjustment to be made is an appropriate decrease of the regularization parameter.

Recently, Natterer’s results have been extended to ill-posed inverse problems with nonlinear
forward operators by Mathé and Hofmann [7, 8]. In the first paper, the regularization parameter is
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chosen according to the discrepancy principle, while the second paper shows convergence rates under,
in principle, the same a-priori parameter choice as occurring in (2.4). In both papers the obtained
convergence rate coincides with that in (2.3), i.e., ‖xδα − x†‖X = O

(
δ

q
a+q

)
as δ→ 0.

3. Properties of regularized solutions

In this section we discuss some basic properties of oversmoothing `1-regularization or the lack
thereof. The results are easily generalized to arbitrary penalty functionals in Tikhonov-type
regularization, as long as certain standard assumptions are fulfilled. We refer to, e.g., [9, Assumption
3.11 and Assumption 3.22] or [10, Assumption 8.1] for details. Basic properties of `1-regularization
are well known. As the following lemma shows, existence and stability of regularized solutions with
respect to small perturbations in the data are not influenced by the oversmoothing setting.

Lemma 3.1. For all fixed α, δ > 0, a minimizer of (1.3) exists and has a finite `1-norm. Furthermore,
if {yk} is a sequence norm-converging in Y to yδ, i.e. yk → yδ, then every associated sequence {xk} with

xk ∈ arg min
x∈`2

{
1
2
||Ax − yk||

2 + α‖x‖`1

}
has a subsequence that converges weakly. The weak limit of every such convergent subsequence {xk̃}

of {xk} is a minimizer x̃ of (1.3). Moreover, ‖xk̃‖ converges to ‖x̃‖.

Proof. Take α > 0 arbitrary but fixed. Since `1 ⊂ `2, there exists x̃ ∈ `2 with finite values ||Ax̃− yδ|| and
‖x̃‖`1 . This implies

‖xk‖`1 ≤
1
α

(
1
2
‖Axk − yk‖

2 + α‖xk‖`1

)
≤

1
α

(
1
2
‖Ax̃ − yk‖

2 + α‖x̃‖`1

)
< ∞

by the optimality of the minimizer. The remaining part of the proof follows from standard arguments
[9, 10]. �

We move on to identify some necessary conditions for the convergence of regularized solutions for
δ→ 0 in the case of oversmoothing regularization.

Theorem 3.1. Let x† ∈ `2 with ‖x†‖`1 = ∞ denote a solution to (1.1). If the Tikhonov regularized
solutions (1.3) under consideration are weakly convergent to x† for an a priori or a posteriori
parameter choice rule α = α(δ, yδ), then the following items must hold for a sequence xk := xδk

αk ⇀ x†

as δk → 0:

a) limk→∞ ‖xk‖`1 = ∞,
b) limk→∞ αk = 0,
c) limk→∞ αk‖xk‖`1 ≤ C < ∞.

Proof. By Lemma 3.1, ‖xk‖`1 < ∞ for all k ∈ N. If, however, we assume that there is a subsequence
{xk j} with ‖xk j‖`1 ≤ c < ∞ uniformly for all j ∈ N, then the assumed weak convergence xk j ⇀ x† in X
implies that ‖x†‖`1 ≤ c. This contradicts the assumption ‖x†‖`1 = ∞ and yields item a) of the theorem.
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Now take some fixed x̃ ∈ `1 and keep in mind the definition of the xk as minimizers of the functional
(1.3). It is

1
2
||Axk − yδk ||2 + αk‖xk‖`1 ≤

1
2
||Ax̃ − yδk||

2 + αk‖x̃‖`1

≤ δ2
k + ||Ax̃ − y||2 + αk‖x̃‖`1 .

Therefore
αk(‖xk‖`1 − ‖x̃‖`1) ≤ δ2

k + ||Ax̃ − y||2 ≤ C < ∞.

Since ‖x̃‖`1 < ∞ we need limk→∞ αk = 0 in order to allow limk→∞ ‖xk‖`1 = ∞ as necessary due to a).
Additionally, the product αk‖xk‖`1 has to stay bounded, yielding together b) and c). �

The next step would be to show (weak) convergence of the regularized solutions to the exact solution
as δ→ 0. However, no such result is known. Even for the Hilbert scale setting of Section 2 no general
convergence assertion appears to be available. In the standard setting ‖x†‖`1 < ∞, one has due to the
optimality of the xδα

1
2
‖Axδα − yδ‖2 + α‖xδα‖`1 ≤

1
2
δ2 + α‖x†‖`1 < ∞. (3.1)

Requiring α→ 0 and δ2/α→ 0 as δ→ 0 then ensures (weak) convergence of the regularized solutions
to the exact one. In particular, the `1-norm of the regularized solutions ‖xδα‖`1 remains bounded by
a constant for all δ > 0. In the oversmoothing setting, the right-hand side in (3.1) is infinite, hence
provides no useful information. It appears natural to replace x† by suitable auxiliary elements to bound
the Tikhonov functional, but that is not enough. Let {xδ}δ>0 be a sequence with

‖xδ‖`1 = inf
x∈`2,‖Ax−y‖≤cδ

‖x‖`1

for fixed constant c > 0. Using the {xδ}δ>0 to bound the Tikhonov functional, we obtain

1
2
‖Axδα − yδ‖2 + α‖xδα‖`1 ≤

1
2
‖Axδ − yδ‖2 + α‖xδ‖`1

≤ (c + 1)δ2 + α‖xδ‖`1 . (3.2)

For any choice of α = α(δ) one obtains ‖xδα‖`1 ≤ c δ
2

α
+ ‖xδ‖`1 . Even if δ2/α → 0, this does not yield a

bound for ‖xδα‖`1 independent of δ, since ‖xδ‖`1 → ∞. Therefore one cannot infer the existence of a
(weakly) convergent subsequence among the regularized solutions xδα as is the argument in the
standard, non-oversmoothing, convergence results. For the oversmoothing regularization one would
need that the xδα are bounded in a norm weaker than the `1-norm, for example, in the `2-norm. It is
currently not clear how such a connection can be established. At this point we also mention that the
oversmoothing approach prevents the use of state-of-the-art regularization theory. In recent years,
variational inequalities (sometimes also called variational source conditions) have emerged as a
powerful tool in the theory of Banach-space regularization, and we only refer, for example, to the
papers [4, 5]. For `1 regularization, in [11] a variational inequality of the form

‖x − x†‖`1 ≤ ‖x‖`1 − ‖x†‖`1 + ϕ(‖Ax − Ax†‖) (3.3)
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for a well-defined concave index function ϕ and valid for all x ∈ `1 was established and used for
deriving convergence rates in the case x† ∈ `1. Clearly, this concept is inapplicable when x† ∈ `2 \ `1

and hence ‖x†‖`1 = ∞, but it could be an idea to measure the error in `2-norms. Therefore, it seems to
be interesting that not even for x† ∈ `1 a variational inequality of the form

‖x − x†‖κ
`2 ≤ ‖x‖`1 − ‖x†‖`1 + ϕ(‖Ax − Ax†‖)

with κ = 1 or κ = 2 is known as an alternative to (3.3).

4. Convergence rates for diagonal operators

In this section, we derive convergence rates for the `1-penalized Tikhonov-type regularization (1.3)
to (1.1). This method became a popular and powerful tool in the last decade, sparked by the seminal
paper [13]. Since then, many authors have contributed to its theory and application. Here we only
mention the papers [14–16]. As is typical in `1-regularization, we assume that A is injective. For the
non-injective case we refer to [17]. The vast majority of papers connected to `1-regularization assumes
sparsity in the sense that x† ∈ `0, i.e., that it has only finitely many non-zero components. However,
in [11] for the first time the situation that the exact solution x† is not sparse, but only x† ∈ `1, was
explored. The results were later refined and extended in [3, 12, 18, 19]. In some sense, this paper is
a continuation of this development as we are now interested in the case that x† is not even in `1, but
x† ∈ `2 \ `1. Due to this we will employ the `2-norm to measure the speed of convergence, and we
seek for an index function ϕ, i.e., a continuous, monotonically increasing, and concave function with
ϕ(0) = 0, such that

||xδα − x†||`2 ≤ Cϕ(δ)

holds with some constant C > 0. We will show that an appropriate choice of the regularization
parameter yields such a function ϕ.

It is well-known that `1-regularization yields sparse solutions. We will see that for showing
convergence rates when x† < `1 it is essential to estimate the support of the regularized solutions. In
order to do this, we rely on the explicit calculation of the minimizers. Therefore, we have to restrict
ourselves to diagonal operators for this paper. We denote by {e(i)}∞i=1 the canonical orthonormal basis
in `2 with components e(k)

k = 1 and e(i)
k = 0 for k , i. Moreover, we denote by {v(i)}∞i=1 an orthonormal

basis in the range closure range(A) of Y . Then we say that a compact operator A : `2 → Y with
decreasingly ordered singular values {σi}

∞
i=1 is of diagonal structure if

Ae(i) = σiv(i) and e(i) =
1
σi

A∗v(i) (i = 1, 2, ...).

This model includes compact linear operators mapping between general Hilbert spaces X and Y , since
such operators can be diagonalized with respect to their singular system [1, 2].

We now present a way of constructing functions ϕ that serve as prototypes for convergence rates.
To this end, we define, for all n ∈ N, the linear projectors

Pn : `2 → `2, Pnx = {xi}
n
i=1. (4.1)
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Lemma 4.1. Let A : `2 → Y be a compact linear operator with diagonal structure as introduced
above, possessing the singular values

‖A‖ = σ1 ≥ σ2 ≥ ... ≥ σn ≥ σn+1 ≥ ...→ 0 as n→ ∞,

and let x† ∈ `2 denote the uniquely determined solution to the operator equation (1.1), and set

T (x†, n) := ||(I − Pn)x†||`2 =

√√
∞∑

i=n+1

∣∣∣x†i ∣∣∣2. (4.2)

Then for any x ∈ `2 it is, for all n ∈ N,

||x − x†||`2 ≤ ||(I − Pn)x||`2 + σ−1
n ||Ax − Ax†|| + T (x†, n). (4.3)

Proof. We have, for any x ∈ `2, with the linear projectors from (4.1) the relation

||x − x†||`2 ≤ ||(I − Pn)x||`2 + ||Pn(x − x†)||`2 + ||(I − Pn)x†||`2 (4.4)

which holds for all n ∈ N. We keep n arbitrary but fixed and start estimating the last term which
describes the decay of the tail of the solution and thus its smoothness. It is a fixed function of n which
goes to zero as n→ ∞, and we employ the convention (4.2).

Next we estimate the middle term ||Pn(x − x†)||`2 in (4.4). In order to do so we recall the notion of
the modulus of continuity, given by

ω(M, θ) := sup{||x|| : x ∈ M, ||Ax|| ≤ θ}

where M ⊂ `2. This quantity is essentially related to minimal errors of any regularization method for
noisy data. Since Pn(x − x†) ∈ `2

n := span{e1, . . . , en}, we can use tools from approximation theory to
estimate its norm. In [20, Proposition 3.9] it has been shown that for any finite dimensional space Xn

ω(Xn, θ) =
θ

Θ(A, n)
,

where the modulus of injectivity Θ(A, n) is defined as

Θ(A, n) := inf
0,x∈Xn

||Ax||
||x||

.

For diagonal operators it is Θ(A, n) = σn and thus

ω(`2
n, θ) = σ−1

n θ.

Noting that for diagonal operators it also holds that

||APn(x − x†)|| ≤ ||A(x − x†)||, (4.5)

it is therefore

||Pn(x − x†)||`2 ≤ ω(`2
n, ||APn(x − x†)||) = σ−1

n ||APn(x − x†)|| ≤ σ−1
n ||A(x − x†)||. (4.6)

Inserting this and (4.2) into (4.4), we obtain (4.3). �
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In the best case scenario the term ||(I − Pn)x||`2 in (4.3) vanishes (note that this is a crucial point to
be shown for the `1-regularized approximations to x†) and only the two rightmost terms remain. The
best possible convergence rate is therefore determined by taking the infimum of those two expressions
with respect to n. This yields a prototype rate function

ϕ(t) = inf
n∈N

{
t
σn

+ ‖(I − Pn)x†‖`2

}
. (4.7)

Note that as infimum over affine functions ϕ is concave, and it is also monotonically increasing with
ϕ(0) = 0. Since for fixed t ≥ 0 the infimum is taken over a countable set and σ−1

n t → ∞ monotonically
as n → ∞ while T (x†, n) → 0 monotonically, the infimum is attained as minimum and the
corresponding index

ninf(t) := arg min
n∈N

{
t
σn

+ ‖(I − Pn)x†‖`2

}
(4.8)

is well defined. In order to show ||x − x†||`2 ≤ ϕ(‖Ax − Ax†‖) for the `1-regularized solutions x = xδα
from (1.3), we need the following assumptions.

Assumption 4.1. (a) The singular values of A fulfill, for all n ∈ N,

1 ≤
σn

σn+1
≤ Cσ

with a constant 1 ≤ Cσ < ∞.
(b) The tail is monotone, i.e., |x†n| is monotonically decreasing for all sufficiently large n.
(c) The convergence rate ϕ(t) is not dominated by the tail, i.e., there exists a constant C̃ such that

T (x†, ninf(t)) ≤ C̃σ−1
ninf (t)t.

(d) For the true solution x† it holds

|x†ninf (t)+1| ≤ C
σ−1

ninf (t)
t

√nninf (t)

for a constant 0 ≤ C < ∞ and sufficiently small t > 0.

Part (a) limits the ill-posedness of the forward operators. A polynomial decay of the singular values
fulfills the condition, even an exponential decay of order σi = e−i is permitted, but for any ε > 0 a
decay σi = e−i1+ε

violates the condition. Note that the left-hand inequality is trivial, but will be used
in a proof later. Part (b) is required purely for technical reasons. Part (c) and (d) link the smoothness
of the true solution with the ill-posedness of the forward operator. They will be discussed in examples
below. We remark that similar restrictions are standing assumptions in the Hilbert-scale setting of
Section 2: Condition (2.2) ensures that the singular values of A fall asymptotically as i−a, and the
condition p ≥ (q − a)/2 implies that the solution must not be significantly smoother than the penalty.

For later use we mention two consequences of Assumption 4.1.

Lemma 4.2. Let A be as in Lemma 4.1, and let Assumption 4.1 (a) and (c) hold. Then

1
1 + C̃

ϕ(t) ≤ σ−1
ninf (t)t ≤ ϕ(t). (4.9)

Furthermore, it is
‖APninf (t)x

† − Ax†‖ ≤ C̃t. (4.10)
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Proof. The right-hand inequality of (4.9) follows from the definition of ϕ in (4.7). Similarly, it is

ϕ(t) = σ−1
ninf (t)t + T (x†, ninf(t)) ≤ (1 + C̃)σ−1

ninf (t)t,

which yields the left-hand inequality. To obtain the estimate of the residual, we observe that

‖APninf (t)x
† − Ax†‖2 =

∞∑
i=ninf (t)+1

|σix
†

i |
2 ≤ σ2

ninf (t)+1

∞∑
i=ninf (t)+1

|x†i |
2 ≤ σ2

ninf (t)T (x†, ninf(t))2.

Inserting Assumption 4.1 (c) immediately yields (4.10). �

4.1. A-priori parameter choice

In order to show convergence rates based on Lemma 4.1, two terms need to be estimated in (4.3)
for x = xδα: the residual ‖Axα − Ax†‖ and the tail ‖(I − Pn)xδα‖`2 .

Lemma 4.3. Let A be as in Lemma 4.1, and let Assumption 4.1 (c) hold. Then, with the a-priori choice

α(δ) = cα
δ2

√
ninf(δ)ϕ(δ)

, (4.11)

with constant 0 < cα < ∞, the minimizers xδα of (1.3) satisfy

||Axδα − yδ|| ≤ ((C̃ + 1)2 + 4cα)δ. (4.12)

In particular, it is
‖Axδα − Ax†‖ ≤ cδ (4.13)

with positive constant c = (C̃ + 1)2 + 4cα + 1.

Proof. From the Tikhonov functional (1.3) we have for all n ∈ N

1
2
||Axδα − yδ||2 + α||xδα||`1 ≤

1
2
||APnx† − yδ||2 + α||Pnx†||`1 ,

which with
||xδα||`1 = ||Pnxδα||`1 + ||(I − Pn)xδα||`1

and
||Pnx†||`1 ≤ ||Pn(x† − xδα)||`1 + ||Pnxδα||`1

yields

1
2
||Axδα − yδ||2 + α||(I − Pn)xδα||`1 ≤

1
2
||APnx† − yδ||2 + α||Pn(x† − xδα)||`1

≤
1
2
‖APnx† − yδ‖2 + α

√
n‖Pn(x† − xδα)‖`2 . (4.14)

Now fix n = ninf(δ). Using (4.6) and (4.9) on the right-hand side we have

AIMS Mathematics Volume 4, Issue 4, 1223–1247.



1232

||Pninf (δ)(x† − xδα)||`2 ≤ σ−1
ninf (δ)‖Axδα − Ax†‖

≤ σ−1
ninf (δ)(‖Axδα − yδ‖ + ‖Ax† − yδ‖)

≤ 2σ−1
ninf (δ) max{‖Axδα − yδ‖, δ}

≤ 2ϕ(‖Axδα − yδ‖), (4.15)

where in the last estimate we have assumed ‖Axδα − yδ‖ > δ, as otherwise the assertion of the lemma is
trivially fulfilled. We combine this estimate with (4.14) and again set n = ninf(δ). This yields

1
2
||Axδα − yδ||2 ≤

1
2
||APninf (δ)x

† − yδ||2 + 2α
√

ninf(δ)ϕ(||Axδα − yδ)||). (4.16)

Note that by (4.10) we have ||APninf (δ)x
† − yδ|| ≤ (C̃ + 1)δ. Inserting the parameter choice (4.11) into

(4.16), we continue analogously to [5, Corollary 1]. Namely, it is by concavity of ϕ

1
2
||Axδα − yδ||2 ≤

(C̃ + 1)2

2
δ2 + 2cα

δ2√
nin f (δ)ϕ(δ)

√
nin f (δ)ϕ(||Axδα − yδ‖)

≤
(C̃ + 1)2

2
δ2 + 2cαδ2ϕ(‖Axδα − yδ‖)

ϕ(δ)

≤ δ2
(
(C̃ + 1)2

2
+ 2cα

)
ϕ(‖Axδα − yδ‖)

ϕ(δ)

≤ δ2
(
(C̃ + 1)2

2
+ 2cα

)
‖Axδα − yδ‖ϕ(δ)

δϕ(δ)

= δ

(
(C̃ + 1)2

2
+ 2cα

)
‖Axδα − yδ‖.

This yields ||Axδα − yδ|| ≤ ((C̃ + 1)2 + 4cα)δ for α from (4.11).
The second assertion follows from this, the noise assumption (1.2), and the triangle inequality. �

Lemma 4.4. Let A be as in Lemma 4.1, and let Assumption 4.1 (a)–(d) hold. Let α be chosen according
to (4.11) such that cα ≥ C(C̃ + 1). Then the minimizers xδα of (1.3) satisfy

‖(I − Pninf (δ))xδα)‖`2 ≤ Cσϕ(δ). (4.17)

Proof. The diagonal structure of the operator allows to calculate the minimizer of (1.3) explicitly, and
(1.3) reads

1
2
||Ax − yδ||2 + α||x||`1 =

1
2

∑
i∈N

(σixi − yδi )
2 + α

∑
i∈N

|xi|. (4.18)

Since the components are decoupled, the first order optimality condition for the above functional is

∂

∂xi

1
2

∑
i∈N

(σixi − yδi )
2 + α

∑
i∈N

|xi|

 = 0 ∀i ∈ N,
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i.e., for each i ∈ N,
σi(σixi − yδi ) + αsgn(xi) = 0

where

sgn(x) :=


1 x > 0
−1 x < 0
∈ [−1, 1] x = 0

.

Consider the case [xδα]i > 0. Then

[xδα]i =
yδi
σi
−
α

σ2
i

> 0.

On the other hand, for [xδα]i < 0 we have

[xδα]i =
yδi
σi

+
α

σ2
i

< 0

and consequently

[xδα]i = 0⇔

∣∣∣∣∣∣ yδiσi

∣∣∣∣∣∣ ≤ α

σ2
i

. (4.19)

We will only consider the case [xδα]i > 0 further, the results for [xδα]i < 0 are analogous with inverted
sign. First let y be exact, noise-free data, i.e., yi = σix

†

i for all i ∈ N, where the minimizer of (4.18)
(with yδ temporarily replaced by y) is denoted by xα. Then (4.19) yields

[xα]i = 0⇔
∣∣∣x†i ∣∣∣ ≤ α

σ2
i

. (4.20)

Inserting the parameter choice (4.11) and considering i = ninf(δ) + 1, we find with Assumption 4.1 (a)
and (d), and with (4.9) that

α

σ2
ninf (δ)+1

=
α

σ2
ninf (δ)

σ2
ninf (δ)

σ2
ninf (δ)+1

≥ cα
(σ−1

ninf (δ)
δ)2

√
ninf(δ)ϕ(δ)

≥
cα

C̃ + 1

σ−1
ninf (δ)

δ
√

ninf(δ)

≥
cα

C(C̃ + 1)
|x†ninf (δ)+1|.

Now, as long as cα ≥ C(C̃ + 1), this implies [xα]ninf (δ)+1 = 0. Because α
σ2

i
is increasing in i while |x†i |

decreases, we conclude that for ninf(δ) sufficiently large (i.e., δ sufficiently small), [xα]ninf+1 = 0. Under
Assumption 4.1 (b) all entries [xα]m, m > ninf(δ), must then also be zero. Hence, in the noise-free case,
we have ‖(I − Pninf (δ))xα‖`2 = 0. Therefore, for noisy data and under the same parameter choice, any
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contribution to ‖(I − Pninf (δ))xδα‖`2 must be due to the noise in the data. Consider the model y − yδ = δζ

with some ζ ∈ `2, ||ζ ||`2 = 1. Then ‖y − yδ‖ = δ and

[xδα]i > 0 ⇔ x†i +
δζi

σi
−
α

σ2
i

> 0. (4.21)

The components x†i are fixed and decreasing. The regularization parameter α is fixed for all i, hence
α/σ2

i grows with increasing index. Therefore, the smaller i, the (potentially) larger the components
[xδα]i could become. To estimate the tail ||(I − Pninf (δ))xδα||`2 we are only interested in the higher indices
i > ninf(δ). Due to the asymptotics of the individual terms, ||(I − Pninf (δ))xδα||`2 therefore becomes largest
when all its mass is concentrated in the lowest possible component ninf(δ) + 1, i.e., ζninf (δ)+1 = 1 and
(I − Pninf (δ))xδα = ([xδα]ninf (δ)+1, 0, . . . ). From the noise-free considerations above we already obtained
x†i ≤

α
σ2

i
. Hence, any positive contribution in (4.21) comes from the noise. With an analogous argument

for the case [xδα]i < 0 we therefore get

|[xδα]ninf (δ)+1| ≤
δ

σninf (δ)+1
.

Using Assumption 4.1 (c) we obtain

δ

σninf (δ)+1
=

δ

σninf (δ)

σninf (δ)

σninf (δ)+1
≤ Cσσ

−1
ninf (δ)δ ≤ Cσϕ(δ).

�

Putting all the pieces together yields the main theorem.

Theorem 4.1. Let A : `2 → Y be a compact linear operator with diagonal structure, possessing the
singular values

‖A‖ = σ1 ≥ σ2 ≥ ... ≥ σn ≥ σn+1 ≥ ...→ 0 as n→ ∞.

Let x† ∈ `2 denote the uniquely determined solution to the operator equation (1.1), and let Assumption
4.1 hold. Then the `1-regularized solutions xδα from (1.3) with noisy data yδ obeying the noise model
‖y − yδ‖ ≤ δ satisfy for sufficiently small δ > 0 the estimate

||xδα − x†||`2 ≤ (Cσ + c)ϕ(δ)

with c as in (4.13) and with the concave index function

ϕ(t) = inf
n∈N

{
t
σn

+ ‖(I − Pn)x†‖`2

}
,

provided the regularization parameter is chosen a priori as

α(δ) = cα
δ2

√
ninf(δ)ϕ(δ)

,

with constant cα ≥ C(C̃ + 1). The integers

ninf(δ) := arg min
n∈N

{
δ

σn
+ ‖(I − Pn)x†‖`2

}
can be found for all δ > 0.
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Proof. Lemma 4.1 and the discussion thereafter provide us with the prototype of the convergence rate
ϕ(t) (4.7) and with ninf(t) (4.8). Consider (4.3) with x replaced by xδα, i.e.,

||xδα − x†||`2 ≤ ||(I − Pn)xδα||`2 + σ−1
n ||Axδα − Ax†|| + T (x†, n). (4.22)

Fix n = ninf(δ). From Lemma 4.3 we then have ‖Axδα − Ax†‖ ≤ cδ with c > 1, hence

||xδα − x†||`2 ≤ ||(I − Pninf (δ))xδα||`2 + c(σ−1
ninf (δ)δ + T (x†, ninf(δ))).

The term in brackets, by definition, attains the value ϕ(δ). The remaining term ||(I − Pninf (δ))xδα||`2 was
estimated in Lemma 4.4. Therefore

‖xδα − x†‖`2 ≤ (Cσ + c)ϕ(δ).

�

4.2. The discrepancy principle

The a-priori choice requires, in principle, the knowledge of the exact solution and is thus unfeasible
in practice. In the following we comment on the discrepancy principle as an a-posteriori parameter
choice. We begin with a helpful lemma.

Lemma 4.5. Let Assumption 4.1 hold and α∗(δ) be any choice of the regularization parameter in (1.3)
such that

τ1δ ≤ ‖Axδα∗ − yδ‖ ≤ τ2δ

for (1 + C̃) < τ1 ≤ τ2 < ∞. Then c̄α∗ ≥ α with the a-priori choice of α from (4.11) and c̄ =
2cα(τ2+1)
τ2

1−(C̃+1)2 .

Proof. From the minimizing property of the Tikhonov-functional we have

1
2
‖Axδα∗ − yδ‖2 + α∗‖xδα∗‖`1 ≤

1
2
‖APninf (δ)x

† − yδ‖2 + α∗‖Pninf (δ)x
†‖`1 .

Similar to the proof of Lemma 4.3 this implies

1
2
||Axδα∗ − yδ||2 ≤

1
2
||APninf (δ)x

† − yδ||2 + α∗
√

ninf(δ)ϕ(||Axδα − Ax†)||). (4.23)

Note that for this results we have replaced (4.15) by

||Pninf (δ)(x† − xδα)||`2 ≤ σ−1
ninf (δ)‖Axδα − Ax†‖ ≤ ϕ(‖Axδα − Ax†‖).

Using ||APninf (δ)x
† − yδ|| ≤ (C̃ + 1)δ (cf. Lemma 4.2) and τ1δ ≤ ‖Axδα∗ − yδ‖ in (4.23) we have

τ2
1δ

2

2
≤

(C̃ + 1)2

2
δ2 + α∗

√
ninf(δ)ϕ(||Axδα − Ax†)||),

and since τ1 > (1 + C̃)

δ2 ≤
2

τ2
1 − (C̃ + 1)2

α∗
√

ninf(δ)ϕ(||Axδα − Ax†)||).
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Using the upper bound ‖Axδα∗ − yδ‖ ≤ τ2δ and the concavity of ϕ, it is

ϕ(||Axδα − Ax†||) ≤ ϕ(||Axδα − yδ|| + ||yδ − Ax†||) ≤ (τ2 + 1)ϕ(δ)

and we obtain, with α from (4.11),

α = cα
δ2

√
ninf(δ)ϕ(δ)

≤ cα
2(τ2 + 1)

τ2
1 − (C̃ + 1)2

α∗.

�

Theorem 4.2. Let A : `2 → Y be a compact linear operator with diagonal structure, possessing the
singular values

‖A‖ = σ1 ≥ σ2 ≥ ... ≥ σn ≥ σn+1 ≥ ...→ 0 as n→ ∞.

Let x† ∈ `2 denote the uniquely determined solution to the operator equation (1.1), and let Assumption
4.1 hold. Then the `1-regularized solutions xδα from (1.3) with noisy data yδ obeying the noise model
‖y − yδ‖ ≤ δ satisfy for sufficiently small δ > 0 the estimate

||xδα − x†||`2 ≤ (τ2 + Cσ + 1)ϕ(δ)

with a constant 0 < c < ∞ and with the concave index function

ϕ(t) = inf
n∈N

{
t
σn

+ ‖(I − Pn)x†‖`2

}
,

provided the regularization parameter is chosen a posteriori such that

τ1δ ≤ ‖Axδα − yδ‖ ≤ τ2δ, (4.24)

with parameters 1 + C̃ < τ1 ≤ τ2 < ∞ such that 2C(C̃+1)(τ2+1)
τ2

1−(C̃+1)2 ≤ 1.

Proof. We start as in the proof of Theorem 4.1 and consider (4.22). Due to the parameter choice (4.24)
and the triangle inequality we have

‖Axδα − Ax†‖ ≤ (τ2 + 1)δ,

hence it is, with n = ninf(δ),

||xδα − x†||`2 ≤ ||(I − Pninf (δ))xδα||`2 + (τ2 + 1)(σ−1
ninf (δ)δ + T (x†, ninf(δ))) = ||(I − Pninf (δ))xδα||`2 + (τ2 + 1)ϕ(δ).

According to Lemma 4.3, the regularization parameter α∗ obtained from the discrepancy principle is
larger than the a-priori parameter a from (4.11), α ≤ α∗, if c̄ ≤ 1. The minimal admissible constant cα
in Lemma 4.4 is cα = C(C̃ + 1). Inserting this into c̄ yields α ≤ α∗ if 2C(C̃+1)(τ2+1)

τ2
1−(C̃+1)2 ≤ 1. It now follows

analogously as in the proof of Lemma 4.4 that for noise-free data ||(I − Pninf (δ))xδα||`2 = 0 and in the
worst-case noise scenario ||(I − Pninf (δ))xδα||`2 ≤ Cσϕ(δ). Hence

||xδα − x†||`2 ≤ (τ2 + Cσ + 1)ϕ(δ).

�
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4.3. Model cases

In order to exemplify and illustrate the general theory in more detail, we will now consider some
simple model scenarios. As before, we assume that A : `2 → `2 is diagonal, [Ax]i = σixi, i = 1, 2, . . . .
For simplicity, we will denote all constants by a generic constant 0 < c < ∞.

4.3.1. Polynomial singular values, polynomially decaying solution

Let σi = i−β and x†i = i−η for positive values β and η and all i ∈ N. In particular, for 1
2 < η ≤ 1

this yields a case of oversmoothing regularization ‖x†‖`1 = ∞, whereas for η > 1 we have the classical
model with ‖x†‖`1 < ∞.

Theorem 4.3. Let A be diagonal with singular values σi = i−β, β > 0. Let x† ∈ `2 be such that
[x†]i = i−η for η > 1

2 . Then the `1-regularized solutions xδα from (1.3) to (1.1), with noisy data yδ

obeying ‖y − yδ‖ ≤ δ, satisfy
||xδα − x†||`2 ≤ cδ

2η−1
2η+2β−1 , (4.25)

provided the regularization parameter is chosen a priori as

α(δ) = cδ
4β+2η

2η+2β−1 (4.26)

or according to the discrepancy principle (4.24).

Proof. It remains to calculate the quantities occurring in the proof of Theorem 4.1 explicitly.
The tail of the exact solution satisfies

||(I − Pn)x†||`2 =

√√
∞∑

i=n+1

|i−η|2 ≤

√
1

2η − 1
(n + 1)1−2η ≤ (2η − 1)−

1
2 n

1
2−η. (4.27)

Inserting the structure of A, the rate prototype (4.7) becomes

ϕ(t) = inf
n∈N

{
nβt + cηn

1
2−η

}
. (4.28)

It is simple calculus to show
ϕ(t) = ct

2η−1
2η+2β−1

and
nin f (t) = dct−

2
2η+2β−1 e (4.29)

where d·e denotes the closest integer. Inserting the previous results into the parameter choice (4.11)
yields

α(δ) =
δ2√

nin f (δ)ϕ(δ)
= cδ

4β+2η
2η+2β−1 . (4.30)

�

We mention that this model problem fulfills Assumption 4.1. Namely, we have xn+1 < xn = n−η for
all n ∈ N, and from (4.27) we obtain

‖(I − Pn)x†‖`2
√

n
≤ cn−η.
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Also Assumption 4.1 (c) is fulfilled as

1 ≤
σn

σn+1
≤

n−β

(n + 1)−β
=

(
n + 1

n

)β
≤ 2β =: Cσ.

Finally, we observe that
δ2

α
=

δ2

cδ
4β+2η

2η+2β−1

= cδ
2η−2

2η+2β−1

goes to infinity when 1
2 < η < 1, stays constant for η = 1, and goes to zero for η > 1. That means

there is a seamless transition between the regime of oversmoothing regularization and that of classical
regularization. Numerical experiments are presented in Section 6.

4.3.2. Polynomial singular values, exponentially decaying solution

We now consider for simplicity the caseσi = i−1 and x†i = e−i for all i ∈ N. This is no oversmoothing
regularization since x† ∈ `1. Using MATHEMATICA R©we calculate the tail in (4.7), T (x†, n) ≤ ce−n.
It is then simple calculus to show

nin f (t) = c ln
1
t
.

This yields

ϕ(t) = σ−1
ninf (t)t + T (x†, ninf(t)) = c(t ln

1
t

+ t).

In contrast to the previous example, the two terms σ−1
ninf (δ)

δ and T (x†, ninf(δ)) are no longer of the same
order, but, for sufficiently small δ, σ−1

ninf (δ)
δ is the dominating part, i.e., Assumption 4.1 (c) is fulfilled.

Also part (d) of Assumption 4.1 holds, since x†ninf (δ)+1 < x†ninf (δ)
= cδ, whereas

σ−1
ninf (δ)δ
√

ninf (δ)
= cδ

√
ln( 1

δ
). The

predicted rate ‖xδα − x†‖`2 ≤ cϕ(δ) = cδ ln 1
δ

can be verified numerically, see the left plot of Figure 5.

4.3.3. Exponential singular values, polynomially decaying solution

Let now σi = e−i and, for simplicity, x†i = i−1 for all i ∈ N. We are again in the oversmoothing
regime. To formulate the convergence rate, we recall the definition of the Lambert-W-function, defined
as z = W(zez). With this, the minimizing argument of

ϕ(t) = inf
n∈N

ent + cn−
1
2

can be found, using MATHEMATICA R©, to be

ninf(t) =

⌈
3
2

W
(
2
3

t−
3
2

)⌉
,

such that
ϕ(t) = teninf (t) + cninf(t)−

1
2 .

The first term decays faster than the second one, hence the rate is dominated by the tail of the exact
solution, and Assumption 4.1 (c) is violated, see Figure 1. Consequently, Theorem 4.1 is not applicable.
Indeed, in a numerical experiment, shown in the left part of Figure 6, the measured convergence rate is
different from the one predicted here.
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Figure 1. δeninf (δ) (red, dashed), ninf(δ)−
1
2 (black, solid), and ϕ(δ) (blue, dash-dotted), for the

scenario of Section 4.3.3, demonstrating the violation of Assumption 4.1 (c).

4.3.4. Exponential singular values, exponentially decaying solution

Let for this example σi = e−i and x†i = e−i for all i ∈ N. Then

ϕ(t) = inf
n∈N

ent + ce−n

and

ninf(t) =
1
2

ln
(
1
t

)
,

hence

ϕ(t) = c(e
1
2 ln( 1

t )t + e−
1
2 ln( 1

t )) = c
√

t.

Because x†ninf (δ)+1 < x†ninf (δ)
= c
√
δ, but

σ−1
ninf (δ)δ
√

ninf (δ)
= c

√
δ

ln( 1
δ )

, Assumption 4.1 (d) is (formally) violated.

Numerically, however, even for values of δ significantly smaller then the machine-ε, a constant can be
found such that Assumption 4.1 (d) holds, i.e.,

√
δ ≤ C(δ0)

√
δ

ln( 1
δ )

for δ > δ0. A plot exemplifying

this can be found in Figure 2. Consequently, our numerically retrieved convergence rate is close to the
predicted

√
δ-rate, see the right part of Figure 6.
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Figure 2. Scenario of Section 4.3.4: In general, this example violates Assumption 4.1 (d),
but for δ > 10−30, the assumption is valid with C = 10.

4.3.5. Sparse solutions

Our last examples goes back to the setting that sparked the developments around `1-regularization,
namely the case of sparse solutions. Let x† = (x†1, x

†

2, . . . , x
†
n0 , 0, 0, . . . ). Let A be as in Theorem 4.1

with no further restrictions. Then

ϕ(t) = inf
n∈N

σ−1
n t +

∞∑
i=n+1

|x†i | = min

 inf
n∈N,n≤n0

σ−1
n t +

n0∑
i=n+1

|x†i |, σ
−1
n0+1t

 ,
i.e., (only) for sufficiently small values of δ can a linear convergence rate ϕ(δ) = cδ be reached.
Note that in the literature the linear convergence rate was derived in the `1-norm, ‖xδα − x†‖`1 ≤ cδ,
whereas we obtain the same rate in the `2-norm ‖xδα − x†‖`2 ≤ cδ. Since for sufficiently small δ > 0
ninf(δ) = n0 + 1 = const, we also recover from (4.11) the well-known parameter choice α = cδ.

5. Comparison of `1- and `2-regularization

In order to get a feeling for the derived convergence rate we compare the result from the previous
section with classical, non-oversmoothing, `1-regularization and `2-regularization. In order to be able
to use explicit expressions for the convergence rates and parameter choice rules, we will only consider
the specific model problem of Section 4.3.1. Let us start with classical `1-regularization, i.e., the
approximate solution to (1.1) is obtained via (1.3) but under the assumption that ||x†||`1 < ∞. In [19] a
convergence rate

||xδα − x†||`1 ≤ cδ
η−1

η+β− 1
2 =: ϕ`1(δ)
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was derived using the parameter choice

α(δ) ∼
δ2

ϕ`1(δ)
= cδ

4β+2η
2η+2β−1 .

Now let us move to `2-regularization. This corresponds to the classic Tikhonov regularization, i.e.,
the approximate solution to (1.1) is given by (1.4). It is then well known, see e.g. [1, 2], that under the
assumption

x† ∈ range((A∗A)ν) (5.1)

for some 0 ≤ ν ≤ 2 the best possible convergence rate

||xδα − x†||`2 ≤ cδ
ν
ν+1 (5.2)

can be shown under the a-priori parameter choice

α(δ) ∼ δ
2
ν+1 .

In the diagonal setting of Section 4.3 the source condition (5.1) can easily be related to the parameters
η and β. Namely, (5.1) holds for all ν with 2η−1

2β > ν [21]. Since we are interested in the largest ν we
set ν =

2η−1
2β for simplicity, acknowledging that actually we should write ν =

2η−1
2β + ε for arbitrary but

small ε > 0. With this, the convergence rate becomes

||xδα − x†||`2 ≤ cδ
ν
ν+1 = cδ

2η−1
2η+2β−1 = ϕ(δ)

with ϕ(δ) from (4.25), and the parameter choice is

α(δ) ∼
δ2

ϕ(δ)2 =
δ2

δ
4η−2

2η+2β−1

= δ
4β

2η+2β−1 .

We summarize the convergence rates and parameter choices in Table 1. One sees that the `1 − `2-
regularization, corresponding to `1-regularization with the `2-norm as error measure which includes
the oversmoothing regularization, inherits the parameter choice from the classical `1-regularization
and the convergence rate from the classical `2-regularization. The parameter choice influences the
residual ||Axδα − yδ|| and the penalty value ||xδα||`1 . Since it is most important to keep the residual on a
level of about δ, the `1-parameter choice is used. This is in line with [18] where it has been observed
that for `1-regularization the regularization parameter obtained via discrepancy principle and a-priori
parameter choice always coincide up to constant factors. It is however somewhat surprising that this
property appears to remain even when x† < `1. The less smooth the solution is, the smaller α has to
be chosen. On the other hand, the optimal convergence rate in `2 is well known to be given by (5.2).
Therefore `1-regularization yields the optimal (`2-)convergence rate, even when x† < `1. Even more, it
does not saturate like classical `2 regularization which possesses the qualification ν =

2η−1
2β ≤ 2. Take

any 1
2 < η ≤ 1. Then x† ∈ `2\`1. If β < η

2 −
1
4 , then ν > 2 and `2-regularization (1.4) has saturated with

the limiting convergence rate ϕ(δ) ∼ δ2/3. Oversmoothing `1-regularization, on the other hand, would
yield a higher rate of convergence since it does not saturate.
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Table 1. Comparison of (classical) `1, (classical) `2 and (oversmoothing) `1 − `2

regularization for the diagonal setting of Section 4.1. The parameter choice depends on
the penalty functional whereas the convergence rate depends on the norm the regularization
error is measured in.

Type `1 `1 − `2 `2

rate ϕ`1(δ) = δ
2η−2

2η+2β−2 ϕ`2(δ) = cδ
2η−1

2η+2β−1 ϕ`2(δ) = cδ
2η−1

2η+2β−1

α δ
4β+2η

2η+2β−1 δ
4β+2η

2η+2β−1 δ
4β

2η+2β−1

α recipe α = δ2

ϕ`1
α = δ2

ϕ`2 (δ)δ
−1

2η+2β−1
α = δ2

ϕ`2 (δ)

6. Numerical examples

In this section we consider an operator specifically tailored to the setting of Section 4.1. We start
with the Voltera operator

[Ãx](s) =

∫ s

0
x(t) dt

and discretize Ã with the rectangular rule at N = 400 points. In order to ensure our desired properties
of the model cases of Section 4.3 we compute the SVD of the resulting matrix and manually set its
singular values σi accordingly. This means that the actual operator A in (1.1) is an operator possessing
the same singular vectors {ui} and {vi} as Ã, but different singular values {σi}. Using the SVD, we
construct our solution such that x†i = 〈x†, vi〉 holds according to the scenario. We add random noise to
the data y = Ax† such that ||y − yδ|| = δ. The range of δ is such that the relative error is between 25%
and 0.2%. The solutions are computed via

xδα = argmin
{
||Ax − yδ||2 + α||x||`1

}
,

where the `1-norm is taken using the coefficients with respect to the basis originating from the SVD.
We compute the reconstruction error in the `2 norm as well as the residuals. For larger values of η
we can observe the convergence rate directly. For smaller values of η, we have to compensate for
the error introduced by the discretization level. Namely, since we use a discretization level N = 400,
numerically we actually measure

||P400(xδα − x†)||`2

with the projectors P as before being the cut-off after N = 400 elements. In the plots of the convergence
rates we show

||P400(xδα − x†) + (I − P400)x†||`2 . (6.1)

The second term can be calculated analytically and is supposed to correct for the fact that we cannot
measure the regularization error for coefficients corresponding to larger n, i.e., we add the tail of x† that
can not be observed. Because xδα has only finitely many non-zero components and we use a sufficiently
large discretization, we do not make any error with respect to the tail of the solutions.
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Our main focus is on the fully diagonal case of Section 4.3.1, i.e, σi = i−β for β > 0 and x†i = i−η for
η > 1

2 . Here, the regularization parameter is chosen a-priori according to (4.26) with cα = 1.

We show selected plots of the convergence rates in Figure 3 for β = 1 and Figure 4 for β = 2. The
plots are given with logarithmic scales for both axis. In each plot of the convergence rates we added
the regression line for the assumption ||xδα − x†||`2 = cδe. The value of e is given in the legend. The
regularization parameter is shown in the title of the figures in the form α = δa, a given. The result of
our simulations for a larger number of parameters η are shown in Tables 2 and 3 for β = 1 and β = 2,
respectively. We see that for all values of η the predicted and measured convergence rate coincides
nicely. Additionally, the residual remains stable around ||Axδα − yδ|| ∼ δ. For small values of η and
β = 1 the residual is a bit smaller than expected. We suppose this is due to the cut-off of x† due to the
discretization. For correct results we would have to include a tail of the residual similar to (6.1). If η is
very large, i.e. the components of the solution decay rapidly, the observed convergence rate is basically
linear. We suppose this is due to numerical effects as numerically those solutions are de facto sparse.

Finally, we compare the theoretically predicted convergence rates from the remaining model cases
of Section 4.3 to measured rates from numerical experiments. In all experiments, the regularization
parameter was chosen according to the discrepancy principle (4.24) with τ1 = 1.1 and τ2 = 1.3. We
obtained a good match between the theoretical and observed convergence rates in the cases of sections
4.3.2, 4.3.4, and 4.3.4. Only case 4.3.3 showed a significant difference. This is no surprise, since
Assumption 4.1 does not hold in this case.

Table 2. Convergence rates for β = 1 and various values η. α in the form α = δa. Measured
and predicted regularization error in the form ||xδα − x†||`2 = cδe. Residual given in the form
||Axδα − yδ|| = cδd.

η α, a measured rate, e predicted rate, e residual, d
0.55 2.42 0.047 0.048 1.1
0.6 2.36 0.09 0.091 1.08
0.7 2.25 0.163 0.166 1.06
0.8 2.15 0.229 0.23 1.028
0.9 2.07 0.284 0.286 1.007
1 2 0.33 0.333 1.01

1.05 1.97 0.359 0.355 1.006
1.1 1.94 0.372 0.375 1.006
1.3 1.83 0.458 0.444 1.01
1.5 1.75 0.515 0.5 1.01
2 1.6 0.595 0.6 1.01

2.5 1.5 0.659 0.667 0.996
3 1.42 0.698 0.714 0.996
6 1.23 0.81 0.85 0.997
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Table 3. Convergence rates for β = 2 and various values η. α in the form α = δa. Measured
and predicted regularization error in the form ||xδα − x†||`2 = cδe. Residual given in the form
||Axδα − yδ|| = cδd.

η α = δa, a measured rate, e predicted rate, e residual, d
0.55 2.22 0.024 0.024 1.0005
0.6 2.19 0.0473 0.0476 1.002
0.7 2.13 0.089 0.091 1.01
0.8 2.09 0.128 0.13 1.006
0.9 2.04 0.166 0.167 1.006
1.01 1.996 0.209 0.203 0.999
1.1 1.96 0.236 0.23 0.994
1.3 1.89 0.284 0.286 1.002
1.5 1.83 0.329 0.333 0.999
1.75 1.76 0.384 0.385 0.996

2 1.71 0.421 0.428 0.999

10-3 10-2 10-1 100

/ ||y||

1.1

1.15

1.2

1.25

1.3

 l
2
re

c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

log-log plot of l2 reconstruction error vs , =0.55, a=2.4286

l2 reconstruction error

regression, e=0.04652, expected e=0.047619

10-3 10-2 10-1 100

/ ||y||

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

 l
2
re

c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

log-log plot of l2 reconstruction error vs , =0.7, a=2.25

l2 reconstruction error

regression, e=0.16336, expected e=0.16667

Figure 3. Numerically observed convergence rates for β = 1 and η ∈ {0.55, 0.7}. From the
measured reconstruction error (solid line) we calculated the regression for the assumption
||xδα − x†||`2 = cδe, shown in the broken line. The theoretical convergence rate (4.25) is
matched almost perfectly.
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Figure 4. Numerically observed convergence rates for β = 2 and η ∈ {0.55, 1.05}. From the
measured reconstruction error (solid line) we calculated the regression for the assumption
||xδα − x†||`2 = cδe, shown in the broken line. The theoretical convergence rate (4.25) is
matched almost perfectly.
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Figure 5. Numerically observed convergence rate for model cases 4.3.2 (left) and the sparsity
case 4.3.5 (right) where Assumption 4.1 holds. In both cases we have a good fit between
measured and theoretical convergence rate. Note that in the sparsity case, only the first 4
components of x† were non-zero. The regularized approximation xδα had at most 5 non-zero
entries.
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Figure 6. Numerically observed convergence rate for the model cases 4.3.3 (left) and 4.3.4
(right) where Assumption 4.1 is violated. In the left-hand plot, predicted and measured
convergence rate show a clear mismatch, indicating that Assumption 4.1 is indeed needed
for our analysis. On the right-hand side we see a good match between theoretical and
measured rates. We attribute this to the phenomenon discussed in Section 4.3.4, namely that
Assumption 4.1 (d) does not hold for all δ > 0, but for all numerically reasonable δ > δ0 > 0.

7. Conclusions

We have shown that oversmoothing regularization, i.e., Tikhonov regularization with a penalty that
takes the value infinity in the exact solution, yields existence and stability of regularized solutions.
We have discussed why it is difficult to show convergence of regularized solutions to the true solution
in the limit of vanishing data noise. For the specific case of Tikhonov-regularization with `1-penalty
term under a diagonal operator we have derived convergence rates of regularized solutions to the true
solution even if those does not belong to `1 anymore. The theoretical convergence rates have been
verified numerically for a model problem.
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