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which, mimics the echolocation behavior of the foraging bats. The bat-inspired based methodology 

has been implemented to solve MFDEs with different possible variants of two point boundary 

conditions. The BATA is utilized in the recommended new residual optimization technique (NROT) 

for the minimization of the energy function attained by the spirit of RPSM. Moreover, to ratify the 

correctness and accuracy of the deliberated technique the results are evaluated by using two other 

meta-heuristic optimization techniques i.e., differential evolution algorithm (DEA) and the 

accelerated particle swarm optimization algorithm (APSOA) for the learning of unknown weights in 
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1. Introduction 

The importance of fractional differential equations (FDE) needs no emphasis as they are 

considered to be fundamental in the analysis and modeling of numerous physical phenomena of 

science and engineering such as heat conduction, viscoelasticity, polarization, diffusion waves, 

electromagnetic waves, signal processing and control theory [1–5]. Fractional dynamic systems that 

contains a single differential operator in the equations are sometimes found insufficient to accurately 

and realistically address the problems effectively, therefore, at times it is necessary to use multi-term 

fractional differential equations (MFDE) instead. For example, to illustrate the motion of real 

physical systems, the modeling of the motion of a rigid plate immersed in a Newtonian fluid and a 

gas in a fluid, respectively. Also the asymptotic behavior for low and high frequencies in the 

modeling of frequency-dependent damping materials are well described by the fractional differential 

equations of 2/1 -order or 2/3 -order [6,7]. The mathematical model for such materials are elegantly 

modeled by a MFDE named Bagley Torvik equation (BTE), which was introduced by Bagley and 

Torvik in the beginning of 1980’s as their work on the manifestation of fractional derivative in the 

behavior of viscoelastic materials and is generally given as: 

           ,5

5.0

43

5.1

2

2

1 xgxxDxDxDxD     Xx 0   (1) 

where,  xg is the unknown function, 1 , 2 , 
3 , 4  and 

5  are the constant coefficients and X is a 

constant representing the computational domain of the inputs  Xx ,0 . These BTEs plays a vital role 

in solving numerous problems of real life and since its first appearance in 1980, it has been solved 

for its numerical and analytic solutions by many scholar and scientists [8–11]. 

In the past few years, many heuristic and meta-heuristic algorithm have been proposed to solve 

various global optimization problems. By far the majority of new meta-heuristic algorithms are 

inspired by nature among which, the largest fraction of these nature inspired algorithms are based on 

some successful characteristics of a biological system. The bio-inspired meta-heuristic algorithms 

particularly those based on the swarm intelligence are an essential part of the modern global 

optimization algorithms. Over the past few decade, the swarm intelligence based (SIB) algorithms 

have gained strong attention of scientists and researchers due to its remarkable advantages as 

compared to the traditional optimization techniques used earlier [12–14]. The SIB algorithm which 

have been developed by drawing inspiration from the swarm intelligence system in nature includes 

the firefly algorithm (FFA) which is based on the flashing pattern and behavior of swarming fireflies [15], 

while the cuckoo search algorithm (CSA) uses the parasitic strategy of cuckoo species [16], particle 

swarm optimization (PSO) and its improved version known as the accelerated particle swarm 

optimization algorithm (APSOA) are based on the swarming behavior of birds and fishes schooling 

in nature [17,18], the ant algorithm (AA) mimics the behavior of social insects (i.e., ants) [19], the 

bat algorithm (BATA) which is one of the most powerful and extensively used meta-heuristic 

algorithm based on the echolocation behavior of foraging bats [20–22] and many more. On the other 

hand there are some meta-heuristic algorithms which are bio-inspired but are not based on the swarm 

intelligence such as the genetic algorithm (GA) [23], the differential evolution algorithm (DEA) [24,25] 

and the flower pollination algorithm (FPA) [26]. 

The BATA developed by Yang is one of the latest bio-inspired meta-heuristic algorithm which 

is based on the echolocation behavior of foraging microbats. The echolocation capability of 
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microbats is very fascinating, which is used to detect prey and avoid obstacles even in complete 

darkness. The microbats emit loud sound pulse and sense the echo that is reflected by the 

surrounding objects, which enables them to determine the environment around them. This interesting 

process of emitting and reflecting sound waves is mimicked in Figure 1. These bats build a 3D image 

of the surrounding in their brains by using the deferral time of the response, time difference between 

the two ears and the loudness variation of echoes. The varying pulse rate of emission and loudness 

provides a mechanism for auto-zooming into the region where promising solutions are found. To 

further enhance the performance of this highly efficient and powerful algorithm many new variants 

of BATA algorithm have been produced which are found in the literature [20–22,27]. 

 

Figure 1. The process of echolocation in bats. 

In the present study a framework is provided to solve MFDEs subject to four different variants 

of the two point boundary conditions, which are commonly used to solve real world problems. The 

residual power series method (RPSM) introduced by Arqub [28] in 2013 provides an efficient and 

practical approach for determining the analytical solution of classical differential equations (DEs). 

This numerical technique (RPSM) based on the generalized Taylor series formula was later modified 

and successfully applied to solve various types of FDEs [29–32]. The new residual optimization 

technique (NROT) suggested in this framework is an amalgamation of the BATA with the principal 

idea for constructing the solution of the FDEs offered in RPSM. Moreover, the validity and accuracy 

of the NROT is further ratified by incorporating the idea of the RPSM with two other popular and 

powerful bio-inspired meta-heuristic algorithms, i.e., APSOA and DEA. 

The silent features of the employed technique are summarized as: 

 Developing a non-interrupted and non-iterative NROT by using the fractional approach in 

Caputo sense to solve MFDEs subject to a set of four elementary boundary conditions. 

 Optimization of the constructed residual function to attain the optimal values of the unknown 

weights in the considered power series solution. 

 Utilization of the BATA to achieve the desired fitness of the residual function along with two 

other influential and proficient optimization techniques i.e., APSOA and DEA, to ratify the 

accuracy and consistency of the presented scheme. 

 Framing the designed methodology of the presented scheme along with the relevant 

parameters detailing. 
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 Performing numerical simulation and statistical analysis to analyze the performance indices. 

A brief overview of the paper is as follows: In Section 2 fundamental definitions and theorems 

are presented. The designed methodology is projected in Section 3 with the learning solver described 

in Section 4. The mathematical formulation of the considered performance indices is displayed in 

Section 5 with the discussion of the attained numerical and statistical results given in Section 6. 

Lastly, the summary and highlight remarks are listed in Section 7. 

2. Preliminaries 

This section comprises of some essential definitions and results of fractional calculus that are 

going to be used in the further discussion. 

Definition 2.1. For a continuously differential function  xf  the Caputo fractional derivative  xfDc 
0

 

for 0x  is defined as [32,33], 
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While, the direct implementation of Caputo fractional derivative on a power function 
x  is 

expressed as, 

 

(3) 

 

 

Where, 0x and  1 for  . 

Definition 2.2. A power series (PS) expansion about 0xx  expressed in the form, 
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where, all constant coefficient iw , 0xx   and   10  for   is called a fractional power 

series (FPS) about 0x [34]. 

Theorem 2.3. Suppose that a FPS representation of a function  xf about 0xx  given by, 
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3. New residual optimization technique (NROT) 

Consider a non-linear multi-term fractional differential equation expressed as: 

          xDxDxDxxfxD jr 


,...,,,, 21                ],0[ Xx    (7) 

subject to the initial conditions written as: 

    ,1,...,2,1,0,0,0 00  rmXxcx m

mm     (8) 

and the boundary conditions at nxx  given as: 

  ,1,...,2,1,0,0,  rlXxdx nln

l     (9) 

where, jii ,...,3,2,1,    such that  rj ...0 21 . 

Now for the proposed technique we assume the weighted trial solution of Eq. (7) is of the form: 
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where, ,,...,2,1,0;  iwi  are the unknown weights of the trial solution  x . Then the residual 

function for the k
th

 order approximate solution of the k
th 

truncated series of the weighted trial solution 

satisfying the boundary conditions is written as: 
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where,  xRk
k,  comprises of the k  unknown weights. Differentiating Eq. (10) and using  x  along 

with the defined set of possible initial and boundary conditions we obtain:
  

),...,,,,( 32100 km wwwwxFcw        (13) 

),...,,,,( 1210  knlk wwwwxFdw       (14) 

By using Eq. (13) and Eq. (14) in Eq. (10), the k
th

 truncated series of the refined trial solution is 

given by: 
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where, ,1,...,2,1;  kiwi
 are the unknown weights of the trial solution  x , which are to be 

determined. The modified residual function along with the corresponding fitness function for the 

considered MFDE (7) attained by the utilization of the revised trial solution (15) are given as Eq. (16) 

and Eq. (17), respectively. 
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where, *ihxi  , with the step size vXh /*  and v  as the sample size of the collocation points for 

the computation domain  X,0 . The derived fitness function (17) defined in the mean square sense 

comprises of 2k  unknown weights which are determined in an accelerated and profitable manner 

by making use of an efficient and powerful optimization technique BATA. Graphical abstract of the 

above projected scheme (NROT) is portrayed in Figure 2. 

 

Figure 2. Graphical abstract of the proposed framework. 
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Lemma 3.1. For problem (7) subject to the two point boundary conditions, if the trial solutions 

 x is in the form of Eq (15), then it satisfies the conditions (8) and (9). 

Lemma 3.2. Consider a continuous and integrable function  x  defined in some interval  X,0 , then 

the series (10) converges if the remainder term defined in the weighted trial solution approaches to 

zero as k  tends to infinity [35]. 

Theorem 3.3. Suppose  x  be an integrable and continuous function defined in  X,0  with 

  Mxx
i
 0

 for all ki ,...,2,1,0  and the optimal values of 2k  unknown weights achieved by the 

considered meta-heuristic techniques such that ,1,...,2,1;*  kiMwi
 then the refined series 

solution (15) converges as k . 

The proof easily follows by utilizing the aforementioned Lemma 3.2. 

4. Learning solver: BATA 

Bat-inspired algorithm (BATA) is a relatively new and powerful meta-heuristic algorithm based 

on the successful characteristics of biological system (i.e., echolocation behavior of the microbats). 

They emit loud sound and listen for the echo that is reflected back by the surrounding objects. 

Studies from the past have proved that these bats have the ability to locate and identify the target, the 

type of target and even the moving speed of it. Moreover, the wing flutter rate of the prey induces a 

Doppler effect which helps these foraging bats to discriminate between the targets. In BATA the 

travelling range of the emitted pulses can be adjusted by either adjusting the wavelengths 
~

or the 

frequencies f
~

 because they are related to each other in the form of the constant f
~~

 . The three most 

idealized rules used for developing the code of bat-inspired algorithm are as follows: 

 All bats use their echolocation capability to avoid obstacles and detect prey in the dark. 

 Bats fly randomly with the velocity iv~  and frequency min

~
f  from the current position ix~  but 

with varying loudness and rate of pulse  1,0~ ir , which depends on the proximity of the 

target. 

 While the loudness can vary in many ways, from a minimum value 
min

~
A  to a large positive 

value 
0

~
A  or vice versa. 

After initializing the dimension 
*n  and the population of bats, new solution are established by 

updating the velocity and frequency of the i
th 

bat and consuming the above rules that can be 

translated into the expressions given as, 
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where,   is a random number drawn from a uniform distribution, *x  represents the current best 

solution and the fixed frequency range denoted by  maxmin

~
,

~
ff . As the iterations proceed the loudness 

and pulse rate for some constants 
1  and 

2  are updated by using the expressions given as follow: 
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with 10 1   and 02  . Here, in the implementation of BATA in the deliberated scheme ( NROT) 

for the learning of unknown weights in the acquired fitness function (17) the parameter values are 

presented in Table 1. 

Table 1. Parameter setting for BATA, APSOA and DEA. 

BATA APSOA DEA 

Parameter Value Parameter Value Parameter Value 

min

~
f  0 Maximum swarm size 80 Cross Probability 0.5 

max

~
f  2 Maximum number of 

flights  

2000 Initial Points Default 

Maximum bat 

population size 

40 Lower bound -2 Penelty Function Default 

21    1 Upper bound 2 Post Process Default 

Loudness  1 Accelaration constant 
  

0.7 Random Seed 0 

Pulse rate  0.05 Accelaration constant 

  

0.5 Scaling Factor  0.6 

Maximum number 

of generations, 
*N  

2000 Step size  0.1 Step size 0.1 

Step size 0.1 Search Points Default 

Tolerance 0.001 

To further ratify the correctness and efficiency of the NROT the solutions are also constructed 

by using the algorithm APSOA defined in [18] and the built-in MATHEMATICA codes for the DEA 

used in the software MATHEMATICA 11.0 for the optimization of the fitness function defined as 

Eq. (17). 

5. Performance evaluation 

Performance indices based on the root mean square error
RMSP , mean absolute deviation

MADP , 

Nash Sutcliffe efficiency 
NSEP  and the Global mean fitness GMF  are utilized to analyze the proposed 

methodology in detail for the solution of linear and non-linear MFDEs subject to four different types 

of boundary conditions. 

In reference to the solution obtained by the designed methodology, the definition of 
MADP  and 

RMSP  in terms of the approximate solution *

iy , exact solution e

iy  and input grid point equal to K  are 

mathematically defined as: 





K

i

e

iiMAD yy
K

P
1

*1
 ,         (20) 

2

1

*1




K

i

i

e

iRMS yy
K

P ,         (21) 

The mathematical definition of Nash Sutcliffe efficiency, NSEP  along with its error function ENSEP  is 

given by: 
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and 

NSEENSE PP 1 .         (23) 

A global operator based on the mean fitness value is written as: 





K

r

xE
K

GMF



1

)(
ˆ

1 
        (24) 

where,   xE  stands for fitness of the th  run and K


 represents the total number of independent 

runs of the algorithm. For an ideal system the error based indices of
RMSP , 

MADP , 
NSEP  and GMF are 

zero, while optimal value of
ENSEP is equal to one. 

6. Simulation and results 

In this section, numerical results of the suggested scheme (NROT) optimized using BATA are 

presented here for the assessment of linear and nonlinear non-homogenous MFDEs subject to four 

different variants of boundary conditions that cope a reasonable spectrum of possible cases. 

Furthermore, to validate the correctness and effectiveness of the deliberated scheme the results are 

also constructed by using the present scheme NROT in conjunction with two other powerful and 

efficient meta-heuristic techniques i.e., APSOA and DEA. The parameter setting for BATA, APSOA 

and DEA are defined in Table 1. In addition, comparative study is also conducted on the basis of 

performance indices formulated in the above Section 5. The reliability and accuracy of the suggested 

scheme NROT using the meta-heuristic solver BATA is further analyzed through the statistical 

results based on the large number of independent runs. 

The boundary value problems for these four variants are given below: 

Case Study I 

Consider the following fractional non-homogenous MFDE 

      ,
16

2 25.1

0

2 x
x

xxDxD c 


      (25) 

subject to the Neumann boundary conditions given as: 

    ,2,00 nn xx           (26) 

Here, the exact solution is   2xx  . Assuming Eq. (15) as the approximate solution of Eq. (25) and 

by utilizing the boundary conditions (26) the truncated trial solution is obtained, which yields the 

residual function of 
thk order written as: 
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        ,
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xxDxDxR c

k 


     (27) 

which automatically leads to a fitness function formulated as: 
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Case Study II 

Consider the following fractional order MFDE 

      ,
5.125.2

22
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xxx
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with the Dirichlet boundary conditions written as: 

    ,,00 2

nnn xxx           (30) 

The exact solution of the above formulated MFDE is   xxx  2 . The residual function attained by 

the NROT is expressed as: 
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k    (31) 

with the related fitness function given as: 
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Case Study III 

The proposed scheme is now tested on another form of MFDE with the two point boundary 

conditions given as: 

      ,
5.2

35.0 22
5.1

5.0

0

2 xx
x

xxDxD c 










      (33) 

    ,1,00 2 
nn xx       (34) 

The exact solution of the Eq. (33) is   12  xx  with the residual function accomplished by using 

the NROT is presented as: 

        ,
5.2

35.0 22
5.1

5.0

0

2

. xx
x

xxDxDxR c

k 










     (35) 

which automatically leads to a fitness function written as: 
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Case Study IV 

Consider the following non-linear MFDE, 

         ,
27445.3

2

545.2

2
2

9
2

455.2545.1
32555.0

0

455.1

0

2 xxx
xxxDxDxD cc 













    (37) 

with two point boundary conditions given as: 

    ,,00 2

nn xx            (38) 

Here, the exact solution of Eq. (37) is   3/3xx   with the residual function derived using the 

NROT is formulated as: 

         ,
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2
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
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   (39) 

By using the proposed scheme Eq (39) automatically leads to a fitness function presented as: 
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Minimization of the above given fitness functions (28), (32), (36) and (40) defined for the 

respective four test cases of the MFDEs is carried out by applying the proposed design 

methodology (NROT) using BATA, APSOA and DEA, with the parameter settings provided in 

Table 1. One of the best set of weights learned stochastically by using BATA, APSOA and DEA 

with 1nx  and 5k  for all the cases are graphically presented in Figure 3(a-d), respectively. The 

numerical results attained by utilizing a particular set of weights learned stochastically using the 

BATA for the aforementioned cases I–IV, which yields a fitness value (FV) ,1067350.1 9  

,1007290.6 9 91087730.1  and 91022120.2  are presented in Tables 2–5, respectively. Analogously, 

the results are evaluated by the NROT incorporated with the other two very powerful and efficient 

optimization techniques i.e., APSOA and DEA, that are presented in Table 2 for case I, Table 3 for 

case II, Table 4 for case III, and Table 5 for case IV, which evidently interprets about the reliability 

and competency of the recommended scheme. The fitness values accomplished by the NROT in 

combination with the APSOA and the DEA are presented in Table 6. Furthermore, these Tables 2–5 

also contains the related absolute error (AE) defined as the deviation between the results obtained by 

the NROT in combination with three different stochastic techniques (i.e., BATA, APSOA, DEA) 

with the respective exact solution e  for each case. Whereas, the values of maximum absolute 

error (MAX-AE) accomplished by using BATA for cases (I-IV) are ,1017878.1 5  ,1008576.4 6  
51095158.1   and 61065586.9  , respectively. The accuracy and convergence of the offered 

scheme is further analyzed in term of the performance indices defined as Eqs. 20–24. The optimal 

values of root mean square error
RMSP , mean absolute deviation

MADP  and Nash Sutcliffe effciency 
NSEP  

achieved by the implementation of the NROT in conjunction with BATA, APSOA and DEA for all 
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the test cases are portrayed in Table 6. Similarly, the values of the error estimates achieved by the 

implementation of the suggested scheme incorporated with BATA for cases I–IV with the parameter 

setting defined in Table 1, for a larger span (i.e., 5nx ) and 5k  presented in Table 7 

demonstrates about its accuracy and reliability of the proposed technique. Moreover, the solution for 

the above cases are also constructed for a larger span by using the offered technique in combination 

with the APSOA and DEA. Graphical solutions portrayed in Figures 4(a-d) at different values of k  

and 5.0h with 100nx  for case I; 50nx  for case II; 100nx  for case III; and 20nx  for case IV, 

respectively, clearly illustrates about the constructive agreement between the exact solution and the 

results obtained by the NROT amalgamated with BATA, APSOA and DEA. 

        

(a)                                                                             (b) 

       

 

(c)                                                                             (d) 

Figure 3. Set of optimal weights achieved by the NROT at 1nx  and 5k , for cases (I–IV), respectively. 
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Table 2. Comparison of the results obtained by the NROT in combination with BATA, 

APSOA and DEA with exact solution at 1nx  and 5k  for case (I). 

x  e  
DEA  BATA  APOSA  

DEAe    BATAe    APSOAe    

0.1 0.01 0.01 0.009988 0.012820 1.02349×10-16 1.17878×10-5 2.82030×10-3 

0.2 0.04 0.04 0.039989 0.042810 7.63278×10-17 1.09495×10-5 2.81007×10-3 

0.3 0.09 0.09 0.089999 0.092786 4.16334×10-17 1.00600×10-5 2.78584×10-3 

0.4 0.16 0.16 0.159991 0.162745 5.55112×10-17 9.35407×10-6 2.74546×10-3 

0.5 0.25 0.25 0.249991 0.252690 5.55112×10-17 8.93795×10-6 2.68994×10-3 

0.6 0.36 0.36 0.359991 0.362623 5.55112×10-17 8.81746×10-6 2.62319×10-3 

0.7 0.49 0.49 0.489991 0.492552 1.11022×10-16 8.92606×10-6 2.55189×10-3 

0.8 0.64 0.64 0.639991 0.642485 1.11022×10-16 9.15278×10-6 2.48528×10-3 

0.9 0.81 0.81 0.809991 0.812435 2.22045×10-16 9.37028×10-6 2.43497×10-3 

1.0 1.00 1.00 0.999991 1.002410 0.000000 9.46283×10-6 2.41478×10-3 

 

Table 3. Comparison of the results obtained by the NROT in combination with BATA, 

APSOA and DEA with exact solution at 1nx  and 5k  for case (II). 

x  
e  

DEA  BATA  APOSA  
DEAe    BATAe    APSOAe    

0.1 -0.09 -0.09 -0.089999 -0.090088 7.49401×10-16 3.34267×10-7 8.76839×10-5 

0.2 -0.16 -0.16 -0.159999 -0.160208 2.77556×10-15 8.73920×10-7 2.07961×10-4 

0.3 -0.21 -0.21 -0.209999 -0.210359 4.41314×10-15 1.29197×10-6 3.58686×10-4 

0.4 -0.24 -0.24 -0.239998 -0.240513 4.91274×10-15 1.60640×10-6 5.13425×10-4 

0.5 -0.25 -0.25 -0.249998 -0.250633 4.27436×10-15 1.99844×10-6 6.33424×10-4 

0.6 -0.24 -0.24 -0.239997 -0.240680 2.83107×10-15 2.63088×10-6 6.79560×10-4 

0.7 -0.21 -0.21 -0.209997 -0.210624 1.33227×10-15 3.46638×10-6 6.24306×10-4 

0.8 -0.16 -0.16 -0.159996 -0.160464 3.05311×10-16 4.08576×10-6 4.63690×10-4 

0.9 -0.09 -0.09 -0.089996 -0.090229 9.71445×10-17 3.50629×10-6 2.29250×10-4 

1.0 0.00 0.00  0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 4. Comparison of the results obtained by the NROT in combination with BATA, 

APSOA and DEA with e qwexact solution at 1nx  and 5k  for case (III). 

x  
e  

DEA  BATA  APOSA  
DEAe    BATAe    APSOAe    

0.1 1.01 1.01 1.009980 1.008052 6.48762×10-8 1.95158×10-5 1.94787×10-3 

0.2 1.04 1.04 1.039982 1.038052 6.12838×10-8 1.81608×10-5 1.92087×10-3 

0.3 1.09 1.09 1.089984 1.088150 5.55299×10-8 1.61406×10-5 1.84995×10-3 

0.4 1.16 1.16 1.159986 1.158281 4.80703×10-8 1.37066×10-5 1.71900×10-3 

0.5 1.25 1.25 1.249989 1.248481 3.95009×10-8 1.11155×10-5 1.51917×10-3 

0.6 1.36 1.36 1.359991 1.358749 3.04728×10-8 8.58836×10-6 1.25134×10-3 

0.7 1.49 1.49 1.489994 1.489071 2.16083×10-8 6.26947×10-6 9.28685×10-4 

0.8 1.64 1.64 1.639996 1.639421 1.34155×10-8 4.18586×10-6 5.79129×10-4 

0.9 1.81 1.81 1.809998 1.809752 6.20399×10-9 2.20620×10-6 2.47895×10-4 

1.0 2.00 2.00 2.000000 2.000000 0.000000 2.22045×10-16 0.000000 

 

Table 5. Comparison of the results obtained by the NROT in combination with BATA, 

APSOA and DEA with exact solution at 1nx  and 5k  for case (IV). 

x  e  
DEA  BATA  APOSA  

DEAe    BATAe    APSOAe    

0.1 0.000333 0.000333 0.000331 0.000324 3.84892×10-17 2.27034×10-6 9.00070×10-6 

0.2 0.002667 0.002666 0.002663 0.002716 5.98480×10-17 3.60640×10-6 4.90556×10-5 

0.3 0.009000 0.009000 0.008995 0.009168 7.80626×10-17 4.76408×10-6 1.67919×10-4 

0.4 0.021333 0.021333 0.021327 0.021671 1.00614×10-16 6.03412×10-6 3.37354×10-4 

0.5 0.041667 0.041666 0.041659 0.042210 1.17961×10-16 7.38289×10-6 5.43291×10-4 

0.6 0.072000 0.072000 0.071991 0.072768 1.52656×10-16 8.59316×10-6 7.67981×10-4 

0.7 0.114333 0.114333 0.114324 0.115323 1.66533×10-16 9.40486×10-6 9.90150×10-4 

0.8 0.170667 0.170667 0.170657 0.171852 1.94289×10-16 9.65586×10-6 1.18515×10-3 

0.9 0.243000 0.243000 0.242991 0.244325 1.94289×10-16 9.42277×10-6 1.32513×10-3 

1.0 0.333333 0.333333 0.333324 0.334712 2.22045×10-16 9.16170×10-6 1.37915×10-3 
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Table 6. Fitness values and error norms accomplished by using BATA APSOA and DEA 

at 1nx  and 5k  for cases (I–IV). 

Cases Algorithm FV RMSP  
MADP  NSEP  ENSEP  

Case I 

DEA 2.53316×10-29 1.00615×10-16 8.60394×10-17 1.000000 9.66226×10-32 

BATA 1.67350×10-9 9.72613×10-6 9.90934×10-6 1.000000 1.48160×10-8 

APSOA 3.10631×10-6 2.64036×10-3 1.22854×10-3 0.999986 1.40408×10-5 

Case II 

DEA 1.42109×10-14 2.82911×10-15 2.63426×10-15 1.000000 9.32853×10-28 

BATA 6.07290×10-9 2.38838×10-6 1.79948×10-6 1.000000 6.64846×10-10 

APSOA 4.70803×10-5 4.43119×10-4 3.45271×10-4 0.999977 2.22885×10-5 

Case III 

DEA 4.64252×10-14 4.06611×10-8 3.70035×10-8 1.000000 1.76247×10-14 

BATA 1.87730×10-9 1.19083×10-5 1.08990×10-5 1.000000 1.53321×10-9 

APSOA 3.86227×10-5 1.37820×10-3 1.26506×10-3 0.999981 1.92306×10-5 

Case IV 

DEA 1.13794×10-16 1.45270×10-16 1.11022×10-16 1.000000 1.65656×10-30 

BATA 2.22120×10-9 7.48351×10-6 6.39056×10-6 1.000000 4.39610×10-9 

APSOA 5.51747×10-5 8.40980×10-4 6.14017×10-4 0.999944 5.55517×10-5 

Table 7. Error Norms obtained by using BATA at 5nx and 5k  for cases (I–IV). 

Cases 
RMSP  

MADP  NSEP  ENSEP  

Case I 1.23390×10-4 9.86141×10-5 1.000000 2.47705×10-10 

Case II 1.62394×10-3 1.41170×10-3 1.000000 6.45741×10-8 

Case III 1.36834×10-4 1.18751×10-4 1.000000 3.04623×10-10 

Case IV 1.64242×10-2 1.03170×10-2 9.999980 1.68620×10-6 

The above discussion validates about the correctness and accuracy of the NROT incorporated 

with BATA, APSOA and DEA. The numerical results also interprets about the outclass performance 

of the BATA in terms of accuracy and competency which outstands the APSOA. Whereas, the DEA 

computed results outperforms both [36,37]. Moreover, the deliberated scheme (NROT) is better than 

all the former numerical and approximate techniques defined in the literature, as it requires no 

linearization, integration or transformation to successfully solve the MFDEs subject to different 

possible variants of boundary conditions. Accuracy, competency and computational intelligence are 

the main attributes of the suggested scheme, which remains valid even for a larger span of the 

computational domain. 
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(a)  100nx and 3k                                                   (b) 50nx and 5k  

                

                     (c)  100nx and 4k                                                  (d) 20nx and 2k  

Figure 4. Comparison of the results obtained by the NROT in combination with BATA, 

APSOA and DEA with the respective exact solution of cases (I–IV), at different values 

of xn and k. 

Statistical analysis 

This section contains the results of statistical analysis in terms of mean, standard deviation and 

mean deviation for the fitness achieved by the execution of 100 independent runs to solve the above 

defined cases of the MFDEs. The reliability and accuracy of the recommended scheme are validated 

by this analysis. 

To optimize the fitness functions (28), (32), (36) and (40) defined for the test cases I–IV 

respectively, 100 independent runs are carried out by using BATA for 1nx  and the parameter setting 

defined in Table 1. The results of statistical analysis for all these cases I–IV based on the fitness values 

against 100 independent runs for a fifth order truncated series of the trial solution (10) at distinct values 

of 
*N (number of generations) are depicted in Figure 5(a-d), respectively. Next by rearranging the 

multiple runs on the basis of results plotted in Figure 5(a-d) and the ascending order of fitness values 

for 1000,500,50* N  and 2000 , the sorted fitness values using semi logarithmic plot are presented in 

Figure 6(a-d), respectively. These Figure 6(a-d) and the comparison results for different cases depicted 

in Figure 4(a-d) clearly illustrates about the reliability, accuracy and convergence of the deliberated 

technique. Moreover, the precision of the designed methodology can be further improved by the 
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increase in the number of generations *N . The consistency in the correctness of the suggested technique 

(NROT), for  1,0x , step size 1.0h  and the number of generations 2000* N  at different values of 

6,5k  and 7  is scrutinized through statistics in terms of minimum fitness (MINF), maximum fitness 

(MAXF),  global mean fitness (GMF), mean deviation fitness (MDF) and the standard deviation of the 

fitness (STDF) values accomplished by the fitness functions (28), (32), (36) and (40) for the respective 

cases I–IV based on the hundred independent runs as tabulated in Table 8. The values of MINF 

achieved at contrasting values of k  for all the above cases lie around 810  to 910 . It is seen that the 

respective values of MAXF, GMF, STDF and MDF attained at different values of  7,6,5k  are 

around 210  to 410 , 310  to 510 , 310  to 510 and 310 to 510  for the first three cases while, no visible 

variation is observed in the results of case IV. The reliability and accuracy of the deliberated scheme is 

further examined on percentage convergence runs through different level of fitness values, with results 

of 100 independent runs for the suggested scheme based on the criteria 310FV  ,
410 ,

510
, 610 and

710
 presented in Table 9. The average convergence rate on the basis 310FV is 

about 100%, 97%, 98% and 90% for the cases I–IV, respectively. Generally, the statistics show that 

consistently accurate results are obtained for more than 80% of the independent runs of BATA on the 

basis of the criterion 410FV  which, clearly elucidates about the accuracy and reliability of the 

presented scheme. This analysis is made on Intel(R), with a 1.70 GHz Core 3i processor, 4.00 GB 

RAM, by running MATLAB version 2010a for the calculation of results. 

             
(a)                                                                              (b)                       

           
                                    (c)                                                                                (d) 

Figure 5. Result of statistical analysis based on unsorted FVs achieved by the NROT 

using BATA at distinct values of N
*
 = 50,500,1000 and 2000 for Cases (I–IV), 

respectively. 



1198 

 

AIMS Mathematics                                                      Volume 4, Issue 4, 1181–1202. 

             
(a)                                                                               (b) 

            

(c)                                                                                  (d) 

Figure 6. Result of statistical analysis based on sorted FVs achieved by the NROT using 

BATA at distinct values of N
*
 = 50,500,1000 and 2000 for Cases (I-IV), respectively. 

Table 8. Results of statistical performance indices obtained by the proposed technique 

incorporated with BATA at different values of k for Cases (I–IV). 

Cases k MINF MAXF GMF STDF MDF 

Case I 

5 1.67350×10-9 2.60170×10-3 1.00588×10-4 3.71797×10-4 1.31929×10-4 

6 7.42850×10-8 2.60550×10-4 1.56482×10-5 3.22757×10-5 1.59137×10-5 

7 3.01530×10-8 1.20840×10-3 9.44284×10-5 2.14560×10-4 1.24477×10-4 

Case II 

5 6.07290×10-9 6.99340×10-2 8.57081×10-4 1.37830×10-4 9.04938×10-4 

6 9.53340×10-8 3.57130×10-2 1.71610×10-3 4.16909×10-3 1.74473×10-3 

7 5.20710×10-8 7.52620×10-2 2.34578×10-3 9.42239×10-3 3.65243×10-3 

Case III 

5 1.87730×10-9 3.62650×10-4 5.02668×10-5 6.38566×10-5 4.46301×10-5 

6 3.21290×10-8 3.50730×10-2 1.11512×10-3 4.56102×10-3 1.75846×10-3 

7 4.30290×10
-8

 1.39250×10
-2

 7.87759×10
-4

 2.10378×10
-3

 1.00833×10
-3

 

Case IV 

5 2.22120×10-9 6.18400×10-2 2.87805×10-3 1.13173×10-2 5.28277×10-3 

6 5.75010×10-8 5.39330×10-2 2.61573×10-3 1.06274×10-2 4.69668×10-3 

7 5.86660×10-8 5.87900×10-2 6.89697×10-3 1.57383×10-2 1.12698×10-2 
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Table 9. Percentage convergence analysis based on different level of fitness values for 

Cases (I–IV) at different values of k. 

7. Conclusion and open problem 

In this endeavor, a novel bio-inspired meta-heuristic approach based on the idea of RPSM with 

the BATA, is successfully applied to solve linear and non-linear MFDEs subject to different possible 

sets of two point boundary conditions. The competency and effectiveness of the NROT is validated 

by conducting numerical experiments consuming the offered scheme in combination with two other 

meta-heuristic techniques. A concrete inference on the performance of the offered technique in terms 

of accuracy and convergence is drawn by the statistical analysis based on the hundred independent 

runs. The contribution of the suggested scheme can be briefly narrated in form of the salient features 

given as: 

 A competitive bio-inspired meta-heuristic solver is presented for the assessment of the 

MFDEs with fractional derivative defined in the Caputo sense by using BATA. 

 The design methodology is well suited to solve the MFDEs for different possible variants of 

two point boundary conditions, even for a larger span. 

 The numerical results constructed by the two other popular optimization techniques i.e., DEA 

and APSOA for the learning of 2k unknown weights in the derived fitness function ratifies 

the performance of the suggested scheme. 

 Comparative study of the results computed using the NROT with the available exact solution 

evidences the outstanding performance of the suggested scheme in terms of accuracy, 

computational cost and simplicity. 

 Accuracy and reliability of the deliberated scheme is validated by the accomplished near 

optimal values of the error indices based on the root mean square error 
RMSP , mean absolute 

deviation 
MADP , Nash Sutcliffe efficiency 

NSEP  and the Global fitnessGMF . 

 Statistical analysis show that consistently accurate results are obtained for more than 80% of 

the independent runs of BATA for all the test cases based on the criterion
410FV .  

In the future, one may explore the dynamics of various physical phenomena of real life 

interpreted in terms of the fractional partial differential equations by the implementation of the 

recommended technique incorporated with another new and powerful meta-heuristic optimization 

technique. 

Cases Case I Case II Case III Case IV 

%  Run  with  

fitness  
k=5 k=6 k=7 k=5 k=6 k=7 k=5 k=6 k=7 k=5 k=6 k=7 

10
-3

 100 100 100 100 97 95 100 96 99 94 95 83 

10
-4 97 100 98 100 85 81 100 90 86 93 92 81 

10
-5 86 97 81 75 56 37 84 59 43 80 72 67 

10
-6 34 61 43 30 15 14 30 19 13 38 28 34 

10
-7

 10 13 9 8 6 5 10 5 6 14 8 8 
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