
http://www.aimspress.com/journal/Math

AIMS Mathematics, 4(4): 1145–1169.
DOI:10.3934/math.2019.4.1145
Received: 26 May 2019
Accepted: 23 July 2019
Published: 19 August 2019

Research article

Influence of the topology on the dynamics of a complex network of
HIV/AIDS epidemic models

Guillaume Cantin1,∗and Cristiana J. Silva2
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Keywords: complex network; epidemiological model; basic reproduction number; graph topology;
HIV/AIDS; Cape Verde
Mathematics Subject Classification: 34A34, 34C60, 92B05

1. Introduction

In the last decades, mathematical models have played a very important role on the study of the
analysis of the spread of infectious diseases. One of those infectious diseases, is the acquired
immunodeficiency syndrome (AIDS), which is caused by the infection with the human
immunodeficiency virus (HIV). HIV continues to be a major global public health issue, having
claimed more than 35 million lives so far. In 2017, 940 000 people died from HIV-related causes
globally. There were approximately 36.9 million people living with HIV, at the end of 2017, with 1.8
million people becoming newly infected in 2017 globally [29]. HIV is spread all over the world,
however the World Health Organization African Region is the most affected region, with 25.7 million
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people living with HIV in 2017. The African region also accounts for over two thirds of the global
total of new HIV infections [29]. In this context, numerous mathematical models have been proposed
for HIV/AIDS transmission and other infectious diseases, but although they can incorporate important
informations about the characteristics of epidemic outbreaks, many of them do not take into account
the heterogeneity of the geographical landscape (see e.g. [14, 15, 22, 23, 25, 26]). However, this
geographical heterogeneity, which seems to represent a key factor in understanding the spreading of
infectious diseases, can be studied through the complex networks approach, which combines
dynamical systems with graph theory, in order to propose refined mathematical models.

Usually, a complex network is built by considering a graph, given by a set of vertices and a set
of edges, and by coupling each vertex with an instance of a given dynamical system, which can be
determined by a set of differential equations. Recent works have been devoted to complex networks
for studying real-world applications, like neural networks [6, 7, 9, 28], behavioral networks [4, 5] or
biological networks [18, 19]. Other works have also been dedicated to the study of epidemiological
problems and their relationship with social networks [13, 20, 21]. The effect of the topology of the
graph, which is determined by the disposal of its edges, on the dynamics of the network and the
possible synchronization state are widely studied [1–3,10], but it is still unknown for complex networks
of nonidentical systems if one can find some topology that favors a particular dynamics.

In this paper, we propose an original model of complex network of nonidentical dynamical
systems, in order to analyze the spread of epidemics within an heterogeneous geographical zone. To
this end, we consider a recent HIV/AIDS model, proposed in [26], given by a system of ordinary
differential equations, for which a basic reproduction number R0 can be determined. It has been
proved in [27] that this refined model admits a disease-free equilibrium (DFE), which is globally
asymptotically stable if R0 < 1, and an endemic equilibrium (EE), which is globally asymptotically
stable if R0 > 1. Thus we construct a complex network by coupling nonidentical instances of the
HIV/AIDS system proposed in [26], that is, multiple instances of the epidemiological system with
distinct parameters values. We construct the complex network so that it can take into account the
situation where a part of the population is not concerned with the migrations. Moreover, we assume
that the displacements can be different in some places of the network, that migrations are
instantaneous, and that individuals are not subject to an evolution from one compartment to another
during migration from one node to another. Up to our knowledge, these assumptions are a novelty on
the mathematical modeling of the spread of HIV/AIDS epidemics. We consider a graph G = (V , E ),
where the set of vertices V models the zones of high population concentration, and the set of edges E
corresponds to human displacements among those separated zones. We focus on the situation where
the set of vertices of the graph G is split into at least two subsets: the first subset being coupled with
instances of the HIV model for which the basic reproduction number satisfies R0 < 1, thus admitting a
unique equilibrium which is a DFE; and the second subset being coupled with instances of the HIV
model for which R0 > 1, thus presenting the coexistence of a DFE and an EE. We address the
following questions. Does the coupling between the two subsets of vertices create new equilibrium
points? Is it possible to eliminate the endemic equilibriums with a suitable disposition of the
couplings? If not, is it possible to minimize the propagation of the epidemic in the network by
searching an optimal topology?

Those questions are of great interest, and still have not been deeply studied. Recently, it has been
proved, in the particular case of a behavioral model [5], that oriented chains play an important role for
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reaching an expected equilibrium. Here, the equilibrium we aim to favor in the network is the DFE.
The main goal of this paper is to find a topology for which the DFEs of a given subset of the network
drive the whole network to a global DFE.

This paper is organized as follows. In Section 2, we recall the equations and stability results of the
HIV/AIDS model proposed in [26] and analyzed in [27] that is considered in our study, and we
improve the previous model by constructing a novel complex network model. In Section 3, we show
that the complex network model is well-posed, by proving the existence of a positively invariant
region that guarantees the non-negativity of the solutions, together with their boundedness and global
existence. In Section 4, we explore the influence of the coupling on the equilibrium points of the
network, by computing the global basic reproduction number for particular small networks, and prove
under reasonable assumptions that the network admits a unique DFE which is globally asymptotically
stable. A case study is considered in Section 5, where the HIV/AIDS epidemic in the Cape Verde
archipelago is analyzed and relevant numerical simulations are presented. Moreover, the existence of
an optimal topology minimizing the level of infection in the network is investigated. We end our
paper with Section 6 with conclusions and discussion of possible future works.

2. Problem statement

In this section, we recall the HIV/AIDS compartmental model, given by a system of differential
equations firstly proposed in [26], which describes the transmission dynamics of HIV in a
homogeneous population with variable size. In Subsection 2.2 we explicit the construction of a
complex network determined with nonidentical instances of the previous HIV/AIDS model.

2.1. HIV/AIDS model

We consider a human population affected by a HIV/AIDS epidemics, from [26]. The total
population is divided into four mutually-exclusive compartments: susceptible individuals (S );
HIV-infected individuals with no clinical symptoms of AIDS (the virus is living or developing in the
individuals but without producing symptoms or only mild ones) but able to transmit HIV to other
individuals (I); HIV-infected individuals under ART treatment (the so called chronic stage) with a
viral load remaining low (C); and HIV-infected individuals with AIDS clinical symptoms (A). The
total population at time t, denoted by N(t), is given by

N(t) = S (t) + I(t) + C(t) + A(t).

The SICA model is given by a system of four ordinary differential equations that can be written as
follows (see [27]):

Ṡ (t) = Λ − β
[
I(t) + ηCC(t) + ηAA(t)

]
S (t) − µS (t),

İ(t) = β
[
I(t) + ηCC(t) + ηAA(t)

]
S (t) − (ρ + φ + µ) I(t) + ωC(t) + αA(t),

Ċ(t) = φI(t) − (ω + µ)C(t),

Ȧ(t) = ρ I(t) − (α + µ + d)A(t).

(2.1)
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The parameters Λ, µ, β, ηC, ηA, φ, ρ, α, ω and d take fixed values and their significance is detailed
in Table 1.

Table 1. Parameters of the HIV/AIDS model (2.1).

Symbol Description

Λ Recruitment rate
µ Natural death rate
β HIV transmission rate
ηC Modification parameter
ηA Modification parameter
φ HIV treatment rate for I individuals
ρ Default treatment rate for I individuals
α AIDS treatment rate
ω Default treatment rate for C individuals
d AIDS induced death rate

We recall that system (2.1) admits a disease-free equilibrium (DFE) given by

Σ0 =
(
S 0, I0,C0, A0

)
=

(
Λ

µ
, 0, 0, 0

)
. (2.2)

We introduce the basic reproduction number R0, which represents the expected average number of
new HIV infections produced by a single HIV-infected individual when in contact with a completely
susceptible population, given by

R0 =
S 0β

[
ξ2 (ξ1 + ρηA) + ηCφξ1

]
µ
[
ξ2 (ρ + ξ1) + φξ1 + ρd

]
+ ρωd

=
S 0N

D
, (2.3)

where

ξ1 = α + µ + d, ξ2 = ω + µ,

N = β
[
ξ2 (ξ1 + ρ ηA) + ηC φ ξ1

]
,

D = µ
[
ξ2 (ρ + ξ1) + φ ξ1 + ρ d

]
+ ρωd.

Theorem 1. [27] The disease free equilibrium Σ0 given by (2.2) is globally asymptotically stable for
R0 < 1.

We also recall that model (2.1) has a unique endemic equilibrium Σ+ = (S ∗, I∗,C∗, A∗), which is
globally asymptotically stable, whenever R0 > 1.

Lemma 1. [27] The model (2.1) has a unique endemic equilibrium Σ+ = (S ∗, I∗,C∗, A∗) whenever
R0 > 1, which is given by

S ∗ =
D

N
, I∗ =

ξ1ξ2(ΛN − µD)
DN

, C∗ =
φξ1(ΛN − µD)

DN
, A∗ =

ρξ2(ΛN − µD)
DN

.

Theorem 2. [27] The endemic equilibrium Σ+ given by (1) is globally asymptotically stable for R0 > 1.
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The HIV/AIDS model (2.1) can be rewritten in the following way

ẋ = f (x, p), t ≥ 0, x ∈ R4, p ∈ R10, (2.4)

where x = (S , I, C, A)T , p = (Λ, β, ηC, ηA, µ, ρ, φ, ω, α, d) and f (x, p) is defined by:

f (x, p) =



Λ − β
[
I(t) + ηCC(t) + ηAA(t)

]
S (t) − µS (t)

β
[
I(t) + ηCC(t) + ηAA(t)

]
S (t) − (ρ + φ + µ) I(t) + ωC(t) + αA(t)

φI(t) − (ω + µ)C(t)

ρ I(t) − (α + µ + d)A(t)


.

Nonidentical instances of system (2.4) can be coupled with the vertices of a graph in order to give
rise to a complex network, as we are going to see in the coming subsection.

2.2. Construction of the complex network

Let us consider a graph G = (V , E ) made of a finite set V of n vertices, where n denotes an integer
greater than 2, and a finite set E of m edges, where m denotes a positive integer. This graph models the
geographical zone which is affected by the epidemics. We assume that V can be split into at least two
subsets of vertices V1 and V2. We couple the vertices of V1 with an instance of system (2.4) for which
R0 < 1, and the vertices of V2 with an instance of system (2.4) for which R0 > 1. The complex network
is determined by the following non-linear and autonomous differential system:

Ẋ = F(X, P) + LHX, (2.5)

where

X = (x1, . . . , xn)T ∈
(
R4

)n
,

HX = (Hx1, . . . , Hxn)T ∈
(
R4

)n
,

P = (p1, . . . , pn) ∈
(
R10

)n
,

and F determines the internal dynamic of each vertex:

F(X, P) =
(
f (x1, p1), . . . , f (xn, pn)

)T
.

Furthermore, L is the matrix of connectivity, which is defined as follows. For each edge (k, j) ∈ E ,
k , j, we have L j,k > 0. If (k, j) < E , k , j, we set L j,k = 0. The diagonal coefficients satisfy

L j, j = −

n∑
k=1
k, j

Lk, j.

Finally, H is the matrix of the coupling strengths and it is given by

H =


εS 0 0 0
0 εI 0 0
0 0 εC 0
0 0 0 εA

 ,
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with non negative coefficients εS , εI , εC and εA.
In this complex network model, we consider that an edge (k, j) ∈ E , k , j, models a connection

between two vertices k and j, which corresponds to human displacements from vertex k towards vertex
j. Moreover, the parameter εS models the rate of susceptible individuals on vertex k which migrate
towards vertex j. The parameters εI , εC and εA are defined analogously for the compartments I, C
and A respectively. This implies that our model can take into account the situation where a part of
the population is not concerned with the migrations. Additionally, each connection (k, j) is weighted
by a positive coefficient L j,k, which means that the displacements can be different in some places of
the network. It is worth emphasizing that the migrations are assumed to be instantaneous, and that
individuals are not subject to an evolution from one compartment to another during migration from
one node to another.

Next we explicit the equations which describe the state of vertex j ∈ {1, . . . , n}:

Ṡ j = Λ j − β j
(
I j + ηC, j C j + ηA, jA j

)
S j − µ jS j + εS

n∑
k=1

L j,kS k,

İ j = β j
(
I j + ηC, j C j + ηA, jA j

)
S j −

(
ρ j + φ j + µ j

)
I j + ω jC j + α jA j + εI

n∑
k=1

L j,kIk,

Ċ j = φ jI j − (ω j + µ j)C j + εC

n∑
k=1

L j,kCk,

Ȧ j = ρ j I j − (α j + µ j + d j)A j + εA

n∑
k=1

L j,kAk,

(2.6)

where the time dependence is omitted, in order to lighten the notations. The coupling terms can be
divided into fluxes exiting from vertex j and fluxes entering in vertex j, that is

n∑
k=1

L j,kS k = −


n∑

k=1
k, j

Lk, j

 S j +

n∑
k=1
k, j

Lk, jS k,

n∑
k=1

L j,kIk = −


n∑

k=1
k, j

Lk, j

 I j +

n∑
k=1
k, j

Lk, jIk,

n∑
k=1

L j,kCk = −


n∑

k=1
k, j

Lk, j

C j +

n∑
k=1
k, j

Lk, jCk,

n∑
k=1

L j,kAk = −


n∑

k=1
k, j

Lk, j

 A j +

n∑
k=1
k, j

Lk, jAk,

for all j ∈ {1, . . . , n}.

3. Positively invariant region

In this section, we prove that the complex network problem (2.5) is well posed, and admits a
positively invariant region. This property is obtained as a consequence of the conservation of the
couplings terms in system (2.5), which corresponds to the fact that the matrix of connectivity L is a
zero column sum matrix.

3.1. Preliminary results

We begin recalling two preliminary results. Since their proofs are well-known, we omit it.
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Lemma 2. Let us consider the Cauchy problem

ζ̇(t) = f (t)ζ(t) + g(t), t > t0,

ζ(t0) = ζ0,
(3.1)

where f and g are two continuous functions defined on R, and t0 ∈ R. We assume that g(t) ≥ 0 for all
t ∈ R, and that ζ(t0) ≥ 0. Let ζ(t) be a solution of (3.1) defined on [t0, t0 + τ] with τ > 0, such that
ζ(t0) ≥ 0.

Then we have ζ(t) ≥ 0, for all t ∈ [t0, t0 + τ].

Lemma 3. Let ζ be a continuous function defined on [0, T ], with T > 0, continuously differentiable
on ]0, T ], and satisfying the differential inequality

ζ̇(t) + δ1ζ(t) ≤ δ2, 0 < t ≤ T,

with two positive coefficients δ1, δ2.

Then we have

ζ(t) ≤
[
ζ(0) −

δ2

δ1

]
e−δ1t +

δ2

δ1
, 0 ≤ t ≤ T.

3.2. Non-negativity of the solutions of the complex network problem

The next theorem guarantees the non-negativity of the solutions of the complex network problem
(2.5), which is an obvious property to be satisfied for population dynamics models. Since the proof
uses classical techniques [11, 17], we only give the main steps.

Theorem 3. For any initial condition X0 ∈ (R+)4n, the Cauchy problem

X(t) = F(X, P) + LHX, t > 0,
X(0) = X0,

(3.2)

where F, P, L and H are defined as above (see Section 2.2), admits a unique solution defined on [0, T ]
with T > 0, whose components are non-negative on [0, T ].

Proof. Let us consider an initial condition X0 ∈ (R+)4n. We denote by X(t, X0) the solution of the
Cauchy problem (3.2), defined on [0, T ] with T > 0.
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We introduce an auxiliary problem defined by

Ṡ j = Λ j − β j
(
I j + ηC, jC j + ηA, jA j

)
S j − µ jS j − εSγ jS j + εS

n∑
k=1
k, j

Lk, j |S k| ,

İ j = β j
( ∣∣∣I j

∣∣∣ + ηC, j

∣∣∣C j

∣∣∣ + ηA, j

∣∣∣A j

∣∣∣ )S j −
(
ρ j + φ j + µ j

)
I j + ω j

∣∣∣C j

∣∣∣ + α j

∣∣∣A j

∣∣∣
−εIγ jI j + εI

n∑
k=1
k, j

Lk, j |Ik| ,

Ċ j = φ jI j − (ω j + µ j)C j − εCγ jC j + εC

n∑
k=1
k, j

Lk, j |Ck| ,

Ȧ j = ρ j I j − (α j + µ j + d j)A j − εAγ jA j + εA

n∑
k=1
k, j

Lk, j |Ak| ,

(3.3)

for each j ∈ {1, . . . , n}, where the coefficient γ j corresponds to the fluxes exiting from node j, and is
given by

γ j =

n∑
k=1
k, j

Lk, j.

Let us denote by X̃(t, X0) the solution of the auxiliary problem (3.3), stemming from the same initial
condition X0 ∈ (R+)4n, defined on [0, T̃ ].

Applying Lemma 2, we easily prove that the components of X̃(t, X0) are non-negative. This
implies that X̃(t, X0) is also a solution of the Cauchy problem (3.2) on [0, T̃ ]. By uniqueness, we have
X̃(t, X0) = X(t, X0) for all t ∈ [0, T ] ∩ [0, T̃ ]. Finally, it is seen that T = T̃ , which achieves the
proof. �

3.3. Boundedness of the solutions of the complex network problem

Let us introduce the minimum mortality rate µ0 defined by

µ0 = min
1≤ j≤n

µ j,

the positive coefficient Λ0 defined by

Λ0 =

n∑
j=1

Λ j,

and the compact region

Ω =

(x j)1≤ j≤4n ∈ (R+)4n ;
4n∑
j=1

x j ≤
Λ0

µ0

 . (3.4)

The total population in the complex network, defined by

N(t) =

n∑
j=1

[
S j(t) + I j(t) + C j(t) + A j(t)

]
, t ∈ [0, T ],
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satisfies

Ṅ(t) ≤ −µ0N(t) + Λ0, t ∈ [0, T ],

since the matrix of connectivity L is a zero column sum matrix. Applying Lemma 3 leads to

N(t) ≤
[
N(0) −

Λ0

µ0

]
e−µ0t +

Λ0

µ0
, t ∈ [0, T ],

thus we obtain the following theorem.

Theorem 4. The region Ω defined by (3.4) is positively invariant under the flow induced by the complex
network (2.5).

Remark 1. It is easily seen that the positively invariant region Ω for the complex network problem
(2.5) satisfies

n∏
i=1

Ωi ⊂ Ω,

where Ωi =

(x j)1≤ j≤4 ∈ (R+)4 ;
4∑

j=1

x j ≤
Λi

µi

 corresponds to the positively invariant region of the node

(i) in absence of coupling. Roughly speaking, the couplings can enlarge the phase space of the flow
induced by the network problem.

4. Stability analysis of the complex network

In this section, we explore the effect of the couplings on the dynamics of the complex network (2.5).
We use symbolic computational methods, in the case of small networks. Furthermore, we prove the
existence of a unique disease-free equilibrium which is globally asymptotically stable.

4.1. Asymmetric two-nodes network

Let us consider a two-nodes networks, with one vertex (1) for which R0 < 1, another vertex (2) for
which R0 > 1, and a directed connection from vertex (1) towards vertex (2) (see Figure 1). In that case,
the matrix of connectivity is given by

L =

[
−L2,1 0
+L2,1 0

]
,
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and therefore the equations of the network read

Ṡ 1 = Λ1 − β1
(
I1 + ηC,1 C1 + ηA,1A1

)
S 1 − µ1S 1 − L2,1εS S 1,

İ1 = β1
(
I1 + ηC,1 C1 + ηA,1A1

)
S 1 − (ρ1 + φ1 + µ1) I1 + ωC1 + αA1 − L2,1εI I1,

Ċ1 = φ1I1 − (ω1 + µ1)C1 − L2,1εCC1,

Ȧ1 = ρ1 I1 − (α1 + µ1 + d1)A1 − L2,1εAA1,

Ṡ 2 = Λ2 − β2
(
I2 + ηC,2 C2 + ηA,2A2

)
S 2 − µ2S 2 + L2,1εS S 1,

İ2 = β2
(
I2 + ηC,2 C2 + ηA,2A2

)
S 2 − (ρ2 + φ2 + µ2) I2 + ω2C2 + α2A2 + L2,1εI I1,

Ċ2 = φ2I2 − (ω2 + µ2)C2 + L2,1εCC1,

Ȧ2 = ρ2 I2 − (α2 + µ2 + d2)A2 + L2,1εAA1,

(4.1)

where we omit the dependence in t in order to lighten our notations.

1 2
L2,1

Figure 1. Asymmetric two-nodes network, built with two nonidentical instances of system
(2.1). The green node (1) is associated with an instance of system (2.1) for which the basic
reproduction number R0 satisfies R0 < 1, whereas the red node (2) is coupled with an instance
of system (2.1) for which R0 > 1.

Roughly speaking, the coupling coefficient L2,1 acts on vertex (1) as if the mortality rate µ1 increases,
which changes the value of the basic reproduction number on vertex (1). Thus the following question
arises. How does R0 vary when L2,1 increases? Proposition 1 below partly answers this question.

First, we easily prove that system (4.1) admits a disease-free equilibrium point Σ0 given by

Σ0 = (S 0
1, I

0
1 ,C

0
1, A

0
1, S

0
2, I

0
2 ,C

0
2, A

0
2) =

(
Λ1

L2,1εS + µ1
, 0, 0, 0,

L2,1εS (Λ1 + Λ2) + Λ2µ1

µ2
(
L2,1εS + µ1

) , 0, 0, 0
)
. (4.2)

Following the method proposed in [8] for computing the basic reproduction number, we have the
following result.

Proposition 1. The basic reproduction number of model (4.1) is

R0 = max{R0,1,R0,2} (4.3)

where
R0,1 =

N1

D1
(4.4)

and
R0,2 =

N2(Λ1L2,1εS + Λ2L2,1εS + Λ2µ1)
D2

[
(L2,1εS + µ1)µ2

] (4.5)
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with

N2 = β2
[
ξ2,2

(
ξ1,2 + ρ2 ηA,2

)
+ ηC,2 φ2 ξ1,2

]
,

D2 = µ2
[
ξ2,2

(
ρ2 + ξ1,2

)
+ φ2 ξ1,2 + ρ2 d2

]
+ ρ2ω2d2,

and

N1 = Λ1β1

(
L2

2,1εAεC +
(
ηA,1ρ1εC + ηC,1φ1εA + ξ1,1εC + ξ2,1εA

)
L2,1 + ξ2,1(ξ1,1 + ρ1ηA,1) + ξ1,1ηC,1φ1

)
,

D1 = (L2,1εS + µ1)
(
L3

2,1εAεCεI + p2L2
2,1 + p1L2,1 + p0

)
,

p0 = µ1
[
ξ2,1(ρ1 + ξ1,1) + φ1ξ1,1 + d1ρ1

]
+ d1ω1ρ1,

p1 =
[
ξ1,1(µ1 + φ1) + (d1 + µ1)ρ1

]
εC + ξ1,1ξ2,1εI +

[
(µ1 + ρ1)ξ2,1 + µ1φ1

]
εA,

p2 =
[
(ρ1 + φ1 + µ1)εA + εIξ1,1

]
εC + εAεIξ2,1.

Proof. Let Fi(t) be the rate at which new infections appear in the i-th compartment and V+
i (t) be the

“individuals” transfer rate into the i-th compartment in all other ways. Similarly, let V−i (t) denote the
“individuals” transfer rate out of the i-th compartment, for which[

Ṡ 1(t), İ1(t), Ċ1(t), Ȧ1(t), Ṡ 2(t), İ2(t), Ċ2(t), Ȧ2(t)
]T

= F (t) −V(t) = F (t) −
(
V−(t) −V+(t)

)
.

Therefore, we take

F (t) =



0
S 1β1(ηA,1A1 + ηC,1C1 + I1)

0
0
0

L2,1εI I1 + S 2β2(ηA,2A2 + ηC,2C2 + I2)
0
0


, V+(t) =



Λ1

ω1C1 + α1A1

φ1I1

ρ1 I1

Λ2 + L2,1εS S 1

ω2C2 + α2A2

φ2I2 + L2,1εCC1

ρ2 I2 + L2,1εAA1


and

V−(t) =



β1
(
I1 + ηC,1 C1 + ηA,1A1

)
S 1 + µ1S 1 + L2,1εS S 1

(ρ1 + φ1 + µ1) I1 + L2,1εI I1

(ω1 + µ1)C1 + L2,1εCC1

(α1 + µ1 + d1)A1 + L2,1εAA1

β2
(
I2 + ηC,2 C2 + ηA,2A2

)
S 2 + µ2S 2

(ρ2 + φ2 + µ2) I2

(ω2 + µ2)C2

(α2 + µ2 + d2)A2


.

The Jacobian matrices F of F (t) and V ofV(t) are given by

F =
[
F1, F2], V =

[
V1, V2],
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where

F1 =



0 0 0 0
β1

(
ηA,1A1 + ηC,1C1 + I1

)
S 1β1 S 1β1ηC,1 S 1β1ηA,1

0 0 0 0
0 0 0 0
0 0 0 0
0 L2,1εI 0 0
0 0 0 0
0 0 0 0


,

F2 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

β2
(
ηA,2A2 + ηC,2C2 + I2

)
S 2β2 S 2β2ηC,2 S 2β2ηA,2

0 0 0 0
0 0 0 0


,

V1 =



β1(A1ηA,1 + C1ηC,1 + I1) + L2,1εS + µ1 S 1β1 S 1β1ηC,1 S 1β1ηA,1

0 L2,1εI + µ1 + φ1 + ρ1 −ω1 −α1

0 −φ1 L2,1εC + ξ2,1 0
0 −ρ1 0 L2,1εA + ξ1,1

−L2,1εS 0 0 0
0 0 0 0
0 0 −L2,1εC 0
0 0 0 −L2,1εA


,

V2 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

β2(A2ηA,2 + C2ηC,2 + I2) + µ2 S 2β2 S 2β2ηC,2 S 2β2ηA,2

0 ρ2 + φ2 + µ2 −ω2 −α2

0 −φ2 ξ2,2 0
0 −ρ2 0 ξ1,2


,

and

ξ1,1 = α1 + µ1 + d1, ξ2,1 = ω1 + µ1,

ξ1,2 = α2 + µ2 + d2, ξ2,2 = ω2 + µ2 .

Evaluating the matrices F and V at the disease-free equilibrium Σ0 given by (4.2), we find

F0 =
[
F1

0 , F2
0
]
, V0 =

[
V1

0 , V2
0
]
,
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with

F1
0 =



0 0 0 0
0 Λ1β1

L2,1εS +µ1

Λ1β1ηC,1

L2,1εS +µ1

Λ1β1ηA,1

L2,1εS +µ1

0 0 0 0
0 0 0 0
0 0 0 0
0 L2,1εI 0 0
0 0 0 0
0 0 0 0


,

F2
0 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 (Λ1L2,1εS +Λ2L2,1εS +Λ2µ1)β2

µ2(L2,1εS +µ1)
(Λ1L2,1εS +Λ2L2,1εS +Λ2µ1)β2ηC,2

µ2(L2,1εS +µ1)
(Λ1L2,1εS +Λ2L2,1εS +Λ2µ1)β2ηA,2

µ2(L2,1εS +µ1)
0 0 0 0
0 0 0 0


,

V1
0 =



L2,1εS + µ1
Λ1 β1

L2,1εS +µ1

Λ1β1ηC,1

L2,1εS +µ1

Λ1β1ηA,1

L2,1εS +µ1

0 L2,1εI + µ1 + φ1 + ρ1 −ω1 −α1

0 −φ1 L2,1εC + ξ2,1 0
0 −ρ1 0 L2,1εA + α1d1 + µ1

−L2,1εS 0 0 0
0 0 0 0
0 0 −L2,1εC 0
0 0 0 −L2,1εA


,

V2
0 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

µ2
(Λ1L2,1εS +Λ2L2,1εS +Λ2µ1)β2

µ2(L2,1εS +µ1)
(Λ1L2,1εS +Λ2L2,1εS +Λ2µ1)β2ηC,2

µ2(L2,1εS +µ1)
(Λ1L2,1εS +Λ2L2,1εS +Λ2µ1)β2ηA,2

µ2(L2,1εS +µ1)
0 ρ2 + φ2 + µ2 −ω2 −α2

0 −φ2 ω2 + µ2 0
0 −ρ2 0 α2 + µ2 + d2


.

The eigenvalues of the matrix F0V−1
0 are given by:[

0, 0, 0, 0, 0, 0, N1
D1
,
N2(Λ1L2,1εS +Λ2L2,1εS +Λ2µ1)

D2((L2,1εS +µ1)µ2)

]T
.

The basic reproduction number is given by the dominant eigenvalue of the matrix F0V−1
0 , that is, R0

takes the value given by (4.3).
�
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Remark 2. We emphasize that R0,1 and R0,2 correspond to the basic reproduction numbers of nodes
(1) and (2) respectively, in absence of coupling (that is εS = εI = εC = εA = 0). Thus, the expression
R0 = max(R0,1, R0,2) implies that if R0,1 > 1 or R0,2 > 1, then R0 > 1. In other words, the node admitting
a basic reproduction number R0 > 1 drives the other node to a global Endemic Equilibrium (EE). It is a
work in progress to generalize this pattern to more general topologies (e.g. chain networks). However,
one should not conclude for the general case that the good solution is to “cut” the couplings (there
may exist an optimal coupling topology which globally tempers the level of infected individuals, as we
are going to show in Section 5 below).

We easily prove that R0,2 is an increasing function of L2,1. Indeed, we have

R0,2 = k
d1L2,1 + d2

d3L2,1 + d4
,

with k = N2
D2µ2

, d1 = εS (Λ1 + Λ2), d2 = Λ2µ1, d3 = εS and d4 = µ1. Since d1d4 − d2d3 = µ1εS Λ1 > 0, we
can conclude that R0,2 is an increasing function of L2,1. Figure 2(a) illustrates this increasing shape of
R0,2 with respect to L2,1 for the following parameters values:

Λ1 = Λ2 = 2, β1 = 0.0015, β2 = 0.001, ηC,1 = ηC,2 = 0.04, ηA,1 = ηA,2 = 1.3, µ1 = µ2 = 1
70 ,

ρ1 = ρ2 = 0.1, ϕ1 = ϕ2 = 1, ω1 = ω2 = 0.09, α1 = α2 = 0.33, d1 = d2 = 1, ε = 0.1.

At the opposite, one can find parameters values for which R0,1 is a decreasing function of L2,1, but
also other parameters values for which R0,1 is an increasing function of L2,1 in a neighborhood of 0.
Figure 2(b) presents an example for which R0,1 admits a maximum with respect to L2,1; this example
has been obtained for the following parameters values:

Λ1 = Λ2 = 1, ε = 1, ηA,1 = ηC,1 = ηA,2 = ηC,2 = 0, β1 = β2 = 1, µ1 = 10,
d1 = 1, ω1 = 1, ϕ1 = 1, ρ1 = 1, α1 = 50.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

L2,1

(a)

R0,1

R0,2

0 0.2 0.4 0.6 0.8 1

8.99

9

9.01

9.02

9.03

·10−3

L2,1

(b)

R0,1

Figure 2. Influence of the coupling on the basic reproduction numbers R0,1 and R0,2 of system
(4.1) for different parameters values. R0,2 is an increasing function of the coupling strength
L2,1 (a), whereas R0,1 can admit a maximum (b).

In parallel, the coupling strengths εS , εI , εC and εA, stored in matrix H (see section 2.2), are also
observed to play an important role (see Figure 3). For the same set of parameters as above, and a frozen
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coefficient L2,1 = 0.15, we have computed the values of the basic reproduction numbers R0,1 and R0,2

with respect to a variation of εS , εI , εC and εA. It seems that R0,1 and R0,2 are robust to a variation of
the coupling strengths εI and εA, whereas a variation of εS or εC can induce an important variation in
R0,1 and R0,2, which can imply a change in the dynamics of both nodes in the complex network (4.1).
Moreover, the coupling strengths εS and εC seem to play antagonistic roles, since an increase of εS

provokes an increase of R0,2, whereas an increase of εC provokes an increase of R0,1.
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(a)

R0,1

R0,2

0 0.5 1 1.5 2
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0.8

1

1.2

1.4

εI

(b)

R0,1

R0,2

0 0.5 1 1.5 2
0.6

0.8

1

1.2

1.4

1.6

εC

(c)

R0,1

R0,2

0 0.5 1 1.5 2

0.8

1

1.2

1.4

εA

(d)

R0,1

R0,2

Figure 3. Influence of the coupling strengths εS , εI , εC and εA on the basic reproduction
numbers R0,1 and R0,2 of system (4.1). A variation of εS or εC can induce a remarkable
change in the values of R0,1 and R0,2 [(a), (c)]. At the opposite, R0,1 and R0,2 seem to be robust
to a variation of εI or εA [(b), (d)].

Remark 3. After tedious symbolical computations, it is possible to obtain the expressions of the basic
reproduction numbers in the case of a symmetric two-nodes network (see Figure 4). However, the
output is unreadable, even with relevant simplifications of the parameters of the system.

1 2

L2,1

L1,2

Figure 4. Symmetric two-nodes network.

In the same manner, it is possible to obtain the complete symbolical expression of the disease-free
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equilibrium Σ0 of a three-nodes chain (see Figure 5):

Σ0 =
(
S 1

0, I1
0 , C1

0, A1
0, S 2

0, I2
0 , C2

0, A2
0, S 3

0, I3
0 , C3

0, A3
0
)

(4.6)

where

S 1
0 =

Λ1

L2,1εS + µ1
,

S 2
0 =

L2,1εS (Λ1 + Λ2) + Λ2 µ1

εS (L2,1L3,2 εS + L2,1µ2 + L3,2µ1) + µ1µ2
,

S 3
0 =

L2,1L3,2ε
2
S (Λ1 + Λ2 + Λ3) + εS

[
Λ3L2,1µ2 + L3,2µ1(Λ2 + Λ3)

]
+ Λ3µ1µ2

µ3
[
εS (L2,1L3,2εS + L2,1µ2 + L3,2µ1) + µ1µ2

] ,

I1
0 = I2

0 = I3
0 = C1

0 = C2
0 = C3

0 = A1
0 = A2

0 = A3
0 = 0.

Similarly, the global basic reproduction number of a three-nodes chain reveals that the couplings
coefficients L2,1 and L3,2 affect the dynamics of each node of the network, and are likely to produce
undesirable phenomenon. But its nebulous expression seems to forbid any relevant interpretation.
However, we are going to see in the next subsection, that the existence of a unique stable disease-free
equilibrium for the network is guaranteed under reasonable assumption.

1 2 3
L2,1 L3,2

Figure 5. Three-nodes chain built with nonidentical instances of system (2.1).

4.2. Disease-Free equilibrium of the complex network

Here, our aim is to overcome the computational difficulties met in the previous subsections. Thus
we establish in the general case that the complex network (2.5) admits a unique stable disease-free
equilibrium under reasonable assumption.

Theorem 5. The complex network (2.5) admits a unique disease-free equilibrium Σ0, which is globally
asymptotically stable in the region Ω defined by (3.4), provided

Λ0

µ0

Ni

Di
< 1, (4.7)

for all i ∈ {1, . . . , n}, where Ni andDi are defined by

Ni = βik1,i,

Di = µi
[
ξ2,i(ρi + ξ1,i) + φiξ1,i + ρidi

]
+ ρiωidi,
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with

k1,i = ξ1,iξ2,i + ξ1,iφiηC,i + ξ2,iρiηA,i,

k2,i = ξ1,iωi + ξ1,iξ3,iηC,i + ρiηA,iωi − ηC,iρiαi,

k3,i = αiξ2,i + ξ2,iξ3,iηA,i + φiηC,iαi − p jiiηA,iωi,

ξ1,i = αi + µi + di,

ξ2,i = ωi + µi,

ξ3,i = ρi + φi + µi.

(4.8)

Proof. The equilibrium points of the network problem (2.5) are the solutions of the system

Ṡ j = İ j = Ċ j = Ȧ j = 0, 1 ≤ j ≤ n.

We determine the disease-free equilibria by assuming that I j = C j = A j = 0 for all j ∈ {1, . . . , n}.
Then we directly obtain

İ j = Ċ j = Ȧ j = 0, 1 ≤ j ≤ n,

and simultaneously 

µ1S 1 − εS

n∑
k=1

L1,kS k = Λ1,

µ2S 2 − εS

n∑
k=1

L2,kS k = Λ2,

. . .

µnS n − εS

n∑
k=1

Ln,kS k = Λn.

(4.9)

The latter system is a linear system which can be written

BY = Λ, Y =
(
S 1, . . . , S n

)T
, Λ =

(
Λ1, . . . , Λn

)T
,

with B = B1 − εS L, L being the matrix of connectivity defined as in Section 2.2, and B1 is a diagonal
matrix storing the mortality rates, that is B1 = diag {µ1, . . . , µn}. L being a zero column-sum matrix, it
follows that B is a strictly diagonally dominant matrix. By virtue of Levy-Desplanques Theorem [12],
B is an invertible matrix. Hence, system (4.9) admits a unique solution, which corresponds to the
unique disease-free equilibrium Σ0 of the network problem (2.5).

Next, we introduce the Lyapunov functional V defined by

V =

n∑
i=1

Vi,

where Vi is the Lyapunov function introduced in [27] (proof of Theorem 1), given by

Vi = k1,iIi + k2,iCi + k3,iAi, 1 ≤ i ≤ n,
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where the coefficients k1,i, k2,i and k3,i are determined by (4.8). We compute the orbital derivative V̇ of
the Lyapunov functional V along a solution X starting in Ω :

V̇ =

n∑
i=1

(
k1,i İi + k2,iĊi + k3,iȦi

)
=

n∑
i=1

[(
NiIiS i −DiIi

)
+ ηC,i

(
NiCiS i −DiCi

)
+ ηA,i

(
NiAiS i −DiAi

)]
≤

n∑
i=1

[(
Ni

Λ0

µ0
−Di

)
Ii + ηCi

(
Ni

Λ0

µ0
−Di

)
Ci + ηAi

(
Ni

Λ0

µ0
−Di

)
Ai

]
,

which guarantees that V̇ ≤ 0, since we assume that Λ0
µ0

Ni
Di
< 1 for all i ∈ {1, . . . , n}.

Finally, it is seen that V̇ = 0 if and only if Ii = Ci = Ai = 0 for all i ∈ {1, . . . , n}. The conclusion
follows from LaSalle invariance principle [16]. �

Remark 4. Since we have Λi ≤ Λ0 and µi ≥ µ0 for all i ∈ {1, . . . , n}, assumption (4.7) implies that

Λi

µi

Ni

Di
< 1, 1 ≤ i ≤ n.

As it is relevant to introduce again R0,i =
Λi

µi

Ni

Di
for each i ∈ {1, . . . , n}, it is seen that assumption (4.7)

is a sufficient condition for the existence of a unique stable disease-free equilibrium in the network,
which requires that every node in the network has a “small” basic reproduction number R0,i. If only
one node violates this condition, then the network is likely to exhibit undesirable equilibrium states. In
other words, Theorem 5 generalizes the pattern discovered with a two-nodes network in Proposition 1.

5. A case study: Cape Verde archipelago

In this section, we study the case of Cape Verde archipelago, which has been affected by HIV/AIDS
epidemics for several decades. Our aim is to determine a topology which could temper the spreading
of the epidemics.

5.1. Geographical background

Cape Verde is an archipelago of 10 volcanic islands, located in the Atlantic Ocean, at about 570
kilometers from the Northwest African coast. Since 1 of those 10 islands has no inhabitants, we
propose to model this archipelago with a 9 nodes network (Table 2) (see Figure 6 below). We assume
that the network is divided into 3 groups of nodes: group 1 is composed with nodes 1, 2, 3, 4, 5,
group 2 with nodes 6, 7, 8, and group 3 with single node 9, corresponding to Santiago island which
is the most important island in the archipelago, with the greatest number of HIV infected inhabitants.
The parameters values are given in Table 3. In absence of coupling, it is relevant to compute the
basic reproduction number R0 for each group: R0 ' 0.914 for group 1, R0 ' 1.371 for group 2 and
R0 ' 7.312 for group 3.
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Remark 5. The value of the basic reproduction number for group 3 implies that assumption (4.7) of
Theorem 5 may not be fulfilled, which could lead to the emergence of undesirable equilibrium states,
with a persistence of the infection within the population for instance. Thus it appears crucial to limit
the spreading of the infection at a reasonable level, by finding a suitable topology of the network.

The coupling strengths are fixed as follows:

εS = 0.02, εI = 0.01, εC = 0.01, εA = 0.01,

in the case of weak coupling, or

εS = 0.2, εI = 0.3, εC = 0.1, εA = 0.3,

in the case of strong coupling. The initial condition X0 partially corresponds to official data:
approximate values of the total population N j(0) for each node (1 ≤ j ≤ 9) in 2015 can be found
in [24], as well as approximate values of infected individuals I j(0). The values of C j(0) and A j(0)
have been assumed, so that the corresponding subpopulations are in proportionality with the total
population.
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Figure 6. Cape Verde archipelago: four distinct topology sets. (a) Empty topology
corresponding to a network without couplings. (b) Complete graph topology. (c) and (d)
Weakly dense topologies.

Table 2. Cape Verde archipelago modeled by a 9 nodes complex network. Official 2015
data [24] are marked with a star. Other numerical data have been chosen arbitrarily.

Island Node N(0) S (0) I(0) C(0) A(0) R0

Santo Antão 1 40500∗ 40388 10∗ 93 9 0.914
São Vicente 2 81000∗ 80763 32∗ 186 19 0.914
Sau Nicolau 3 12420∗ 12381 7∗ 29 3 0.914
Sal 4 33750∗ 33642 22∗ 78 8 0.914
Boa Vista 5 14450∗ 14404 10∗ 33 3 0.914
Maio 6 6980∗ 6957 5∗ 16 2 1.371
Fogo 7 35840∗ 35735 15∗ 82 8 1.371
Brava 8 5700∗ 5681 5∗ 13 1 1.371
Santiago 9 394130∗ 293084 303∗ 676 67 7.312
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Table 3. Parameters values for the numerical simulations of Cape Verde archipelago.

Parameter Nodes 1, 2, 3, 4, 5 Nodes 6, 7, 8 Node 9
Λi 2 2 2
βi 0.001 0.0015 0.008
ηC,i 0.04 0.04 0.04
ηA,i 1.3 1.3 1.3
µi 1/70 1/70 1/70
ρi 0.1 0.1 0.1
φi 1 1 1
ωi 0.09 0.09 0.09
αi 0.33 0.33 0.33
di 1 1 1

5.2. Randomly generated topologies

The numerical integration on a finite time interval [0, T ] of the complex network (2.5) modeling
Cape Verde archipelago has been performed using the python language, in a GNU/LINUX
environment. For each set of parameters, let us introduce the final level of infected individuals, given
by

L f =

n∑
j=1

[
I j(T ) + C j(T ) + A j(T )

]
. (5.1)

In absence of coupling (see Figure 6(a)), we obtain L f ' 9112.77 with T = 200, whereas the complete
graph topology (see Figure 6(b)) leads to L f ' 9161.02. Since the couplings are likely to produce
emerging equilibria, we propose to explore the possible topologies for the complex network modeling
Cape Verde archipelago. The set of possible topologies being finite, there obviously exists an optimal
topology minimizing the level of infection L f . Thus our goal is to determine a near-optimal topology.
However, it is easily seen that a 9 nodes network can admit at most 72 edges, assuming that there are
no loops nor parallel edges. The total number of possible topologies is given by the sum of binomial
coefficients

72∑
k=1

(
72
k

)
' 4.72.1021,

thus it is not reasonable to explore the total set of topologies. We propose to investigate a sample of
randomly generated topologies, by choosing a random number of edges 1 ≤ |E | ≤ 72, and a random
subset of |E | edges. We have computed the final level L f of infected individuals for a sample of 1400
randomly generated topologies. The result is depicted in Figure 7, where each red cross has coordinates(
L f , |E |

)
. The green dotted vertical line corresponds to the level of infected individuals for an empty

topology.
We observe that the final level of infected individuals L f varies a lot with respect to the number |E |

of edges. It seems that a dense topology, with a number of edges neighbor to the maximal number 72,
corresponding to the complete graph topology, produces a high level of infection. Meanwhile, a weakly
dense topology is not a warranty for a low final level of infection. However, this random simulation
has detected an optimal topology (marked with a green circle in Figure 7) for which the final level
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of infection is lesser than the benchmark L f ' 9113 obtained for an empty topology. Furthermore,
we observe that the two clouds of points obtained for weak or strong coupling roughly admit similar
shapes. In other words, the topology seems to be more important than the coupling strength.

9090 9110 9130 9150
0

20

40

60

Lf

|E |

(a) Weak coupling

9090 9110 9130 9150
0

20

40

60

Lf

|E |

(b) Strong coupling

Figure 7. Numerical results for two samples of 1400 randomly generated topologies
modeling Cape Verde (9 islands). The green dotted vertical line of equation x = 9113 shows
the level of infected individuals without coupling. The optimal topology is marked with a
green circle. (a) Weak coupling: εS = 0.02, εI = εC = εA = 0.01. (b) Strong coupling:
εS = 0.2, εI = εA = 0.3, εC = 0.1.

5.3. Weakly dense topologies

The random simulation presented in the previous section seems to exclude dense topologies. The
question of how to select a weakly dense topology, in order to temper the final level of infected
individuals L f remains delicate. Finally, we present the times series corresponding to two weakly
dense topologies.

The first weakly dense topology we aim to analyze is a near-optimal topology detected by the
random simulation (see Figure 6(c)); it admits a set of 14 edges, given by

E =
{
[1, 3], [2, 9], [5, 6], [3, 7], [7, 9], [2, 7], [1, 9], [6, 2], [6, 4], [2, 8], [5, 2], [8, 1], [1, 5], [1, 4]

}
.

The time series of the corresponding complex network are shown in Figure 8. The final level of infected
individuals for that optimal topology is L f ' 9085.09.

The second weakly dense topology (see Figure 6(d)) we focus on is another near-optimal topology;
it admits a set of 9 edges is given by

E =
{
[1, 5], [8, 6], [5, 9], [8, 5], [4, 7], [3, 8], [6, 1], [8, 3], [7, 9]

}
.

The time series of the corresponding complex network are shown in Figure 9. The final level of infected
individuals for that second weakly dense topology is L f ' 9087.50.
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Figure 8. Numerical results for topology (c).
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Figure 9. Numerical results for topology (d).

Remark 6. The numerical results presented in this section can help finding a favorable situation
for limiting the level of infection in Cape Verde archipelago. Indeed, the results of the simulation of
randomly generated topologies appear to exclude dense topologies, which means that one should avoid
important human migrations from one island to another. In the mean time, weakly dense topologies (c)
and (d) presented in Figure 6 seem to favor migrations stemming from islands admitting a small basic
reproduction number. Nevertheless, those interpretations should be prudently nuanced, since they are
the result of a mathematical model whose scope is necessarily limited.

6. Conclusion

In this work, we presented the analysis of a complex network of dynamical systems for the study
of the spread of HIV/AIDS epidemics. Built with nonidentical instances of a compartmental model
for which a disease-free equilibrium and an endemic equilibrium can coexist, this complex network
exhibits a positively invariant region and presents a unique disease-free equilibrium which is globally
asymptotically stable, under the assumption that each node composing the network admits a small
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basic reproduction number. However, emerging equilibria are likely to appear if this assumption is not
fulfilled, and we proposed a numerical strategy in order to detect a near-optimal topology for which
the level of infection is minimized. This method has been applied to the case of the Cape Verde
archipelago, and we exhibited a near-optimal topology which seems to be robust with respect to a
variation of the coupling strength. However, it seems delicate to identify the characteristic features of
such a near-optimal topology, since weakly dense topologies can produce a high level of infection as
well as limit the infection at a low level.

In a future work, we aim to deepen this subtle question, which could lead to establishing a necessary
and sufficient condition of synchronization in the network. In parallel, we propose to improve our
model by applying an optimal control process, in order to reach a global disease-free equilibrium, in
spite of the risk that a small group of nodes in the network could admit a high basic reproduction
number. This control process could be introduced at a double scale, with control actions exerted into
the dynamics of each node, and simultaneously control actions exerted along the connections of the
network.

As a final perspective, we also intend to study of the effect of introducing delays in the migrations
supported by the connections of the network, since it is likely to reveal new dynamics which might be
hidden at this stage.
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