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Abstract: Many problems in education, finance, and engineering design require that decisions be 

made under uncertainty. In these fields, Machine Learning is often used to search for patterns and 

information from data. To find patterns in Fuzzy Data, Fuzzy Machine Learning techniques can be 

used. In this paper, we focus on solving and manipulating Fuzzy Nonlinear problems in the Linear 

Fuzzy Real (LFR) number system using the Gradient Descent. The Gradient Descent is the most 

often used learning algorithm in Machine Learning. Thus, we propose the LFR Gradient Descent 

method for solving nonlinear equations in the LFR number system. 
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1. Introduction 

Problems in production planning and scheduling, location, transportation, finance, and 

engineering design sometimes require that decisions be made under uncertainty. In education, there 

exist Fuzzy Educational datasets, which are useful sources of information for educational software 

developers, students, parents, researchers and other educational stakeholders [2]. Fuzzy decision 

making was initially introduced by Bellman and Zadeh [1]. This concept was then adopted to 

mathematical programming [14], uncertain programming [12,14], fuzzy posets [6], linear 

programming [3,7,8,10,13,14] and many other concepts. 

Linear Fuzzy Real (LFR) numbers are a system of numbers that have properties comparable to 

the set of real numbers and the set of fuzzy numbers [9]. LFR numbers are used in the study of fuzzy 

random variables [4,9] and in the linear optimization problem [8]. The set of LFR numbers is a set 
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that shows intermediate properties which are unique to the set and not to those of either the real 

numbers or the “general” fuzzy numbers. Because of the unique properties of LFR numbers, we can 

solve fuzzy linear and nonlinear problems [11]. 

At the core of machine learning techniques, there are many types of cost functions. The process 

of increasing the accuracy of our model by iterating over a training data involves searching for the 

lowest error in the cost function. The cost function is used to check the error in predictions of a 

Machine Learning model. In many learning algorithms the Gradient Descent is used to minimize the 

cost function [5]. 

In this paper, the Gradient Descent method is used to find both the extreme values and find the 

solutions of fuzzy equations.  

The Crisp Gradient Descent algorithm begins with an initial value 𝑥0  and generates the 

sequence {𝑥𝑛}𝑛=0
∞ , by 

𝑥𝑛=𝑥(𝑛−1) −  𝛾∇𝐹. 

The algorithm finds the minimum of a function 𝑓 by taking small steps proportion to the 

negative of the gradient of the function 𝑓. The symbol 𝛾 is the measure of the small steps and ∇𝐹 

is the gradient of 𝑓. 

Solving fuzzy equations also implies that the Gradient Descent method can be used to minimize 

fuzzy cost functions since the values of x that satisfies  

𝑓 𝑥 = 𝑏 ⟹ 𝑓 𝑥 − 𝑏 = 0. 

Will also be the global minimizer of 

 𝑓 𝑥 − 𝑏 2
2 . 

The paper is outlined as follows: Linear Fuzzy Real numbers are reviewed in Section 2. In 

Section 3, we look at nonlinear equations in LFR. In Section 4, we illustrate LFR Gradient Descent 

method to solve systems of nonlinear equations in LFR. Finally, conclusions are made in Section 5. 

2. Linear fuzzy real numbers 

In this section, we describe the Linear Fuzzy Real numbers [7,10]. Considering the set of all 

real numbers R, one way to associate a fuzzy number with a fuzzy subset of real numbers is as a 

function μ: R → [0,1], where the value μ(x) is to represent a degree of belonging to the subset of R. 

Definition 2.1. (Linear fuzzy real number) Let μ: R → [0,1] be a function such that: 

1.  μ(x) = 1 if x = b; 

2.  μ(x) = 0 if x ≤ a or x ≥ c;  

3.  μ(x) = (x − a)/(b − a) if a < x < b; 

4.  μ(x) = (c − x)/(c − b) if b < x < c. 

Then μ(a,b,c) is called a linear fuzzy real number with associated triple of real numbers (a,b,c) 

where a ≤ b ≤ c shown in Figure 1. 
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Figure 1. Linear fuzzy real number μ(a,b,c). 

We let LFR be the set of all linear fuzzy real numbers. We note that any real number b can be written 

as a linear fuzzy real number, r(b), where r(b) = μ(b,b,b) and so R ⊆ LFR. As a linear fuzzy real 

number, we consider r(b) to represent the real number b itself. A linear fuzzy real number µ(a,b,c) is 

defined to be positive if a > 0, negative if c < 0, and zeroic if a ≤ 0 and c ≥ 0. The hybrid nature of 

LFR allows one to map the set to an isomorphic set where we can use inverse operations to solve 

fuzzy linear equations [10].  

Operations, functions, and linear equations are also defined in LFR as follows: 

Definition 2.2. (Operations in LFR) For given two linear fuzzy real numbers μ1 = μ(a1,b1,c1) and 

μ2 = μ(a2,b2,c2), we define addition, subtraction, multiplication, and division by 

1. μ1 + μ2 = μ(a1 + a2,b1 + b2,c1 + c2); 

2. μ1 − μ2 = μ(a1 − c2,b1 − b2,c1 − a2); 

3. μ1 · μ2 = μ(min{a1a2,a1c2,a2c1,c1c2},b1b2,max{a1a2,a1c2,a2c1,c1c2}).; 

4. 
𝜇1

𝜇2
=  𝜇1 ∗

1

𝜇2
;  where 

1

𝜇2
=  𝜇(min  

1

𝑎2
,

1

𝑏2
,

1

𝑐2
 , median  

1

𝑎2
,

1

𝑏2
,

1

𝑐2
 , max  

1

𝑎2
,

1

𝑏2
,

1

𝑐2
 ). 

Definition 2.3. (Function in LFR) Given real-valued function f: R → R and an LFR μ(a,b,c), the 

LFR-valued function 𝑓 : LFR → LFR is defined as 

𝑓  (μ(a,b,c)) = μ(a*,b*,c*), 

where a* = min{f(a),f(b),f(c)}, b* = median{f(a),f(b),f(c)}, c* = max{f(a),f(b),f(c)}. We note that if  

a = b = c then a*= b* = c*, i.e., f (̄r(b)) = r(f(b)). Hence 𝑓  is an extension of the function f. 

Definition 2.4. (Linear equation in LFR) A linear equation over LFR is an equation of the form 

μ1 · μx + μ2 = μ3, 

where the μi are LFR’s for i = 1,2,3 and μx = μ(α,β,γ) is an unknown LFR with a triple of unknown 

real numbers (α,β,γ). 

Definition 2.5. (Ordering Properties of LFR) Given µ1,µ2 ∈ LFR, µ1 ≤ µ2 provided that 

a1 ≤ a2,b1 ≤ b2, c1 ≤ c2. 

If 0 ≤  𝜇 𝑎, 𝑏, 𝑐 , then 0 ≤ a ≤ b ≤ c, hence µ is a non-negative linear fuzzy real number. Therefore, if 

µ is non-negative and zeroic, then a = 0 precisely. 
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(LFR,≤) is a complete ordered set. However, it is not linearly ordered. If we let µ1 = µ(3,4,5) and let 

µ2 = µ(a,5,6) and state that a < 3, then it is not true that µ1 ≤ µ2 nor is it true that µ1 ≥ µ2. Therefore, 

µ1 and µ2 are incomparable in this order [10]. 

3. Nonlinear equations in LFR 

Nonlinear equations can be found in many applications, all the way from light diffraction to 

planetary orbits for example [10]. In this section, we discuss how to solve nonlinear equations in 

LFR so that we may locate the maximum or minimum of nonlinear functions. It is important that we 

discuss locating fuzzy zeros of nonlinear functions. Thus, we will find a μx in LFR such that a 

nonlinear equation f(μx) = 0, where f: LFR → LFR is a nonlinear function. 

3.1. Support for LFR gradient descent for solving nonlinear equations 

Solving and optimizing nonlinear equations over linear fuzzy real numbers is possible with a 

modification of the Gradient Descent method. This method is also known as the Steepest Descent 

method over real numbers. 

Definition 3.1. A function f satisfies Lipschitz if there is a real number N such that |f(x)-f(y)| ≤

 N|x-y|. 

We can apply Definition 3.1 to the function 𝑔 = ∇𝑓, such that there is a real number P such that 

|g(x)-g(y)| ≤ P|x-y|. Thus, the function g satisfies Lipschitz. 

Proposition 3.1. The function f satisfies Lipschitz condition in the LFR environment for a real 

number N. 

Proof:  Given the existence of f and f’(𝜇) where f is continuous in a compact interval. Let us 

suppose that |𝑓 ′ 𝜇 | ≤ 𝑘 for all 𝜇𝑥 ∈ [𝜇𝑎 , 𝜇𝑏] such that 𝜇𝑥 ≠ 𝜇𝑦 , 

Thus, we have  
𝑓(𝜇𝑥 )−𝑓(𝜇𝑦 )

(𝜇𝑥−𝜇𝑦 )
 =  𝑓′(𝜇𝑐) ≤ 𝑘. 

For some 𝜇𝑐 ∈ [𝜇𝑥 , 𝜇𝑦 ] by the mean value theorem. Then  𝑓(𝜇𝑥) − 𝑓(𝜇𝑦) ≤ 𝑘 𝜇𝑥 − 𝜇𝑦  . 

Therefore, the function 𝑓 satisfies Lipschitz condition on any interval  𝜇𝑎 , 𝜇𝑏 . 

Since we can apply Taylor’s theorem to f in LFR [10], Proposition 3.1 coupled with the application 

of the mean value theorem, there is a constant M, such that f is Lipschitz continuous in LFR. 

Proposition 3.2. Suppose the function 𝑓 : LFR
n
 → 𝐿𝐹𝑅, where 𝑓  is an extension of the real 

function f. 𝑓  is convex and differentiable and the gradient ∇𝑓   is an extension of the gradient and 

real function ∇𝑓. ∇𝑓 is Lipschitz continuous with constant K > 0. Then if we run gradient descent 

for j iterations with a fixed step t ≤
1

𝐾
, it will yield a solution that satisfies 

𝑓  𝜇𝑥
 𝑘  − 𝑓 (𝜇𝑥

∗) ≤
 𝜇𝑥

(0)
−𝜇𝑥

∗  2

2𝑡𝑗
          (1) 

Where 𝑓 (𝜇𝑥
∗) is the optimal value. 𝜇𝑥

∗  is the value that minimizes the function, 𝑓 . 

Proof 

Because ∇𝑓  is Lipschitz continuous with constant K, ∇2𝑓 (𝜇𝑥)-KI is a negative semidefinite fuzzy 
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matrix. ∇2𝑓  is an extension of the hessian and real function ∇2𝑓. The identity matrix, I, is a matrix 

in LFR[10]. 

Because of LFR’s hybrid nature we can expand around 𝑓 (𝜇𝑥) apply the rules of differential 

calculus[10]. This yields the following inequality. 

𝑓  𝜇𝑦 ≤  𝑓  𝜇𝑥 + ∇𝑓  𝜇𝑥 
𝑇(𝜇𝑦 − 𝜇𝑥) +

1

2
∇2𝑓 (𝜇𝑥)  𝜇𝑦 − 𝜇𝑥  2        (2) 

In general, we wish to minimize the increase in the expansion of the area of a fuzzy number. For this 

reason, in the case of the expansion, we use b, the crisp maximum value of 𝜇𝑥  in the Jacobian and 

Hessian. Thus, we use a modified expansion  

𝑓  𝜇𝑦 ≤  𝑓  𝜇𝑥 + ∇𝑓  𝑏 𝑇(𝜇𝑦 − 𝜇𝑥) +
1

2
∇2𝑓 (𝑏)  𝜇𝑦 − 𝜇𝑥  2           (3) 

Where ∇2𝑓 (𝑏)-KI is a semidefinite matrix. Thus 

𝑓  𝜇𝑦 ≤  𝑓  𝜇𝑥 + ∇𝑓  𝑏 𝑇(𝜇𝑦 − 𝜇𝑥) +
1

2
𝐾  𝜇𝑦 − 𝜇𝑥  2            (4) 

Taking the next step in the gradient descent update by letting 𝜇𝑦 = 𝜇𝑥 − 𝑡∇𝑓  𝑏 . 

Then  

𝑓  𝜇𝑦 ≤  𝑓  𝜇𝑥 + ∇𝑓  𝑏 𝑇  −𝑡∇𝑓  𝑏  +
1

2
𝐾  −𝑡∇𝑓  𝑏   2            (5) 

= 𝑓  𝜇𝑥 − ∇𝑓  𝑏 𝑇  𝑡∇𝑓  𝑏  +
1

2
𝐾  𝑡∇𝑓  𝑏   2 

= 𝑓  𝜇𝑥 − 𝑡 ∇𝑓  𝑏   2 +
1

2
𝐾𝑡2  ∇𝑓  𝑏   2 

= 𝑓  𝜇𝑥 − (1 −
1

2
𝐾𝑡)𝑡  ∇𝑓  𝑏   2 

If we set 𝑡 ≤
1

𝐾
, we find that −(1 −  

1

2
𝐾𝑡 ) ≤ −

1

2
, thus we have  

𝑓  𝜇𝑦 ≤ 𝑓  𝜇𝑥 −
1

2
𝑡  ∇𝑓  𝑏   2                          (6) 

This inequality implies that the objective value decreases with each iteration of the gradient descent.  

Since 𝑓  is convex. 

𝑓  𝜇𝑥
∗ ≥  𝑓  𝜇𝑥 + ∇𝑓  𝑏 𝑇 𝜇𝑥

∗ − 𝜇𝑥                         (7) 

which implies that 

𝑓  𝜇𝑥 ≤  𝑓  𝜇𝑥
∗ + ∇𝑓  𝑏 𝑇 𝜇𝑥 − 𝜇𝑥

∗ .                       (8) 

Thus  

𝑓  𝜇𝑦 ≤ 𝑓  𝜇𝑥
∗ + ∇𝑓  𝑏 𝑇(𝜇𝑥 − 𝜇𝑥

∗) −
1

2
𝑡  ∇𝑓  𝑏   2                 (9) 

𝑓  𝜇𝑦 − 𝑓  𝜇𝑥
∗ ≤ ∇𝑓  𝑏 𝑇(𝜇𝑥 − 𝜇𝑥

∗) −
1

2
𝑡  ∇𝑓  𝑏   2 
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                              ≤
1

2𝑡
(2𝑡∇𝑓  𝑏 𝑇(𝜇𝑥 − 𝜇𝑥

∗) − 𝑡2  ∇𝑓  𝑏   2) 

≤
1

2𝑡
(2𝑡∇𝑓  𝑏 𝑇(𝜇𝑥 − 𝜇𝑥

∗) − 𝑡2  ∇𝑓  𝑏   2 −  𝜇𝑥 − 𝜇𝑥
∗  2 +  𝜇𝑥 − 𝜇𝑥

∗  2) 

=
1

2𝑡
(2𝑡∇𝑓  𝑏 𝑇(𝜇𝑥 − 𝜇𝑥

∗) +  𝜇𝑥 − 𝜇𝑥
∗  2 − 𝑡2  ∇𝑓  𝑏   2 −  𝜇𝑥 − 𝜇𝑥

∗  2) 

=
1

2𝑡
(2𝑡∇𝑓  𝑏 𝑇(𝜇𝑥 − 𝜇𝑥

∗) +  𝜇𝑥 − 𝜇𝑥
∗  2 − 𝑡2  ∇𝑓  𝑏   2 −  𝜇𝑥 − 𝜇𝑥

∗  2) 

By factoring, we have 

=
1

2𝑡
( 𝜇𝑥 − 𝜇𝑥

∗  2 −   𝜇𝑥 − 𝜇𝑥
∗ − 𝑡 ∇𝑓  𝑏  )2 .                           (10) 

And thus, the triangle inequality yields 

𝑓  𝜇𝑦 − 𝑓  𝜇𝑥
∗ ≤

1

2𝑡
( 𝜇𝑥 − 𝜇𝑥

∗  2 −  𝜇𝑥 − t∇𝑓  𝑏 − 𝜇𝑥
∗ )2.             (11) 

If we note that another step of the gradient descent, by definition yields 𝜇𝑦 = 𝜇𝑥 − 𝑡∇𝑓  𝑏 . 

Then 𝜇𝑦 − 𝜇𝑥 = −𝑡∇𝑓  𝑏  𝑎𝑛𝑑  

𝑓  𝜇𝑦 − 𝑓  𝜇𝑥
∗ ≤

1

2𝑡
  𝜇𝑥 − 𝜇𝑥

∗  2 −  𝜇𝑦  −𝜇𝑥
∗  2                     (12) 

This holds for 𝜇𝑦  on every iteration of the modified gradient descent. If we sum over the iterations.  

 𝑓  𝜇𝑥
(𝑖)
 − 𝑓  𝜇𝑥

∗ 𝑗
𝑖=1 ≤  

1

2𝑡
( 𝜇𝑥

(𝑖−1)
− 𝜇𝑥

∗  2 −  𝜇𝑥
(𝑖)

 −𝜇𝑥
∗  2)

𝑗
𝑖=1        (13) 

                                   =
1

2𝑡
( 𝜇𝑥

(0)
− 𝜇𝑥

∗  2 −  𝜇𝑥
(𝑘)

 −𝜇𝑥
∗  2 

                                   ≤
1

2𝑡
( 𝜇𝑥

(0)
− 𝜇𝑥

∗  2) 

Given the update (6) and using the fact that f is decreasing. We can conclude the following: 

 𝑓  𝜇𝑥
(𝑗 )
 − 𝑓  𝜇𝑥

∗ ≤
1

𝑗
 𝑓  𝜇𝑥

(𝑖)
 − 𝑓  𝜇𝑥

∗ 𝑗
𝑖=1                      (14) 

                                    ≤
 𝜇𝑥

(0)
−𝜇𝑥

∗  2

2𝑡𝑗
 

Which is what we sought to prove. Thus, the minimal value 𝑓 (𝜇𝑥
∗) is reached where both 𝜇𝑥

∗  and 

𝑓 (𝜇𝑥
∗) are Linear Fuzzy Real (LFR) number as defined by Definition 2.1. It follows that Proposition 

3.2 applies to (1). As well as the modified form (3). 

3.2. LFR gradient descent for searching for extreme values of nonlinear equations 

The Modified Gradient Descent method begins with an initial approximation LFR, μ
(0)

x = 

μ(a
(0)

,b
(0)

,c
(0)

), and generates the sequence {𝜇𝑥
(𝑛)

}𝑛=0
∞  with μ(a

(n)
,b

(n)
,c

(n)
), by 

𝜇𝑥
(𝑛)

= 𝜇𝑥
(𝑛−1)

−
1

𝛼
∇𝑓(𝑏𝑛−1)𝑇 , for n ≥ 1. 
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The stopping criterion of this method is |𝑏𝑛 − 𝑏𝑛−1| < 𝜖 , where 𝜖 is a preset small value. 

Example 3.1. Find the local minimum of an LFR nonlinear equation μ
4

x − 3 μ
3

x + 2. 

This is an equation with fuzzy coefficients. With typical calculation, it is expected that the local 

minimum occurs “around” 2.25.  

If we set f (μx) = μ
4

x − 3 μ
3

x +2, then f ’(μx) = 4μ
3

x − 9μ
2

x . If we use an initial approximation μ
(0)

x = 

μ(4.5,5,5.5). If we set 𝛾 =
1

𝛼
 . Then we can set 𝛾 = 0.001 and 𝜖 = 0.00001. Using Python, after 

356 iterations, we find a fuzzy solution μ
(*)

x = μ(1.7505, 2.2505, 2.7505). 

Example 3.2. Find the extreme values of an LFR nonlinear equation  

5*(𝜇𝑥1)
2 
+(𝜇𝑥2)2 +4𝜇𝑥1*𝜇𝑥2-14𝜇𝑥1-6𝜇𝑥2+20 

This is a multivariable equation with fuzzy coefficients. With typical calculation, it is expected that 

the optimal solution occurs “around” (1,1). 

Let us set                F(x)= 5*(𝜇𝑥1)
2 
+(𝜇𝑥2)2 +4𝜇𝑥1*𝜇𝑥2-14𝜇𝑥1-6𝜇𝑥2+20 

then we have  

∇𝐹 =  
10 ∗ 𝜇𝑥1 + 4 ∗ 𝜇𝑥2 − 14

4 ∗ 𝜇𝑥1 + 2 ∗ 𝜇𝑥2 − 6
  

If we use an initial approximation 𝜇𝑥1
(0)

 = μ(-0.5,0,0.5), and 𝜇𝑥2
(0)

 = μ(9.5,10,10.5). If we set  

𝛾 = 0.02 and 𝜖 = 0.000001. Using Python, after 59583 iterations, we find fuzzy solutions μ
(*)

x1 = 

μ(0.44704,0.944244,1.44704) and μ
(*)

x2 = μ(0.63582, 1.13461, 1.63582). 

4. LFR gradient descent for solving system of nonlinear equations 

In this section, we discuss using Gradient Descent to solve system of nonlinear equations in 

LFR. To illustrate, suppose we solve the following system of two LFR nonlinear equations: 

 
𝑓1 𝜇𝑥1, 𝜇𝑥2 = 0

𝑓2 𝜇𝑥1, 𝜇𝑥2 = 0
                               (15) 

Let the vector function F and the Jacobian matrix 𝐽 = ∇𝐹 be the followings: 

𝐹 𝜇𝑥1, 𝜇𝑥2 =  
𝑓1 𝜇𝑥1, 𝜇𝑥2 

𝑓2 𝜇𝑥1, 𝜇𝑥2 
                           (16) 

And 

𝐽 =  

𝜕𝑓1

𝜕𝜇𝑥1
  
𝜕𝑓1

𝜕𝜇𝑥2

𝜕𝑓2

𝜕𝜇𝑥1
  
𝜕𝑓2

𝜕𝜇𝑥2

                               (17) 

Then LFR Gradient Descent method generates the solution sequences {𝜇𝑥1
(𝑛)

}𝑛=0
∞  and {𝜇𝑥2

(𝑛)
}𝑛=0
∞  

such as: 

 
𝜇𝑥1

(𝑛)

𝜇𝑥2
(𝑛)
 =  

𝜇𝑥1
(𝑛−1)

𝜇𝑥2
(𝑛−1)

  − 𝛾  𝐽 𝜇𝑥1
 𝑛−1 , 𝜇𝑥2

(𝑛−1)
                     (18) 

Where 𝜇𝑥1
(𝑛)

=  𝜇(𝑎𝑥1
(𝑛)

, 𝑏𝑥1
(𝑛)

, 𝑐𝑥1
(𝑛)

)   and  𝜇𝑥2
(𝑛)

=  𝜇(𝑎𝑥2
(𝑛)

, 𝑏𝑥2
(𝑛)

, 𝑐𝑥2
(𝑛)

). 
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The stopping criterion of this method is min  𝑏𝑥1
(𝑛)

− 𝑏𝑥1
(𝑛−1)

 ,  𝑏𝑥2
(𝑛)

− 𝑏𝑥2
(𝑛−1)

  <  𝜖, where 𝜖 is a 

preset small value. 

Example 4.1. Solve an LFR system of nonlinear equations: 

 

𝜇𝑥1 + 𝜇𝑥2 + 𝜇𝑥3 = 6

𝜇𝑥1
2 + 𝜇𝑥2 = 5

𝜇𝑥2
2 + 𝜇𝑥3 = 4

  

We easily find F and J as 

𝐹 𝜇𝑥1, 𝜇𝑥2, 𝜇𝑥3 =  

𝜇𝑥1 + 𝜇𝑥2 + 𝜇𝑥3 − 6

𝜇𝑥1
2 + 𝜇𝑥2 − 5

𝜇𝑥2
2 + 𝜇𝑥3 − 4

  

And  

𝐽 =  
1         1     1
2𝜇𝑥1   1     0
0      2𝜇𝑥2   1

  

With typical calculation, it is expected that the optimal solution occurs “around” (2,1,3). If we use 

initial approximations 𝜇𝑥1
(0)

 = 𝜇𝑥2
(0)

= 𝜇𝑥3
(0)

= μ(-1,2,4). And set 𝛾 = 0.02 and 𝜖 = 0.000001. 

Then in Python after 121193 iterations, LFR Gradient Descent Method yields 

μ
(*)

x1 = μ(-1.004, 1.996, 3.996) 

μ
(*)

x2 = μ(-1.978, 1.022, 3.022) 

μ
(*)

x3 = μ(-0.035, 2.965, 4.965) 

5. Conclusion 

We often do not know the consequence of each possible decision with precision, sometimes we 

can only know this case with uncertainty. In many cases the LFR approach may be a good approach. 

The simplest case for example would be tolerance, where all possible values within the interval are 

equally likely. LFR presents an advantage where it may represent an interval, a crisp point, or a fuzzy 

number that can be written discretely or continuously. This is an advantage in the case of certain 

problems where it is already known that “crisp optima” in the purest sense do not exist, but 

projecting to the middle μ(a,b,c) → μ(b,b,b) = b produces a “crisp good choice” for an optimal value 

in optimization [12] and machine learning. It is also possible to approximate other fuzzy number 

types, using LFR. In this paper, we used LFR coupled with the Gradient Descent to solve and 

optimize Fuzzy Nonlinear problems and systems of fuzzy problems. As has been shown, LFR is a 

viable environment for machine learning techniques. 
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