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Abstract: Recently, the notion of cryptocurrencies has come to the fore of public interest. These assets
that exist only in electronic form, with no underlying value, offer the owners some protection from
tracking or seizure by government or creditors. We model these assets from the perspective of asset
flow equations developed by Caginalp and Balenovich, and investigate their stability under various
parameters, as classical finance methodology is inapplicable. By utilizing the concept of liquidity price
and analyzing stability of the resulting system of ordinary differential equations, we obtain conditions
under which the system is linearly stable. We find that trend-based motivations and additional liquidity
arising from an uptrend are destabilizing forces, while anchoring through value assumed to be fairly
recent price history tends to be stabilizing.
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1. Introduction

Blockchain technology enables large numbers of participants to make electronic transactions
directly without intermediaries, and has led, in recent years to a new form of payment, and essentially
to a new set of currencies called cryptocurrencies. During 2017 the spectacular nine-fold rise in the
price of Bitcoin focused the spotlight of public attention on cryptocurrencies that evolved into a new
asset class. Following the pattern of other nascent assets, speculators dominated trading and pushed
prices toward a bubble.

As with some other asset bubbles of the past, notably the dot-com frenzy of the late 1990s, the
emergence of a new technology clouded judgements about the basic value of the asset.

Cryptocurrencies offer both opportunities and risks to society. On the one hand, cryptocurrencies
and technology underpinning them – if designed appropriately – could be used to make transactions
faster, safer and cheaper, alongside other societal benefits [14, 22, 23]. A less apparent feature is
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that they can make it more difficult (though not theoretically impossible; see [3, 19]) for totalitarian
governments to expropriate savings, either directly or indirectly through currency inflation, thereby
depriving savers of a large fraction of their assets. In this way, a proper cryptocurrency could lead to
greater economic freedom, and render more difficult the financing of a dictatorship. Indeed, this can
be modelled by a choice of two alternatives: either their home currency or cryptocurrency that cannot
easily be seized [21, 38].

The risks presented by existing cryptocurrencies are multi-faceted. The difficulty in tracing
transactions facilitate illicit activity and its financing. The vulnerability of cryptocurrency to hijacking
or even forgetfulness is another concern. One less obvious – and possibly most significant – risk
arises from the instability of prices of major cryptocurrencies. As the market capitalization (number
of units times the price of each unit) of the cryptocurrencies rises, there is growing risk that a sharp
drop in the price of a cryptocurrency could have a cascading effect on other sectors of world economy,
particularly if borrowing is involved. During the period October 2017 to April 2018, the price of
Bitcoin unit rose from $6,000 to $20,000 and back to $6,000. The market capitalization of all
cryptocurrencies during that time period increased from $170 billion to $330 billion, peaking together
with Bitcoin in December 2017. While attention is often focused on the rise and fall of the trading
prices of these assets, the magnitude of the problem of stability increased significantly during this six
month period, as fears about its volatility have been borne out. As people become more accustomed
to using these instruments, the market capitalization may increase to several trillion – i.e., a few
percent of the $ 75 trillion Gross World Product – and many of the challenges of managing such a
behemoth will be critical. For example, one would want to prevent large swings in its price from
impacting other sectors of the economy.

Generally, the features of a financial instrument that might make it attractive to speculators are
undesirable to those who seek to use it as a currency in daily transactions. Speculators see a greater
opportunity in a volatile market, as they can use technical analysis and expertise to profit at the
expense of the layperson. Conversely, large fluctuations on a day-to-day basis create obstacles for
common purchases or the pricing of service contracts [37]. Without stability in the marketplace, the
cryptocurrencies may simply become “a mechanism for a transfer of wealth from the late-comers to
the early entrants and nimble traders” [6]. Thus, a set of questions of critical importance deals with
the potential stability (or lack thereof) of Bitcoin or other cryptocurrencies, which is the main topic of
our paper.

The turbulence arising from the collapse of the housing bubble was a major challenge for markets,
but from a scientific perspective, it could be addressed largely with classical methods [20, 32, 34].
However, classical methods are not readily adaptable to studying cryptocurrencies, as discussed below.
We use a modern approach whereby an equilibrium price can be determined and the stability properties
established within a dynamical system setting [5, 8, 9, 15, 16, 18, 24, 25, 29, 31, 34–36, 41].

2. Modelling prices and stability

Most of classical finance such as the Black-Scholes option pricing model has its origin in the basic
equation

1
P

dP = µdt + σdW (2.1)
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for the change in the relative price P−1dP in terms of the expected return, µ, the standard deviation
of the return, σ, and independent increments of Brownian motion, dW. It is widely acknowledged that
this equation does not arise from compelling microeconomic considerations, nor empirical data. But
rather, it is mathematically convenient and elegant for expressing and proving theorems (see [10] for
discussion). Much of risk assessment is based upon this model with an increasing array of adjustments.

The limitations of this basic model are apparent, for example, if one examines the standard deviation
of daily relative changes in the S&P 500 index, which is typically around 0.75%. This leads to the
conclusion that a 4.5% drop is a sixth standard deviation event, i.e., it occurs once every billion trading
days, while empirical data shows it is on the order of a few times per thousand [2].

Thus identifying risk on a large time scale based on the variance of a small time scale can vastly
underestimate risk.

Furthermore, the modeling of asset prices is generally based on the underlying assumption of infinite
arbitrage. While there may be some investors who are prone to cognitive errors or bias in assessing
value, the impact of their trades will be marginalized by more savvy investors who manage a large pool
of money. Of course the inherent assumption is that there is some value to an asset, based for example
on the projection of the dividend stream, replacement value, etc., and that the shareholder has a vote
that allows him ultimately to extract this value. For assets such as US Treasury bills, the model works
quite well, as the owner is assured of receiving a particular dollar amount from the US at a specified
time.

Herein lies the central problem for the application of classical theory to cryptocurrencies: there is
no underlying asset value, as noted above. Cryptocurrencies constitute the opposite end of the market
spectrum to US Treasury Bills, in which an arbitrageur can confidently buy or sell short based on a
clear contract that will deliver a fixed amount of cash at a predetermined time.

If fact, classical game theory would conclude that since everyone knows the structure of the
cryptocurrency, and understands that everyone else is also aware, then the price should never deviate
much from zero. Furthermore, classical finance (2.1) would suggest that there is some measure of risk
based on the historical average of σ. This will be less helpful than it is for stock indexes as discussed
above, as these factors are more difficult to measure for cryptocurrency.

Our analysis begins with the fact that despite the absence of underlying assets or backing, various
groups have incentive to use it over traditional currencies. In particular there are large groups who
need to make transactions outside of the usual banking system. Among these are (i) people with
poor credit who cannot obtain a credit or even a debit card, (ii) citizens of totalitarian countries who
fear expropriation of their savings, (iii) citizens of countries with high inflation and a much lower
interest rate, (iv) people engaged in illicit activity, and (v) people who espouse utilizing a new idea or
technology.

Collectively, these groups constitute a core ownership of cryptocurrencies, investing a sum that
gradually grows with familiarity [13, 17, 26]. Meanwhile, the rising prices catch the attention of
speculators who provide additional cash into the system, but also bring motivations inherent in
speculation, namely momentum trading, or the tendency to buy as prices rise, and analogously sell as
prices fall [40].

We assume a single cryptocurrency and that the price is established by supply and demand without
infinite arbitrage, and apply a modern theory of asset flow [9]. This alternative approach relies on
the notion of liquidity price. The experimental asset markets presented a puzzle to the economics
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community by demonstrating the endogenous price bubbles in which prices soared well above any
possible expectation of outcome [29]. Caginalp and Balenovich [9] observed that in addition to the
trading price and fundamental value (defined clearly by the experimental setup), there was an additional
important quantity with the same units: the total cash in the system divided by the number of shares.
Denoting this by liquidity value or price, L, they adapted earlier versions [7] of the asset flow model.

This approach leads to a system of ordinary differential equations, as summarized below, whereupon
equilibrium points can be evaluated and their stability established as a function of the basic parameters.

3. Modeling cryptocurrency with asset flow equations

For brevity, we first present the full model which will be a nonlinear evolutionary system that is
based on [9] but with some key differences for cryptocurrencies. We can then consider simpler models
in which some features are marginalized by setting parameters to zero and obtaining 2 × 2 or 3 × 3
systems, enabling us to understand the key factors in stability.

We denote the trading price by P (t), the number of units by N (t), the amount of cash available by
M (t), and the liquidity price by L (t) = M (t) /N (t). With B as the fraction of wealth in the
cryptocurrency, i.e., B = NP/ (NP + M), the supply and demand are given by S = (1 − k) B,
D = k (1 − B) respectively, where k is the transition rate from cash to the asset. We use an adaptation
of the basic “excess demand” price equation in [41]. In order to apply this nonlocally, we need to
normalize excess demand and take the continuum limit, as discussed in [9].

τ0
1
P

dP
dt

=
D
S
− 1, (3.1)

where τ0 is a constant that determines the timescale between supply/demand imbalance and the
corresponding change in price. It follows that B (1 − B)−1 = NP/M = P/L , so that the price equation
is

τ0
1
P

dP
dt

=
k

1 − k
L
P
− 1 . (3.2)

The variable k is assumed to be a linearization of a tanh type function and involves the motivations of
the traders which are expressed through sentiment, ζ = ζ1 +ζ2 where ζ1 is the trend component and ζ2 is
the value component. This construct has been studied, for example, in closed-end funds [1, 11, 12, 27]
which frequently trade either at a discount or premium to their net asset value. Writing the term
k/ (1 − k) in terms of the ζ1 and ζ2 and linearizing we have then

k
1 − k

=̃1 + 2ζ1 + 2ζ2 (3.3)

and the price equation is then

τ0
1
P

dP
dt

= (1 + 2ζ1 + 2ζ2)
L
P
− 1 . (3.4)

Next, the variable ζ1 is defined as the trend-based component of the total sentiment. This quantity
expresses the idea that in an uptrend, momentum traders will be encouraged to buy. This is paired with
an aggregate timescale, c1, through which they examine the history of price patterns. For traders with
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a short time horizon, the value of c1 would be small. The parameter q1 is the amplitude of this factor,
i.e., the effective weighting of this momentum trading. Thus, we write

ζ1 (t) =
q1

c1

∫ t

−∞

e−(t−τ)/c1
1

P (τ)
τ0

dP (τ)
dτ

dτ (3.5)

The valuation is more subtle for a cryptocurrency. The only concept of value relates to fairly recent
trading prices. The first purchase with Bitcoin was for two slices of pizza for 10,000 Bitcoins [30].
The sense of value at that time was probably much less than 2018 when people became accustomed to
prices in the thousands of dollars. We thus stipulate the definitions

Pa (t) =
1
c3

∫ t

−∞

e−(t−τ)/c3 P (τ) dτ, (3.6)

ζ2 (t) =
q2

c2

∫ t

−∞

e−(t−τ)/c2
Pa (τ) − P (τ)

P (τ)
dτ, (3.7)

i.e., ζ2 represents the motivation to buy based on the discount from the perceived value of the
cryptocurrency, Pa (t). This perceived value is based on an exponentially weighted average of
previous prices, with more recent prices having a strong influence. Analogous to q1, the parameter q2

measures relative emphasis on the discount in valuation. In other words, if q2 is large and (Pa − P) /P
is positive, i.e. the asset is undervalued, then ζ2 will be positive and large. For a small q2, the impact
will be smaller given identical other parameters. Likewise, c2 determines the timescale on which
reaction to undervaluation or overvaluation will occur. Finally, the liquidity will not be constant but
will be the sum of the core group’s capital L0 plus the additional amounts arriving from speculators
that is correlated with the recent trend:

L (t) = L0 +
L0

c
q
∫ t

−∞

e−(t−τ)/c τ0

P (τ)
dP (τ)

dτ
dτ (3.8)

The parameters q and c play the same role as q1, q2 and c1, c2, representing amplitude and timescales for
liquidity. Note trend’s dual role in influencing both the decision-making process, and also an uptrend
draws more money into the system. Both factors can contribute to price fluctuations.

Note that L and ζ1 are linear functions of one another, but we retain L as a variable so the system is
more easily generalized to incorporate a time-dependent L0. We assume that L0 is constant, but one can
easily adapt the model to include temporal changes in L0 due to, for example, greater public acceptance
of cryptocurrencies. By differentiating (3.5–3.8) and combining the resulting equations with (3.4) we
obtain the 5x5 system of ordinary differential equations:

c3P′a = P − Pa,

c2ζ
′
2 = q2

Pa − P
Pa

− ζ2,

τ0P′ = (1 + 2ζ1 + 2ζ2) L − P,

cL′ = 1 − L + q {(1 + 2ζ1 + 2ζ2) L − P} ,

c1ζ
′
1 = q1

(
(1 + 2ζ1 + 2ζ2)

L
P
− 1

)
− ζ1. (3.9)
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We find a unique equilibrium at (P, Pa, L, ζ1, ζ2) = (1, 1, 1, 0, 0). In other words, the only steady-state
of the system occurs when the price, the anchoring notion of fundamental value, and liquidity price
all coincide with the base liquidity value L0 [33]. The time scale for price adjustment will be short as
markets adjust rapidly to supply/demand changes. Much longer will be the time scale for observing
the trend and reacting to under or over-valuation, as well as the time scale for liquidity. Moreover, one
might expect that the valuation is on an even longer time scale. Thus one expects three time scales
such that τ0 � c, c1, c2 � c3, which we can scale as c = c1 = c2 = 1, and we allow arbitrary τ0, c3

in the analysis. We thus linearize the system about the aforementioned unique equilibrium point and
obtain the following. 

τ0P
c3Pa

L
ζ1

ζ2


=


−1 0 1 2 2
1 −1 0 0 0
−q 0 q − 1 2q 2q
−q1 0 q1 2q1 − 1 2q1

−q2 q2 0 0 −1




P
Pa

L
ζ1

ζ2


. (3.10)

Thus, the system is determined entirely by three parameters: q, the amplitude of liquidity; q1, the
effective weighting on the trend; and q2, the influence of fundamental value, along with the timescale
parameters τ0 and c3 as discussed above.

Stability of these systems has been studied extensively in previous works. In [28], a Hopf
bifurcation analysis was carried out, and periodic solutions are found for critical values of the
bifurcation parameter. Other work [16] has demonstrated that if traders focus on fundamentals, i.e.
the value of the asset rather than trend sentiment or other factors, stable equilibria can be found. In an
asset flow model [4], two disparate groups of participants are considered, with one focused on price
trend and the other on valuation. Numerical computations establish the existence of regions of
stability and instability separated by precise boundaries in the parameter space.

The question of stability here can be investigated by calculating the eigenvalues in the relevant
parameter space, i.e. (q, q1, q2) ∈ R3

+ (the first octant), along with τ0 and c3. In particular, the main
question is whether the maximal real part of the eigenvalues is positive, leading to instability, or if they
are all negative, yielding stability. One sees that there is a double eigenvalue at λ = −1, and the other
three eigenvalues remain negative if the Routh-Hurwitz conditions [39] below are satisfied

1
τ0

+
1
c3

+ Q > 0,(
Q
c3

+
1
τ0

+ 2
q2

τ0
+

1
τ0c3

) (
1
τ0

+
1
c3

+ Q
)
>

1
c3τ0

. (3.11)

where we have set Q = 1 − q − 2q1. A sufficient set of conditions for (3.11) to hold is the following:
1
c3

+
1
τ0
> q + 2q1 =: K,

1
c3

+
1
τ0
>

K
c3
− 2

q2

τ0
. (3.12)

However, one can observe numerically that (3.12) are not necessary conditions to satisfy (3.11). Also,
if we set q2 = 0, we obtain the simpler condition

1
c3

+
1
τ0
> K (3.13)
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for stability, which we will see describes a simpler model that excludes valuation and the component of
investor sentiment associated with it. We sketch various cross-sections holding one of these parameters
constant and numerically compute eigenvalues across values of the other two. Note in Figures 1 and 2
below that increasing K induces a destabilizing effect. We choose various values of τ0 and c3 in Figures
1 and 2.

Figure 1. Stability of the 5×5 system in the K−q2 plane for different values of the time scales
c3 and τ. The shaded region in the figures refer to stability for those values of parameters.
Increasing c3 and decreasing τ0 increases the region of linear stability for the equations.

This yields a number of results. First, as market participants focus greater attention to the deviation
of the asset from the acquired fundamental value driven from the liquidity price, there is less room for
prices to stray from equilibrium. In addition, for a fixed q2, the asset would experience stability given
that K is not too large. Finally, for K large enough, one sees that we have instability for a large range
of q2, i.e., if investors place too much emphasis on the relative trend, the asset price becomes unstable.
The shaded regions in Figures 1, 2, and 3 indicate the range of parameters for which the system (3.10)
is stable.

When we set q2 = 0, the model simplifies somewhat, leaving a linear interface between the regions
of stability and instability. We then have the following theorem. We define Q := 1 − q − 2q1.
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Figure 2. Zoom views of panels in Figure 1 to illustrate curvature of the interface between
stability and instability. The shaded regions indicate stability.

Figure 3. Stability for our simplified model without the presence of fundamental value or
sentiment. The system is stable in the shaded region for the parameters q and c

τ0
.
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Theorem 1. Consider the system (3.10). With q2 = 0, one has stability of the system (3.10) if and only
if

Q +
1
τ0
> 0 (3.14)

Proof. Setting q2 = 0, the necessary conditions become(
Q +

1
τ0

) (
1
τ0

+
Q
c3

+
1

c3τ0
+

1
c2

3

)
> 0 and Q +

1
τ0

+
1
c3
> 0 (3.15)

We prove this is equivalent to Q + 1
τ0
> 0.

(i) Assume Q + 1
τ0
> 0. Then clearly the second inequality in (3.15) is satisfied. Also, one has

1
τ0

+
Q
c3

+
1

c3τ0
+

1
c2

3

=

(
Q +

1
τ0

) (
1
c3

)
+

1
τ0

+
1
c2

3

> 0, (3.16)

satisfying the first inequality.
(ii) Suppose (3.15) holds. Then clearly

0 <
(
Q +

1
τ0

+
1
c3

)
1
c3

+
1
τ0

=
1
τ0

+
Q
c3

+
1

c3τ0
+

1
c2

3

, (3.17)

implying (3.14). �

4. The effect of liquidity with or without sentiment

In order to isolate the effect of liquidity, we eliminate the role of investor sentiment and value by
setting the associated parameters to zero. To this end, we are left with the system

τ0P′ = L − P,

cL′ = 1 + (q − 1) L − qP. (4.1)

One readily calculates that there will be positive eigenvalues of the linearized system if and only if
q > 1 + c

τ0
In other words, in a system where only price and liquidity are relevant, a large amplitude

q of liquidity is destabilizing while a large time scale τ0 for the price is stabilizing. The stability is
illustrated in the Figure 3.

Another nontrivial subcase is obtained from examining the full model (3.9) in the case where we set
the value component of the sentiment, ζ2, and the fundamental value equal to zero. In other words, we
are considering the case where market participants are aware that there is no real fundamental value,
and thus no accounting for deviations from it either. We then have the system of equations

τ0
dP
dt

= (1 + 2ζ1) L − P

c
dL
dt

= 1 − L + q (1 + 2ζ1) L − qP

c1
dζ1

dt
= q1 (1 + 2ζ)

L
P
− q1 − ζ1 (4.2)

One then observes that the only equilibrium point is L = P = L0 and ζ = 0. Recalling that
Q := 1 − q − 2q1, one has the following result.
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Theorem 2. The system (4.2) incorporating liquidity and sentiment (with c := c1) is stable if and only
if

Q +
c
τ0
> 0, (4.3)

i.e. if the perturbations from trend and liquidity sentiment are sufficiently small as a relative
comparison to the timescale of reaction with respect to price.

Proof. By scaling, assume without loss of generality that c1 = c = 1; then we can linearize the system
as follows: 

P
L
ζ


′

=


−1/τ0 1/τ0 2/τ0

−q q − 1 2q
−q1 q1 2q1 − 1




P
L
ζ

 =: A


P
L
ζ

 . (4.4)

Leaving aside the eigenvalue of −1 that is present for all values of the parameters, the matrix A has
eigenvalues with positive real part if and only if

q + 2q1 > 1 +
1
τ0
. (4.5)

After rescaling, this is the statement of the theorem. �

Furthermore, we have either zero or two roots with positive real parts, so that we will have a stable
spiral for Q + c

τ0
> 0 and an unstable spiral for Q − c

τ0
< 0 for the equilibrium point at (1, 1, 0). This

matches our intuition from an economics perspective since one has instability when q + 2q1 > 1 + c
τ0

,
i.e., there will be stability if q + 2q1 < 1 regardless of c and τ0. For q + 2q1 > 1, one sees that instability
arises when c

τ0
is sufficiently small, i.e. traders are focused on short term trends.

The analysis above clearly shows that the potential stability of a crypto-asset may be contingent on
several parameters that one may be able to influence. With this information, further research may be
useful to examine the correlations and fit of these parameters with the effects of news and government
policy. A problem of future interest would be whether, and if so how, governmental policy might be
developed to diminish the volatility in cryptocurrencies. Another alternative would be a decentralized
cryptocurrency with a concrete value. A good index to base this on would be either current or future
gross world product (which could be estimated via futures markets). For a nominal fee, holders of this
currency would be able to demand a basket of underlying currencies (such as dollar, euro, yen, etc.)
representing, say, one trillionth of the gross world product in that currency. This would keep the value
of such a currency relatively close to its true fundamental value.
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