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1. Introduction

Stochastic differential equations have been used with great success in many application areas
including biology, epidemiology, mechanics, economics and finance. For the fundamental study of the
theory of stochastic differential equations, we refer to [1–4]. Yang and Zhu [5] studied the existence,
uniqueness, and stability of mild solutions for the stochastic differential equations with Poisson jumps
by using fixed point techniques. The fBm with Hurst parameter H ∈ (0, 1) is a self-similar centered
Gaussian random process with stationary increments. It admits the long-range dependence properties
when H > 1/2. Many exciting applications of fBm have been established in diverse fields such as
finance, economics, telecommunications, and hydrology. For more details on fBm, see [6–9] and the
references cited therein. Boudaoui et al. [10] studied the existence and continuous dependence of the
mild solutions for the impulsive stochastic differential equation driven by fBm.

In recent years, the differential equation with fixed moments of impulses (instantaneous impulses)
has become the natural framework for modeling of many evolving processes and phenomena studied
in economics, population dynamics, and physics. For more details on differential equations with
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instantaneous impulses, one can see the papers [11–14] and the references cited therein. Deng et
al. [15] discussed the existence and exponential stability for impulsive neutral stochastic functional
differential equations driven by fBm with non-compact semigroup. Zhu [16] obtained some sufficient
conditions to ensure the pth moment exponential stability of impulsive stochastic functional
differential equations with Markovian switching. The action of instantaneous impulses does not
describe certain dynamics of evolution processes in pharmacotherapy. For example, consider the
following simplified situation concerning the hemodynamic equilibrium of a person. In the case of a
decompensation (for example, high or low levels of glucose) one can prescribe some intravenous
drugs (insulin). Since the introduction of the drugs into the bloodstream and the consequent
absorption for the body are gradual and continuous processes, we can interpret the situation as an
impulsive action that starts abruptly and remains active over a finite time interval. For these reasons,
Hernández and O’Regan [17] introduced a new class of abstract differential equations with
non-instantaneous impulses and they investigated the existence of mild and classical solutions. For
comprehensive details on differential equation with non-instantaneous impulses, see [18–20]. The
qualitative properties of mild solutions for differential equations with non-instantaneous impulses
have been investigated in several papers [21–23] and the references cited therein.

On the other hand, delay differential equation has been gaining much interest and attracting the
attention of several researchers, because of its wide applications in various fields of science and
engineering such as control theory, heat flow, mechanics, distributed networks, and neural networks,
etc. The delay depends on the state variable, is called state-dependent delay. For more details on
state-dependent delay, we refer to [24–28]. In the neutral differential equation, the highest order
derivative of the state variable appears without delay and with delay. Ezzinbi et al. [29] discussed the
existence and regularity of solutions for the neutral functional integro-differential equation with delay.
Vijayakumar [30] investigated the approximate controllability for integro-differential inclusions by
using the resolvent operators. The optimal control problem plays an important role in many scientific
fields, such as engineering, mathematics, and biomedical. When the stochastic differential equation
describes the performance index and system dynamics, an optimal control problem reduces to a
stochastic optimal control problem. Wei et al. [31] obtained the existence of optimal controls for the
impulsive integro-differential equation of mixed type. Jiang et al. [32] discussed the existence of
optimal controls for fractional evolution inclusion with Clarke subdifferential and nonlocal
conditions. In particular, in [33, 34], the authors analyzed the existence of optimal controls for the
fractional differential equations, whereas in [35, 36] the authors investigated the same type of problem
for the impulsive fractional stochastic integro-differential equations with delay.

To the best of our knowledge, there is no paper discussing the solvability and optimal controls
of a non-instantaneous impulsive stochastic system driven by fBm with state-dependent delay. In
order to fill this gap, we consider the following non-instantaneous impulsive stochastic neutral integro-
differential equation driven by fBm with state-dependent delay:

dD(t, zt) = A
[
D(t, zt) +

∫ t

0
G(t − s)D(s, zs)ds

]
dt + C(t)v(t)dt + F2(t, zρ(t,zt))dBH (t)

t ∈ (p j, t j+1], j = 0, 1, . . . ,M,

z(t) = E j(t, zt), t ∈ (t j, p j], j = 1, 2, . . . ,M,

z0 = Ω ∈ B,

(1.1)

where z(·) takes values in a real separable Hilbert space Z, A is the generator of a C0-semigroup of
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operators {<(t) : t ≥ 0} on Z. BH = {BH (t) : t ≥ 0} is a fBm with Hurst index H ∈ (1/2, 1), takes
values in a Hilbert space Y . The initial data Ω = {Ω(t), t ∈ (−∞, 0]} is a B-valued, F0-adapted random
variable, which not dependent on BH , where B abstract phase space. The history valued function
zt : (−∞, 0] → Z is defined as zt(θ) = z(t + θ) for all θ ∈ (−∞, 0] belongs to B. The control function
v takes value from a separable reflexive Hilbert space T , and C is linear operator from T into Z.
0 = t0 = p0 < t1 < p1 < · · · < tM < pM < tM+1 = b < ∞ are prefixed numbers, J1 = [0, b].
Suppose that G(t), t ∈ J1 is a linear and bounded operator. The function D : J1 × B → Z is defined
by D(t, ψ) = ψ(0) − F1(t, ψ), ψ ∈ B and F1 : J1 × B → Z, F2 : J1 × B → L0

2(Y,Z), where L0
2(Y,Z)

is space of all Q-Hilbert-Schmidt operators from Y into Z, E j : (t j, p j] × B → Z, j = 1, 2, . . . ,M and
ρ : J1 ×B→ (−∞, b] are suitable functions and they will be specified later.

The manuscript is structured as follows. Section 2 introduces preliminary facts and some notations.
In Section 3, we discussed the solvability of the stochastic system and Section 4 is devoted to the
investigation of the existence of optimal control pairs of the Lagrange problem corresponding to the
proposed stochastic system. In Section 5, an example is provided to illustrate the applications of the
obtained results. The last section is devoted to our conclusions.

2. Preliminaries

In this section, we briefly review some basic definitions and notations that will be used in the
subsequent sections. Let (Ω,F , {Ft}t≥0, P) be a filtered complete probability space, where Ft the σ-
algebra is generated by {BH (s), s ∈ [0, t]}. By L(Y,Z), we denote the space of bounded linear operator
from Y into Z. For convenience, the same notation ‖ . ‖ is used to denote the norms in Z, Y , L(Y,Z).
The collection of all square integrable, strongly measurable, Z-valued random variables, denoted by
L2(Ω,Z), which is a Banach space. L2

F0
(Ω,Z) = { f ∈ L2(Ω,Z) : f is F0 − measurable} is subspace

of L2(Ω,Z). We denote by PC([r1, r2],Z) the space formed by the normalized piecewise continuous,
Ft-adapted measurable process from [r1, r2] into Z.

Definition 2.1. Given H ∈ (0, 1), a centered Gaussian and continuous random process
βH = {βH (t), t ≥ 0} with covariance function

E[βH (%1), βH (%2)] =
1
2

(%2H
1 + %2H

2 − |%1 − %2|
2H ),

is called one dimensional fBm andH is the Hurst parameter.

The fBm βH (t) with 1/2 < H < 1 has the following integral representation

βH (t) =

∫ t

0
KH (t, %)dw(%),

where w(%) is a Wiener process or Brownian motion and the kernel KH (t, %) is defined as

KH (t, %) = PH%
1/2−H

∫ t

%

(τ − %)H−3/2τH−1/2dτ, for t > %.

We put KH (t, %) = 0 if t ≤ %. Notice that
∂KH
∂t

(t, %) = PH
(
t/%

)H−1/2(t − %)H−3/2. Here, PH = [H(2H −

1)/ξ(2 − 2H ,H − 1/2)]1/2 and ξ(·, ·) is Beta function. For Ψ ∈ L2([0, b]), it is well known from [37]
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that the Wiener-type integral of the function Ψ w.r.t fBm βH is defined by∫ b

0
Ψ(%)dβH (%) =

∫ b

0
K
∗

H
Ψ(%)dw(%),

where K∗
H

Ψ(%) =
∫ b

%
Ψ(t)

∂KH
∂t

(t, %)dt.
Let the operator Q ∈ L(Y,Y) is defined by Qei = λiei, where {λi ≥ 0 : i = 1, 2, . . . , } are real numbers

with trace Tr(Q) =
∑∞

i=1 λi < ∞ and {ei, i = 1, 2, . . . , } is a complete orthonormal basis in Y . Next, we
define the infinite dimensional fBm BH on Y with covariance Q as

BH (t) = BHQ (t) =

∞∑
i=1

√
λieiβ

H
i (t),

where βHi (t) are real, independent fBm. Now, we define the separable Hilbert space L0
2(Y,Z) of all

Q-Hilbert-Schmidt operators from Y into Z with norm ‖ψ‖2
L0

2
=

∑∞
i=1 ‖
√
λiψei‖

2 < ∞ and the inner

product 〈ψ1, ψ2〉L0
2

=
∑∞

i=1〈ψ1ei, ψ2ei〉. The Wiener integral of function Υ : J1 → L0
2(Y,Z) w.r.t fBm BH

is defined by∫ t

0
Υ(s)dBH (s) =

∞∑
i=1

∫ t

0

√
λiΥ(s)eidβHi (s) =

∞∑
i=1

∫ t

0

√
λiK

∗

H
(Υei)(s)dwi(s). (2.1)

Lemma 2.1. [6] If Υ : J1 → L0
2(Y,Z) satisfies

∫ b

0
‖Υ(s)‖2

L0
2
ds < ∞, then equation (2.1) is well-defined

and Z-valued random variable and we get

E
∥∥∥∥ ∫ t

0
Υ(s)dBH (s)

∥∥∥∥2
≤ 2H t2H−1

∫ t

0
‖Υ(s)‖2L0

2
ds. (2.2)

Now, we introduce the space PC(Z) formed by all Ft-adapted measurable, Z-valued stochastic
processes {z(t) : t ∈ J1} such that z is continuous at t , t j, z(t−j ) = z(t j) and z(t+

j ) exists for all
j = 1, 2, . . . ,M, endowed with the norm ‖ z ‖PC =

(
supt∈J1

E‖z(t)‖2
)1/2

. Then (PC(Z), ‖ ·‖PC) is Banach
space.

In the following, let T is a separable reflexive Hilbert space from which the controls v take the
values. Operator C ∈ L∞(J1, L(T ,Z)), where L∞(J1, L(T ,Z)) denote the space of operator-valued
functions which are measurable in the strong operator topology and uniformly bounded on the interval
J1, endowed with the norm ‖ · ‖∞. Let L2

F
(J1,T ) denote the space of all measurable and Ft-adapted,

T -valued stochastic processes satisfying the condition E
∫ b

0
‖v(t)‖2

T
dt < ∞, and endowed with the norm

‖ v ‖L2
F

=
(
E

∫ b

0
‖v(t)‖2

T
dt

)1/2
. LetU be a non-empty closed bounded convex subset of T . We define the

admissible control set
Uad = {v ∈ L2

F
(J1,T ) | v(t) ∈ U a.e. t ∈ J1}.

Then, Cv ∈ L2(J1,Z) for all v ∈ Uad.

In this paper, we assume that the phase space (B, ‖ · ‖B) is a seminormed linear space of functions
mapping (−∞, 0] into Z and subsequent conditions are satisfied.
[A1]: If z : (−∞, e + b] → Z, b > 0 is such that z|[e,e+b] ∈ PC([e, e + b],Z) and ze ∈ B , then for each
t ∈ [e, e + b] the subsequent conditions are satisfied:
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1. zt ∈ B.
2. ‖z(t)‖ ≤ K1‖zt‖B.
3. ‖zt‖B ≤ K2(t − e) sup{‖z(s)‖ : e ≤ s ≤ t} + K3(t − e) ‖ze‖B, where K1 is a positive constant,
K2,K3 : [0,+∞) → [1,+∞), K2 is a continuous function, K3 is a locally bounded function and
K1,K2,K3 are independent of z(·).

[A2]: For the function z(·) in [A1], the function t → zt is continuous from [e, e + b] into B.
[A3]: The phase space B is complete.
For more details on phase space, we refer to [38, 39].

Lemma 2.2. [21] Let z : (−∞, b]→ Z be an Ft-adapted measurable process such that the F0-adapted
process z0 = Ω(t) ∈ L2

F0
(Ω,B) and z|J1 ∈ PC(Z), then

‖zs‖B ≤ K
∗
3 E‖Ω‖B +K ∗2 sup

s∈J1

E‖z(s)‖,

where K ∗2 = supt∈J1
K2(t), K ∗3 = supt∈J1

K3(t).

Definition 2.2. A one parameter family {<(t) : t ≥ 0} of bounded linear operators, is called resolvent
operator for

dz
dt

= A
[
z(t) +

∫ t

0
G(t − κ)z(κ)dκ

]
, (2.3)

if

1. <(0) = I and ‖<(t)‖ ≤ Neβ t for some constants β and N ≥ 1.
2. For all z ∈ Z,<(t)z is strongly continuously for t ∈ J1.

3. For all t ∈ J1,<(t) ∈ L(X). For all x ∈ X,<(·)x ∈ C1(J1,Z) ∩C(J1, X) and

d
dt
<(t)x = A

[
<(t)x +

∫ t

0
G(t − κ)<(κ)xdκ

]
= <(t)Ax +

∫ t

0
<(t − κ)AG(κ)xdκ, t ∈ J1.

For more details on the resolvent operator, we refer to [40, 41].

Definition 2.3. A Z−valued stochastic process {z(t), t ∈ (−∞, b]} is called a mild solution of the
stochastic system (1.1) if z0 = Ω, zρ(s,zs) ∈ B, z|[0,b] ∈ PC(Z) and

1. z(t) is measurable and adapted to Ft, t ≥ 0.
2. z(t) ∈ Z has càdlàg paths on [0, b] almost everywhere and for every t ∈ [0, b], z(t) satisfies z(t)=
E j(t, zt) for all t ∈ (t j, p j], j = 1, 2, . . . ,M, and

z(t) = <(t)[Ω(0) − F1(0,Ω)] + F1(t, zt)

+

∫ t

0
<(t − s)C(s)v(s)ds +

∫ t

0
<(t − s)F2(s, zρ(s,zs))dBH (s)

for all t ∈ [0, t1] and

z(t) = <(t − p j)[E j(p j, zp j) − F1(p j, zp j)] + F1(t, zt)

+

∫ t

p j

<(t − s)C(s)v(s)ds +

∫ t

p j

<(t − s)F2(s, zρ(s,zs))dBH (s)

for all t ∈ (p j, t j+1], j = 1, 2, . . . ,M.

AIMS Mathematics Volume 4, Issue 3, 663–683.



668

3. Solvability for stochastic system

In this section, we prove the existence of mild solutions for the stochastic system (1.1). Let ρ :
J1 × B → (−∞, b] be a continuous function. To prove our main results, we need the following
hypotheses:

[H1]: <(t), t > 0 is compact and there exists a constant N > 0 such that ‖<(t)‖ ≤ N for every t ∈ J1.

[H2]: The function t → Ωt is continuous from the set S(ρ−) = {ρ(t, ψ) ≤ 0 : (t, ψ) ∈ J1 × B} into
B and there exists a bounded and continuous function LΩ : S(ρ−) → (0,∞) to ensure that
‖Ωt‖B ≤ LΩ(t)‖Ω‖B for all t ∈ S(ρ−).

[H3]: There exists a constant LF1 > 0 such that the function F1 : J1 × B → Z satisfies the following
conditions

E‖F1(t, ψ)‖2 ≤ LF1(‖ψ‖
2
B + 1), ∀ψ ∈ B, t ∈ J1,

E‖F1(t, ψ1) − F1(t, ψ2)‖2 ≤ LF1 ‖ψ1 − ψ2‖
2
B, ∀ψ1, ψ2 ∈ B, t ∈ J1.

[H4]: There exist constants LE j > 0, j = 1, 2, . . . ,M, such that the functions E j : (t j, p j] × B → Z,
j = 1, 2, . . . ,M, satisfies the following conditions

E‖E j(t, ψ)‖2 ≤ LE j(‖ψ‖
2
B + 1), ∀ψ ∈ B,

E‖E j(t, ψ1) − E j(t, ψ2)‖2 ≤ LE j‖ψ1 − ψ2‖
2
B, ∀ψ1, ψ2 ∈ B.

[H5]: The function F2 : J1 ×B→ L0
2(Y,Z) satisfies the conditions

(a) The function F2(t, · ) : B → L0
2(Y,Z) is continuous for a.e t ∈ J1, and t → F2(t, ψ) is

measurable for all ψ ∈ B.
(b) There exists a continuous function η : J1 → [0,∞) and a continuous nondecreasing function

Θ : [0,∞)→ (0,∞) to ensure that for all (t, ψ) ∈ J1 ×B

E‖F2(t, ψ)‖2L0
2
≤ η(t)ΘF2(‖ψ‖

2
B), lim inf

w→∞

ΘF2(w)
w

= Θ1.

[H6]: The following inequality holds

max
1≤ j≤M

2[K ∗2 ]2[LE j + 8N2(LE j + LF1) + 4LF1 + 8HN2b2H−1Θ1

∫ b

0
η(s)ds

]
< 1.

Lemma 3.1. [28] Let z : (−∞, b]→ Z such that z0 = Ω and z|J1 ∈ PC(Z). If [H2] be hold, then

‖zt‖B ≤ (K ∗3 +L∗Ω)‖Ω ‖B +K ∗2 sup
{
E‖z(ω)‖ : ω ∈ [0,max{0, t}]

}
, t ∈ S(ρ−) ∪ J1,

where K ∗2 = supt∈J1
K2(t), K ∗3 = supt∈J1

K3(t), and L∗
Ω

= supt∈S(ρ−)LΩ(t).

Theorem 3.1. If the hypotheses [H1]–[H6] are fulfilled. Then for each v ∈ Uad, the stochastic
system (1.1) has at least one mild solution on J1, provided that

max
1≤ j≤M

2[K ∗2 ]2(LE j + 4N2LE j + 2(2N2 + 1)LF1

)
< 1. (3.1)
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Proof. On the space BPC = {z ∈ PC(Z) : z(0) = Ω(0)} endowed with the uniform convergence
topology. For each l > 0, let

Bl = {z ∈ BPC : ‖z‖2PC ≤ l}.

Let the operator F : Bl →BPC be specified by

(Fz)(t) =



R(t)[Ω(0) − F1(0,Ω)] + F1(t, zt)
+

∫ t

0
R(t − s)C(s)v(s)ds +

∫ t

0
R(t − s)F2(s, zρ(s,zs))dBH (s), t ∈ [0, t1], j = 0,

E j(t, zt), t ∈ (t j, p j], j ≥ 1,
R(t − p j)[E j(p j, zp j) − F1(p j, zp j)] + F1(t, zt)
+

∫ t

p j
R(t − s)C(s)v(s)ds +

∫ t

p j
R(t − s)F2(s, zρ(s,zs))dBH (s), t ∈ (p j, t j+1], j ≥ 1,

where z : (−∞, b]→ Z is such that z0 = Ω and z = z on J1. For z ∈ Bl, from Lemma 3.1, we have

‖zρ(s,zs)‖
2
B ≤ 2(K ∗3 +L∗Ω)2‖Ω ‖2B + 2[K ∗2 ]2l = l∗.

From [H1] and Hölder’s inequality, we have

E

∥∥∥∥∥ ∫ t

p j

<(t − s)C(s)v(s)ds
∥∥∥∥∥2

≤ E
[ ∫ t

p j

‖<(t − s)‖‖C(s)v(s)‖ds
]2

≤ N2‖C‖2∞(t j+1 − p j)E
∫ t

p j

‖v(s)‖2Tds

≤ N2‖C‖2∞(t j+1 − p j)‖v‖2L2
F

.

By Bochner theorem, it follows that <(t − s)C(s)v(s) are integrable on (p j, t), j = 0, 1, . . . ,M.

Therefore F is well defined on Bl. Now, we split F as F1 + F2, where

(F1z)(t) =


<(t)[Ω(0) − F1(0,Ω)] + F1(t, zt), t ∈ [0, t1], j = 0,
E j(t, zt), t ∈ (t j, p j], j ≥ 1,
<(t − p j)[E j(p j, zp j) − F1(p j, zp j)] + F1(t, zt), t ∈ (p j, t j+1], j ≥ 1,

and

(F2z)(t) =


∫ t

0
<(t − s)C(s)v(s)ds +

∫ t

0
<(t − s)F2(s, zρ(s,zs))dBH (s), t ∈ [0, t1], j = 0,

0, t ∈ (t j, p j], j ≥ 1,∫ t

p j
<(t − s)C(s)v(s)ds +

∫ t

p j
<(t − s)F2(s, zρ(s,zs))dBH (s), t ∈ (p j, t j+1], j ≥ 1.

For the sake of convenience, we break the proof into a sequence of steps.
Step 1. There exists l > 0 such that F(Bl) ⊂ Bl.
If we assume that this assertion is false, then for any l > 0, we can choose zl ∈ Bl and t ∈ J1 such that
E‖F(zl)(t)‖2 > l. By [H1], [H3]–[H6] and Hölder’s inequality, we have for t ∈ [0, t1],

l < E‖F(zl)(t)‖2 ≤ 4E‖<(t)[Ω(0) − F1(0,Ω)]‖2 + 4E‖F1(t, zl
t)‖2
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+4E
∥∥∥∥∥ ∫ t

0
<(t − s)C(s)v(s)ds

∥∥∥∥∥2

+ 4E
∥∥∥∥∥ ∫ t

0
<(t − s)F2(s, zl

ρ(s,zl s)
)dBH (s)

∥∥∥∥∥2

≤ 8N2[K2
1 ‖Ω‖

2
B + E‖F1(0,Ω)‖2] + 4E‖F1(t, zl

t)‖2

+4E
[ ∫ t

0
‖<(t − s)‖‖C(s)v(s)‖ds

]2

+ 8HN2t2H−1
1

∫ t

0
E‖F2(s, zl

ρ(s,zl s)
)‖2L0

2
ds

≤ 8N2[K2
1 ‖Ω‖

2
B + LF1(‖Ω‖

2
B + 1)] + 4LF1(‖zl

t‖
2
B + 1)

+4N2‖C‖2∞t1‖v‖2L2
F

+ 8HN2t2H−1
1

∫ t

0
η(s)ΘF2(‖zl

ρ(s,zl s)
‖2B)ds.

For any t ∈ (t j, p j], j = 1, 2, . . . ,M, we have

l < E‖F(zl)(t)‖2 ≤ LE j(‖zl
t‖

2
B + 1).

Similarly, for any t ∈ (p j, t j+1], j = 1, 2, . . . ,M, we have

l < E‖F(zl)(t)‖2 ≤ 4E‖<(t − p j)[E j(p j, zl
p j) − F1(p j, zl

p j)]‖
2 + 4E‖F1(t, zl

t)‖2

+4E
∥∥∥∥∥ ∫ t

p j

<(t − s)C(s)v(s)ds
∥∥∥∥∥2

+ 4E
∥∥∥∥∥ ∫ t

p j

<(t − s)F2(s, zl
ρ(s,zl s)

)dBH (s)
∥∥∥∥∥2

≤ 8N2[E‖E j(p j, zl
p j)‖

2 + E‖F1(p j, zl
p j)‖

2] + 4E‖F1(t, zl
t)‖2

+4E
[ ∫ t

p j

‖<(t − s)‖‖C(s)v(s)‖ds
]2

+ 8HN2t2H−1
j+1

∫ t

p j

E‖F2(s, zl
ρ(s,zl s)

)‖2L0
2
ds

≤ 8N2(LE j + LF1)‖zl
p j‖

2
B + 8N2(LE j + LF1) + 4LF1(‖zl

t‖
2
B + 1)

+4N2‖C‖2∞t j+1‖v‖2L2
F

+ 8HN2t2H−1
j+1

∫ t

p j

η(s)ΘF2(‖zl
ρ(s,zl s)

‖2B)ds.

For any t ∈ [0, b], we have

l < E‖F(zl)(t)‖2 ≤ W∗ + LE jl
∗ + 8N2(LE j + LF1)l

∗ + 4LF1l
∗ + 8HN2b2H−1ΘF2(l

∗)
∫ t

0
η(s)ds,

and hence,

l∗ < 2(K ∗3 +L∗Ω)2‖Ω ‖2B + 2[K ∗2 ]2[W∗

+LE jl
∗ + 8N2(LE j + LF1)l

∗ + 4LF1l
∗ + 8HN2b2H−1ΘF2(l

∗)
∫ b

0
η(s)ds

]
,

where

W∗ = max
1≤ j≤M

{
8N2[K2

1 ‖Ω‖
2
B + LF1(‖Ω‖

2
B + 1)] + LE j

AIMS Mathematics Volume 4, Issue 3, 663–683.



671

+8N2(LE j + LF1) + 4LF1 + 4N2‖C‖2∞b‖v‖2L2
F

}
.

Dividing both sides by l∗ and taking the limit as l∗ → ∞, we have

1 < 2[K ∗2 ]2[LE j + 8N2(LE j + LF1) + 4LF1 + 8HN2b2H−1Θ1

∫ b

0
η(s)ds

]
,

which is contrary to our assumption [H6]. Hence, for some l > 0, F(Bl) ⊂ Bl.
Step 2. F1 is a contraction map on Bl.
For any y, z ∈ Bl, if t ∈ [0, t1], then we have

E‖(F1y)(t) − (F1z)(t)‖2 ≤ LF1‖yt − zt‖
2
B

≤ 2[K ∗2 ]2LF1 sup{E‖y(s) − z(s)‖2 : 0 < s < t}

≤ 2[K ∗2 ]2LF1 sup
s∈[0,b]

E‖y(s) − z(s)‖2

= 2[K ∗2 ]2LF1 sup
s∈[0,b]

E‖y(s) − z(s)‖2, (since z = z in [0, b])

= 2[K ∗2 ]2LF1‖y − z‖2PC.

If t ∈ (t j, p j], j = 1, 2, . . . ,M, then we have

E‖(F1y)(t) − (F1z)(t)‖2 ≤ LE j‖yt − zt‖
2
B

≤ 2[K ∗2 ]2LE j sup
s∈[0,b]

E‖y(s) − z(s)‖2

= 2[K ∗2 ]2LE j‖y − z‖2PC.

Similarly, if t ∈ (p j, t j+1], j = 1, 2, . . . ,M, then we have

E‖(F1y)(t) − (F1z)(t)‖2 ≤ 2N2[2E‖E j(p j, yp j
) − E j(p j, zp j)‖

2 + 2E‖F1(p j, yp j
)

−F1(p j, zp j)‖
2] + 2E‖F1(t, yt) − F1(t, zt)‖2

≤ 8N2[K ∗2 ]2LE j sup{E‖y(s) − z(s)‖2 : 0 < s < t}

+4[K ∗2 ]2LF1(2N2 + 1) sup{E‖y(s) − z(s)‖2 : 0 < s < t}

≤ 4[K ∗2 ]2[2N2LE j + (2N2 + 1)LF1] sup
s∈[0,b]

E‖y(s) − z(s)‖2

= 4[K ∗2 ]2[2N2LE j + (2N2 + 1)LF1] sup
s∈[0,b]

E‖y(s) − z(s)‖2

= 4[K ∗2 ]2[2N2LE j + (2N2 + 1)LF1]‖y − z‖2PC.

For any t ∈ [0, b], we have

E‖(F1y)(t) − (F1z)(t)‖2 ≤ LF1‖y − z‖2PC.

Taking supremum over t

‖F1y − F1z‖2PC ≤ LF1‖y − z‖2PC,
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where LF1 = 2[K ∗2 ]2(LE j + 4N2LE j + 2(2N2 + 1)LF1

)
. By Eq. (3.1), we see that LF1 < 1. Hence, F1 is a

contraction map on Bl.
Step 3. We show that F2 is continuous on Bl.

Let {zm}∞m=1 ⊆ Bl be a sequence such that zm → z in Bl as m → ∞. From axiom [A1], we have that
(zm)s → zs uniformly for s ∈ (−∞, b] as m → ∞. By hypothese [H5] and [42, Theorem 2.2, Step-3],
we have

F2(s, zm
ρ(s,(zm)s))→ F2(s, zρ(s,zs)),

for any s ∈ [0, t], and since

E‖F2(s, zm
ρ(s,(zm)s)) − F2(s, zρ(s,zs))‖

2
L0

2
≤ 2ΘF2(l

∗)η(s).

For any t ∈ (p j, t j+1], j = 0, 1, . . . ,M, we have

E‖(F2zm)(t) − (F2z)(t)‖2 = E

∥∥∥∥∥ ∫ t

p j

<(t − s)[F2(s, zm
ρ(s,zm s)) − F2(s, zρ(s,zs))]dBH (s)

∥∥∥∥∥2

≤ 2HN2t2H−1
j+1

∫ t

p j

E‖F2(s, zm
ρ(s,(zm)s)) − F2(s, zρ(s,zs))‖

2
L0

2
ds

≤ 2HN2b2H−1
∫ t

0
E‖F2(s, zm

ρ(s,(zm)s)) − F2(s, zρ(s,zs))‖
2
L0

2
ds.

By the Lebesgue dominated convergence theorem, we have

‖F2zm − F2z‖2PC → 0 as m → ∞.

Thus, F2 is continuous.
Step 4. We show that {F2z : z ∈ Bl} is equicontinuous.
Since <(t) is compact, which implies that the continuity of <(t) in (0, b]. Let p j < ε < t ≤ t j+1,
j = 0, 1, . . . ,M, and ω > 0 such that ‖<(ξ1 − s) − <(ξ2 − s)‖2 < ε for every ξ1, ξ2 ∈ (p j, t j+1] with
|ξ1 − ξ2| < ω. For each z ∈ Bl, 0 < |κ| < ω with t, t + κ ∈ (p j, t j+1], j = 0, 1, . . . ,M, we have

E‖(F2z)(t + κ) − (F2z)(t)‖2 ≤ 4E
∥∥∥∥∥ ∫ t+κ

t
<(t + κ − s)C(s)v(s)ds

∥∥∥∥∥2

+4E
∥∥∥∥∥ ∫ t

p j

[<(t + κ − s) −<(t − s)]C(s)v(s)ds
∥∥∥∥∥2

+4E
∥∥∥∥∥ ∫ t+κ

t
<(t + κ − s)F2(s, zρ(s,zs))dBH (s)

∥∥∥∥∥2

+4E
∥∥∥∥∥ ∫ t

p j

[<(t + κ − s) −<(t − s)]F2(s, zρ(s,zs))dBH (s)
∥∥∥∥∥2

= 4[χ1 + χ2],

where

χ1 ≤ E
[ ∫ t+κ

t
‖<(t + κ − s)‖‖C(s)v(s)‖ds

]2
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+E
[ ∫ t

p j

‖<(t + κ − s) −<(t − s)‖‖C(s)v(s)‖ds
]2

≤ N2κ‖C‖2∞E

∫ t+κ

t
‖v(s)‖2Tds

+‖C‖2∞t j+1E

∫ t

p j

‖<(t + κ − s) −<(t − s)‖2‖v(s)‖2Tds

≤ N2κ‖C‖2∞E

∫ t+κ

t
‖v(s)‖2Tds + ε‖C‖2∞t j+1E

∫ t

p j

‖v(s)‖2Tds,

χ2 ≤ 2HN2t2H−1
j+1

∫ t+κ

t
E‖F2(s, zρ(s,zs))‖

2
L0

2
ds

+2H t2H−1
j+1

∫ t

p j

‖<(t + κ − s) −<(t − s)‖2E‖F2(s, zρ(s,zs))‖
2
L0

2
ds

≤ 2HN2t2H−1
j+1 ΘF2(l

∗)
∫ t+κ

t
η(s)ds + 2εH t2H−1

j+1 ΘF2(l
∗)

∫ t

p j

η(s)ds.

We conclude that E‖(F2z)(t + κ) − (F2z)(t)‖2 → 0 as κ → 0 and ε is sufficiently small. Hence,
{F2z : z ∈ Bl} is equicontinuous. Also, clearly {F2z : z ∈ Bl} is uniformly bounded.
Step 5. The set Q(t) = {(F2z)(t) : z ∈ Bl}, t ∈ J1 is relatively compact in Z.
Clearly, Q(0) = {0} is compact. Let ξ is real number and t ∈ (p j, t j+1], j = 0, 1, . . . ,M, be fixed with
0 < ξ < t. For z ∈ Bl, we define

(Fξ2z)(t) =


∫ t−ξ

0
<(t − s)C(s)v(s)ds +

∫ t−ξ

0
<(t − s)F2(s, zρ(s,zs))dBH (s), t ∈ [0, t1], j = 0,

0, t ∈ (t j, p j], j ≥ 1,∫ t−ξ

p j
<(t − s)C(s)v(s)ds +

∫ t−ξ

p j
<(t − s)F2(s, zρ(s,zs))dBH (s), t ∈ (p j, t j+1], j ≥ 1.

Since <(t) is compact, the set Qξ(t) = {(Fξ2z)(t) : z ∈ Bl} is relatively compact in Z for every ξ. For
t ∈ (p j, t j+1], j = 0, 1, . . . ,M, we have

E‖(F2z)(t) − (Fξ2z)(t)‖2

≤ 2E
∥∥∥∥∥ ∫ t

p j

<(t − s)C(s)v(s)ds −
∫ t−ξ

p j

<(t − s)C(s)v(s)ds
∥∥∥∥∥2

+2E
∥∥∥∥∥ ∫ t

p j

<(t − s)F2(s, zρ(s,zs))dBH (s) −
∫ t−ξ

p j

<(t − s)F2(s, zρ(s,zs))dBH (s)
∥∥∥∥∥2

≤ 2E
∥∥∥∥∥ ∫ t

t−ξ
<(t − s)C(s)v(s)ds

∥∥∥∥∥2

+ 2E
∥∥∥∥∥ ∫ t

t−ξ
<(t − s)F2(s, zρ(s,zs))dBH (s)

∥∥∥∥∥2

≤ 2N2ξ‖C‖2∞E

∫ t

t−ξ
‖v(s)‖2Tds + 4HN2t2H−1

j+1 ΘF2(l
∗)

∫ t

t−ξ
η(s)ds → 0 as ξ → 0.

The relatively compact set Qξ(t) and set Q(t) are arbitrarily close. Hence, Q(t) = {(F2z)(t) : z ∈ Bl} is
relatively compact in Z. By using step 3–5 along with Arzela-Ascoli theorem, we obtain that the F2 is
a completely continuous operator. Hence, by Krasnoselskii’s theorem [43], we realize that the operator
F1 + F2 has a fixed point, which is a mild solution of the stochastic system (1.1). �
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4. Existence of stochastic optimal controls

In this section, we prove the existence of optimal controls for the stochastic system. Let zv be the
mild solution of the stochastic system (1.1) corresponding to the control v ∈ Uad. We consider the
Lagrange problem (LP) : Find an optimal state-control pair (z∗, v∗) ∈ BPC ×Uad such that

J(z∗, v∗) ≤ J(zv, v) for all v ∈ Uad,

where

J(zv, v) = E

∫ b

0
M(t, zv

t , z
v(t), v(t))dt.

For the existence of optimal controls, we shall introduce the following hypotheses

[H7]: The functionM : J1 ×B × Z × T → R ∪ {∞} satisfies:

(a) M is Borel measurable
(b) M(t, z1, z2, ·) is convex function on T for each z1 ∈ B, z2 ∈ Z and almost all t ∈ J1.
(c) M(t, · , · , · ) is sequentially lower semi-continuous on B × Z × T for almost all t ∈ J1.

(d) There exist constants ω1, ω2 ≥ 0, ω3 > 0 and Φ is non-negative function in L1(J1,R) such
that

M(t, z1, z2, v) ≥ Φ(t) + ω1‖z1‖B + ω2‖z2‖ + ω3‖v‖2T .

[H8]: The operator C is strongly continuous.

Theorem 4.1. Assume that the presumptions [H1]–[H8] are fulfilled. Then the problem (LP) admits
at least one optimal control pair on BPC ×Uad.

Proof. If inf{J(zv, v) : v ∈ Uad} = +∞, there is nothing to prove. Next, we choose inf{J(zv, v) : v ∈
Uad} = ε < +∞ and using the hypotheses [H7], we obtain

J(zv, v) ≥
∫ b

0
Φ(t)dt + ω1

∫ b

0
‖zv

t (t)‖Bdt + ω2

∫ b

0
‖zv(t)‖dt + ω3

∫ b

0
‖v(t)‖2T ≥ ε > −∞.

By definition of infimum, there exists a minimizing sequence {(zk, vk)} ⊂ Rad, where Rad={ (z, v) : z
be the mild solution of the stochastic system (1.1) corresponding to the control v ∈ Uad} such that

J(zk, vk)→ ε as k → +∞.

Since {vk} ⊆ Uad, {vk} is bounded in the space L2
F

(J1,T ), then exists a subsequence, relabeled as
{vk}, and v∗ ∈ L2

F
(J1,T ) such that vk converges weakly to v∗ in L2

F
(J1,T ) as k → ∞. Since Uad is

convex and closed, then by Marzur Lemma, we have v∗ ∈ Uad.
Let zk be the sequence of mild solutions of the stochastic system (1.1) corresponding to vk and zk

fulfills the consecutive integral equations

zk(t) =



<(t)[Ω(0) − F1(0,Ω)] + F1(t, zk
t)

+
∫ t

0
<(t − s)C(s)vk(s)ds +

∫ t

0
<(t − s)F2(s, zk

ρ(s,zk s)
)dBH (s), t ∈ [0, t1], j = 0,

E j(t, zk
t), t ∈ (t j, p j], j ≥ 1,

<(t − p j)[E j(p j, zk
p j) − F1(p j, zk

p j)] + F1(t, zk
t)

+
∫ t

p j
<(t − s)C(s)vk(s)ds +

∫ t

p j
<(t − s)F2(s, zk

ρ(s,zk s)
)dBH (s), t ∈ (p j, t j+1], j ≥ 1.
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Let F k
2 (s) ≡ F2(s, zk

ρ(s,zk s)
). Then, for each zk ∈ Bl ⊂ BPC, by hypotheses [H5], we obtain that

F k
2 : J1 → L0

2(Y,Z) is bounded operator. Hence, F k
2 (·) ∈ L2(J1, L0

2(Y,Z)). Furthermore, {F k
2 (·)} is

bounded in L2(J1, L0
2(Y,Z)), there are subsequence, relabeled as {F k

2 (·)} and F ∗2 (·) ∈ L2(J1, L0
2(Y,Z))

such that F k
2 (·)

w
−→ F ∗2 (·) in L2(J1, L0

2(Y,Z)) as k → ∞.

Next, we consider the following stochastic system
dD(t, zt) = A

[
D(t, zt) +

∫ t

0
G(t − s)D(t, zs)ds

]
dt + C(t)v∗(t)dt + F ∗2 (t)dBH (t)

t ∈ (p j, t j+1], j = 0, 1, . . . ,M,

z(t) = E j(t, zt), t ∈ (t j, p j], j = 1, 2, . . . ,M,

z0 = Ω ∈ B.

(4.1)

By Theorem 3.1, we know that the stochastic system (4.1) has a mild solution

z∗(t) =



<(t)[Ω(0) − F1(0,Ω)] + F1(t, z∗t)
+

∫ t

0
<(t − s)C(s)v∗(s)ds +

∫ t

0
<(t − s)F ∗2 (s)dBH (s), t ∈ [0, t1], j = 0,

E j(t, z∗t), t ∈ (t j, p j], j ≥ 1,
<(t − p j)[E j(p j, z∗p j) − F1(p j, z∗p j)] + F1(t, z∗t)
+

∫ t

p j
<(t − s)C(s)v∗(s)ds +

∫ t

p j
<(t − s)F ∗2 (s)dBH (s), t ∈ (p j, t j+1], j ≥ 1.

For any t ∈ [0, t1], we have

E‖zk(t) − z∗(t)‖2 ≤ 3[Υk
1(t) + Υk

2(t) + Υk
3(t)],

where

Υk
1(t) = E‖F1(t, zk

t) − F1(t, z∗t)‖2

≤ LF1‖zk
t − z∗t‖2B

≤ 2[K ∗2 ]2LF1 sup{E‖zk(s) − z∗(s)‖2 : 0 < s < t}

≤ 2[K ∗2 ]2LF1 sup
s∈[0,b]

E‖zk(s) − z∗(s)‖2

= 2[K ∗2 ]2LF1 sup
s∈[0,b]

E‖zk(s) − zk(s)‖2, (since z = z in [0, b])

= 2[K ∗2 ]2LF1‖z
k − z∗‖2PC,

Υk
2(t) = E

∥∥∥∥∥ ∫ t

0
R(t − s)C(s)[vk(s) − v∗(s)]ds

∥∥∥∥∥2

≤ N2t1E

∫ t

0
‖C(s)vk(s) − C(s)v∗(s)‖2ds,

Υk
3(t) = E

∥∥∥∥∥ ∫ t

0
R(t − s)[F k

2 (s) − F ∗2 (s)]dBH(s)
∥∥∥∥∥2

≤ 2H t2H−1
1

∫ t

0
E‖<(t − s)[F k

2 (s) − F ∗2 (s)]‖2L0
2
ds.
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For any t ∈ (t j, p j], j = 1, 2, . . . ,M, we have

E‖zk(t) − z∗(t)‖2 ≤ 2[K ∗2 ]2LE j‖z
k − z∗‖2PC.

For any t ∈ (p j, t j+1], j = 1, 2, . . . ,M, we have

E‖zk(t) − z∗(t)‖2 ≤ 4[Ψk
1(t) + Ψk

2(t) + Ψk
3(t) + Ψk

4(t)],

where

Ψk
1(t) = 2N2E‖E j(p j, zk

p j) − E j(p j, z∗p j)‖
2

≤ 4[K ∗2 ]2N2LE j‖z
k − z∗‖2PC,

Ψk
2(t) = 2N2E‖F1(p j, zk

p j) − F1(p j, z∗p j)‖
2

+E‖F1(t, zk
t) − F1(t, z∗t)‖2

≤ (2N2 + 1)LF1‖zk
t − z∗t‖2B

≤ 2[K ∗2 ]2(2N2 + 1)LF1‖z
k − z∗‖2PC,

Ψk
3(t) = E

∥∥∥∥∥ ∫ t

p j

R(t − s)C(s)[vk(s) − v∗(s)]ds
∥∥∥∥∥2

≤ N2t j+1E

∫ t

p j

‖C(s)vk(s) − C(s)v∗(s)‖2ds,

Ψk
4(t) = E

∥∥∥∥∥ ∫ t

p j

R(t − s)[F k
2 (s) − F ∗2 (s)]dBH(s)

∥∥∥∥∥2

≤ 2H t2H−1
j+1

∫ t

p j

E‖<(t − s)[F k
2 (s) − F ∗2 (s)]‖2L0

2
ds.

For t ∈ [0, b], we have

E‖zk(t) − z∗(t)‖2 ≤ L0‖zk − z∗‖2PC + Φk
1(t) + Φk

2(t),

where

L0 = max
1≤ j≤M

[
16[K ∗2 ]2N2LE j + 8[K ∗2 ]2(2N2 + 1)LF1 + 2[K ∗2 ]2LE j

]
< 1,

Φk
1(t) = 4N2bE

∫ t

0
‖C(s)vk(s) − C(s)v∗(s)‖2ds,

Φk
2(t) = 8Hb2H−1

∫ t

0
E‖<(t − s)[F k

2 (s) − F ∗2 (s)]‖2L0
2
ds.

Thus, we have

‖zk − z∗‖2PC ≤
Φk

1(t) + Φk
2(t)

1 − L0
.
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By [H8], we have

‖Cvk − Cv∗‖2L2(J1,Z) → 0 as k → ∞. (4.2)

By the Lebesgue dominated convergence theorem and Eq. (4.2), we have

Φk
1(t), Φk

2(t)→ 0 as k → ∞.

Hence,

zk → z∗ in BPC as k → ∞.

By [H5], we obtain
F k

2 ( · )→ F2( · , z∗ρ( · ,z∗ · )) in BPC as k → ∞.

Limit is unique, so we obtain
F ∗2 (t) = F2(t, z∗ρ(t,z∗t)).

Thus, z∗ can be given

z∗(t) =



<(t)[Ω(0) − F1(0,Ω)] + F1(t, z∗t)
+

∫ t

0
<(t − s)C(s)v∗(s)ds +

∫ t

0
<(t − s)F2(s, z∗ρ(s,z∗ s))dBH (s), t ∈ [0, t1], j = 0,

E j(t, z∗t), t ∈ (t j, p j], j ≥ 1,
<(t − p j)[E j(p j, z∗p j) − F1(p j, z∗p j)] + F1(t, z∗t)
+

∫ t

p j
<(t − s)C(s)v∗(s)ds +

∫ t

p j
<(t − s)F2(s, z∗ρ(s,z∗ s))dBH (s), t ∈ (p j, t j+1], j ≥ 1.

Since BPC ↪→ L1(J1,Z), by using the [H7] and Balder’s theorem [44], we have

ε ≤ J(z∗, v∗) = E

∫ b

0
M(t, z∗t , z

∗, v∗)dt ≤ lim
k→∞
E

∫ b

0
M(t, zk

t , z
k, vk)dt = ε,

which shows that J attains its infimum at (z∗, v∗) ∈ BPC ×Uad. �

5. Example

Consider the following non-instantaneous impulsive stochastic partial neutral integro-differential
control system driven by fBm with state-dependent delay:

dD(t, µt)(ε) =
∂2

∂ε2

[
D(t, µt)(ε) +

∫ t

0
S(t − s)D(s, µs)(ε)ds

]
dt

+

∫ 1

0
K(ε, s)v(s, t)ds dt +

∫ t

−∞

ω3(t, s − t, ε, µ(s − ρ1(t)ρ2(‖µ(t)‖), ε))ds dBH (t),

v ∈ Uad, (t, ε) ∈ ∪Mj=0(p j, t j+1] × [0, π],

µ(t, ε) =

∫ t

−∞

ω j(s − t, ε)µ(s, ε)ds, (t, ε) ∈ ∪Mj=1(t j, p j] × [0, π]

µ(t, 0) = 0 = µ(t, π),
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µ(s, ε) = Ω(s, ε), (s, ε) ∈ (−∞, 0] × [0, π], (5.1)

with cost functional as

J(µ, v) = E

∫ 1

0

∫ π

0

∫ 0

−∞

‖µ(t + s, ε)‖2dsdεdt + E

∫ 1

0

∫ π

0
‖µ(t, ε)‖2dεdt + E

∫ 1

0

∫ π

0
‖v(t, ε)‖2Tdεdt,

where 0 = t0 = p0 < t1 < p1 < · · · < tM < pM < tM+1 = b = 1, K : [0, π] × [0, 1] is continuous and BH

is a fBm with the Hurst index 1/2 < H < 1. In this system

D(t, µt)(ε) = µ(t, ε) −
∫ t

−∞

ω1(s − t)µ(s, ε)ds.

Consider the space Z = T = L2[0, π] andA : D(A) ⊂ Z → Z byAθ = θ′′ and domain ofA is defined
as

D(A) = {θ ∈ Z : θ, θ′ are absolutely continuous, θ′′ ∈ Z, θ(0) = θ(π) = 0}. (5.2)

ThenA generates a C0-semigroup<(t) which is compact, self-adjoint. And there exist normalized set
θn(v) =

√
2/π sin (nv), n ∈ N of eigenvectors of A corresponding to eigenvalues n2, n ∈ N. Since

the resolvent operator <(t) is compact, there exists a constant N > 0 such that ‖<(t)‖ ≤ N, then the
hypotheses [H1] is fulfilled. Next, we define the admissible control set Uad = {v( · , ε)|[0, 1] → T is
measurable, Ft-adapted stochastic processes, and ‖v‖L2

F
≤ α, α > 0}.

Let l ≥ 0, 1 ≤ q < ∞, Λ : (−∞,−l] → R, be a measurable and non-negative function. We
denote by PCl × Lq(Λ,Z) the set consists of all classes of functions Ω : (−∞, 0] → Z such that
Ω|[−l,0] ∈ PC([−l, 0],Z), Λ‖Ω‖q is Lebesgue integrable on (−∞,−l) and Ω(·) is Lebesgue measurable
on (−∞,−l) with norm

‖Ω‖B = sup{‖Ω(κ)‖ : −l ≤ κ ≤ 0} +
( ∫ −l

−∞

Λ(κ) ‖Ω(κ)‖qdκ
)1/q

.

The space PC0 × L2(Λ,Z) satisfies the axioms [A1]–[A3] with choice K1 = 1, K3(t) = γ(−t)1/2,

K2(t) = 1 +
( ∫ 0

−t
Λ(κ)dκ

)1/2
, for t ≥ 0. To get points of interest about the phase space, see [21, 38].

Let η(κ)(ε) = η(κ, ε), (κ, ε) ∈ (−∞, 0] × [0, π]. Set

µ(t)(ε) = µ(t, ε), ρ(t, η) = ρ1(t)ρ2(‖η(0)‖),

we have

F1(t, η)(ε) =

∫ 0

−∞

ω1(κ)η(κ)(ε)dκ,

F2(t, η)(ε) =

∫ 0

−∞

ω2(t, κ, ε, η(κ)(ε))dκ,

C(t)v(t)(ε) =

∫ 1

0
K(ε, s)v(s, t)ds,

E j(t, η)(ε) =

∫ 0

−∞

ω j(κ, ε)η(κ)(ε)dκ, j = 1, 2, . . . ,M.

Moreover, we assume that
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1. ρi : [0,∞)→ [0,∞), i = 1, 2, are continuous functions.
2. ω1 : R→ R is continuous function, and

lF1 =

( ∫ 0

−∞

(ω1(s))2

Λ(s)
ds

)1/2

< ∞.

3. There exist continuous functions a31, a32 : R → R such that continuous function ω3 : R4 → R

satisfies the conditions

|ω3(t, s, ε, y)| ≤ a31(t)a32(s)|y|, (t, s, ε, y) ∈ R4, with lF2 =

( ∫ 0

−∞

(a32(s))2

Λ(s)
ds

)1/2

< ∞.

4. There exist continuous functions c j : R → R such that continuous functions ω j : R2 → R, j =

1, 2, . . . ,M satisfies the conditions

|ω j(s, ε)| ≤ c j(s), (s, ε) ∈ R2, with lE j =

( ∫ 0

−∞

(c j(s))2

Λ(s)
ds

)1/2

< ∞.

From the above facts, we obtain

E‖F1(t, η)‖2 = E
[( ∫ π

0

( ∫ 0

−∞

ω1(κ)η(κ)(ε)dκ
)2

dε
)1/2]2

≤ E
[( ∫ 0

−∞

(ω1(κ))2

Λ(κ)
dκ

)1/2( ∫ 0

−∞

Λ(κ)‖η(κ)‖2dκ
)1/2]2

≤

[
lF1

(
‖η(0)‖ +

( ∫ 0

−∞

Λ(κ)‖η(κ)‖2dκ
)1/2)]2

= LF1‖η‖
2
B,

where LF1 = [lF1]
2.

E‖F1(t, η1) − F1(t, η2)‖2

= E
[( ∫ π

0

( ∫ 0

−∞

ω1(κ)[η1(κ)(ε) − η2(κ)(ε)]dκ
)2

dε
)1/2]2

≤ E
[( ∫ 0

−∞

(ω1(κ))2

Λ(κ)
dκ

)1/2( ∫ 0

−∞

Λ(κ)‖η1(κ) − η2(κ)‖2dκ
)1/2]2

≤

[
lF1

(
‖η1(0) − η2(0)‖ +

( ∫ 0

−∞

Λ(κ)‖η1(κ) − η2(κ)‖2dκ
)1/2)]2

= LF1‖η1 − η2‖
2
B,

where LF1 = [lF1]
2. Similarly, we have E‖F2(t, η)‖2 ≤ LF2‖η‖

2
B
, E‖E j(t, η1)−E j(t, η2)‖2 ≤ LE j‖η1−η2‖

2
B
,

and E‖E j(t, η)‖2 ≤ LE j‖η‖
2
B
, where LE j = [lE j]

2, LF2 = [‖a31‖∞lF2]
2. Further, we can impose some

suitable conditions on the above-defined functions to verify the hypotheses of the Theorems 3.1 and 4.1.
Therefore, the problem (LP) corresponding to the stochastic system (5.1) has at least one optimal
control pair.
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6. Conclusion

In this manuscript, we studied the stochastic optimal control problem for a class of
non-instantaneous impulsive stochastic neutral integro-differential equation driven by fBm. We define
a concept of the piecewise continuous mild solutions for the proposed system, which is used to
construct a suitable operator and apply fixed point technique to derive the existence result. Also, we
prove the existence of optimal controls for the proposed system, which is used to derive optimization
conditions. Finally, the obtained results have been verified through an example. There are two direct
issues which require further study. First, we will investigate the optimal control problems for the
non-instantaneous impulsive stochastic delay differential equations driven by Lévy processes [45].
Second, we will be devoted to studying the approximate controllability for the Markov and
semi-Markov switched stochastic system [46, 47].
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