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1. Introduction

Fractional differential equations constitute an interesting area of research in view of their extensive
applications in a variety of fields such as economics, financial issues, disease models, physical and
chemical processes, etc. For theoretical and applications details of the subject, see the monographs
[6, 12, 16, 19, 23, 24, 26] and the papers [1, 4, 7, 13, 25, 29, 30]. An important factor accounting for
the popularity of the topic is the nonlocal nature of fractional order differential and integral operators,
which provides insight into the past history of the phenomena. On the other hand, this aspect was
missing in the models based on the tools of classical (integer order) calculus.

The Langevin equation (proposed by Langevin in 1908) is an important equation of mathematical
physics, which can describe the evolution of physical phenomena in fluctuating environments [9].
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For some new developments on the fractional Langevin equation, see, for example, [3, 22, 28] and
references cited therein.

In the literature there are many papers dealing with boundary value problems for fractional Langevin
equation of the form:

cDβ(cDα + λ)z(t) = φ(t, z(t)), t ∈ [a, b],

equipped with different kinds of boundary conditions, such as Dirichlet boundary conditions [2],
nonlocal conditions [27], etc. Moreover, the fractional derivatives involved in Langevin equation are
both Caputo type or Riemann-Liouville type or Hadamard type.

In the present paper we introduce a new nonlocal-terminal value problem for Langevin equation
containing both Riemann-Liouville and Caputo type fractional derivatives and variable coefficient,
supplemented with nonlocal-terminal fractional integro-differential conditions. In precise terms, we
consider the following problem:

RLDq(CDr + λ(t))x(t) = f (t, x(t)), t ∈ [0,T ],

x(ξ) = α CDνx(η), x(T ) = β I px(ζ), 0 < ξ, η, ζ < T,
(1.1)

where RLDq denotes the Riemann-Liouville fractional derivative of order q ∈ (0, 1), CDr, CDν denote
the Caputo fractional derivatives of orders r and ν respectively, 0 < r < 1, 0 < ν < r, I p is the
Riemann-Liouville fractional integral of order p > 0, λ ∈ C(R+,R), f : [0,T ] × R→ R and α, β ∈ R.

Concerning the motivation for the equation considered in (1.1), we refer the reader to the
applications of such equations in physical phenomena exhibiting anomalous diffusion [15] and the
height loss over time of the granular material contained in a silo [21]. The nonlocal conditions
involved in the problem (1.1) are flux-integral type boundary conditions, which appear in several
applications of diffusion processes and computational fluid dynamics (CFD) studies of blood flow
problems, for instance, see [5].

The existence and uniqueness results for the problem (1.1), based on modern methods of
functional analysis (fixed point theorems due to Banach, Krasnoselskii and nonlinear alternative of
Leray-Schauder type), are obtained in Section 3. In Section 4 we extend our study to the multivalued
analogue of the problem (1.1), that is, we investigate the following multivalued problem:

RLDq(CDr + λ(t))x(t) ∈ F(t, x(t)), t ∈ [0,T ],

x(ξ) = α CDνx(η), x(T ) = β I px(ζ), 0 < ξ, η, ζ < T,
(1.2)

where F : [0,T ] × R→ P(R) is a multi-valued map, (P(R) is the family of all nonempty subsets of R)
and all other constants are as in problem (1.1).

We derive the existence results for the problem (1.2) with the aid of standard fixed point theorems
for multivalued maps. In case of convex valued right-hand side of the inclusion, we use
Leray-Schauder nonlinear alternative for multi-valued maps. In case of non-convex valued right hand
side of the inclusion, we apply a fixed point theorem for multivalued contractions due to Covitz and
Nadler. Examples illustrating the obtained results are presented in Section 5. Some basic concepts of
fractional calculus, multivalued analysis and fixed point theory are outlined in Section 2. We also
prove a basic result associated with the linear variant of the problem (1.1) in this section. Section 6
contains some interesting observations and a short discussion for the case when Caputo and
Riemann-Liouville fractional derivatives are interchanged in the fractional Langevin equation in (1.1).
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2. Preliminaries

Let us recall some basic concepts of fractional calculus, multivalued analysis and state fixed point
results related to our work.

2.1. Fractional Calculus

In this subsection, we recall some basic concepts of fractional calculus [16, 24] and present known
results needed in our forthcoming analysis.

Definition 2.1. The Riemann-Liouville fractional derivative of order q for a function f : (0,∞) → R
is defined by

RLDq f (t) =
1

Γ(n − q)

(
d
dt

)n ∫ t

0+

(t − s)n−q−1 f (s)ds, q > 0, n = [q] + 1,

where [q] denotes the integer part of the real number q, provided the right-hand side is pointwise
defined on (0,∞).

Definition 2.2. The Riemann-Liouville fractional integral of order q for a function f : (0,∞) → R is
defined by

Iq f (t) =
1

Γ(q)

∫ t

0+

(t − s)q−1 f (s)ds, q > 0,

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.3. The Caputo derivative of fractional order q for a n-times derivative function
f : (0,∞)→ R is defined as

CDq f (t) =
1

Γ(n − q)

∫ t

0+

(t − s)n−q−1
(

d
ds

)n

f (s)ds, q > 0, n = [q] + 1.

Lemma 2.1. If α + β > 1, then the equation (IαIβu)(t) = (Iα+βu)(t), t ∈ [a, b] is satisfied for u ∈
L1([a, b],R), 0 ≤ a < b < ∞.

Lemma 2.2. Let β > α. Then the equation (DαIβu)(t) = (Iβ−αu)(t), t ∈ [a, b] is satisfied for u ∈
C([a, b],R).

Lemma 2.3. Let n = [α] + 1] if α < N and n = α if α ∈ N. Then the following relations hold:

(i) for k ∈ {0, 1, 2, . . . , n − 1}, Dαtk = 0;

(ii) if β > n then Dαtβ−1 =
Γ(β)

Γ(β − α)
tβ−α−1;

(iii) Iαtβ−1 =
Γ(β)

Γ(β + α)
tβ+α−1.

Lemma 2.4. (see [16]) Let q > 0. Then for y ∈ C(0,T ) ∩ L(0,T ) holds

RLIq
(

RLDqy
)

(t) = y(t) + c1tq−1 + c2tq−2 + · · · + cntq−n,

where ci ∈ R, i = 1, 2, . . . , n and n − 1 < q < n.
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Lemma 2.5. (see [16]) Let q > 0. Then for y ∈ C(0,T ) ∩ L(0,T ) holds

RLIq
(

CDqy
)

(t) = y(t) + c0 + c1t + c2t2 + · · · + cn−1tn−1,

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 and n = [q] + 1.

Lemma 2.6. Let Λ := AΓ − B , 0 and y ∈ C([0,T ],R). Then the linear problem
RLDq(CDr + λ(t))x(t) = y(t), 0 < t < T,

x(ξ) = α CDνx(η), x(T ) = β I px(ζ), ξ, η, ζ ∈ (0,T ),
(2.1)

is equivalent to the integral equation

x(t) = Iq+ry(t) − Ir(λ(t)x(t))
+λ1(t)

(
αIq+r−νy(η) − αIr−ν(λ(η)x(η)) − Iq+ry(ξ) + Ir(λ(ξ)x(ξ))

)
+λ2(t)

(
βIq+r+py(ζ) − βI p+r(λ(ζ)x(ζ)) − Iq+ry(T ) + Ir(λ(T )x(T ))

)
,

where
A =

Γ(q)
Γ(q + r)

ξq+r−1 − α
Γ(q)

Γ(q + r − ν)
ηq+r−ν−1,

B =
Γ(q)

Γ(q + r)
T q+r−1 − β

Γ(q)
Γ(q + r + p)

ζq+r+p−1,

Γ = 1 − β
1

Γ(1 + p)
ζ p,

λ1(t) = Γ
Γ(q)

ΛΓ(q + r)
tq+r−1 −

B
Λ
, λ2(t) = −

Γ(q)
ΛΓ(q + r)

tq+r−1 +
A
Λ
.

(2.2)

Proof. Firstly, we apply the Riemann-Liouville fractional integral of order q to both sides of
equation in (2.1), and then use Lemma 2.5 to obtain

CDr x(t) + λ(t)x(t) = Iqy(t) + c1tq−1, (2.3)

where c1 ∈ R. Applying Riemann-Liouville fractional integral of order r to both sides of (2.3), we get

x(t) = Iq+ry(t) − Ir(λ(t)x(t)) + c1
Γ(q)

Γ(q + r)
tq+r−1 + c2, (2.4)

where c2 ∈ R.
From (2.4), we have

CDνx(t) = Iq+r−νy(t) − Ir−ν(λ(t)x(t)) + c1
Γ(q)

Γ(q + r − ν)
tq+r−ν−1,

I px(t) = Iq+r+py(t) − I p+r(λ(t)x(t)) + c1
Γ(q)

Γ(q + r + p)
tq+r+p−1 + c2

1
Γ(1 + p)

tp.

Using the above expressions in the fractional nonlocal-terminal conditions of the problem (2.1), we
find that

c1 =
1
Λ

[
Γ
(
αIq+r−νy(η) − αIr−ν(λ(η)x(η)) − Iq+ry(ξ) + Ir(λ(ξ)x(ξ))

)
AIMS Mathematics Volume 4, Issue 3, 626–647.
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−
(
βIq+r+py(ζ) − βI p+r(λ(ζ)x(ζ)) − Iq+ry(T ) + Ir(λ(T )x(T ))

)]
c2 =

1
Λ

[
A
(
βIq+r+py(ζ) − βI p+r(λ(ζ)x(ζ)) − Iq+ry(T ) + Ir(λ(T )x(T ))

)
−B

(
αIq+r−νy(η) − αIr−ν(λ(η)x(η)) − Iq+ry(ξ) + Ir(λ(ξ)x(ξ))

)]
.

Substituting the values of c1 and c2 into equation (2.4) we have

x(t) = Iq+ry(t) − Ir(λ(t)x(t))

+
Γ(q)

ΛΓ(q + r)
tq+r−1

[
Γ
(
αIq+r−νy(η) − αIr−ν(λ(η)x(η)) − Iq+ry(ξ) + Ir(λ(ξ)x(ξ))

)
−
(
βIq+r+py(ζ) − βI p+r(λ(ζ)x(ζ)) − Iq+ry(T ) + Ir(λ(T )x(T ))

)]
+

1
Λ

[
A
(
βIq+r+py(ζ) − βI p+r(λ(ζ)x(ζ)) − Iq+ry(T ) + Ir(λ(T )x(T ))

)
−B

(
αIq+r−νy(η) − αIr−ν(λ(η)x(η)) − Iq+ry(ξ) + Ir(λ(ξ)x(ξ))

)]
= Iq+ry(t) − Ir(λ(t)x(t)) +

[
Γ

ΛΓ(q)
Γ(q + r)

tq+r−1 −
B
Λ

]
×(

αIq+r−νy(η) − αIr−ν(λ(η)x(η)) − Iq+ry(ξ) + Ir(λ(ξ)x(ξ))
)

+
[
−

Γ(q)
ΛΓ(q + r)

tq+r−1 +
A
Λ

]
×(

βIq+r+py(ζ) − βI p+r(λ(ζ)x(ζ)) − Iq+ry(T ) + Ir(λ(T )x(T ))
)
,

which yields the required solution. By direct computation we can prove the converse. This ends the
proof. �

Remark 2.1. In Lemma 2.6, note that the conditions Λ , 0 corresponds to non-resonance case.

Corollary 2.1. (Special case: λ(t) = λ=constant) Let Λ , 0 and y ∈ C([0,T ],R). Then the unique
solution of the linear problem

RLDq(CDr + λ)x(t) = y(t), t ∈ [0,T ],

x(ξ) = α CDνx(η), x(T ) = β I px(ζ), ξ, η, ζ ∈ (0,T ),
(2.5)

is given by

x(t) = Iq+ry(t) − λIr x(t) + λ1(t)
(
αIq+r−νy(η) − αλIr−νx(η) − Iq+ry(ξ) + λIr x(ξ)

)
+λ2(t)

(
βIq+r+py(ζ) − βλI p+r x(ζ) − Iq+ry(T ) + λIr x(T )

)
.

3. Existence results for the problem (1.1)

In order to transform the problem (1.1) into a fixed point problem, we introduce an operator A :
C → C by Lemma 2.6 as follows:

(Ax)(t) = Iq+r f (s, x(s))(t) − Ir(λ(t)x(t)) + λ1(t)
(
αIq+r−ν f (s, x(s))(η)
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−αIr−ν(λ(η)x(η)) − Iq+r f (s, x(s))(ξ) + Ir(λ(ξ)x(ξ))
)

(3.1)

+λ2(t)
(
βIq+r+p f (s, x(s))(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+r f (s, x(s))(T )

+Ir(λ(T )x(T ))
)
,

where C is the Banach space of continuous functions from [0,T ] to R equipped with the norm ‖x‖ =

supt∈[0,T ] |x(t)|. Evidently the existence of solutions for the problem (1.1) is related to the existence of
fixed points for the operatorA.

For computational convenience, we use the notations:

Φ =
T q+r

Γ(q + r + 1)
+ λ̄1

(
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

)
+λ̄2

(
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

)
(3.2)

Φλ = Ir|λ(T )| + λ̄1

(
|α|Ir−ν|λ(η)| + Ir|λ(ξ)|

)
+λ̄2

(
|β|I p+r|λ(ζ)| + Ir|λ(T )|

)
, (3.3)

where

λ̄1 = max
t∈[0,T ]

|λ1(t)| =
1
|Λ|

[
|Γ|

Γ(q)
Γ(q + r)

T q+r−1 + |B|
]
,

λ̄2 = max
t∈[0,T ]

|λ2(t)| =
1
|Λ|

[ Γ(q)
Γ(q + r)

T q+r−1 + |A|
]
. (3.4)

Remark 3.1. In the special case of constant function λ(t) = λ, Φλ becomes

Φλ =
|λ|T r

Γ(r + 1)
+ λ̄1|λ|

(
|α|

ηr−ν

Γ(r − ν + 1)
+

ξr

Γ(r + 1)

)
+λ̄2|λ|

(
|β|

ζr+p

Γ(r + p + 1)
+

T r

Γ(r + 1)

)
.

We are now in a position to give our first existence and uniqueness result, which relies on the
contraction mapping principle due to Banach.

Theorem 3.1. Let f : [0,T ] × R→ R be a continuous function. Assume that:

(H1) there exists a positive constant L such that

| f (t, x) − f (t, y)| ≤ L|x − y|, t ∈ [0,T ], x, y ∈ R.

If

LΦ + Φλ < 1, (3.5)

where Φ and Φλ are respectively given by (3.2) and (3.3), then the nonlocal-terminal value problem
(1.1) has a unique solution on [0,T ].
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Proof. The hypothesis of contraction mapping principle will be verified in two steps. In the first
step, we show that ABr ⊂ Br, where A is the operator defined by (3.1), Br = {x ∈ C : ‖x‖ ≤ r},
r ≥ MΦ(1 − LΦ − Φλ)−1, supt∈[0,T ] | f (t, 0)| = M < ∞. For any x ∈ Br, and taking into account
assumption (H1), we obtain

‖Ax‖ ≤ sup
t∈[0,T ]

{
Iq+r| f (s, x(s))|(t)

+|λ1(t)|
(
|α|Iq+r−ν| f (s, x(s))|(η) + Iq+r| f (s, x(s))|(ξ)

)
+|λ2(t)|

[
|β|Iq+r+p| f (s, x(s))|(ζ) + Iq+r| f (s, x(s))|(T )

]
+Ir|λ(t)x(t)| + |λ1(t)|

[
|α|Ir−ν|λ(η)x(η)| + Ir|λ(ξ)x(ξ)|

]
+|λ2(t)|

[
|β|Ir+p|λ(ζ)x(ζ)| + Ir|λ(T )x(T )|

]}
≤ sup

t∈[0,T ]

{
Iq+r(| f (s, x(s)) − f (s, 0)| + | f (s, 0)|)(t)

+|λ1(t)|
[
|α|Iq+r−ν(| f (s, x(s)) − f (s, 0)| + | f (s, 0)|)(η)

+Iq+r(| f (s, x(s)) − f (s, 0)| + | f (s, 0)|)(ξ)
]

+|λ2(t)|
[
|β|Iq+r+p(| f (s, x(s)) − f (s, 0)| + | f (s, 0)|)(ζ)

+Iq+r(| f (s, x(s)) − f (s, 0)| + | f (s, 0)|)(T )
]

+Ir|λ(t)x(t)| + |λ1(t)|
[
|α|Ir−ν|λ(η)x(η)| + Ir|λ(ξ)x(ξ)|

]
+|λ2(t)|

[
|β|Ir+p|λ(ζ)x(ζ)| + Ir|λ(T )x(T )|

]}
≤ (Lr + M)

{
T q+r

Γ(q + r + 1)
+ λ̄1

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+λ̄2

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]}
+‖x‖

{
Ir|λ(T )| + λ̄1[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]

+λ̄2[|β|Ir+p|λ(ζ)| + Ir|λ(T )|]
}

= (Lr + M)Φ + rΦλ

≤ r,

which implies thatABr ⊂ Br. In the next step, it will be shown that the operatorA given by (3.1) is a
contraction. For t ∈ [0,T ] and for x, y ∈ C, we have

|Ax(t) −Ay(t)|
≤ Iq+r| f (s, x(s)) − f (s, y(s))|(t)

+|λ1(t)|
[
|α|Iq+r−ν| f (s, x(s))|(η) + Iq+r| f (s, x(s)) − f (s, y(s))|(ξ)

]
+|λ2(t)|

[
|β|Iq+r+p| f (s, x(s)) − f (s, y(s))|(ζ) + Iq+r| f (s, x(s)) − f (s, y(s))|(T )

]
+Ir|λ(t)(x(t) − y(t))| + |λ1(t)|[|α|Ir−ν|λ(η)(x(η) − y(η))| + Ir|λ(ξ)(x(ξ) − y(ξ)|]
+|λ2(t)|[|β|Ir+p|λ(ζ)(x(ζ) − y(ζ))| + Ir|λ(T )(x(T ) − y(T ))|]
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≤ L‖x − y‖
{

T q+r

Γ(q + r + 1)
+ λ̄1

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+λ̄2

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]}
+‖x − y‖

{
Ir|λ(T )| + λ̄1[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|] + λ̄2[|β|Ir+p|λ(ζ)| + Ir|λ(T )|]

}
= (LΦ + Φλ)‖x − y‖,

which leads to ‖Ax−Ay‖ ≤ (LΦ+Φλ)‖x−y‖. As LΦ+Φλ < 1, thereforeA is a contraction. Since the
hypothesis of Banach contraction mapping principle is satisfied, therefore we deduce by its conclusion
that the operator A has a unique fixed point, which corresponds to a unique solution of the problem
(1.1). The proof is completed. �

Next, we prove an existence result for the problem (1.1) by using Krasnoselskii fixed point theorem
[18].

Theorem 3.2. Assume that f : [0,T ] × R→ R is a continuous function satisfying the assumptions:

(H2) | f (t, x)| ≤ δ(t), ∀(t, x) ∈ [0,T ] × R, δ ∈ C([0,T ],R+) with ‖δ‖ = supt∈[0,T ] |δ(t)|.
(H2) Φλ < 1, where Φλ is given by (3.3).

Then the nonlocal-terminal value problem (1.1) has at least one solution on [0,T ].

Proof. Let us select a positive number r such that r ≥ ‖δ‖Φ(1 −Φλ)−1 and define operatorsA1 andA2

on Br = {x ∈ C : ‖x‖ ≤ r} as

(A1x)(t) = Iq+r f (s, x(s))(t) + λ1(t)
[
αIq+r−ν f (s, x(s))(η) − Iq+r f (s, x(s))(ξ)

]
+λ2(t)

[
βIq+r+p f (s, x(s))(ζ) − Iq+r f (s, x(s))(T )

]
, t ∈ [0,T ],

(A2x)(t) = −Ir(λ(t)x(t)) + λ1(t)
[
− αIr−ν(λ(η)x(η)) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
− βIr+p(λ(ζ)x(ζ)) + Ir(λ(T )x(T ))

]
, t ∈ [0,T ].

Observe thatAx = A1x +A2x. For x, y ∈ Br, we have

‖A1x +A2y‖ ≤ ‖δ‖
{ T q+r

Γ(q + r + 1)
+ λ̄1

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+λ̄2

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]}
+‖y‖

{
Ir|λ(T )| + λ̄1[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]

+λ̄2[|β|Ir+p|λ(ζ)| + Ir|λ(T )|]
}

= ‖δ‖Φ + ‖x‖Φλ

≤ r.

This shows thatA1x +A2y ∈ Br. With the aid of the assumption (H2), it is easy to show thatA2 is a
contraction. Further the operatorA1 is continuous in view of continuity of f . FurtherA1 is uniformly
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bounded on Br as

‖A1x‖ ≤ ‖δ‖Φ.

Next, we prove the compactness of the operatorA1. Let us set sup(t,x)∈[0,T ]×Br
| f (t, x)| = f < ∞ and take

t1, t2 ∈ [0,T ] with t1 < t2. Then we have

|(A1x)(t2) − (A1x)(t1)|

≤
f

Γ(q + r)

∣∣∣∣ ∫ t1

0
[(t2 − s)q+r−1 − (t1 − s)q+r−1ds

∣∣∣∣ +
f

Γ(q + r)

∣∣∣∣ ∫ t2

t1
(t2 − s)q+r−1ds

∣∣∣∣
+|Γ|
|tq+r−1

2 − tq+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+
|tq+r−1

2 − tq+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]
≤

f
Γ(q + r + 1)

[|tq+r
2 − tq+r

1 | + 2(t2 − t1)q+r]

+|Γ|
|tq+r−1

2 − tq+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+
|tq+r−1

2 − tq+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]
,

which tends to zero as t2 → t1 independent of x. Thus, A1 is equicontinuous. So A1 is relatively
compact on Br. Hence, by the Arzelá-Ascoli theorem, A1 is compact on Br. Thus the operators A1

and A2 satisfy the hypothesis of Krasnoselskii fixed point theorem [18]. Hence it follows by the
conclusion of Krasnoselskii fixed point theorem [18] that the operatorA(= A1 +A2) has a fixed point,
which corresponds to a solution of the problem (1.1) on [0,T ]. The proof is completed. �

In the following result, we prove the existence of solutions for the problem (1.1) by means of Leray-
Schauder nonlinear alternative [14].

Theorem 3.3. Let f : [0,T ] × R→ R be a continuous function satisfying the conditions:

(H3) there exist a continuous nondecreasing functions ψ : [0,∞) → (0,∞) and a function
φ ∈ C([0,T ],R+) such that | f (t, x)| ≤ φ(t)ψ(|x|) for each (t, x) ∈ [0,T ] × R;

(H4) there exists a constant N > 0 such that

(1 − Φλ)N
Φ‖φ‖ψ(N)

> 1, Φλ < 1,

where Φ and Φλ are respectively given by (3.2) and (3.3).

Then there exists at least one solution for the nonlocal-terminal value problem (1.1) on [0,T ].

Proof. We verify the hypothesis of Leray-Schauder nonlinear alternative [14] in several steps. Let us
first show that the operatorA, defined by (3.1), maps bounded sets (balls) into bounded sets in C. For
a positive number R, let BR = {x ∈ C : ‖x‖ ≤ R} be a bounded ball in C. Then, for t ∈ [0,T ], we have

|Ax(t)| ≤ Iq+r| f (s, x(s))|(t)
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+λ̄1

[
|α|Iq+r−ν| f (s, x(s))|(η) + Iq+r| f (s, x(s))|(ξ)

]
+λ̄2

[
|β|Iq+r+p| f (s, x(s))|(ζ) + Iq+r| f (s, x(s))|(T )

]
+Ir|λ(t)x(t)| + λ̄1[|α|Ir−ν|λ(η)x(η)| + Ir|λ(ξ)x(ξ)|]
+λ̄2[|β|Ir+p|λ(ζ)x(ζ)| + Ir|λ(T )x(T )|]

≤ φ(t)ψ(‖x‖)
{ T q+r

Γ(q + r + 1)
+ λ̄1

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+λ̄2

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]}
+‖x‖

{
Ir|λ(T )| + λ̄1[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]

+λ̄2[|β|Ir+p|λ(ζ)| + Ir|λ(T )|]
}
.

In view of (3.2) and (3.3), the above inequality takes the form:

‖Ax‖ ≤ Φ‖φ‖ψ(R) + RΦλ.

Secondly, we show thatA maps bounded sets into equicontinuous sets of C. Let ν1, ν2 ∈ [0,T ] with
ν1 < ν2 and x ∈ BR. Then we have

|(Ax)(ν2) − (Ax)(ν1)|
≤ Iq+r(| f (s, x(s))(ν2) − f (s, x(s))(ν1)|)

+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]
+

∣∣∣∣∣∣
∫ ν1

0

[(ν2 − s)r−1 − (ν1 − s)r−1]
Γ(r)

λ(s)x(s)ds +

∫ ν2

ν1

(ν2 − s)r−1

Γ(r)
λ(s)x(s)ds

∣∣∣∣∣∣
+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]

+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|β|Ir+p|λ(ζ)| + Ir|λ(T )|]

≤
‖φ‖ψ(R)

Γ(q + r + 1)
[|tq+r

2 − tq+r
2 | + 2(t2 − t1)q+r]

+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]
+

∣∣∣∣∣∣
∫ ν1

0

[(ν2 − s)r−1 − (ν1 − s)r−1]
Γ(r)

λ(s)x(s)ds +

∫ ν2

ν1

(ν2 − s)r−1

Γ(r)
λ(s)x(s)ds

∣∣∣∣∣∣
+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]
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+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|β|Ir+p|λ(ζ)| + Ir|λ(T )|].

Obviously the right hand side of the above inequality tends to zero independently of x ∈ BR as ν2 → ν1.
Therefore it follows by the Arzelá-Ascoli theorem that F : C → C is completely continuous.

In order to complete the hypothesis of the Leray-Schauder nonlinear alternative [14], it will be
shown that the set of all solutions to the equation x = θAx is bounded for θ ∈ [0, 1]. For that, let x be
a solution of x = θAx for θ ∈ [0, 1]. Then, for t ∈ [0,T ], we apply the strategy used in the first step to
obtain

‖x‖ ≤ Φ‖φ‖ψ(‖x‖) + ‖x‖Φλ,

where Φ and Φλ are respectively given by (3.2) and (3.3). Consequently, we have

(1 − Φλ)‖x‖
Φ‖φ‖ψ(‖x‖)

≤ 1.

By the condition (H4), we can find a positive number N such that ‖x‖ , N. Introduce a set

U = {x ∈ C : ‖x‖ < N}, (3.6)

and observe that the operator A : U → C is continuous and completely continuous. With this choice
of U, we cannot find x ∈ ∂U satisfying the relation x = θAx for some θ ∈ (0, 1). Therefore, it follows
by nonlinear alternative of Leray-Schauder type [14] that the operator A has a fixed point in U. Thus
there exists a solution of the problem (1.1) on [0,T ]. The proof is complete. �

4. Multi-valued case

We begin this section with the definition of a solution for the multi-valued problem (1.2).

Definition 4.1. A function x ∈ C([0,T ],R) is said to be a solution of the problem (1.2) if there exists a
function v ∈ L1([0,T ],R) with v(t) ∈ F(t, x) a.e. on [0,T ] such that x(ξ) = λCDνx(η), x(T ) = µI px(ζ)
and

x(t) = Iq+rv(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv(s)(T ) + Ir(λ(T )x(T ))

]
.

4.1. The upper semicontinuous case

Our first result, dealing with the convex-valued F, is based on Leray-Schauder nonlinear alternative
for multi-valued maps.

Definition 4.2. A multivalued map F : [0,T ]×R→ P(R) is said to be Carathéodory if (i) t 7−→ F(t, x)
is measurable for each x ∈ R and (ii) x 7−→ F(t, x) is upper semicontinuous for almost all t ∈ [0,T ].
Further a Carathéodory function F is called L1−Carathéodory if (iii) for each ρ > 0, there exists
ϕρ ∈ L1([0,T ],R+) such that ‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕρ(t) for all x ∈ R with ‖x‖ ≤ ρ and for
a.e. t ∈ [0,T ].
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Theorem 4.1. Assume that:

(A1) F : [0,T ] × R → Pcp,c(R) is L1-Carathéodory, where Pcp,c(R) = {Y ∈ P(R) :
Yiscompactandconvex};

(A2) there exist a continuous nondecreasing function Q : [0,∞) → (0,∞) and a function
P ∈ C([0,T ],R+) such that
‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ P(t)Q(|x|) for each (t, x) ∈ [0,T ] × R;

(A3) there exists a constant M > 0 such that

(1 − Φλ)M
Φ‖P‖Q(M)

> 1, Φλ < 1,

where Φ and Φλ are respectively given by (3.2) and (3.3).

Then the nonlocal-terminal value problem (1.2) has at least one solution on [0,T ].

Proof. Firstly, we transform the problem (1.2) into a fixed point problem by defining a multi-valued
map: N : C([0,T ],R)→ P(C([0,T ],R)) as

N(x) =



h ∈ C([0,T ],R) :

h(t) =



Iq+rv(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v(s)(ξ)

+Ir(λ(ξ)x(ξ))
]

+λ2(t)
[
βIq+r+pv(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv(s)(T )

+Ir(λ(T )x(T ))
]
,


for v ∈ S F,x.

It is clear that fixed points of N are solutions of problem (1.2). So we need to verify that the operator
N satisfies all the conditions of Leray-Schauder nonlinear alternative [14]. This will be done in several
steps.

Step 1. N(x) is convex for each x ∈ C([0,T ],R).

Indeed, if h1, h2 belongs to N(x), then there exist v1, v2 ∈ S F,x such that, for each t ∈ [0,T ], we have

hi(t) = Iq+rvi(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νvi(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1vi(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pvi(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rvi(s)(T ) + Ir(λ(T )x(T ))

]
,

i = 1, 2. Let 0 ≤ θ ≤ 1. Then, for each t ∈ [0,T ], we have

[θh1 + (1 − θ)h2](t) = Iq+r[θv1(s) + (1 − θ)v2(s)](t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−ν[θv1(s) + (1 − θ)v2(s)](η) − αIr−ν(λ(η)x(η))

−Iq+r−1[θv1(s) + (1 − θ)v2(s)](ξ) + Ir(λ(ξ)x(ξ))
]

+λ2(t)
[
βIq+r+p[θv1(s) + (1 − θ)v2(s)](ζ) − βIr+p(λ(ζ)x(ζ))
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−Iq+r[θv1(s) + (1 − θ)v2(s)](T ) + Ir(λ(T )x(T ))
]
.

Since F has convex values (S F,x is convex), therefore, θh1 + (1 − θ)h2 ∈ N(x).

Step 2. N(x) maps bounded sets (balls) into bounded sets in C([0,T ],R).

For a positive number r, let Br = {x ∈ C([0,T ],R) : ‖x‖ ≤ r} be a bounded ball in C([0,T ],R).
Then, for each h ∈ N(x), x ∈ Br, there exists v ∈ S F,x such that

h(t) = Iq+rv(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv(s)(T ) + Ir(λ(T )x(T ))

]
.

In view of (H2), for each t ∈ [0,T ], we have

|h(t)| ≤ Iq+r|v(s)|(t) + λ̄1

[
|α|Iq+r−ν|v(s)|(η) + Iq+r| f (s, x(s))|(ξ)

]
+λ̄2

[
|β|Iq+r+p|v(s)|(ζ) + Iq+r|v(s)|(T )

]
+Ir|λ(t)x(t)| + λ̄1[|α|Ir−ν|λ(η)x(η)| + Ir|λ(ξ)x(ξ)|]
+λ̄2[|β|Ir+p|λ(ζ)x(ζ)| + Ir|λ(T )x(T )|]

≤ P(t)Q(‖x‖)
{

T q+r

Γ(q + r + 1)
+ λ̄1

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+λ̄2

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]}
+‖x‖

{
Ir|λ(T )| + λ̄1[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]

+λ̄2[|β|Ir+p|λ(ζ)| + Ir|λ(T )|]
}
,

which yields
‖h‖ ≤ Φ‖P‖Q(r) + rΦλ.

Step 3. N(x) maps bounded sets into equicontinuous sets of C([0,T ],R).

Let x be any element in Br and h ∈ N(x). Then there exists a function v ∈ S F,x such that, for each
t ∈ [0,T ] we have

h(t) = Iq+rv(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv(s)(T ) + Ir(λ(T )x(T ))

]
.

Let τ1, τ2 ∈ [0,T ], τ1 < τ2. Then

|h(τ2) − h(τ1)|
≤ Iq+r(|v(s)(ν2) − v(s)(ν1)|)
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+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]
+

∣∣∣∣∣∣
∫ ν1

0

[(ν2 − s)r−1 − (ν1 − s)r−1]
Γ(r)

λ(s)x(s)ds +

∫ ν2

ν1

(ν2 − s)r−1

Γ(r)
λ(s)x(s)ds

∣∣∣∣∣∣
+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]

+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|β|Ir+p|λ(ζ)| + Ir|λ(T )|]

≤
‖P‖Q(r)

Γ(q + r + 1)
[|tq+r

2 − tq+r
2 | + 2(t2 − t1)q+r]

+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|α|

ηq+r−ν

Γ(q + r − ν + 1)
+

ξq+r

Γ(q + r + 1)

]
+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[
|β|

ζq+r+p

Γ(q + r + p + 1)
+

T q+r

Γ(q + r + 1)

]
+

∣∣∣∣∣∣
∫ ν1

0

[(ν2 − s)r−1 − (ν1 − s)r−1]
Γ(r)

λ(s)x(s)ds +

∫ ν2

ν1

(ν2 − s)r−1

Γ(r)
λ(s)x(s)ds

∣∣∣∣∣∣
+|Γ|
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|α|Ir−ν|λ(η)| + Ir|λ(ξ)|]

+
|ν

q+r−1
2 − ν

q+r−1
1 |

|Λ|

Γ(q)
Γ(q + r)

[|β|Ir+p|λ(ζ)| + Ir|λ(T )|].

The right hand of the above inequality tends to zero independently of x ∈ Br as ν1 → ν2.
Combining the outcome of Steps 1–3 with Arzelá-Ascoli theorem, we deduce that

N : C([0,T ],R)→ P(C([0,T ],R)) is completely continuous.

In order to prove that the operator N is u.s.c., it is enough to establish that it has a closed graph by
Proposition 1.2 in [11], as it is already shown to be completely continuous. This is done in the next
step.

Step 4. N has a closed graph.

Let xn → x∗, hn ∈ N(xn) and hn → h∗. We need to show that h∗ ∈ N(x∗). Now hn ∈ N(xn) implies
that there exists vn ∈ S F,xn such that, for each t ∈ [0,T ],

hn(t) = Iq+rv(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νvn(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1vn(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pvn(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rvn(s)(T ) + Ir(λ(T )x(T ))

]
.

Therefore, we must show that there exists v∗ ∈ S F,x∗ such that, for each t ∈ [0,T ],

h∗(t) = Iq+rv(s)(t) − Ir(λ(t)x(t))
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+λ1(t)
[
αIq+r−νv∗(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v∗(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv∗(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv∗(s)(T ) + Ir(λ(T )x(T ))

]
.

Consider the continuous linear operator Θ : L1([0,T ],R)→ C([0,T ],R) given by

v→ Θ(v)(t) = Iq+rv(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv(s)(T ) + Ir(λ(T )x(T ))

]
.

Observe that ‖hn(t)−h∗(t)‖ → 0 as n→ ∞. So it follows from by a closed graph result obtained in [20]
that Θ ◦ S F,x is a closed graph operator. Moreover, we have hn ∈ Θ(S F,xn). Since xn → x∗, therefore we
have

h∗(t) = Iq+rv(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv∗(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v∗(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv∗(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv∗(s)(T ) + Ir(λ(T )x(T ))

]
,

for some v∗ ∈ S F,x∗

Step 5. We show there exists an open setV ⊆ C([0,T ],R) with x < θN(x) for any θ ∈ (0, 1) and all
x ∈ ∂V.

Let θ ∈ (0, 1) and x ∈ θN(x). Then there exists v ∈ L1([0,T ],R) with v ∈ S F,x such that, for
t ∈ [0,T ], we have

x(t) = θIq+rv(s)(t) − θIr(λ(t)x(t))
+θλ1(t)

[
αIq+r−νv(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v(s)(ξ) + θIr(λ(ξ)x(ξ))

]
+θλ2(t)

[
βIq+r+pv(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv(s)(T ) + Ir(λ(T )x(T ))

]
.

Using the computations done in Step 2, for each t ∈ [0,T ], we get

|x(t)| ≤ Φ‖P‖Q(‖x‖) + ‖x‖Φλ,

which can alternatively be written as
(1 − Φλ)‖x‖
Φ‖P‖Q(‖x‖)

≤ 1.

In view of (A3), there exists M such that ‖x‖ , M. Let us define a set

V = {x ∈ C([0,T ],R) : ‖x‖ < M}.

The operator N : V → P(C([0,T ], R)) is a compact multi-valued map, u.s.c. with convex closed
values. With the given choice of V, it is not possible to find x ∈ ∂V satisfying x ∈ θN(x) for some
θ ∈ (0, 1). In consequence, we deduce by the nonlinear alternative of Leray-Schauder type [14] that
the operator N has a fixed point x ∈ V, which corresponds to a solution of the problem (1.2). This
completes the proof. �
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4.2. The Lipschitz case

Let (X, d) be a metric space induced from the normed space (X; ‖·‖). Consider Hd : P(X)×P(X)→
R ∪ {∞} defined by Hd(A, B) = max{supa∈A d(a, B), supb∈B d(A, b)}, where d(A, b) = infa∈A d(a; b) and
d(a, B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a metric space (see [17]), where Pb,cl(X) = {Y ∈ P(X) :
Y is bounded and closed},

Now we present our existence result for the problem (1.2) with a non-convex valued right hand side
by applying a fixed point theorem for multivalued maps due to Covitz and Nadler [10]: “If N : X →
Pcl(X) is a contraction, then FixN , ∅, where Pcl(X) = {Y ∈ P(X) : Y is closed}”.

Theorem 4.2. Assume that the following conditions hold:

(A4) F : [0,T ] × R → Pcp(R) is such that F(·, x) : [0,T ] → Pcp(R) is measurable for each x ∈ R,
where Pcp(R) = {Y ∈ P(R) : Y is compact};

(A5) Hd(F(t, x), F(t, x̄)) ≤ %(t)|x − x̄| for almost all t ∈ [0,T ] and x, x̄ ∈ R with % ∈ C([0,T ],R+) and
d(0, F(t, 0)) ≤ %(t) for almost all t ∈ [0,T ].

Then the nonlocal-terminal value problem (1.2) has at least one solution on [0,T ] if

Φ‖%‖ + Φλ < 1,

where Φ and Φλ are respectively given by (3.2) and (3.3).

Proof. Once it is shown that the operator N : C([0,T ],R) → P(C([0,T ],R)), defined in the
beginning of the proof of Theorem 4.1, satisfies the assumptions of Covitz and Nadler fixed point
theorem [10], we are done. We establish in two steps.

Step I. N(x) is nonempty and closed for every v ∈ S F,x.

Observe that the set-valued map F(·, x(·)) admits a measurable selection v : [0,T ] → R as it is
measurable by the measurable selection theorem (e.g., [8, Theorem III.6]). Moreover, by the
assumption (A5), we have

|v(t)| ≤ %(t)(1 + |x(t)|),

that is, v ∈ L1([0,T ],R) and hence F is integrably bounded. Therefore, S F,x , ∅.
Next we show that N(x) is closed for each x ∈ C([0,T ],R). Let {un}n≥0 ∈ N(x) be such that un → u

as n→ ∞ in C([0,T ],R). Then u ∈ C([0,T ],R) and there exists vn ∈ S F,xn such that, for each t ∈ [0,T ],

un(t) = Iq+rvn(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νvn(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1vn(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pvn(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rvn(s)(T ) + Ir(λ(T )x(T ))

]
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn converges to
v in L1([0,T ],R). Thus v ∈ S F,x and for each t ∈ [0,T ], we have

un(t)→ v(t)
= Iq+rv(s)(t) − Ir(λ(t)x(t))

+λ1(t)
[
αIq+r−νv(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v(s)(ξ) + Ir(λ(ξ)x(ξ))

]
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+λ2(t)
[
βIq+r+pv(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv(s)(T ) + Ir(λ(T )x(T ))

]
.

Hence u ∈ N(x).

Step II. We show that there exists 0 < θ̂ < 1 (θ̂ = Φ‖%‖ + Φλ) such that

Hd(N(x),N(x̄)) ≤ θ̂‖x − x̄‖ for each x, x̄ ∈ C([0,T ],R).

Let x, x̄ ∈ C([0,T ],R) and h1 ∈ N(x). Then there exists v1(t) ∈ F(t, x(t)) such that, for each
t ∈ [0,T ],

h1(t) = Iq+rv1(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv1(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v1(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv1(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv1(s)(T ) + Ir(λ(T )x(T ))

]
.

By (A5), we have
Hd(F(t, x), F(t, x̄)) ≤ %(t)|x(t) − x̄(t)|.

So, there exists w(t) ∈ F(t, x̄(t)) such that

|v1(t) − w| ≤ %(t)|x(t) − x̄(t)|, t ∈ [0,T ].

DefineU : [0,T ]→ P(R) by

U(t) = {w ∈ R : |v1(t) − w| ≤ %(t)|x(t) − x̄(t)|}.

As the multivalued operator U(t) ∩ F(t, x̄(t)) is measurable (see Proposition III.4 [8]), there exists a
function v2(t) which is a measurable selection for U. So v2(t) ∈ F(t, x̄(t)) and for each t ∈ [0,T ], we
have |v1(t) − v2(t)| ≤ %(t)|x(t) − x̄(t)|.

For each t ∈ [0,T ], let us define

h2(t) = Iq+rv2(s)(t) − Ir(λ(t)x(t))
+λ1(t)

[
αIq+r−νv2(s)(η) − αIr−ν(λ(η)x(η)) − Iq+r−1v2(s)(ξ) + Ir(λ(ξ)x(ξ))

]
+λ2(t)

[
βIq+r+pv2(s)(ζ) − βIr+p(λ(ζ)x(ζ)) − Iq+rv2(s)(T ) + Ir(λ(T )x(T ))

]
.

In consequence, we get

|h1(t) − h2(t)| ≤ Iq+r|v2(s) − v1(s)|(t) + Ir(λ(t)|x(t) − x̄(t)|)
+λ1(t)

[
|α|Iq+r−ν|v2(s) − v1(s)|(η) + |α|Ir−ν(λ(η)|x(η) − x̄(η)|)

+Iq+r|v2(s) − v1(s)|(ξ) + Ir−1(λ(ξ)|x(ξ) − x̄(ξ)|)
]

+λ2(t)
[
|β|Iq+r+p|v2(s) − v1(s)|(ζ) + |β|Ir+p(λ(ζ)|x(ζ) − x̄(ζ)|)

+Iq+r|v2(s) − v1(s)|(T ) + Ir(λ(T )x(T ))
]

≤ (Φ‖%‖ + Φλ)‖x − x‖.
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Hence
‖h1 − h2‖ ≤ (Φ‖%‖ + Φλ)‖x − x‖.

Analogously, interchanging the roles of x and x, we obtain

Hd(N(x),N(x̄)) ≤ (Φ‖%‖ + Φλ)‖x − x‖.

Therefore, N is a contraction in view of the given condition((Φ‖%‖ + Φλ) < 1). Hence it follows by the
conclusion of Covitz and Nadler fixed point theorem [10] that N has a fixed point x, which corresponds
to a solution of (1.2). The proof is complete. �

5. Examples

Consider the following nonlocal-terminal value problem
RLD2/3

(
CD3/4 + t2/2

)
x(t) = f (t, x(t)), t ∈ [0, 1],

x(2/3) = 5 CD1/2x(1/3), x(1) = 4 I1x(4/5).
(5.1)

Here q = 2/3, r = 3/4, ξ = 2/3, η = 1/3, ν = 1/2, α = 5, β = 4, ζ = 4/5, p = 1,T = 1. Using the
given data in (2.2), we find that A ≈ −5.739178, B ≈ −1.616533,Γ ≈ −1.915888, and Λ ≈ 12.612155.
From (3.4), we have λ̄1 ≈ 0.360215 and λ̄2 ≈ 0.576166. Inserting the given values in (3.2) and (3.3),
we obtain Φ ≈ 2.538503 and Φλ ≈ 0.502890.
In order to illustrate Theorem 3.1, we take

f (t, x) = (L/2)(tan−1 x + |x|(1 + |x|)−1) +
√

t4 + 3, (5.2)

in (5.1), where L is to be fixed later. Obviously | f (t, x) − f (t, y)| ≤ L|x − y|, t ∈ [0, 1], x, y ∈ R and
LΦ + Φλ < 1 is satisfied for L < 0.195828. Thus all the assumptions of Theorem 3.1 are satisfied.
Hence, by the conclusion of Theorem 3.1, the problem (5.1) with f (t, x) given by (5.2) has a unique
solution on [0, 1].

Also the conclusion of Theorem 3.2 applies to the problem (5.1) with f (t, x) given by (5.2) as
| f (t, x)| ≤ [π + 2 +

√
t4 + 3] = δ(t), where L = 4.

For the illustration of Theorem 3.3, let us take

f (t, x) =
e−t2

√
t4 + 100

(
sin x +

1
10

)
, (5.3)

and note that | f (t, x)| ≤ φ(t)ψ(|x|), where φ(t) = e−t2/
√

t4 + 100, and ψ(|x|) = (|x| + 1/10). So the
assumption (H3) holds. Moreover, there exists N > 0.1043536 satisfying (H4). Thus all the conditions
of Theorem 3.3 are satisfied and consequently the problem (5.1) with f (t, x) given by (5.3) has at least
one solution on [0, 1].

Now we illustrate Theorem 4.2 by considering the following multivalued problem:
RLD2/3

(
CD3/4 + t2/2

)
x(t) ∈ F(t, x), t ∈ [0, 1],

x(2/3) = 5 CD1/2x(1/3), x(1) = 4 I1x(4/5),
(5.4)
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where

F(t, x) =

[
e−t

19 + t
,

x + tan−1(x)
(t + 4)2 +

1
15

]
.

Clearly Hd(F(t, x), F(t, x̄)) ≤ %(t)|x − x̄|, where %(t) = 2
(t+4)2 . Also d(0, F(t, 0)) ≤ %(t) for almost all

t ∈ [0, 1] and Φ‖%‖ + Φλ ≈ 0.820203 < 1. As the hypothesis of Theorem 4.2 is satisfied, therefore we
conclude that the multivalued problem (5.4) has at least one solution on [0, 1].

6. Conclusions

We have studied a new nonlocal-terminal value problem consisting of Langevin equation with
variable coefficient involving both Riemann-Liouville and Caputo fractional derivatives, and equipped
with nonlocal-terminal fractional integro-differential conditions. The results presented in this paper
are new and enrich the existing literature on boundary value problems of Langevin equation.

As an analogue of the problem (1.1), we interchange the role of Riemann-Liouville and Caputo
fractional derivatives in the Langevin equation given by (1.1) and consider the following nonlocal
boundary value problem: 

CDr(RLDq + λ(t))x(t) = f (t, x(t)), t ∈ [0,T ],

x(0) = 0, x(T ) = β I px(ζ), ζ ∈ (0,T ).
(6.1)

As argued in the proof of Lemma 2.6, the solution of the Langevin equation in (6.1) can be written as

x(t) = Iq+r f (t, x(t)) − Iq(λ(t)x(t)) + c1
tq

Γ(q + 1)
+ c2tq−1. (6.2)

Using the condition x(0) = 0 in (6.2) implies that c2 = 0. Inserting the value of c2 in (6.2) and then
using the resulting expression for x(t) in the condition x(T ) = β I px(ζ), we find that

c1 =
1
Ω

(
βIq+r+p f (ζ, x(ζ)) − βIq+p(λ(ζ)x(ζ))

−Ir+q f (T, x(T )) + Iq(λ(T )x(T ))
)
, (6.3)

where
Ω =

T q

Γ(1 + q)
−

βζq+p

Γ(q + p + 1)
, 0.

Thus the solution of the problem (6.1) is

x(t) = Ir+q f (s, x(s))(t) − Iq(λ(t)x(t))

+
tq

ΩΓ(1 + q)

(
βIq+r+p f (ζ, x(ζ)) − βIq+p(λ(ζ)x(ζ))

−Ir+q f (T, x(T )) + Iq(λ(T )x(T ))
)
.

One can notice that the solution (6.2) becomes unbounded at t = 0 in view of the values of q ∈ (0, 1),
in contrast to the problem (1.1). So we impose the condition x(0) = 0 to ensure the boundedness of
the solution of the Langevin equation in (6.1). It is equivalent to saying that the problem (1.1) is now
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well-posed one. The existence results for the problem (6.1), analogue to the ones for (1.1), can be
obtained in a similar manner.

Special cases. We can obtain several new results as special cases of the work presented in this
paper by fixing the values of parameters involved in the problem at hand, which are listed below.

• By taking α = 0, our results correspond to the ones for nonlocal-terminal fractional integral
conditions: x(ξ) = 0, x(T ) = β I px(ζ), ξ, ζ ∈ (0,T ).
• The results of this paper reduce to the ones with boundary conditions of the form:

x(ξ) = α CDνx(η), x(T ) = 0, ξ, η ∈ (0,T ) by fixing β = 0.
• Letting α = 0, β = 0 in the results of this paper, we obtain the ones associated with the nonlocal-

terminal conditions: x(ξ) = 0, x(T ) = 0.
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