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1. Introduction

Nowadays the fractional differential equations (FDEs) are powerful tools representing many
problems in various fields such as viscoelasticity, control engineering, diffusion processes, signal
processing and electromagnetism.

Recently many researchers are interested in research on fuzzy fractional differential
equations(FFDEs). In one of the earliest papers, Agarwal et al. [1] considered a fractional differential
equation of order α ∈ with uncertainty and introduced the concept of solution for proposed equations.
Arshad and Lupulescu [2] presented the existence and uniqueness of solution for fractional
differential equations with uncertainty using the concept of solution in means of [1]. Next, Khastan et
al. [3] proved the existence result of solution for nonlinear fuzzy fractional differential equations with
the Riemann-Liouville derivative by Schauder fixed-point theorem. Allahviranloo et al. [4] proved
that uncertain fractional differential equation is equivalent to integral equation under
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Riemann-Liouville H-differentiability and obtained the explicit solution in case of the fuzzy linear
fractional differential equations. Salahshour et al. [5] studied the analytical methods to solve the
FFDE under the fuzzy Caputo fractional differentiability.

Abdollahi et al. introduced the linear fuzzy Caputo-Fabrizio fractional differential equation with
initial value problems and presented the general form of their solutions under generalized Hukuhara
differentiability in [6] and H. V. Ngo et al. proved that the fractional fuzzy differential equation is not
equal to the fractional fuzzy integral equation in general in [7]. Salahshour et al. [8] introduced that
the solutions of FFDEs of order 0 < β < 1 are obtained by fuzzy Laplace transforms under
Riemann-Liouville H-differentiability. Chehlabi and Allahviranloo [9] investigated the concreted
solutions for fuzzy linear fractional differential equations of order 0 < α < 1 under Riemann-Liouville
H-differentiability by using fractional hyperbolic functions and extended the results obtained in [8].
Also Arqub et al. introduced the exact and the numerical solutions of various fuzzy differential
equations based on the reproducing kernel Hilbert space method under strongly generalized
differentiability [10–12].

Generally, the most of the FFDEs have no known exact solution. Thus the researches of approximate
and numerical solutions of the FFDEs are important. Mazandarani and Vahidian Kamyad [13] obtained
a fuzzy approximate solution to solve FFDEs with the Caputo-type fuzzy fractional derivative based on
Hukuhara difference and strongly generalized fuzzy differentiability by using modified fractional Euler
method. Also the operational matrix methods based on orthogonal polynomials have been proposed to
solve FFDEs [14–18].

Based on above considerations, we are going to obtain the representation of solutions of the initial
value problems of fuzzy linear multi-term in-homogeneous fractional differential equations with
continuous variable coefficients.

The paper is organized as follows. In Section 2, we introduced some definitions and properties for
fuzzy calculus and proposed basic results of our paper. The representation of solution of proposed
problem is described in Section 3. The examples are presented to illustrate our result in Section 4.
Finally, the conclusion is summarized in Section 5.

2. Preliminaries and basic results

We denote the set of all fuzzy numbers on R by RF. A fuzzy number is a mapping u : R → [0, 1]
with the following properties:
(i) u is normal, i.e., ∃x0 ∈ R u(x0) = 1,
(ii) u is a convex fuzzy subset, i.e., u(λx + (1 − λ)y) ≥ min{u(x), u(y)},∀x, y ∈ R ∀λ ∈ [0, 1],
(iii) u is upper semi-continuous on R,
(iv) The set supp(u) is compact in R (where supp(u) := {x ∈ R|u(x) > 0}).
Then RF is called the space of fuzzy numbers.
We denote the r-level form of the fuzzy number u ∈ RF by [u]r := [u1(r), u2(r)], 0 ≤ r ≤ 1.
Let’s u, v ∈ RF. The distance d : RF × RF → R+ is defined by

d(u, v) := sup
r∈[0,1]

max{|u1(r) − v1(r)|, |u2(r) − v2(r)|}.

We introduce following notations to understand our paper.
C(I) is the set of all continuous real functions on I.
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CF(I) is the set of all continuous fuzzy-valued functions on I.
ACF(I) is the set of all absolutely continuous fuzzy-valued functions on I.
LF(I) is the space of all Lebesque integrable fuzzy-valued functions on I, where I = [0, L] and without
losing generality, we promise that L = 1.
Definition 2.1. [4] Let x, y ∈ RF. If there exists z ∈ RF such that x = y ⊕ z, then z is called the H-
difference of x and y, and it is denoted by z = x	Hy.
Definition 2.2. [8] Let f : I → RF and fix x0 ∈ (0, 1).
We say that f is (1)-differentiable at x0, if for all h > 0 sufficiently near to 0, f (x0 + h)	H f (x0),
f (x0)	H f (x0 − h) and the relation

lim
h→0+

f (x0 + h)	H f (x0)
h

= lim
h→0+

f (x0)	H f (x0 − h)
h

exists. Then the limit is defined by D(1) f (x0).
Definition 2.3. [4] Let f ∈ LF(I). The fuzzy Riemann-Liouville integral of fuzzy-valued function f is
defined as follow

Iβ0+
f (x) =

1
Γ(β)

x∫
0

(x − s)β−1 f (s)ds, x ∈ (0, 1],

where 0 < ν ≤ 1.
Definition 2.4. [4, 7] Let f : I → RF, 0 < β < 1. We say that f is fuzzy Riemann-Liouville H-
differentiable of order β if

I1−β
0+

f (x) =

x∫
0

(x − s)−β

Γ(1 − β)
f (s)ds, x ∈ (0, 1]

is (1)-differentiable. Then fuzzy Riemann-Liouville H-derivative of order β of function f is denoted
RLDβ

0+
f (x) := D(1)I1−β

0+
f (x) .

Definition 2.5. Let f : I → RF, 0 < β < 1. We say that f is fuzzy Caputo-type differentiable of order
β if H-difference f (x)	H f (0) exists and I1−β

0+
( f (x)	H f (0)) ∈ ACF(I) satisfies. Then fuzzy Caputo-type

derivative of order β of function f is denoted by

(cDβ
0+

f )(x) := RLDβ
0+

( f (x)	H f (0)), x ∈ (0, 1].

We consider initial value problem of fuzzy multi-term fractional differential equation as

cDα
0+

y(x) = f (x, y(x), cDβ
0+

y(x)), x ∈ I,
y(0) = y0, y0 ∈ RF.

(2.1)

Definition 2.6. Let y : I → RF. y is called the solution of Eq. (2.1) if y is to be cDα
0+

y(x), cDβ
0+

y(x) ∈
CF(I) and satisfies Eq. (2.1).
Now let consider as follows

cDα
0+

y(x) = z(x), x ∈ I,
y(0) = y0, y0 ∈ RF.

(2.2)

Theorem 2.1. Let f of Eq. (2.1) be a continuous function with respect to every variable. If y(x) is the
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solution of Eq. (2.1), the fuzzy-valued function z(x) which is constructed by z(x) := cDα
0+

y(x) is the
solution in CF(I) of fuzzy integral equation as follows

z(x) = f (x, y0 ⊕
1

Γ(α)

x∫
0

z(s)
(x − s)1−αds, Iα−β0+

z(x)), x ∈ I. (2.3)

Conversely if z(x) is the solution in CF(I) of fuzzy integral equation (2.3), y(x) which is constructed by

y(x) = y0 ⊕
1

Γ(α)

x∫
0

z(s)
(x − s)1−αds

is the solution of Eq. (2.1).
Let use the following distance structure in CF(I)

∀u, v ∈ CF(I), d∗(u, v) := max
t∈I

d(u(t), v(t)).

(CF(I), d∗) is a complete metric space. For any k, let consider distance as

∀u, v ∈ CF(I), d∗k(u, v) := max
t∈I

e−ktd(u(t), v(t)).

Then the distance d∗k is equal to the distance d∗. Namely

∃M,m > 0;∀u, v ∈ CF(I),md∗k(u, v) ≤ d∗(u, v) ≤ Md∗k(u, v).

Theorem 2.2. Assume that the function in Eq. (2.3) is continuous in its all variables and especially,
for ∀y1, y2, z1, z2 ∈ RF and f satisfies the following condition

d( f (x, y1, z1), f (x, y2, z2)) ≤ L1 · d(y1, y2) + L2 · d(z1, z2).

Then the fuzzy integral equation (2.3) has the unique solution.

3. Main result

We consider the representation of solution of initial value problem for fuzzy linear multi-term
fractional differential equation with continuous variable coefficient as

cDα
0+

y(x) = a(x)cDβ
0+

y(x) ⊕ b(x)y(x) ⊕ g(x), x ∈ I, 0 < β < α < 1,
y(0) = y0, y0 ∈ RF,

(3.1)

where a, b ∈ C(I), g ∈ CF(I).
First we will obtain the representation of solution for corresponding fuzzy integral equation (2.3).
If z(x) := cDα

0+
y(x), the following relations satisfy

y(x) = y0 ⊕ Iα0+z(x).
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Then we have

cDβ
0+

y(x) = cDβ
0+

Iα0+z(x) = Iα−β0+
z(x).

z(x) = a(x)Iα−β0+
z(x) ⊕ b(x)(y0 ⊕ Iα0+z(x)) ⊕ g(x)

= a(x)Iα−β0+
z(x) ⊕ b(x)Iα0+z(x) ⊕ g(x) ⊕ b(x)y0.

(3.2)

Now let define the operator L by

(Lz)(x) := a(x)Iα−β0+
z(x) ⊕ b(x)Iα0+z(x), x ∈ I.

From a, b ∈ C(I), it is obvious that L : CF(I) → CF(I). By using the operator L, the integral equation
(3.2) can be expressed as

z(x) = (Lz)(x) ⊕ g(x) ⊕ b(x)y0.

Let ĝ(x) := g(x) ⊕ b(x)y0. Then the integral equation (3.2) is denoted by

z(x) = (Lz)(x) ⊕ ĝ(x). (3.3)

Also let denote the operator I	HL as

(I	HL)z := z	HLz,

where the operator I is identity operator. From Eq. (3.3), we have

z(x)	H(Lz)(x) = ĝ(x),
(I 	H L)z(x) = ĝ(x).

(3.4)

Lemma 3.1. Let a, b, c, d ∈ RF. The following relations are satisfied
(1) If (a ⊕ b)	Hb exists, then (a ⊕ b)	Hb = a.
(2) If (a ⊕ b)	H(c ⊕ d), (a	Hc) and (b	Hd) exist, then

(a ⊕ b)	H(c ⊕ d) = (a	Hc) ⊕ (b	Hd).

Proof. First we prove (1). Now let E := (a ⊕ b)	Hb. Then we get

E ⊕ b = a ⊕ b.

Also for ∀r ∈ [0, 1], we have [E]r = [Er
−, E

r
+], [a]r = [ar

−, a
r
+] and [b]r = [br

−, b
r
+]. Therefore following

relations holds
[E ⊕ b]r = [a ⊕ b]r,

[Er
− + br

−, E
r
+ + br

+] = [ar
− + br

−, a
r
+ + br

+],{
Er
− + br

− = ar
− + br

−,

Er
+ + br

+ = ar
+ + br

+,{
Er
− = ar

−,

Er
+ = ar

+.
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Namely E = a.
We prove (2). Let E := (a ⊕ b)	H(c ⊕ d), F := (a	Hc) ⊕ (b	Hd). As E ⊕ (c ⊕ d) = a ⊕ b stands, for
∀r ∈ [0, 1], we get

[Er
− + cr

− + dr
−, E

r
+ + cr

+ + dr
+] = [ar

− + br
−, a

r
+ + br

+],{
Er
− + cr

− + dr
− = ar

− + br
−,

Er
+ + cr

+ + dr
+ = ar

+ + br
+.

Therefore {
Er
− = ar

− + br
− − cr

− − dr
−,

Er
+ = ar

+ + br
+ − cr

+ − dr
+.

In the one hand, let F := (a	Hc) ⊕ (b	Hd), G := a	Hc. Because G ⊕ c = a stands, we have

[Gr
− + cr

−,G
r
+ + cr

+] = [ar
−, a

r
+],{

Gr
− = ar

− − cr
−,

Gr
+ = ar

+ − cr
+,{

Fr
− = ar

− − cr
− + br

− − dr
−,

Fr
+ = ar

+ − cr
+ + br

+ − dr
+.

Therefore the proof is completed. �
If z ∈ CF(I) is the solution of the fuzzy integral equation (3.3) and D(I	HL) is the domain of the

operator I	HL , we can think the following Lemma.
Lemma 3.2. If z ∈ D(L) is the solution of the integral equation (3.3) and

∀k ∈ {0, · · · }, Lkĝ ∈ D(L).

Then the following relations are satisfied
(1) ∀k ∈ N, Lkz ∈ D(I	HL),

(2)
n∑

k=0
Lkz ∈ D(I	HL),

where D(L) is the domain of the operator L.
Proof. First we prove (1). Because z ∈ D(L) is the solution of the integral equation (3.3), the following
relations are satisfied

z(x) = (Lz)(x) ⊕ ĝ(x),
Lz(x) = (L2z)(x) ⊕ Lĝ(x),
Lz(x)	H(L2z)(x) = Lĝ(x),

(I	HL)Lz(x) = Lĝ(x). (3.5)

Consequently we have Lz ∈ D(I	HL). Similarity we can prove

∀k ∈ N, Lkz ∈ D(I	HL).

Next let prove (2). By the assumption of z, we get

z(x) ⊕ Lz(x) = (Lz)(x) ⊕ ĝ(x) ⊕ (L2z)(x) ⊕ Lĝ(x).

Also the following relation is satisfied

z(x) ⊕ Lz(x) = (Lz)(x) ⊕ (L2z)(x) ⊕ ĝ(x) ⊕ Lĝ(x)
= L(z(x) ⊕ Lz(x)) ⊕ ĝ(x) ⊕ Lĝ(x).
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Therefore we have
(z(x) ⊕ Lz(x))	HL(z(x) ⊕ Lz(x)) = ĝ(x) ⊕ Lĝ(x),

(I	HL)(z(x) ⊕ Lz(x)) = ĝ(x) ⊕ Lĝ(x),

z(x) ⊕ Lz(x) ∈ D(I	HL).

In the same way, we can prove
n∑

k=0
Lkz ∈ D(I	HL). �

For z ∈ D(I	HL), we can know that

(I	HL) ◦
n∑

k=0

Lkz(x) =

n∑
k=0

Lkz(x)	HL ◦
n∑

k=0

Lkz(x) =

n∑
k=0

Lkz(x)	H

n∑
k=0

Lk+1z(x)

= (z(x) ⊕ Lz(x) ⊕ · · · ⊕ Lnz(x))	H(Lz(x) ⊕ · · · ⊕ Ln+1z(x)).

where the symbol ◦ means that the operator (I	HL) is applied to
n∑

k=0
Lkz(x).

Because z ∈ D(I	HL), z(x)	HLz(x) exists. Also applying the operator L to the both of Eq. (3.4), we
get

L(I	HL)z(x) = Lĝ(x).

Similarity, we can obtain
Ln(z(x)	HLz(x)) = Lnz(x)	HLn+1z(x).

On the other hand, from (2) of Lemma 3.1, we get

z(x) = (z(x)	H0) ⊕ (Lz(x)	HLz(x)) = (z(x) ⊕ Lz(x))	H(0 ⊕ Lz(x))
= (z(x) ⊕ Lz(x))	H(Lz(x) ⊕ 0) = (I 	H L)z(x) ⊕ Lz(x)
= (I 	H L)z(x) ⊕ (I 	H L)Lz(x) ⊕ L2z(x)
= (I 	H L)(z(x) ⊕ Lz(x)) ⊕ L2z(x)
· · ·

= (I	HL) ◦
n∑

k=0

Lkz(x) ⊕ Ln+1z(x).

Namely

(I	HL) ◦
n∑

k=0

Lkz(x) = z(x)	HLn+1z(x). (3.6)

Let estimate d∗k(0̂, Lz) for ∀k > 0. Since

d∗k(0̂, Lz) = max
t∈I

e−ktd(0̂, Lz(t)) = max
t∈I

e−ktd(0̂, a(t)Iα−β0+
z(t) ⊕ b(t)Iα0+z(t))

≤ max
t∈I

e−kt
{
d(0̂, a(t)Iα−β0+

z(t)) + d(0̂, b(t)Iα0+z(t))
}

= max
t∈I

e−kt
{
|a(t)| · d(0̂, Iα−β0+

z(t)) + |b(t)| · d(0̂, Iα0+z(t))
}
,

d(0̂, Iα0+z(t)) ≤ Iα0+d(0̂, z(t)) ≤
ekt

kα
d∗k(0̂, z)
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and

d(0̂, Iα−β0+
z(t)) ≤

ekt

kα−β
d∗k(0̂, z),

we have
d∗k(0̂, Lz) ≤ max

t∈I
e−kt

{
|a(t)| · d(0̂, Iα−β0+

z(t)) + |b(t)| · d(0̂, Iα0+z(t))
}

≤ max
t∈I

e−kt

{
|a(t)| ·

ekt

kα−β
d∗k(0̂, z) + |b(t)| ·

ekt

kα
d∗k(0̂, z)

}
=

{
||a(t)||C(I) ·

1
kα−β

+ ||b(t)||C(I) ·
1
kα

}
d∗k(0̂, z).

If there is a positive number k∗ satisfying

w := ||a(t)||C(I) ·
1

kα−β∗
+ ||b(t)||C(I) ·

1
kα∗

< 1,

then we have
d∗k∗(0̂, Lz) ≤ wd∗k∗(0̂, z).

Therefore
d∗k∗(0̂, L

2z) ≤ wd∗k∗(0̂, Lz) ≤ w2d∗k∗(0̂, z),
d∗k∗(0̂, L

nz) ≤ wnd∗k∗(0̂, z).
(3.7)

Now let denote as
S (x) := z(x)	HLn+1z(x).

Then we get
S (x) ⊕ Ln+1z(x) = z(x).

Therefore
d(z(x)	HLn+1z(x), z(x)) = d(S (x), S (x) ⊕ Ln+1z(x)) = d(0̂, Ln+1z(x)).

From Eq. (3.7), we have

d∗k∗(z	HLn+1z, z) = d∗k∗(0̂, L
n+1z) ≤ wn+1d∗k∗(0̂, z).

Namely
lim
n→∞

d∗k∗(z	HLn+1z, z) = 0.

Consequently from Eq. (3.6), we hold

(I	HL) ◦
∞∑

k=0

Lkz(x) = z(x).

Similarity from Eq. (3.4), Since

∞∑
k=0

Lk(I	HL)z(x) =

∞∑
k=0

Lkĝ(x),
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we get

z(x) =

∞∑
k=0

Lkĝ(x). (3.8)

The following Theorem gives the representation of solution for the proposed problem (3.1).
Theorem 3.1. If ∀k ∈ {0, 1, · · · }, Lkĝ ∈ D(L) holds, the initial value problem (3.1) has the
representation of the solution as follows

y(x) = y0 ⊕ Iα0+g(x) ⊕ Iα0+(b(x)y0) ⊕
∞∑

k=1

Iα0+(a(x)Iα−β0+
⊕ b(x)Iα0+)

k

ĝ(x).

Proof. Eq. (3.8) can be rewritten as

z(x) = ĝ(x) ⊕
∞∑

k=1

Lkĝ(x) = ĝ(x) ⊕
∞∑

k=1

(a(x)Iα−β0+
⊕ b(x)Iα0+)

k
ĝ(x).

Therefore we obtain

y(x) = y0 ⊕ Iα0+z(x) = y0 ⊕ Iα0+(ĝ(x) ⊕
∞∑

k=1

(a(x)Iα−β0+
⊕ b(x)Iα0+)

k

ĝ(x))

= y0 ⊕ Iα0+ĝ(x) ⊕
∞∑

k=1

Iα0+(a(x)Iα−β0+
⊕ b(x)Iα0+)

k

ĝ(x)

= y0 ⊕ Iα0+(g(x) ⊕ b(x)y0) ⊕
∞∑

k=1

Iα0+(a(x)Iα−β0+
⊕ b(x)Iα0+)

k

ĝ(x)

= y0 ⊕ Iα0+g(x) ⊕ Iα0+(b(x)y0) ⊕
∞∑

k=1

Iα0+(a(x)Iα−β0+
⊕ b(x)Iα0+)

k

ĝ(x).

The proof is completed. �

4. Examples

We consider the analytical representation of solution for the fuzzy fractional differential equation
as following

cDα
0+

y(x) = λ � y(x), x ∈ I,
y(0) = y0, y0 ∈ RF.

(4.1)

By using Theorem 3.3, we get ĝ(x) := λy0, (Lz)(x) := λIα0+
z(x), x ∈ I. Therefore the conditions of

Theorem 3.1 are satisfied.
Corollary 4.1. The initial value problem (4.1) have the solution as follows
in case of λ > 0,

y(x) = Eα(λxα) � y0,

in case of λ < 0,
y(x) = E2α,1(λ2x2α) � y0 ⊕ λxαE2α,α+1(λ2x2α) � y0.
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Proof. In case of λ > 0, we get

y(x) = y0 ⊕ Iα0+ (λ � y0) ⊕
∞∑

k=1

Iα0+

(
λIα0+

)kλ � y0

= y0 ⊕ Iα0+ (λ � y0) ⊕
∞∑

k=1

λk+1(Iα0+

)k+1
� y0

= y0 ⊕ λ
xα

Γ(α + 1)
� y0 ⊕

∞∑
k=1

λk+1 x(k+1)α

Γ((k + 1)α + 1)
� y0

= y0 ⊕

∞∑
k=0

λk+1 x(k+1)α

Γ((k + 1)α + 1)
� y0

=

∞∑
k=0

(λxα)k

Γ(kα + 1)
� y0 = Eα(λxα) � y0.

Also in case of λ < 0, we have

y(x) = y0 ⊕ Iα0+ (λ � y0) ⊕
∞∑

k=1

Iα0+

(
λIα0+

)k(λ � y0)

= y0 ⊕ Iα0+ (λ � y0) ⊕
∞∑

k=1

λk+1(Iα0+

)k+1
� y0

= y0 ⊕ λ
xα

Γ(α + 1)
� y0 ⊕

 ∞∑
k=1

λ2k(Iα0+

)2k1

 � y0 ⊕

 ∞∑
k=1

λ2k+1(Iα0+

)2k+11

 � y0

= y0 ⊕

 ∞∑
k=1

λ2k x2kα

Γ(2kα + 1)

 � y0 ⊕ λ
xα

Γ(α + 1)
� y0 ⊕

 ∞∑
k=1

λ2k+1 x(2k+1)α

Γ((2k + 1)α + 1)

 � y0

= y0 ⊕

 ∞∑
k=1

λ2k x2kα

Γ(2kα + 1)

 � y0 ⊕

 ∞∑
k=0

λ2k+1 x(2k+1)α

Γ((2k + 1)α + 1)

 � y0

=

 ∞∑
k=0

(λxα)2k

Γ(2kα + 1)

 � y0 ⊕ λxα
 ∞∑

k=0

(λxα)2k

Γ(2kα + α + 1)

 � y0

= E2α,1(λ2x2α) � y0 ⊕ λxαE2α,α+1(λ2x2α) � y0.

�
Next we consider the representation of solution for initial value problem of the non-homogeneous
fuzzy fractional differential equation with constant coefficient as following

cDα
0+

y(x) = λ � y(x) + g(x), x ∈ I,
y(0) = y0, y0 ∈ RF.

(4.2)

Let’s denote ĝ(x) := g(x) ⊕ λy0, (Lz)(x) := λIα0+
z(x), x ∈ I in order to use Theorem 3.1.

Corollary 4.2. If ∀k ∈ {0, 1, · · · }, Lkg ∈ D(L), then initial value problem (4.2) have the solution as
follows
in case of λ > 0,

y(t) = Eα(λxα) � y0 ⊕

x∫
0

(x − t)α−1g(t)Eα,α(λ(x − t)α)dt,
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in case of λ < 0,

y(x) = E2α,1(λ2x2α) � y0 ⊕ λxαE2α,α+1(λ2x2α) � y0

⊕

x∫
0

(x − t)α−1E2α,α(λ2(x − t)2α)g(t)dt ⊕ λ

x∫
0

(x − t)2α−1E2α,2α(λ2(x − t)2α)g(t)dt.

Proof. In case of λ > 0, we get

y(x) = y0 ⊕ Iα0+g(x) ⊕ Iα0+ (λ � y0) ⊕
∞∑

k=1

Iα0+

(
λIα0+

)k(g(x) ⊕ λ � y0)

= y0 ⊕ Iα0+ (λ � y0) ⊕
∞∑

k=1

Iα0+

(
λIα0+

)kλ � y0 ⊕ Iα0+g(x) ⊕
∞∑

k=1

Iα0+

(
λIα0+

)kg(x)

= Eα(λxα) � y0 ⊕

∞∑
k=0

λkI(k+1)α
0+

g(x)

= Eα(λxα) � y0 ⊕

∞∑
k=0

λk 1
Γ((k + 1)α)

x∫
0

g(t)
(x − t)1−(k+1)αdt

= Eα(λxα) � y0 ⊕

x∫
0

(x − t)α−1Eα,α(λ(x − t)α)g(t)dt.

And in case of λ < 0, we obtain

y(x) = y0 ⊕ Iα0+g(x) ⊕ Iα0+ (λy0) ⊕
∞∑

k=1

Iα0+

(
λIα0+

)k(g(x) ⊕ λy0)

= y0 ⊕

∞∑
k=0

λ�2kI(2k+1)α
0+

g(x) ⊕
∞∑

k=0

λ2k+1I(2k+1)α
0+

y0 ⊕

∞∑
k=1

λ2k−1I2kα
0+ g(x) ⊕

∞∑
k=1

λ2k−1I2kα
0+ λ � y0

=

∞∑
k=0

λ2kI2kα
0+ � y0 ⊕

∞∑
k=0

λ2k+1I(2k+1)α
0+

y0 ⊕

∞∑
k=0

λ2kI(2k+1)α
0+

g(x) ⊕
∞∑

k=1

λ2k−1I2kα
0+ g(x)

=

 ∞∑
k=0

(λ2x2α)k

Γ(2kα + 1)

 � y0 ⊕ λxα
 ∞∑

k=0

(λ2x2α)k

Γ(2kα + α + 1)

 � y0

⊕

∞∑
k=0

λ2k 1
Γ((2k + 1)α)

x∫
0

g(t)
(x − t)1−(2k+1)αdt ⊕

∞∑
k=1

λ2k−1 1
Γ(2kα)

x∫
0

g(t)
(x − t)1−2kαdt

= E2α,1(λ2x2α) � y0 ⊕ λxαE2α,α+1(λ2x2α) � y0

⊕

x∫
0

(x − t)α−1E2α,α(λ2(x − t)2α)g(t)dt ⊕

x∫
0

(x − t)α−1

 ∞∑
k=0

λ2k+1 (x − t)(2k+1)α

Γ((2k + 1)α + α)

 g(t)dt

= E2α,1(λ2x2α) � y0 ⊕ λxαE2α,α+1(λ2x2α) � y0

⊕

x∫
0

(x − t)α−1E2α,α(λ2(x − t)2α)g(t)dt ⊕ λ

x∫
0

(x − t)2α−1E2α,2α(λ2(x − t)2α)g(t)dt.
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5. Conclusion

In this manuscript, we have studied the representation of the solution for initial value problem
for fuzzy linear multi-term fractional differential equations with continuous variable coefficients. We
obtained the representation of solutions for proposed problem by using the representation of solution
of the corresponding fuzzy integral equations.
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