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existence of such instantaneous sentinel by solving a problem of controllability with constraint on the
control.

Keywords: controllability; control optimal; Navier-Stokes system; instantaneous sentinel; pollution
term
Mathematics Subject Classification: 93B05, 49J20, 76D05

1. Introduction

Theoretical hydrodynamics has long attracted the attention of scientists working in a variety of
specialized fields. The mathematical model of a viscous fluids governed by the basic Navier-Stokes
equations had to serve as a space goat ( [5, 18]), answering for all the accumulated absurdities of the
theory of ideals fluids as well as accounting for the lifting force, the drag, the turbulent wake and many
others things.

In the modeling of the Navier-Stokes type, the source terms as well as the initial or boundary
conditions may be unknown.

The sentinel method introduced by J. L. Lions [4] is adapted to the estimation of this incomplete or
unknown data, in the Navier-Stokes type or in the problems governed by parabolic system in general,
for example, pollution in river or a lake. So Since the introduction of the sentinel method many authors
developed several applications, such as in environment, in ecology ( [6–8, 14, 17–19]).

J. Velin [12] consider a Navier-Stokes system with missing initial data condition and perturbation
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distributed term, he use a discriminating distributed sentinel with constraints to characterize the
pollution term in the interval [0,T ] (see [10, 13]), his result is based on an adapted distributed
Carlemen Inequality permitting to revisit a study investigated by O. Nakoulima [21] but the difficult
problem is to characterize this pollution at a fixed time and that what we want to do.

Let Ω be a non-empty open bounded set of R2 with sufficiently smooth boundary Γ, ω ⊂ Ω be a
non-empty bounded open subset. Denote by Q = Ω × [0,T ] and Σ = Γ × ]0,T [ . Let y = y(x, t) be the
solution of the Navier-Stokes system

∂y
∂t

+ y∇y − ∆y + ∇p = f in Q, (1.1)

and
div y = 0 in Q, (1.2)

the initial conditions
y(0) = g in Ω, (1.3)

the boundary condition
y = 0 on Σ, (1.4)

which simulates the transportation of a flow y(x, t) which is submitted to the pressure p(x, t).
Let us introduce the spaces V and H, which are usual in the analysis of Navier-Stokes systems

V =
{
y ∈ (H1

0 (Ω))2, div y = 0
}

(1.5)

H =
{
y ∈ (L2 (Ω))2, div y = 0, y.ν = 0 on Γ

}
, (1.6)

where ν is the unit exterior normal to Γ.

If f ∈ L2 (0,T ; H) and g ∈ H, the system (1.1)–(1.4) has an unique solution such that

y ∈ (0,T,V) ∩ L∞ (0,T,H) (1.7)

y′ ∈ L2 (
0,T,V ′

)
. (1.8)

Remark 1.1. We have y ∈ L2 (0,T ; V) and y′ ∈ L2 (0,T ; V ′), then y is a continuous function from
[0,T ] to H.

We are interested in systems with data that are not completely known, for example the source term

f = ξ + λξ̂

as well as the initial conditions

g = y0 +

N∑
i=1

τîyi
0

where ξ and y0 are given. However, the terms λξ̂ is unknown function so-called pollution term, λ is
a small real parameter.
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The functions ŷi
0, 1 ≤ i ≤ N, are linearly independent in H and belongs to a vector subspace of N

dimension, which we denote by
G =

{̂
y1

0, ŷ
2
0, ..., ŷ

N
0

}
.

The parameters τi, 1 ≤ i ≤ N, are unknown, supposed small so-called missing term.
The question is to obtain information on the pollution term not affected by the missing term of the

initial data in the system
∂y
∂t

+ y∇y − ∆y + ∇p = ξ + λξ̂ in Q, (1.9)

and
div y = 0 in Q, (1.10)

the initial conditions

y(0) = y0 +

N∑
i=1

τîyi
0 in Ω, (1.11)

the boundary condition
y = 0 on Σ. (1.12)

There are two possible approaches to this problem, one is more classical and uses, the least square
method (see G. Chavent [3]), but the problem in this method that the pollution and the missing term
play the same role, so we cannot separate them.

The other method is the sentinel method which is used to study systems of incomplete data. The
notion permits to distinguish and to analyses two types of incomplete data, the pollution term at which
we look for information independently of the missing term that we do not want to identify.

Typically, the Lions sentinel is a linear functional sensitive to certain parameters we are trying to
evaluate, and insensitive to others which do not interest us.

So we show that this functional can be associated to our system and allows to characterize the
pollution term.

In this paper we study this system with incomplete initial data, we use the instantaneous sentinel
concept [21], which relies on the following three objects: Some state equation, some observation
function and some control function to be determined.

2. Setting of the problem

Let y(x, t, λ, τ) = y(λ, τ) with τ = ( τ1, τ2, ..., τN), be the unique solution of the problem (1.9)–(1.12).
We denote by

y(x,T ; λ, τ) = yobs,∀x ∈ O. (2.1)

An observation which is a measure of the concentration of the pollution taken at the fixed time T
and on a non-empty open subset O ⊂ Ω called observatory.

Let h be some function in L2(O), for any control function u ∈ L2(ω), we introduce the functional
S(λ, τ) as follows:

S(λ, τ) =

∫
ω

uy(x,T ; λ, τ)dx +

∫
O

hy(x,T ; λ, τ)dx. (2.2)

S(λ, τ) =

∫
Ω

[
hχOy(x,T ; λ, τ) + uχωy(x,T ; λ, τ)

]
dx, (2.3)
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where χO and χω are the characteristic functions for the open sets O and ω respectively, such that

χO : L2 (Ω) −→ L2 (O)

χω : L2 (Ω) −→ L2 (ω) .

Definition 2.1. Let S is a real function (2.3) depending only on the parameters λ and τ. S is said a
sentinel defined by h if the following conditions is satisfied:

∂S

∂τ
(λ, τ)

∣∣∣∣∣
λ=0,τ=0

= 0 (2.4)

i.e.,
∂S

∂τi
(λ, τ)

∣∣∣∣∣
λ=0,τi=0

= 0, 1 ≤ i ≤ N.

There exists a control u ∈ L2 (ω) such that:

‖u‖L2(ω) = min
α∈U
‖α‖ (2.5)

where U =

{
α ∈ L2 (ω) , such that

∂S

∂τ
(λ, τ)

∣∣∣∣∣
λ=0,τ=0

= 0
}
.

Remark 2.2. 1) Condition (2.4) express insensitivity of S with respect to small variations of τ and
assume the existence of the derivate.

2) According to (2.5) which consists in an optimal criterion of selection for (2.4).
3) Lions sentinel corresponds to the case ω = O; if we choose u = −h, then (2.4) holds, so that

problem (2.5) admits a unique solution, may have an interest only if u , −h.
4) We extend the method of sentinel to the case of observation and control having their supports in

two different open sets, we assumed that O ∩ ω , ∅.

We consider the function y0 and p0 which solve the problem (1.9)–(1.12) for λ = 0 and τi = 0

∂y0

∂t
+ y0∇y0 − ∆y0 + ∇p0 = ξ in Q, (2.6)

and
div y0 = 0 in Q, (2.7)

the initial conditions
y0(0) = y0 in Ω, (2.8)

the boundary condition
y0 = 0 on Σ. (2.9)

We consider the function yτi defined by yτi =
∂y
∂τi

(0, 0), which is the unique solution of the problem

∂yτi

∂t
+ y0∇yτi + yτi∇y0 − ∆yτi + ∇pτi = 0 in Q, (2.10)
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and
div yτi = 0 in Q, (2.11)

the initial conditions
yτi(0) = ŷi

0 in Ω, (2.12)

the boundary condition
yτi = 0 on Σ. (2.13)

Remark 2.3. The condition (2.4) holds if and only if∫
Ω

(
hχO + uχω

)
yτi(T )dx = 0, 1 ≤ i ≤ N. (2.14)

In order to transform this equation, we introduce the classical adjoint state

−
∂q
∂t

+ (y0∇) q + q (∇y0) − ∆q + ∇π = 0 in Q , (2.15)

and
div q = 0 in Q, (2.16)

the initial conditions
q(T ) = hχO + uχω in Ω, (2.17)

the boundary condition
q = 0 on Σ. (2.18)

Theorem 2.4. Let q = (q1, q2) be the solution to the backward problem (2.15)–(2.18), then the existence
of an instantaneous sentinel insensitive to the missing data is equivalent to the null-controllability
problem ∫

Ω

q(0)̂yi
0dx = 0, 1 ≤ i ≤ N (2.19)

i.e
q(0) ∈ G⊥

where G⊥ is the orthogonal of G in L2(Ω).

Proof. Multiplying (2.15) by yτi , and integrating by parts over Ω, we find∫
Ω

q(0)yτi(0)dx −
∫

Ω

q(T )yτi(T )dx = 0, 1 ≤ i ≤ N,

then ∫
Ω

q(0)̂yi
0dx −

∫
Ω

(
hχO + uχω

)
yτi(T )dx = 0, 1 ≤ i ≤ N,

thanks to (2.14), we have: ∫
Ω

q(0)̂yi
0dx = 0, 1 ≤ i ≤ N.

Thus, we obtain
q(0) ⊥ ŷi

0, 1 ≤ i ≤ N

�
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3. Optimal control problem

In this section we are interested to solve the problem (2.5), so we consider the optimization problem

min
u∈M
‖u‖2L2(ω) , (3.1)

with M = {u ∈ L2(ω) such hat, we have (2.4) and
∫

Ω
q(0)̂yi

0dx = 0, 1 ≤ i ≤ N where q is the
solution of (2.15)–(2.18)}.

Lemma 3.1. The problem (3.1) admits in unique solution.

Proof. The set M is a non-empty, closed and convex set. The mapping

v→ ‖v‖2L2(ω)

is continuous, coercive and strictly convex, therefore, the problem (3.1) admits an unique solution
denoted by v̂ ∈ M which satisfies ∥∥∥̂v

∥∥∥
L2(ω)
≤ ‖v‖L2(ω) , ∀v ∈ M.

�

4. Characterization of optimal control

To characterize the optimal control, let us introduce q0 by

−
∂q0

∂t
+ y0∇q0 + q0∇y0 − ∆q0 + ∇π1 = 0 in Q , (4.1)

and
div q0 = 0 in Q, (4.2)

the initial conditions
q0(T ) = hχO in Ω, (4.3)

the boundary condition
q0 = 0 on Σ. (4.4)

And define z = z(u) as the solution of.

−
∂z
∂t

+ y0∇z + z∇y0 − ∆z + ∇π2 = −∇Ψ2 in Q , (4.5)

and
div z = 0 in Q, (4.6)

the initial conditions
z(T ) = uχω in Ω, (4.7)

the boundary condition
z = 0 on Σ. (4.8)
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Then
q = q0 + z = q0 + z(u), π = π1 + π2

we want to find u such that∫
Ω

z(0; u)̂yi
0dx = −

∫
Ω

q0(0)̂yi
0dx, 1 ≤ i ≤ N. (4.9)

We define ρ as the solution of

−
∂ρ

∂t
+ y0∇ρ + ρ∇y0 − ∆ρ + ∇σ = 0 in Q , (4.10)

and
div ρ = 0 in Q, (4.11)

the initial conditions

ρ(0) =

N∑
i=1

αîyi
0 in Ω, (4.12)

the boundary condition
ρ = 0 on Σ, (4.13)

where αi is not determined. Let ξ is the solution of the system

−
∂ξ

∂t
+ y0∇ξ + ξ∇y0 − ∆ξ + ∇r = 0 in Q , (4.14)

and
div ξ = 0 in Q, (4.15)

the initial conditions
ξ(T ) = ρ (T ) χω in Ω, (4.16)

the boundary condition
ξ = 0 on Σ. (4.17)

And we want to determine α = {α1, α2, ..., αN} ∈ R
N such that∫

Ω

ξ(0)̂yi
0dx = −

∫
Ω

q0(0)̂yi
0dx, 1 ≤ i ≤ N.

We introduce the linear operator Λ by

Λα =

{∫
Ω

ξ(0)̂y1
0dx,

∫
Ω

ξ(0)̂y2
0dx, ...,

∫
Ω

ξ(0)̂yN
0 dx

}
. (4.18)

Then
Λ ∈ L(RN ,RN),

and

Λα =

{∫
Ω

α̂y1
0dx,

∫
Ω

α̂y2
0dx, ...,

∫
Ω

α̂yN
0 dx

}
.
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Theorem 4.1. According to the unique continuation theorem of Mizohata [4], we have at least one
sentinel given by

S(λ, τ) =

∫
Ω

(hχO + ρ(T )χω)y(x,T ; λ, τ)dx,

where ρ is the solution of (4.10)–(4.13), so

u = ρ(T )χω

is the solution of (2.4)–(2.5).

Proof. We multiply (4.10) by ρ̃ corresponding to α̃, and we integrate by parts. We obtain

〈Λα, α̃〉 =

∫
ω

ρ(T )ρ̃(T )dx. (4.19)

Therefore, Λ is a symmetric and positive matrix. Let us now set

‖α‖F =

(∫
ω

ρ(T )2dx
)1/2

. (4.20)

And let yi(x, t) the solution of
∂yi

∂t
+ (y0∇) yi − ∆yi + ∇pi

div yi

yi(0)
yi

=

=

=

=

0
0
ŷi

0
0

in
in
in
on

Q,

Q,

Ω,

Σ.

We define in this way a norm on the space F of the functions α, where the Hilbert space F is the
completion of smooth functions for the norm (4.20) ( indeed if ‖α‖F = 0 then ρ = 0 on ω and according
to the unique continuation theorem of Mizohata ρ = 0 on Q so that α = 0 ). Then if F′ denotes the
dual of F, we have

Λ : F −→ F′ is an isomorphism.

Therefore, the equation

Λα = −

{∫
Ω

q(0)̂y1
0dx,

∫
Ω

q(0)̂y2
0dx, ...,

∫
Ω

q(0)̂yN
0 dx

}
(4.21)

admits a unique solution if

−

∫
Ω

q(0)̂yi
0dx ∈ F′, 1 ≤ i ≤ N. (4.22)

We set

β =

{∫
Ω

q(0)̂y1
0dx,

∫
Ω

q(0)̂y2
0dx, ...,

∫
Ω

q(0)̂yN
0 dx

}
then the solution of (4.21) is given by:

α = −Λ−1β.

If we multiplying (4.1) by ρ, and integrating over Q we obtain

u = ρ(T )χω (4.23)

is the solution of (2.5), (2.19). �
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Remark 4.2. The space F is identical to RN , and its norm is equivalent to the Euclidian norm. Then,
Λ is a isomorphism from RN to RN .

4.1. Identification of the pollution term

Let Sobs be the measured sentinel corresponding to the state of the system on the observatory O at
the time T ,

Sobs (λ, τ) =

∫
Ω

(hχO + uχω)yobs(x,T ; λ, τ)dx. (4.24)

Theorem 4.3. The pollution term is estimated as follows:∫ T

0

∫
Ω

q(h)λξ̂dxdt = Sobs (λ, τ) − S (0, 0) , (4.25)

where S (0, 0) is the sentinel corresponding to the state y(x,T ; 0, 0).

Proof. We have

Sobs (λ, τ) = S (0, 0) + λ
∂S

∂λ
(λ, τi)

∣∣∣∣∣
λ=0,τi=0

+ ◦ (λ, τi) , for λ, τ small. (4.26)

And
∂S

∂λ
(λ, τ) =

∫
Ω

(hχO + uχω)yλdx, (4.27)

where yλ defined by yλ =
∂y
∂λ

(0, 0) ( which depends only on ξ̂ and the other known data) is the
unique solution of

∂yλ
∂t

+ y0∇yλ + yλ∇y0 − ∆yλ + ∇pλ = ξ̂ in Q , (4.28)

and
div yλ = 0 in Q, (4.29)

the initial conditions
yλ(0) = 0 in Ω, (4.30)

the boundary condition
yλ = 0 on Σ. (4.31)

And
λ
∂S

∂λ
(λ, τ)

∣∣∣∣∣
λ=0,τ=0

= Sobs (λ, τ) − S (0, 0) . (4.32)

We designate as q(h) the unique solution of (2.15)–(2.18) depending on h.
Multiply (2.15) by y and integrate by part, we obtain∫

Ω

(hχO + uχω)yλdx =

∫ T

0

∫
Ω

q(h)λξ̂dxdt, (4.33)

therefore, the pollution term can be characterized∫ T

0

∫
Ω

q(h)λξ̂dxdt = Sobs (λ, τ) − S (0, 0) .

�
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par des équations aux dérivées partielles Thèse de doctorat, Université de Oum El Bouaghi,
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