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1. Introduction

The focus of this paper is to apply Fourier analytic methods in the context of eigenfunction
expansions in Sobolev spaces to compute the kinetic and potential energy for solutions of initial
boundary value problems of the form

PDE: ρutt = (kux)x, a < x < b, t > 0

BC:
{

sin θ1ux(a, t) − cos θ1u(a, t) = 0
sin θ2ux(b, t) + cos θ2u(b, t) = 0

(1.1)

IC:
{

u(x, 0) = f (x)
ut(x, 0) = 0

Throughout this paper the above partial differential equation will be called the wave equation.
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Further, the coefficients are assumed to satisfy the following classical [6] conditions.
(i) k = k(x) ∈ C1[a, b], ρ = ρ(x) ∈ C[a, b],

k(x), ρ(x) > 0 on [a, b]
(ii) 0 ≤ θi ≤ π/2, i = 1, 2

(1.2)

Applying separation of variables to the wave equation, u(x, t) = X(x)T (t), leads to the boundary
value problem:

ODE: (kX′)′ + µρX = 0, a < x < b

BC:
{

sin θ1X′(a) − cos θ1X(a) = 0
sin θ2X′(b) + cos θ2X(b) = 0

. (1.3)

The boundary conditions are called Dirichlet (D) if θ1 = θ2 = 0, Neumann (N) if θ1 = θ2 = π/2, mixed
(M) if either θ1 = 0 and θ2 = π/2 or θ1 = π/2 and θ2 = 0, and Robin (R) if 0 < θk < π/2 for at
least one k = 1, 2. It is easy to see that the boundary value problem (1.3) has eigenvalue µ = 0 if and
only if the boundary conditions are Neumann. In the latter case we set µ0 = 0 and Λ = N∪{0}, in all
other cases, set Λ = N. Under the conditions (1.2) [6], the boundary value problem has an increasing
sequence {µn}n∈Λ on non-negative eigenvalues, µn → ∞, with corresponding sequence of real valued
eigenfunctions X = {Xn(x)}n∈Λ ⊂ C2[a, b] that form a complete orthogonal system for the Hilbert space
L2
ρ[a, b], the space of all real valued measurable functions square integrable with respect to the weight
ρ(x), the inner product and norm given by

( f , g)ρ =

∫ b

a
f (x)g(x)ρ(x) dx, ‖ f ‖22,ρ =

∫ b

a
f 2(x)ρ(x) dx, (1.4)

respectively. (In settings where the weight ρ = 1, the subscript will be dropped. Similar notation is
used for other weights.)

Given f ∈ L2
ρ[a, b], its Fourier expansion with respect to {Xn} is given by

f ∼
∑
n∈Λ

f̂X(n)Xn(x), where

f̂X(n) =
1

‖Xn‖
2
2,ρ

∫ b

a
f (x) Xn(x) ρ(x)dx, n ∈ Λ. (1.5)

As it is a primary tool and for comparative purposes, Parseval’s theorem for this expansion is stated
here in the following form [6].

Theorem 1.1 (Parseval). If f ∈ L2
ρ[a, b], then

‖ f ‖22,ρ =
∑
n∈Λ

f̂X(n)2‖Xn‖
2
2,ρ. (1.6)

Moreover, for f , g ∈ L2
ρ[a, b], the dual form of the above formula is:

( f , g)ρ =
∑
n∈Λ

f̂X(n)̂gX(n)‖Xn‖
2
2,ρ.

Conversely, if {cn}n∈Λ ⊂ R such that
∑

n∈Λ c2
n‖Xn‖

2
2,ρ < ∞, then there is f ∈ L2

ρ[a, b] such that cn =

f̂X(n), n ∈ Λ.
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Returning to the perspective of separation of variables, the Fourier analytic form for the solution of
IBVP (1.1) becomes: ∑

n∈Λ

f̂X(n) cos
√
µnt Xn(x). (1.7)

By Parseval’s theorem, there is a function u(·, t) ∈ L2
ρ[a, b] such that

û(·, t)X(n) = f̂X(n) cos
√
µnt, n ∈ Λ

and further,

sup
t≥0
‖uN(·, t) − u(·, t)‖22,ρ ≤

∞∑
n=N+1

f̂X(n)2‖Xn‖
2
2,ρ → 0 (N → ∞),

where uN(x, t) denotes the N th partial sum of the series in (1.7). It is then easy to show that u(x, t) is a
weak solution of the wave equation, i.e.,∫ ∞

0

∫ b

a
u(x, t)

[
ρ(x)φtt(x, t) − (k(x)φx(x, t))x

]
dxdt = 0,

for all φ ∈ C∞c ((a, b) × (0,∞)).
In order to fix energy forms for all boundary conditions, recall the energy method applied to the

wave equation. Suppose u(x, t) is a smooth solution of the wave equation, multiply the equation by ut,
integrate over the spacial interval [a, b], apply integration by parts on the right hand side, then upon
rearrangement of terms:

d
dt

[
1
2
‖ut(·, t)‖22,ρ +

1
2
‖ux(·, t)‖22,k

]
= B.T., (1.8)

where
B.T. = k(b)ux(b, t)ut(b, t) − k(a)ux(a, t)ut(a, t). (1.9)

Independent of boundary conditions, the first term in brackets in (1.8) is the total kinetic energy term
and will be denoted KE(t):

KE(t) =
1
2
‖ut(·, t)‖22,ρ. (1.10)

If the boundary conditions are of type (D), (N), or (M), then B.T. = 0 and (1.8) represents energy
conservation where the second term in brackets is the total potential energy, denoted PE(t). In the
case of Robin boundary conditions, the total potential energy must be modified due to the exchange of
potential energy at the boundary. Indeed, assuming 0 < θk < π/2, for k = 1, 2, substituting from the
boundary conditions gives

B.T. = −
d
dt

1
2

[
k(b) cot θ2u2(b, t) + k(a) cot θ1u2(a, t)

]
and hence the total potential energy terms is:

PE(t) =
1
2
‖ux(·, t)‖22,k +

1
2

[
k(b) cot θ2u2(b, t) + k(a) cot θ1u2(a, t)

]
. (1.11)

Remark 1.1. It should be clear to the reader and is to be understood in the sequel, that if θ1 = 0 or
θ2 = 0, then the corresponding term on the right hand side is dropped. With this convention, (1.11)
provides the formula for potential energy for any of the boundary conditions under consideration.
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1.1. A model example

Consider the following classical vibrating string initial value problem (IBVP)

PDE: utt = uxx, 0 < x < π, t > 0
BC: u(0, t) = u(π, t) = 0 (1.12)

IC:
{

u(x, 0) = f (x)
ut(x, 0) = 0

where u = u(x, t). If f ∈ L2[0, π], separation of variables provides a weak solution of the above PDE
given by

u(x, t) =

∞∑
n=1

f̂s(n) cos nt sin nx, (1.13)

where the Fourier sine coefficients are given by

f̂s(n) =
2
π

∫ π

0
f (x) sin nx dx, n = 1, 2, . . . .

Parseval’s equality in this case has form ‖ f ‖22 = π
2

∑∞
n=1 f̂s(n)2.

The kinetic and potential energies respectively, are given by:

KE(t) =
1
2

∫ π

0
u2

t (x, t) dx, PE(t) =
1
2

∫ π

0
u2

x(x, t) dx,

for which a stronger hypothesis on the intial data is needed. Thinking in terms of differentiating the
series (1.13) term by term and Parseval’s equality, it is natural to assume

∞∑
n=1

n2 f̂s(n)2 < ∞. (1.14)

This hypothesis has significant consequences and are listed below.

1.
∑

n | f̂s(n)| < ∞. Hence, the Fourier sine series of f ,

f ∼
∞∑

n=1

f̂s(n) sin nx, (1.15)

converges uniformly to f on [0, π], f ∈ C[0, π], and

f (0) = f (π) = 0. (1.16)

2. Again as a consequence of Parseval’s equality, the weak derivative f ′ of f exists, f ′ ∈ L2[0, π],
and is given in L2[0, π] by the term by term derivative of the series (1.15). Furthermore, the
Fourier cosine coefficients of f ′,

f̂ ′c(n) =
2
π

∫ π

0
f ′(x) cos nx dx,

are given by
f̂ ′c(n) = n f̂s(n), n = 1, 2, . . . , f̂ ′c(0) = 0. (1.17)

AIMS Mathematics Volume 4, Issue 3, 463–481.



467

3. The series (1.13) converges uniformly on [0, π] × [0,∞), so the weak solution u(x, t) satisfies the
boundary conditions, and further, the weak derivatives ut(x, t) and ux(x, t) are in L2[0, π] for all
t > 0. Consequently, the kinetic and potential energies can be computed using Parseval’s equality:

KE(t) =
π

4

∞∑
n=1

n2 f̂s(n)2 sin2 nt, PE(t) =
π

4

∞∑
n=1

n2 f̂s(n)2 cos2 nt (1.18)

and the energy conservation reads

KE(t) + PE(t) =
π

4

∞∑
n=1

n2 f̂s(n)2 =
1
2
‖ f ′‖22 = E.

4. From (1.18), the kinetic and potential energy can be expressed in the form

KE(t) =
E
2
− g(t), PE(t) =

E
2

+ g(t), (1.19)

where g(t) is a continuous π−periodic function with mean value over a period equal to zero. Thus,
(1.19) represents an energy equipartition principle for the vibrating string: averaging the kinetic
and potential energy over a time cycle, the resulting values are both one-half the total energy E.
This result seems to have been first noticed in [5].

Item 2 above implies that f ∈ W1,2[0, π], the Sobolev space of all g ∈ L2[0, π] whose weak derivatives
g′ ∈ L2[0, π]. Two things are hidden in items 1 and 2 above. The first is the fact that within the space
W1,2[0, π], statements (1.14), (1.16), and (1.17) are equivalent. The space W1,2[0, π] is a Hilbert space
with natural inner product and norm given by

( f , g)W1,2 = ( f , g) + ( f ′, g′), ‖ f ‖2W1,2 = ‖ f ‖22 + ‖ f ′‖22.

The second hidden observation is that the completeness of the orthogonal systems {sin nx}∞1 and
{cos nx}∞0 in L2[0, π] manifests in the Sobolev setting as the completion of the orthogonal set {sin nx}∞1
in the Hilbert space W1,2

d [0, π] (inner product and norm inherited from W1,2[0, π]) of all functions
f ∈ W1,2[0, π] that satisfy (1.16). These facts are consequences of more general results in the sequel
and lie at the heart of extending items 1–4 to more general initial boundary value problems.

1.2. Overview of the main results

The Sobolev space W1,2[a, b] is defined as the class of all f ∈ L2
ρ[a, b] whose weak derivative

f ′ ∈ L2
k[a, b]. Functions in W1,2[a, b] that agree except on a set of measure zero are identified. Imposing

the inner product
( f , g)W1,2 = ( f , g)ρ + ( f ′, g′)k,

and induced norm
‖ f ‖2W1,2 = ‖ f ‖22,ρ + ‖ f ′‖22,k, (1.20)

W1,2[a, b] is a Hilbert space. Notice that the norm is equivalent to the usual norm (one without weights)
due to the conditions on the functions ρ and k. The following two fundamental results on Sobolev
spaces will be of use in the sequel [9, 10].
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• The Sobolev embedding theorem states that W1,2[a, b] ⊂ C[a, b] and the Sobolev inequality is:

‖ f ‖∞ = max
x∈[a,b]

| f (x)| ≤ C ‖ f ‖W1,2 , f ∈ W1,2[a, b], (1.21)

for some constant C > 0 independent of f .
• C1[a, b] ⊂ W1,2[a, b] and is dense; this allows an alternative useful definition of W1,2[a, b] as the

closure of C1[a, b] with respect to the above norm.

The main result for IBVP (1.1) in the case of Dirichlet, Neumann, and Mixed boundary conditions is
based on the observation that the set of derivatives of the eigenfunctions, X′ = {X

′

n(x)} is an orthogonal
set in L2

k[a, b]. This is used to determine the precise Sobolev setting for which energy computations
can be carried out using a Parseval identity. Let C1

d[a, b] be the closed subspace of all f ∈ C1[a, b]
that satisfy any Dirichlet boundary conditions present in the BVP (1.3). The appropriate setting is the
space W1,2

d [a, b], the closure of C1
d[a, b] with respect to the norm (1.20); W1,2

d [a, b] is a Hilbert space
with norm and inner product inherited from W1,2[a, b].

Theorem 1.2. Let IBVP (1.1) have boundary conditions of type (D), (N) or (M). If f ∈ W1,2
d [a, b], then

1. the series (1.7) is uniformly convergent on [a, b] × [0,∞), u(x, t) is a weak solution of the wave
equation with ut(·, t) ∈ L2

ρ[a, b] and u(·, t) ∈ W1,2
d [a, b] for all t > 0;

2. the kinetic, potential, and total conserved energies are given by the respective formulas

KE(t) =
1
2

∞∑
n=1

µn f̂X(n)2 sin2 √µnt ‖Xn‖
2
2,ρ (1.22)

PE(t) =
1
2

∞∑
n=1

µn f̂X(n)2 cos2 √µnt ‖Xn‖
2
2,ρ (1.23)

E =
1
2

∞∑
n=1

µn f̂X(n)2‖Xn‖
2
2,ρ = ‖ f ′‖22,k; (1.24)

3. there is a uniformly almost periodic function g(t) with mean value zero such that

KE(t) =
E
2
− g(t), PE(t) =

E
2

+ g(t).

Notice that the solution provided in the above theorem will satisfy any Dirichlet boundary condition
present but may not satisfy a Neuman condition as the following example illustrates.

Example 1.3. Let a = 0, b = π/2, θ1 = 0, θ2 = π/2 and take k = ρ = 1. For an initial condition
take f (x) = x. Using the method of reflection, we extend this this problem to the interval [0, π] by
extending the initial data to be even about x = π/2. The initial data for the extended problem then
has a singularity in the derivative at x = π/2 and further, this singularity propagates in the solution.
Restricting the solution to the original interval, we see that the Neuman boundary condition at π/2 will
not be satisfied. None the less, u(x, t) is a weak solution of the wave equation built from the IBVP, has
finite energy satisfying the conclusions of the above theorem.

In the case where BVP (1.3) has a Robin boundary condition, the set {X
′

n(x)} is characteristically
not orthogonal in L2

k[a, b]. None the less, a result with similar conclusions as above can be obtained by
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imposing stronger smoothness on the initial data as follows. Let W2,2[a, b] be the Sobolev space of all
functions f ∈ L2[a, b] with weak derivatives up to order two in L2[a, b]. With inner product and norm
given by

( f , g)W2,2 = ( f , g)W1,2 + ( f ′′, g′′)ρ
‖ f ‖2W2,2 = ‖ f ‖22,ρ + ‖ f ′‖22,k + ‖ f ′′‖22,ρ, (1.25)

W2,2[a, b] is a Hilbert space, the norm being equivalent to the usual one (with all weights equal to
one) due to the conditions on the functions k and ρ. Then standard theory gives that C2[a, b] is dense
in W2,2[a, b] and moreover, W2,2[a, b] is the closure of C2[a, b] with respect to the above norm. Let
C2

bc[a, b] be the subspace of all C[a, b]−functions that satisfy the boundary conditions in BVP (1.3)
and let W2,2

bc [a, b] be the closure of C2
bc[a, b] with respect to the W2,2−norm. Then W2,2

bc [a, b] is a Hilbert
space with inner product and norm inherited from W2,2[a, b]. The following result valid for all types of
boundary conditions, in particular Robin type boundary conditions.

Theorem 1.4. Consider the IBVP (1.1) with any boundary conditions. If f ∈ W2,2
bc [a, b] , then

1. the series (1.7) is uniformly convergent on [a, b] × [0,∞), u(x, t) is a weak solution of the wave
equation with ut(·, t) ∈ L2

ρ[a, b] and u(·, t) ∈ W2,2
bc [a, b] for all t > 0;

2. the kinetic and potential energies are given by (1.10) and (1.11) respectively and the total
conseved energy is given by

E =
1
2

∞∑
n=1

µn f̂X(n)2‖Xn‖
2
2,ρ

=
1
2
‖ f ′‖22,k +

1
2

[
k(b) cot θ2 f 2(b) + k(a) cot θ1 f 2(a)

]
,

where the convention of Remark 1.1 is to be applied;
3. energy equipartition in the form of (3) of Theorem 1.2 holds.

The formulas for kinetic and potential energy in Theorems 1.2 and 1.4 are striking as they unify
energy computations via Fourier analysis for all classical boundary conditions and seem to have been
overlooked in the literature. The model example is a special case of Theorem 1.2 except in regards to
energy equipartition. Periodicity of the kinetic and potential energy apparently occurs only for
boundary conditions of the type considered in the theorem and when the coefficients k(x) and ρ(x) are
constant. In contrast, note that sufficent smoothness is present in Theorem 1.4 to guarentee the
solution satisfies the boundary conditions. Section 2 contains results of independent interest on
eigenfunction expansions and Parseval type results for the spaces W1,2

d [a, b] and W2,2
bc [a, b] and

supplies the proof of Theorem 1.2. The ideas in the Parseval theorem for W2,2
bc [a, b] (see Theorem 2.8)

motivate a natural definition for fractional Sobolev spaces in the context of boundary value problems
that lead to generalizing Theorem 1.2 to all boundary conditions considered in this paper as well as
relaxing the smoothness hypothesis in Theorem 1.4. Section 3 is devoted to these unifying
generalizations and provides extension of the results to the IBVP (1.1) where the initial conditions are
replaced by

IC:
{

u(x, 0) = 0
ut(x, 0) = g(x)

. (1.26)
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Remark 1.2. Several additional comments are in order pertinent to the content of this paper.

1. Energy equipartition ideas seem to appear first in [4, 8] in the realm of abstract wave equations
of form utt = Au, where A is a positive self adjoint operator on a Hilbert space with continuous
spectrum. In the setting of this paper, the spectrum is discrete and the appearance of almost
periodic functions is natural. The notion of uniform almost periodic function was introduced by
Bohr (see [3] or [2]). The only fact from the theory we use is Bohr’s theorem that a uniform
limit of a sequence of uniformly almost periodic functions results in a uniformly almost periodic
function.

2. This paper is devoted to a general form of the wave equation in one spatial dimension. Many of
the results can be extended to higher dimensions, a topic of a forthcoming article.

3. Throughout this paper the symbol C will be used to denote a constant independent of parameters
and functions involved in various estimates and it’s value typically changes with each occurance.

2. Parseval theorems in Sobolev spaces

2.1. Boundary conditions of Dirichlet, Neumann, and mixed type

The following lemma is a key observation.

Lemma 2.1. Consider the boundary value problem (1.3) with boundary conditions of type (D), (N), or
(M). The the set of derivatives of the eigenfunctions X′ = {X′n}

∞
n=1 forms an orthogonal set in L2

k[a, b].
Moreover,

‖X
′

n‖
2
2,k = µn‖Xn‖

2
2,ρ. (2.1)

Proof. This is an exercise in integration by parts providing a formula that is useful later:∫ b

a
X
′

n(x)X
′

m(x)k(x)dx = Xn(b)X
′

m(b)k(b) − Xn(a)X′m(a)k(a)

−

∫ b

a
Xn(x)

(
k(x)X

′

m(x)
)′

dx

= Xn(b)X
′

m(b)k(b) − Xn(a)X′m(a)k(a)

+ µm

∫ b

a
Xn(x)Xm(x)ρ(x)dx.

The result follows applying the boundary conditions and the orthogonality of the eigenfunctions in
L2
ρ[a, b]. �

Given f ∈ W1,2[a, b] with Fourier expansion

f ∼
∑
n∈Λ

f̂X(n)Xn(x),

a basic problem is to relate the formally derived series∑
n∈Λ

f̂X(n)X
′

n(x)
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to the Fourier expansion of f ′,

f ′ ∼
∞∑

n=1

f̂ ′X′(n)X
′

n(x).

To address this, let f ∈ C1[a, b] and apply integration by parts: for n ≥ 1,

f̂ ′X′(n) =
1

‖X′n‖
2
2,k

∫ b

a
f ′(x)X

′

n(x)k(x)dx

=
1

‖X′n‖
2
2,k

(
f (x)X

′

n(x)k(x)
∣∣∣b
a

+
µn

‖X′n‖
2
2,k

∫ b

a
f (x)Xn(x)ρ(x) dx.

Rewritten this becomes
f̂ ′X′(n) = BT(n) + f̂X(n), (2.2)

where
BT(n) =

1
‖X′n‖

2
2,k

(
k(b) f (b)X

′

n(b) − k(a) f (a)X
′

n(a)
)
. (2.3)

By density argument and the fact that f ∈ C[a, b], (2.2) holds for f ∈ W1,2[a, b]. A useful formula
results if BT(n) = 0 for all n and this can be arranged by forcing the function f (x) to satisfy any
Dirichlet condition present in the boundary conditions (if any). In fact, this condition is also necessary.

Lemma 2.2. Let f ∈ W1,2[a, b]. Then f̂ ′X′(n) = f̂X(n), n = 1, 2, . . . if and only if:

(D-BC) f satisfies any Dirichlet boundary condition present in (1.3).

Proof. Sufficiency of the condition being clear, we turn to necessity of the condition. If the boundary
conditions are Neumann, the result is trivial-no other conditions on f are needed. In a mixed boundary
condition problem such as X(a) = 0, X′(b) = 0, then for BT(n) = 0 we must have f (a)X

′

n(a) = 0, for
all n. It follows that f (a) = 0 as X

′

n(a) cannot be zero. The argument for the other mixed case is similar.
In the case of Dirichlet boundary conditions, we apply a consequence of the Sturm oscillation theorem
[6] that the nth−eigenfunction Xn(x) has precisely n − 1 roots in the interval (a, b). For n = 1, this
implies that X

′

1 has opposite sign at both endpoints (notice that X
′

1 cannot be zero at either endpoint).
Hence from BT(1) = 0, f (b) = c f (a) for some c < 0. Applying the same reasoning to the second
eigenfunction leads to the conclusion that f (b) = d f (a) for some d > 0. Taken together, it follows that
f (a) = f (b) = 0. �

The above lemma essentially motivates the definition of the Hilbert space W1,2
d [a, b] in the

introduction. The following in a restatement of Lemma 2.2 in useful form.

Proposition 2.3. Let f ∈ W1,2[a, b]. Then the following are equivalent:

1. f ∈ W1,2
d [a, b];

2. f̂ ′X′(n) = f̂X(n), n = 1, 2, . . . .

Remark 2.1. A special case of item (2) above is the classical formula (1.17).

Proposition 2.4. Let BVP (1.3) have boundary conditions of type (D), (N), or (M). Then the collection
of eigenfunctions {Xn}n∈Λ is a complete orthogonal set in W1,2

d [a, b].
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Proof. Orthogonality follows from Lemma 2.1. Suppose f ∈ W1,2
d [a, b] with ( f , Xn)W1,2 = 0 for all n.

Then using (2.1),

( f , Xn)W1,2 =

∫ b

a
f (x)Xn(x)ρ(x)dx +

∫ b

a
f ′(x)X

′

n(x)k(x)dx

= ‖Xn‖
2
2,ρ f̂X(n) + ‖X

′

n‖
2
2,k f̂ ′X′(n)

= ‖Xn‖
2
2,ρ(1 + µn) f̂X(n). (2.4)

It follows that f̂X(n) = 0 for all n ∈ Λ and hence f = 0 as the orthogonal set {Xn} is complete in
L2
ρ[a, b]. �

As a consequence, Parseval’s equality holds: if f ∈ W1,2
d [a, b], then

‖ f ‖2W1,2 =
∑
n∈Λ

f̂ (n)2‖Xn‖
2
W1,2 , (2.5)

where
f̂ (n) =

( f , Xn)W1,2

‖Xn‖
2
W1,2

, n ∈ Λ.

From (2.4) and ‖Xn‖
2
W1,2 = (1 + µn)‖Xn‖

2
2,ρ it follows that f̂ (n) = f̂X(n), for all n. This leads to the

following reformulation of the above Parseval relation in a form useful for energy computations.

Theorem 2.5. Let BVP (1.3) have boundary conditions of type (D), (N), or (M). If f ∈ W1,2
d [a, b] then∑

n∈Λ

µn f̂X(n)2‖Xn‖
2
2,ρ < ∞, (2.6)

‖ f ‖2W1,2 =
∑
n∈Λ

(1 + µn) f̂X(n)2‖Xn‖
2
2,ρ, (2.7)

and in particular,

‖ f ′‖22,k =

∞∑
n=1

µn f̂X(n)2‖Xn‖
2
2,ρ =

∞∑
n=1

f̂ ′X′(n)2‖X
′

n‖
2
2,k.

Conversely, if {cn}n∈Λ ⊂ R is a sequence satisfing

∞∑
n=1

n2c2
n‖Xn‖

2
2,ρ < ∞, (2.8)

then there is f ∈ W1,2
d [a, b] such that cn = f̂X(n), n ∈ Λ.

Proof. For the first statement, f ′ ∈ L2
k[a, b] and Bessel’s inequality give

∞∑
n=1

f̂ ′X′(n)2‖X
′

n‖
2
2,k < ∞.

The latter series is the same as (2.6) by Proposition 2.3 and (2.1). The Parseval identity (2.7) then
follows by the preceeding discussion. For the converse, the hypothesis implies

∑
n∈Λ c2

n‖Xn‖
2
2,ρ < ∞
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and by Parseval’s theorem for eigenfunction expansions, cn = f̂X(n), n ∈ Λ for some f ∈ L2
ρ[a, b]. It

remains to prove that the weak derivative f ′ ∈ L2
k[a, b]. Again by [6] , µn ∼ O(n2) (n→ ∞), and hence

(2.8) implies
∑

n µn f̂X(n)2‖Xn‖
2
2,ρ < ∞. Let

FN(x) =
∑
n≤N

f̂X(n)Xn(x)

be the partial sums of the eigenfunction expansion of f . Then ‖FN − f ‖2,ρ → 0 as N → ∞ since
f ∈ L2

ρ[a, b]. Since F
′

N(x) =
∑

n≤N f̂X(n)X
′

n(x), Lemma 2.1 and standard computation gives for N > M,

‖F
′

N − F
′

M‖
2
2,k =

N∑
n=M+1

f̂X(n)2‖X
′

n‖
2
2,k =

N∑
n=M+1

µn f̂X(n)2‖Xn‖
2
2,ρ → 0,

as M,N → ∞. Hence, there is g ∈ L2
k[a, b] such that ‖F

′

N − g‖2,k → 0 as N → ∞. The claim is g = f ′,
the weak derivative of f . Indeed, if φ ∈ C∞c (a, b), then∫ b

a
g(x)φ(x)dx = lim

N→∞

∫ b

a
F
′

N(x)φ(x)dx = lim
N→∞

∑
n≤N

f̂X(n)
∫ b

a
X
′

n(x)φ(x)dx

= − lim
N→∞

∑
n≤N

f̂X(n)
∫ b

a
Xn(x)φ′(x)dx = −

∫ b

a
f (x)φ′(x)dx.

It now follows that ‖FN − f ‖W1,2 → 0 as N → ∞ and the result follows since FN ∈ C2
bc[a, b] ⊂

C1
d[a, b]. �

The focus of Proposition 2.3 and Theorem 2.5 is the relation between differentiating an
eigenfunction expansion term by term and Parseval’s equality for W1,2

d [a, b], ideas that underly our
study of IBVP (1.1) for boundary conditions of Dirichlet, Neumann, or mixed type.

All the needed machinery is in place to supply the following.

Proof of Theorem 1.2. From f ∈ W1,2
d [a, b] follows for all t ≥ 0,∑

n∈Λ

f̂X(n)2 cos2 √µnt ‖Xn‖
2
2,ρ < ∞ and

∞∑
n=1

f̂X(n)2 cos2 √µnt ‖X
′

n‖
2
2,k =

∞∑
n=1

µn f̂X(n)2 cos2 √µnt ‖Xn‖
2
2,ρ < ∞.

Consequently the series
u(x, t) =

∑
n∈Λ

f̂X(n) cos
√
µnt Xn(x) (2.9)

converges in L2
ρ[a, b] for all t ≥ 0 and by Theorem 2.5 is the Fourier eigenfunction expansion of

x → u(x, t) and this function is in W1,2
d [a, b]. Further, the series of term by term derivatives converges

in L2
k[a, b] and defines the weak derivative ux(x, t). For N ∈ N, let

uN(x, t) =
∑
n≤N

f̂X(n) cos
√
µnt Xn(x).
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By Sobolev’s inequality, for a constant C > 0,

‖uN(·, t) − u(·, t)‖2∞ ≤ C ‖uN(·, t) − u(·, t)‖2W1,2 , (2.10)

and using Corollary 2.5 and simple estimate we have

sup
t≥0
‖uN(·, t) − u(·, t)‖2∞ ≤ C

∞∑
n=N+1

(1 + µn) f̂X(n)2‖Xn‖
2
2,ρ.

Since the right hand side tends to zero as N → ∞, we have proved (1) in Theorem 1.2. The series of
term by term derivative of (2.9) with respect to t converges in L2

ρ−norm to the weak derivative ut(x, t)
and the formula for the kinetic energy (1.10) follows from Theorem 1.1. The potential energy formula
(1.11) is now immediate from Theorem 2.5. The proof of (2) in Theorem 1.2 is complete. For (3) in
the theorem, using the half-angle formulas for sine and cosine in the formulas for kinetic and potential
energy give

KE(t) = E/2 − g(t) and PE(t) = E/2 + g(t),

where

g(t) =
1
4

∞∑
n=1

µn f̂X(n)2‖Xn‖
2
2,ρ cos 2

√
µnt.

The latter series is uniformly convergent on [0,∞) to a uniformly almost periodic function. Integrating
term by term, ∣∣∣∣∣∣ 1

T

∫ T

0
g(t)dt

∣∣∣∣∣∣ =
1

2T

∣∣∣∣∣∣∣
∞∑

n=1

µ1/2
n f̂X(n)2‖Xn‖

2
2,ρ sin 2

√
µnT

∣∣∣∣∣∣∣
≤

1
2T

∞∑
n=1

µ1/2
n f̂X(n)2‖Xn‖

2
2,ρ

and it follows that g has mean value zero. This concludes the proof of Theorem 1.2. �

2.2. Boundary conditions in general

As mentioned in the introduction, in the case where the boundary conditions in BVP (1.3) are of
Robin type, the set {X

′

n(x)} is characteristically not orthogonal in L2
k[a, b]. This can be seen via the

formula obtained in the proof of Lemma 2.1:∫ b

a
X
′

n(x)X
′

m(x)k(x)dx = Xn(b)X
′

m(b)k(b) − Xn(a)X′m(a)k(a).

In the case where there is a Robin boundary condition at one end point, say x = b, and a Dirichlet
or Neumann condition at x = a, the result follows as neither Xl or X

′

l can equal zero at x = b for all
l. When there is a Robin condition at both ends, applying the boundary conditions the above formula
takes the form∫ b

a
X
′

n(x)X
′

m(x)k(x)dx = − [k(b) cot θ2Xn(b)Xm(b) + k(a) cot θ1Xn(a)Xm(a)] .
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If n and m have the same parity, then arguments used earlier based on the zeros of the eigenfunctions
forces both terms in the bracket to have the same sign and hence the right hand side cannot equal zero.

Independent of this fact, stronger smoothness assumptions and boundary control lead to formulas
useful in computing potential energy. Within this subsection analogs of Lemma 2.2, Proposition 2.3,
and Theorem 2.5 will be obtained for W2,2[a, b].

Introducing the differential operator

L = −
1
ρ(x)

d
dx

(
k(x)

d
dx

)
,

then applying integration by parts twice with f ∈ C2[a, b] yields

L̂ f X(n) = BT(n) + µn f̂X(n), (2.11)

where

BT(n) =
1

‖Xn‖
2
2,ρ

{
k(b)

[
f (b)X

′

n(b) − f ′(b)Xn(b)
]

+ k(a)
[
f ′(a)Xn(a) − f (a)X

′

n(a)
]}
. (2.12)

If f ∈ W2,2[a, b], then f and f ′ ∈ C[a, b] and L f ∈ L2[a, b]. Hence by a density argument the above
formula is valid on W2,2[a, b]. We are interested in the useful case when BT(n) = 0 for all n.

Lemma 2.6. Consider BVP (1.3) with any of the aforementioned boundary conditions. Let
f ∈ W2,2[a, b]. Then L̂ f X(n) = µn f̂X(n), n = 1, 2, . . . if and only if f satisfies the boundary conditions
in BVP (1.3).

Proof. Sufficiency is easily shown applying the boundary conditions in (2.12). For the proof of
necessity there are nine cases to be considered and they are all similar. To exempliy, the proof is
provided in the case of a Robin boundary condition at both endpoints. In this case, applying the
boundary conditions satisfied by the eigenfunctions and assuming BT(n) = 0 gives

k(b)Xn(b)
[
g(b) cot θ2 + g′(b)

]
+ k(a)Xn(a)

[
g′(a) − g(a) cot θ1

]
= 0.

The sign of each term in the above sum is determined by the parity of n and the same argument used
in Lemma 2.2 yields the result. �

The analytically useful reformulation of the above lemma and analog of Proposition 2.3 is as
follows.

Proposition 2.7. Consider BVP (1.3) with any boundary conditions and let f ∈ W2,2[a, b]. Then the
following are equivalent.

1. f ∈ W2,2
bc [a, b];

2. L̂ f X(n) = µn f̂X(n), n = 1, 2, . . . ;

The following theorem essentially provides a Parseval theorem for W2,2
bc [a, b] and can be used for

energy computations with Robin boundary conditions. In the case of boundary conditions of type (D),
(N), or (M) it is a weaker result than Theorem 2.5 due to stronger smoothness hypothesis.
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Theorem 2.8. Consider BVP (1.3) with any boundary conditions. If f ∈ W2,2
bc [a, b], then

∞∑
n=1

µ2
n f̂X(n)2‖Xn‖

2
2,ρ < ∞ (2.13)

and

‖ f ′‖22,k + k(b) cot θ2 f 2(b) + k(a) cot θ1 f 2(a) =

∞∑
n=1

µn f̂X(n)2‖Xn‖
2
2,ρ. (2.14)

Conversely, if {cn} ⊂ R such that
∞∑

n=1

n4c2
n‖Xn‖

2
2,ρ < ∞,

then there is f ∈ W2,2
bc [a, b] such that cn = f̂X(n), n ∈ Λ.

Proof. Since L f ∈ L2
ρ[a, b], (2.13) follows from Parseval’s theorem for eigenfunction expansion with

respect to {Xn}n∈Λ and Proposition 2.7. If f ∈ C2
bc[a, b], integration by parts and the boundary conditions

yeild the identity ∫ b

a
f (x)L f (x)ρ(x)dx = ‖ f ′‖22,k + k(b) cot θ2 f 2(b) + k(a) cot θ1 f 2(a).

This formula is valid for f ∈ W2,2
bc [a, b] by a density argument. Applying the dual form of Parseval’s

equality (1.6) to the left hand side then concludes the proof of (2.14). The converse is obtained in a
fashion similar to that of Theorem 2.5 with the following additions. Using the notation in that proof,
we have that ‖FN − f ‖2,ρ → 0 as N → ∞ and the sequence {LFN}

∞
n=1 converges in L2

ρ−norm. Let
N > M + 1 and consider the estimate

‖F
′

N − F
′

M‖2,k ≤

N∑
n=M+1

| f̂X(n)| ‖X
′

n‖2,k.

In the case of boundary conditions of type (D), (N), or (M), ‖X
′

n‖2,k =
√
µn‖Xn‖2,ρ from Lemma 2.1.

Assuming a boundary condition of type (R), using the identity in the proof of this Lemma gives the
estimate ‖X

′

n‖2,k ≤
√
µn‖Xn‖2,ρ. It follows for all boundary conditions that

‖F
′

N − F
′

M‖2,k ≤

N∑
n=M+1

√
µn | f̂X(n)| ‖Xn‖2,ρ.

Applying the Cauchy-Schwarz inequality we have

‖F
′

N − F
′

M‖2,k ≤

 N∑
n=M+1

1
µn

1/2  N∑
n=M+1

µ2
n f̂X(n)2‖Xn‖

2
2,ρ

1/2

.

Since
∑∞

n=1
1
µn
< ∞, it follows that the sequence {F

′

N} is Cauchy in L2
k[a, b] and hence converges to a

function, say g ∈ L2
k[a, b]. Arguments used previously show that g = f ′ and thus f ′ ∈ L2

k[a, b] with
‖F

′

N − f ′‖2,k → 0 as N → ∞. We have

F
′′

N =
k′F

′

N − ρ(LFN)
k

,
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and by the conditions on k and ρ,

‖F
′′

N − F
′′

M‖2,ρ ≤ C
(
‖F

′

N − F
′

M‖2,k + ‖LFN − LFM‖2,ρ

)
,

for some constant C. Hence there is h ∈ L2
ρ[a, b] such that ‖F

′′

N − h‖2,ρ → 0 as N → ∞. By a duality
argument h = f ′′ and we can conclude that ‖FN − f ‖W2,2 → 0 as N → ∞. The proof is concluded with
the observation that FN ∈ C2

bc[a, b]. �

The above result can be used to prove Theorem 1.4 in a fashion similar to the proof of Theorem 1.2.

3. Fractional Sobolev spaces: unification & variations

Fractional Sobolev spaces associated with a particular Sturm-Liouville problem were introduced
in [1]. Our treatment below is similar, applies to all Sturm-Liouville problems (1.3), is well motivated
by the form of the energy calculations of interest in this paper, and serves to unify Theorem 1.2 and
Theorem 1.4.

The conclusion of Theorem 2.8 (2.14) suggests a simplier description of W2,2
bc [a, b] that lends itself

to defining fractional powers of the operator L and associated fractional Sobolev spaces. Indeed, we
see that W2,2

bc [a, b] is the set of all f ∈ L2
ρ[a, b] such that (2.13) holds. The norm ‖ · ‖(2,2) defined by

‖ f ‖2(2,2) = ‖ f ‖22,ρ + ‖L f ‖22,ρ,

is equivalent to the norm on W2,2[a, b] given by (1.25). Furthermore, the action of L on W2,2
bc [a, b] can

be understood through its spectral representation:

L f (x) =

∞∑
n=1

µn f̂X(n)Xn(x),

convergence in L2
ρ−norm. This suggests formally defining for s ≥ 0,

Ls/2 f (x) =

∞∑
n=1

µs/2
n f̂X(n)Xn(x)

and defining

H s[a, b] = { f ∈ L2[a, b] | Ls/2 f ∈ L2
ρ[a, b]}

= { f ∈ L2[a, b] |
∞∑

n=1

µs
n f̂X(n)2‖Xn‖

2
2,ρ < ∞}.

The latter equality holds by Parseval’s Theorem 1.1. Then with norm ‖ · ‖(2,s) defined by

‖ f ‖2(s,2) = ‖ f ‖22,ρ + ‖Ls/2 f ‖22,ρ

=
∑
n∈Λ

(1 + µs
n) f̂X(n)2‖Xn‖

2
2,ρ.
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and obvious choice for inner product it is easily shown that H s[a, b] is a Hilbert space, H2[a, b] =

W2,2
bc [a, b], andH0[a, b] is identified with L2

ρ[a, b]. Also note that C2
bc[a, b] is a dense subset ofH s[a, b]

and
H s[a, b] ⊃ H t[a, b] if s < t. (3.1)

Here is an analog of the Sobolev embedding theorem.

Lemma 3.1. Let s > 1/2. ThenH s[a, b] ⊂ C[a, b], f ∈ H s[a, b] satisfies condition (D-BC) of Lemma
2.2, and

‖ f ‖∞ ≤ C ‖ f ‖(s,2), (3.2)

for some constant C > 0.

Proof. Let f ∈ H s[a, b]. It will be shown that the Fourier eigenfunction expansion of f is uniformly
convergent. Let Yn = Xn/‖Xn‖2,ρ, then Y = {Yn}n∈Λ is a complete set of orthonormal eigenfunctions in
L2
ρ[a, b]. It follows that f̂Y(n) = ‖Xn‖2,ρ f̂X(n). The advantage of passing to the orthonormal

eigenfunctions is that they are uniformly bounded, i.e., |Yn(x)| ≤ C (this follows from explicit
asymptotics of Yn, see [6] or [7]). Let N > M, then∣∣∣∣∣∣∣

N∑
n=M+1

f̂X(n)Xn(x)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
N∑

n=M+1

f̂Y(n)Yn(x)

∣∣∣∣∣∣∣ ≤ C
N∑

n=M+1

| f̂Y(n)|

= C
N∑

n=M+1

| f̂Y(n)|µs/2
n µ−s/2

n ≤ C

 N∑
n=M+1

µs
n f̂Y(n)2

1/2  N∑
n=M+1

µ−s
n

1/2

≤ C

 N∑
n=M+1

µs
n f̂X(n)2‖Xn‖

2
2,ρ

1/2

where the Cauchy-Schwarz inequality was applied and
∑∞

n=1 µ
−s
n < ∞ provided s > 1/2. This inequality

shows that the sequence of partial sums is uniformly Cauchy on [a, b] and completes the proof that
f ∈ C[a, b]. That f satisfies condition (D-BC) follows as the sequence of partial sums satisfy the
boundary conditions. If the boundary conditions are not of type (N), we set M = 0 in the above estimate
to deduce (3.2). If the boundary conditions are of type (N), there is an additional term corresponding
to the zero eigenvalue; this term is easily bounded above by a constant times the L2

ρ−norm of f . This
completes the proof. �

Examples can be given of functions f ∈ H s[a, b] for all s < 1/2 and which are discontinuous on
[a, b], see [1]. Strengthening the assumption on s implies greater smoothness on f as follows.

Lemma 3.2. Let s > 3/2. If f ∈ H s[a, b], then f ∈ C1[a, b], f satifies the boundary conditions, and
the following estimate holds:

‖ f ′‖∞ ≤ C‖Ls/2 f ‖2,ρ,

for some constant C > 0.

Proof. The proof is similar to that of the previous lemma where the uniform boundedness of the
orthonormal set of eigenfunctions is replaced by the estimate [7] |Y

′

n(x)| ≤ Cµ1/2
n . Details are left to the

reader. �
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Proposition 3.3. Let s ≥ 1. If f ∈ H s[a, b], then the weak derivative f ′ satisfies f ′ ∈ L2
k[a, b], and

‖ f ′‖22,k + k(b) cot θ2 f 2(b) + k(a) cot θ1 f 2(a) = ‖L1/2 f ‖22,ρ. (3.3)

Here we follow the convention that if a Dirichlet condition holds at one of the endpoints, the
corresponding term on the left hand side is dropped (Remark 1.1).

Proof. Let f ∈ H s[a, b]. Because of (3.1), f ∈ H1[a, b] and

∞∑
n=1

µn f̂X(n)2‖Xn‖
2
2,ρ = ‖L1/2 f ‖22,ρ < ∞.

Let FN(x) be the N th−partial sum of the Fourier eigenfunction expansion of f as introduced earlier.
Then for N > M, FN − FM ∈ C2

bc[a, b] and from (2.14) we obtain

‖F
′

N − F
′

M‖
2
2,k + k(b) cot θ2 (FN(b) − FM(b))2 (b) + k(a) cot θ1 (FN(a) − FM(a))2 (a)

=

N∑
n=M+1

µn f̂X(n)2‖Xn‖
2
2,ρ.

The right hand side tends to zero as N,M → ∞ and by the proof of Lemma 3.1, the terms at x = a
and x = b also tend to zero. Thus {F

′

n}
∞
n=1 is Cauchy in L2

k−norm and hence converges; using previous
arguments the limit is the weak derivative f ′. Substituting FN in for f in (2.14) and letting N tend to
infinity demonstrates (3.3). �

Not only is equality (3.3) key to potential energy estimates, it also provides a unifying link to the
space W1,2

d [a, b] as the following immediate corollary provides.

Corollary 3.4. Let BVP (1.3) have boundary conditions of type (D), (N), or (M). Then H1[a, b] =

W1,2
d [a, b] and the spaces have equivalent norms.

The following theorem unifies Theorem 1.2 and Theorem 1.4 providing generalization of the former
to all boundary conditions and weaking the smoothness hypothesis for the latter.

Theorem 3.5. Consider IBVP (1.1) with any of the types of boundary conditions. If f ∈ H s[a, b] for
some s ≥ 1, then

1. the series (1.7) is uniformly convergent on [a, b] × [0,∞), u(x, t) is a weak solution of the wave
equation with ut(·, t) ∈ L2

ρ[a, b] and u(·, t) ∈ H s[a, b] for all t > 0;
2. the kinetic and potential energies are given by (1.10) and (1.11) respectively and the total

conseved energy is given by

E =
1
2

∞∑
n=1

µn f̂X(n)2‖Xn‖
2
2,ρ =

1
2
‖L1/2 f ‖22,ρ;

3. energy equipartition in the form of (3) of Theorem 1.2 holds.
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Proof. The proof is similar to that of Theorem 1.2 and somewhat simplier. Given f ∈ H s[a, b] for
some s ≥ 1, all we must do is check that u(·, t) ∈ H s[a, b] for all t ≥ 0. From the proof of Theorem 1.2,
it is clear that u(·, t) ∈ L2

ρ[a, b] and that û(·, t)X(n) = f̂X(n) cos
√
µnt. Thus, u(·, t) ∈ H s[a, b] follows

from the convergence of
∞∑

n=1

µs
n f̂X(n)2‖Xn‖

2
2,ρ.

Since s ≥ 1, the potential energy can be computed using (3.3) with f replaced by u(x, t):

PE(t) =
1
2
‖L1/2u(·, t)‖22,ρ =

∞∑
n=1

µn f̂X(n)2 cos2 √µnt ‖Xn‖
2
2,ρ.

The rest of the proof is carried out just as in the proof of Theorem 1.2. �

Remark 3.1. If s > 3/2 in the preceeding theorem, then Lemma 3.2 applies and u(·, t) ∈ C1[a, b] and
it follows that u(x, t) satisfies the boundary conditions. This generalizes Theorem 1.4.

The final result of this paper provides the analog of the above theorem for IBVP (1.1) where the
initial conditions are replaced by (1.26). The Fourier analytic form for the solution is

u(x, t) =

∞∑
n=1

f̂X(n)
√
µn

sin
√
µnt Xn(x). (3.4)

In the case of Neumann boundary conditions, the assumption ĝX(0) = 0 is additionally imposed. The
proof of the following result is similar to that of the previous theorem and is left for the reader.

Theorem 3.6. Consider IBVP (1.1) with initial conditions replaced by (1.26) where g ∈ H s[a, b] for
some s ≥ 0. Then the following hold

1. the series (3.4) is uniformly convergent on [a, b] × [0,∞), u(x, t) is a weak solution of the wave
equation with ut(·, t) ∈ L2

ρ[a, b] and u(·, t) ∈ H s+1[a, b] for all t > 0;
2. the kinetic, potential, and total conserved energies are given by

KE(t) =
1
2

∞∑
n=1

ĝX(n)2 cos2 √µnt ‖Xn‖
2
2,ρ

PE(t) =
1
2

∞∑
n=1

ĝX(n)2 sin2 √µnt ‖Xn‖
2
2,ρ =

1
2
‖L1/2u(·, t)‖22,ρ

E =
1
2

∞∑
n=1

ĝX(n)2‖Xn‖
2
2,ρ =

1
2
‖g‖22,ρ

3. energy equipartition in the form of (3) of Theorem 1.2 holds.
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