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2 Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari, Italy

* Correspondence: Email: giuseppemaria.coclite@poliba.it.

Abstract: The short-pulse master mode-locking equation is a model for ultrafast pulse propagation in
a mode-locked laser cavity in the few-femtosecond pulse regime, that is a nonlinear evolution equation.
In this paper, we prove the wellposedness of the Cauchy problem associated with this equation within
a class of discontinuous solutions.

Keywords: existence; uniqueness; stability; entropy solutions; conservation laws; short-pulse master
mode-locking equation; Cauchy problem
Mathematics Subject Classification: 35G15, 35L65, 35L05, 35A05

1. Introduction

In recent years, the ultrafast science has experimentally crossed the threshold from the routine and
direct laser production of few-cycle optical pulses in the 5−8 fs regime [29,36,37], to subfemtosecond
pulses in the range of hundreds of attoseconds [35, 54], leading to the hitherto unexplored field of
attosecond physics [24, 39, 58].

Such short pulse durations and broad spectral content have opened up vast new possibilities for
exploring the fundamental nature of atomic and molecular physics at the fastest time scales, including
molecular vibrations, chemical reactions, and light-matter interactions. Indeed, even single-electron
transition events can now be captured [35] and an absolute measure of time potentially established
[23, 25].

Yet the achievement of attosecond pulses in experiments also highlights the difficulties in
measurement and interpretation, especially as the optical field information is interwoven with the
physics of the interaction. Thus, theoretical and experimental methods are needed to help guide the
understanding of attosecond science.
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A first method is based on the master mode-locking (MML) equation. It was developed by Haus
[33, 34] and has dominated mode-locking theory for many years.

The Haus theory is fundamentally based upon a center-frequency expansion of the electric field and
a derivation of an envelope approximation of the nonlinear Schrödinger equation (NLS) type. Inherent
in the model is the assumption that the envelope is slow in comparison to the underlying fast carrier.

In the case of the pulses which contain only a few cycles of the carrier, this approximation fails to
hold, even if higher-order terms are incorporated into the NLS-based description. Regardless, the NLS-
based approach has been shown to work quantitatively beyond its expected breakdown, into the tens of
femtoseconds regime, and has been used extensively for modeling supercontinuum generation [28].

However, when pushed to the extreme of a few femtosecond pulses, the NLS description becomes
suspect, and a theory not founded upon a center-frequency expansion is required.

As an alternative to the Haus model, Farnum and Kutz [30–32] develop a model to describe the
pulses like those described in [29, 35–37, 54] without relying on center-frequency expansion.

The Farnum and Kutz model is based on a short-pulse master mode-locking (SPMML) theory,
which derives from the Maxwell equations [1, 2, 4, 5, 38, 50, 51, 55, 59]. In such theories, it is assumed
that the propagation occurs for a broadband pulse so that the center-frequency expansion is
circumvented.

From a mathematical point of view, the Farnum and Kutz model is formulated in terms of the
following equation:

∂x

(
∂tu + a∂xu3 + bu + cu3

)
= γu, a, b, c, γ ∈ R, (1.1)

also known as SPMML equation, where u(t, x) is the electric field amplitude, t is the time, x is distance
propagated in the laser cavity [55], b is the linear attenuation, c is a cubic gain term giving rise to
intensity discrimination (saturable absorption) [33, 34] and γ is a real parameter [38, 55].

If b = c = 0, (1.1) reads
∂x

(
∂tu + a∂xu3

)
= γu. (1.2)

It was introduced by Kozlov and Sazonov [38] as a model equation describing the nonlinear
propagation of optical pulses of a few oscillations duration in dielectric media, and by Schäfer and
and Wayne [55] as a model equation describing the propagation of ultra-short light pulses in silica
optical fibers. Hence, with respect to Kozlov, Sazonov, Schäfer and Wayne, Farnum and Kutz take
into consideration the linear attenuation and the saturable absorption. Moreover, in [42–44] the
authors show that (1.2) is a non-slowly-varying envelope approximation model that describes the
physics of few-cycle-pulse optical solitons.

If we take c = 0 in (1.1), we have the short pulse equation with linear attenuation, which is deduced
in [63].

It also is interesting to remind that Eq (1.2) was proposed earlier in [48] in the context of plasma
physic and that the similar equations describe the dynamics of radiating gases [41, 57]. In [62], the
authors deduce (1.2) to describe the short pulse propagation in nonlinear metamaterials characterized
by a weak Kerr-type nonlinearity in their dielectric response. Moreover, [3, 13, 52, 53] show that (1.2)
is a particular Rabelo equation which describes pseudospherical surfaces.

In literature, we have the following generalization of (1.2):

∂x

(
∂tu + a∂xu3 − β∂3

xxxu
)

= γu. (1.3)
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It was derived by Costanzino, Manukian and Jones [22] in the context of the nonlinear Maxwell
equations with high-frequency dispersion. Kozlov and Sazonov [38] show that (1.3) is an more
general equation than (1.2) to describe the nonlinear propagation of optical pulses of a few
oscillations duration in dielectric media.

Recently, wellposedness results for the Cauchy problem of (1.2) are proven in the context of energy
spaces (see [26, 49, 60]). A similar result is proven in [11, 16] in the context of the entropy solution,
while, in [7, 12, 18], the wellposedness of the homogeneous initial boundary value problem is studied.
Finally, the convergence of a finite difference scheme is studied in [21].

Moreover, mathematical properties of (1.3) are studied in many different contexts, including the
local and global wellposedness in energy spaces [22, 49] and stability of solitary waves [22, 46].
Observe that, letting β → 0 in (1.3), we obtain (1.2). Hence, following [9, 45, 56], in [15, 16], the
convergence of the solution of (1.3) to the unique entropy solution of (1.2) is proven.

In this papaer, we assume that c > 0 and we write c = κ2. Therefore, (1.1) reads

∂x

(
∂tu + a∂xu3 + bu + κ2u3

)
= γu. (1.4)

We are interested in the Cauchy problem for this equation, thus we augment (1.4) with the initial
condition

u(0, x) = u0(x), x ∈ R, (1.5)

on which assume that
u0(x) ∈ L∞(R) ∩ L1(R),

∫
R

u0(x)dx = 0. (1.6)

Following [10, 11, 16], on the function

P0(x) =

∫ x

−∞

u0(y)dy, (1.7)

we assume that

‖P0‖
2
L2(R) =

∫
R

(∫ x

−∞

u0(y)dy
)2

dx < ∞. (1.8)

Integrating (1.4) in (0, x), we gain the integro-differential formulation of (1.4) and (1.6).∂tu + a∂xu3 + bu + κ2u3 = γ

∫ x

0
udy, t ≥ 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1.9)

that is equivalent to 
∂tu + a∂xu3 + bu + κ2u3 = γP, t ≥ 0, x ∈ R,

∂xP = u, t ≥ 0, x ∈ R,

P(t, 0) = 0, t ≥ 0,
u(0, x) = u0(x), x ∈ R.

(1.10)

One of the main issues in the analysis of (1.10) is that the equation is not preserving the L1 norm, as a
consequence the nonlocal source term P and the solution u are a priori only locally bounded. Indeed,
from (1.9) and (1.10) is clear that we cannot have any L∞ bound without an L1 bound. Since we are
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interested in the bounded solutions of (1.4), some assumptions on the decay at infinity of the initial
condition u0 are needed (see (1.8)).

The unique useful conserved quantities are

t 7−→
∫

u(t, x)dx = 0, t 7−→
∫

u2(t, x)dx. (1.11)

In the sense that if u(t, ·) has zero mean at time t = 0, then it will have zero mean at any time t > 0. In
addition, the L2 norm of u(t, ·) is constant with respect to t. Therefore, we require that initial condition
u0 belongs to L2 ∩ L∞ and has zero mean.

Due to the regularizing effect of the P equation in (1.10), we have that

u ∈ L∞((0,T ) × R) =⇒ P ∈ L∞((0,T ); W1,∞(R)), T > 0. (1.12)

Following [10, 11, 16], we give the following definition of solution.

Definition 1.1. We say that u ∈ L∞((0,T )×R) is an entropy solution of the initial value problem (1.10)
and (1.5) if

i) u is a distributional solution of (1.10);
ii) for every convex function η ∈ C2(R) the entropy inequality

∂tη(u) + ∂xq(u) + bη′(u)u + κ2η′(u)u3 − γη′(u)P ≤ 0, q(u) = 3a
∫ u

ξ2η′(ξ) dξ, (1.13)

holds in the sense of distributions in (0,∞) × R.

The main result of this paper is the following theorem.

Theorem 1.1. Assume (1.6) and (1.8). The initial value problem (1.10) and (1.5) possesses an unique
entropy solution u in the sense of Definition1.1. Moreover, if u and v are two entropy solutions (1.10)
and (1.5) in the sense of Definition 1.1, the following inequality holds

‖u(t, ·) − v(t, ·)‖L1(−R,R) ≤ eC(T )t ‖u(0, ·) − v(0, ·)‖L1(−R−C(T )t,R+C(T )t) , (1.14)

for almost every 0 < t < T, R > 0, and some suitable constant C(T ) > 0.

The paper is organized as follows. In Section 2, we prove several a priori estimates on a vanishing
viscosity approximation of (1.10). Those play a key role in the proof of our main result, that is given
in Section 3.

2. Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation of
(1.10).

Fix ε > 0 a small number and let uε = uε(t, x) be the unique classical solution of the following
mixed problem [14, 20]:

∂tuε + a∂xu3
ε + buε + κ2u3

ε = γPε + ε∂2
xxuε, t > 0, x ∈ R,

∂xPε = uε, t > 0, x ∈ R,

Pε(t, 0) = 0, t > 0, x ∈ R,

uε(0, x) = uε,0(x), x ∈ R,

(2.1)
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where uε,0 is a C∞ approximation of u0 such that∥∥∥uε,0
∥∥∥

L∞(R)
≤ ‖u0‖L∞(R) ,

∥∥∥uε,0
∥∥∥

L2(R)
≤ ‖u0‖L2(R) ,∥∥∥uε,0

∥∥∥
L4(R)
≤ ‖u0‖L4(R) ,

∫
R

uε,0(x) = 0, (2.2)∥∥∥Pε,0

∥∥∥
L2(R)
≤ ‖P0‖L2(R) ,

∫
R

Pε,0(x)u3
ε,0(x)dx ≤ C0,

where C0 is a constant independent on ε.
Let us prove some a priori estimates on uε and Pε, denoting with C0 the constants which depend

only on the initial data, and C(T ) the constants which depend also on T .
Arguing as in [8, Lemma 2.1], or [10, Lemma 2.1], we have the following result.

Lemma 2.1. Let us suppose that

Pε(t,−∞) = 0, t ≥ 0, (or Pε(t,∞) = 0). (2.3)

Then, the following statements are equivalent∫
R

uε(t, x)dx =0, t ≥ 0, (2.4)

d
dt
‖uε(t, ·)‖2L2(R) + κ2 ‖uε(t, ·)‖4L4(R) (2.5)

+ 2ε ‖∂xuε(t, ·)‖2L2(R) = 2b ‖uε(t, ·)‖2L2(R) , t > 0.

Lemma 2.2. For each t ∈ [0,∞), (2.3) and (2.4) hold. In particular, fixed T ≥ t ≥ 0, we have that

‖uε(t, ·)‖2L2(R) + κ2e|b|t
∫ t

0
e−|b|s ‖uε(s, ·)‖4L4(R) ds

+ 2εe|b|t
∫ t

0
e−|b|s ‖∂xuε(s, ·)‖2L2(R) ds ≤ C(T ). (2.6)

Proof. Arguing as in [8, Lemma 2.2], we have (2.3), and (2.4). Lemma 2.1 says that (2.5) also hold.
Therefore, we get

d
dt
‖uε(t, ·)‖2L2(R) + κ2 ‖uε(t, ·)‖4L4(R)

+ 2ε ‖∂xuε(t, ·)‖2L2(R) ≤ 2|b| ‖uε(t, ·)‖2L2(R) .

Fixed T > 0, the Gronwall Lemma and (2.2) give

‖uε(t, ·)‖2L2(R) + κ2e2|b|t
∫ t

0
e−2|b|s ‖uε(s, ·)‖4L4(R) ds

+ 2εe2|b|t
∫ t

0
e−2|b|s ‖∂xuε(s, ·)‖2L2(R) ds ≤ ‖u0‖

2
L2(R) e|b|t ≤ C(T ),

that is (2.6). �
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Lemma 2.3. Fix T > 0. There exists a constant C(T ) > 0, independent on ε, such that

‖uε(t, ·)‖4L4(R) + 4κ2
∫ t

0
‖uε(s, ·)‖6L6(R) ds

+ 12ε
∫ t

0
‖uε(s, ·)∂xuε(s, ·)‖2L2(R) ds ≤ C(T )

(
1 + ‖Pε‖L∞((0,T )×R)

)
.

(2.7)

Proof. Let 0 ≤ t ≤ T . Multiplying (2.1) by 4u3
ε, an integration on R gives

d
dt
‖uε(t, ·)‖4L4(R) =4

∫
R

u3
ε∂tuεdx

= − 12a
∫
R

u5
ε∂xuεdx − 4b ‖uε(t, ·)‖4L4(R) − 4κ2 ‖uε(t, ·)‖6L6(R)

+ 4γ
∫
R

Pεu3
εdx + 4ε

∫
R

u3
ε∂

2
xxuεdx

= − 4b ‖uε(t, ·)‖4L4(R) − 4κ2 ‖uε(t, ·)‖6L6(R)

+ 4γ
∫
R

Pεu3
εdx − 12ε ‖uε(t, ·)∂xuε(t, ·)‖2L2(R) .

Hence,

d
dt
‖uε(t, ·)‖4L4(R) + 4κ2 ‖uε(t, ·)‖6L6(R) + 12ε ‖uε(t, ·)∂xuε(t, ·)‖2L2(R)

= − 4b ‖uε(t, ·)‖4L4(R) + 4γ
∫
R

Pεu3
εdx (2.8)

≤4|b| ‖uε(t, ·)‖4L4(R) + 4|γ|
∫
R

|Pε||uε|3dx.

Due to (2.6) and the Young inequality,

4|γ|
∫
R

|Pε||uε|3dx ≤ 4|γ| ‖Pε‖L∞(0,T )×R)

∫
R

|uε|3dx

≤ 2|γ| ‖Pε‖L∞((0,T )×R) ‖uε(t, ·)‖
2
L2(R) + 2|γ| ‖Pε‖L∞(0,T )×R) ‖uε(t, ·)‖

4
L4(R)

≤ C(T ) ‖Pε‖L∞((0,T )×R) + +2|γ| ‖Pε‖L∞((0,T )×R) ‖uε(t, ·)‖
4
L4(R) .

Consequently, by (2.8),

d
dt
‖uε(t, ·)‖4L4(R) + 4κ2 ‖uε(t, ·)‖6L6(R) + 12ε ‖uε(t, ·)∂xuε(t, ·)‖2L2(R)

≤4|b| ‖uε(t, ·)‖4L4(R) + C(T ) ‖Pε‖L∞((0,T )×R)

+ 2|γ| ‖Pε‖L∞((0,T )×R) ‖uε(t, ·)‖
4
L4(R) .

It follows from (2.2), (2.5) and an integration on (0, t) that

‖uε(t, ·)‖4L4(R) + 4κ2
∫ t

0
‖uε(s, ·)‖6L6(R) ds + 12ε

∫ t

0
‖uε(s, ·)∂xuε(s, ·)‖2L2(R) ds
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≤C0 + 4|b|
∫ t

0
‖uε(s, ·)‖4L4(R) ds + C(T ) ‖Pε‖L∞((0,T )×R) t

+ 2|γ| ‖Pε‖L∞((0,T )×R)

∫ t

0
‖uε(s, ·)‖4L4(R) ds

≤C0 + 4|b|e2|b|t
∫ t

0
e−2|b|s ‖uε(s, ·)‖4L4(R) ds + C(T ) ‖Pε‖L∞((0,T )×R)

+ 2|γ| ‖Pε‖L∞((0,T )×R) e2|b|t
∫ t

0
e−2|b|s ‖uε(s, ·)‖4L4(R) ds

≤C(T )
(
1 + ‖Pε‖L∞((0,T )×R)

)
,

which give (2.7). �

Lemma 2.4. Fix T > 0. For each t ∈ [0,T ], we have that∫ 0

−∞

Pε(t, x)dx ≤
a
γ

u3
ε(t, 0) −

ε

γ
∂xuε(t, 0) + C(T )

√(
1 + ‖Pε‖L∞((0,T )×R)

)
, (2.9)∫ ∞

0
Pε(t, x)dx ≤ −

a
γ

u3
ε(t, 0) +

ε

γ
∂xuε(t, 0) + C(T )

√(
1 + ‖Pε‖L∞((0,T )×R)

)
. (2.10)

Moreover, ∫
R

Pε(t, x)dx = −
κ2

γ

∫
R

u3
ε(t, x)dx, t ≥ 0. (2.11)

Proof. We begin by observing that, integrating the second equation of (2.1) on (0, x), we have

Pε(t, x) =

∫ x

0
uε(t, y)dy. (2.12)

Consequently, by (2.3), ∫ −∞

0
uε(t, x)dx = 0. (2.13)

Differentiating (2.13) with respect to t, we obtain

d
dt

∫ −∞

0
uε(t, x)dx =

∫ −∞

0
∂tuε(t, x)dx = 0. (2.14)

Integrating the first equation on (0, x), we have that

γ

∫ x

0
Pε(t, y)dy =

∫ x

0
∂tuε(t, y)dy + au3

ε(t, x) − auε(t, 0) − ε∂xuε(t, x)

+ ε∂xuε(t, 0) − bPε(t, x) − κ2
∫ x

0
u3
ε(t, x)dy.

(2.15)

It follows from (2.3) and the regularity of uε that

lim
x→−∞

(
au3

ε(t, x) − ε∂xuε(t, x) − bPε(t, x)
)

= 0. (2.16)
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Consequently, by (2.3), (2.14), (2.15) and (2.16),

γ

∫ −∞

0
Pε(t, x)dx = −auε(t, 0) + ε∂xuε(t, 0) − κ2

∫ −∞

0
u3
ε(t, x)dx,

that is ∫ 0

−∞

Pε(t, x)dx =
a
γ

uε(t, 0) −
ε

γ
∂xuε(t, 0) −

κ2

γ

∫ 0

−∞

u3
ε(t, x)dx (2.17)

Due to (2.6), (2.7) and the Hölder inequality,

−
κ2

γ

∫ 0

−∞

u3
εdx ≤

κ2

|γ|

∫
R

|uε|3dx

≤
κ2

|γ|
‖uε(t, ·)‖L2(R) ‖uε(t, ·)‖

2
L4(R) (2.18)

≤C(T ) ‖uε(t, ·)‖2L4(R) ≤ C(T )
√(

1 + ‖Pε‖L∞((0,T )×R)

)
.

(2.9) follows from (2.17) and (2.18).
We prove (2.10). By (2.3) and (2.12), we have∫ ∞

0
uε(t, x)dx = 0. (2.19)

Consequently, differentiating (2.19) with respect to t, we obtain

d
dt

∫ ∞

0
uε(t, x)dx =

∫ ∞

0
∂tuε(t, x)dx = 0. (2.20)

(2.3) and the the regularity of uε give

lim
x→∞

(
au3

ε(t, x) − ε∂xuε(t, x) − bPε(t, x)
)

= 0. (2.21)

Therefore, by (2.15), (2.20) and (2.21),∫ ∞

0
Pε(t, x)dx = −

a
γ

uε(t, 0) +
ε

γ
∂xuε(t, 0) −

κ2

γ

∫ ∞

0
u3
ε(t, x)dx (2.22)

Due to (2.6), (2.7) and the Hölder inequality,

−
κ2

γ

∫ ∞

0
u3
εdx ≤

κ2

|γ|

∫ ∞

0
|uε|3dx

≤
κ2

|γ|
‖uε(t, ·)‖L2(R) ‖uε(t, ·)‖

2
L4(R) (2.23)

≤C(T ) ‖uε(t, ·)‖2L4(R) ≤ C(T )
√(

1 + ‖Pε‖L∞((0,T )×R)

)
.

(2.22) and (2.23) give (2.10).
Finally, we prove (2.11). Thanks to (2.9) and (2.10), we can consider (2.17) and (2.22) which give

(2.11). �
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Following [15, Lemma 2.4], we prove the following result.

Lemma 2.5. Fix T > 0. There exists a constant C(T ) > 0, independent on ε, such that

‖Pε‖L∞((0,T )×R) ≤ C(T ). (2.24)

In particular, for every 0 ≤ t ≤ T, we have

‖Pε(t, ·)‖2L2(R) ≤C(T ),∫ t

0
‖Pε(s, ·)uε(s, ·)‖2L2(R) ds ≤C(T ),

‖uε(t, ·)‖L4(R) ≤C(T ),∫ t

0
‖uε(s, ·)‖6L6(R) ≤C(T ),

ε

∫ t

0
‖uε(s, ·)∂xuε(s, ·)‖2L2(R) ds ≤C(T ).

(2.25)

Proof. Let 0 ≤ t ≤ T . We begin by observing that, thanks to (2.9), we can consider the following
function

Fε(t, x) =

∫ x

−∞

Pε(t, y)dy. (2.26)

Integrating the second equation of (2.1), by (2.3), we get

Pε(t, x) =

∫ x

−∞

uε(t, y)dy. (2.27)

Differentiating (2.27) with respect to t, we obtain that

∂tPε(t, x) =
d
dt

∫ x

−∞

uε(t, y)dy =

∫ x

−∞

∂tuε(t, y)dy. (2.28)

Integrating the first equation of (2.1) on (−∞, x), from (2.26), (2.27) and (2.28), we have

∂tPε(t, x) = −au3
ε(t, x) − bPε(t, x) − κ2

∫ x

−∞

u3
ε(t, y)dy + γFε(t, x) + ε∂xuε(t, x). (2.29)

Multiplying (2.29) by 2Pε, an integration on R give

d
dt
‖Pε(t, ·)‖2L2(R) =2

∫
R

Pε∂tPεdx

= − 2a
∫
R

Pεu3
εdx − 2b ‖Pε(t, ·)‖2L2(R) + 2ε

∫
R

Pε∂xuεdx (2.30)

− 2κ2
∫
R

Pε

(∫ x

−∞

u3
ε(t, y)dy

)
dx + 2γ

∫
R

PεFεdx

Observe that, by (2.11) and (2.26),

2γ
∫
R

PεFεdx =2γ
∫
R

Fε∂xFεdx = γF2
ε(t,∞)

=γ

(∫
R

Pε(t, x)dx
)2

=
κ4

γ

(∫
R

u3
εdx

)2

.

(2.31)
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Again by (2.11) and (2.26),

−2κ2
∫
R

Pε

(∫ x

−∞

u3
ε(t, y)dy

)
dx

= − 2κ2Fε(t,∞)
∫
R

u3
εdx + 2κ2

∫
R

Fεu3
εdx

= − 2κ2
(∫
R

Pεdx
) (∫

R

u3
εdx

)
+ 2κ2

∫
R

Fεu3
εdx

=
2κ4

γ

(∫
R

u3
εdx

)2

+ 2κ2
∫
R

Fεu3
εdx.

(2.32)

Moreover, by (2.1) and (2.3),

2ε
∫
R

Pε∂xuεdx = −2ε
∫
R

∂xPεuεdx = −2ε ‖uε(t, ·)‖2L2(R) . (2.33)

Therefore, it follows from (2.30), (2.31), (2.32) and (2.33) that

d
dt
‖Pε(t, ·)‖2L2(R) + 2ε ‖uε(t, ·)‖2L2(R)

= − 2a
∫
R

Pεu3
εdx − 2b ‖Pε(t, ·)‖2L2(R) (2.34)

+
3κ4

γ

(∫
R

u3
εdx

)2

+ 2κ2
∫
R

Fεu3
εdx.

By (2.29), we have

Fε(t, x) =
1
γ
∂tPε(t, x) +

a
γ

u3
ε(t, x) +

b
γ

Pε(t, x) +
κ2

γ

∫ x

−∞

u3
ε(t, y)dy −

ε

γ
∂xuε(t, x). (2.35)

Multiplying (2.35) by 2κ2u3
ε, an integration on R gives

2κ2
∫
R

Fεu3
εdx =

2κ2

γ

∫
R

∂tPεu3
εdx +

2aκ2

γ
‖uε(t, ·)‖6L6(R) +

2κ2b
γ

∫
R

Pεu3
εdx

+
2κ4

γ

∫
R

u3
ε

(∫ x

−∞

u3
εdy

)
dx −

2κ2ε

γ

∫
R

u3
ε∂xuεdx.

Since

2κ4

γ

∫
R

u3
ε

(∫ x

−∞

u3
εdy

)
dx =

κ4

γ

(∫
R

u3
εdx

)2

,

−
2κ2ε

γ

∫
R

u3
ε∂xuεdx =0,

we have that

2κ2
∫
R

Fεu3
εdx =

2κ2

γ

∫
R

∂tPεu3
εdx +

2aκ2

γ
‖uε(t, ·)‖6L6(R)

+
2κ2b
γ

∫
R

Pεu3
εdx +

κ4

γ

(∫
R

u3
εdx

)2

.

(2.36)
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Using (2.36) in (2.34), we get

d
dt
‖Pε(t, ·)‖2L2(R) + 2ε ‖uε(t, ·)‖2L2(R)

=
2(κ2b − aγ)

γ

∫
R

Pεu3
εdx − 2b ‖Pε(t, ·)‖2L2(R) (2.37)

+
2aκ2

γ
‖uε(t, ·)‖6L6(R) +

4κ4

γ

(∫
R

u3
εdx

)2

+
2κ2

γ

∫
R

∂tPεu3
εdx.

Observe that
∂t(Pεu3

ε) = ∂tPεu3
ε + Pε∂tu3

ε = ∂tPεu3
ε + 3Pεu2

ε∂tuε.

Consequently,
2κ2

γ

∫
R

∂tPεu3
εdx =

2κ2

γ

d
dt

∫
R

Pεu3
εdx −

6κ2

γ

∫
R

Pεu2
ε∂tuεdxdx. (2.38)

Using (2.38) in (2.37), we have

dG(t)
dt

+ 2ε ‖uε(t, ·)‖2L2(R) =
2(κ2b − aγ)

γ

∫
R

Pεu3
εdx

− 2b ‖Pε(t, ·)‖2L2(R) +
2aκ2

γ
‖uε(t, ·)‖6L6(R)

+
4κ4

γ

(∫
R

u3
εdx

)2

−
6κ2

γ

∫
R

Pεu2
ε∂tuεdx,

(2.39)

where

G(t) := ‖Pε(t, ·)‖2L2(R) −
2κ2

γ

∫
R

Pεu3
εdx. (2.40)

Multiplying the first equation of (2.1) by −
6κ2

γ
Pεu2

ε, an integration on R give

−
6κ2

γ

∫
R

Pεu2
ε∂tuεdx =

18aκ2

γ

∫
R

Pεu4
ε∂xuεdx +

6bκ2

γ

∫
R

Pεu3
εdx

+
κ4

γ

∫
R

Pεu5
εdx − 6κ2 ‖Pε(t, ·)uε(t, ·)‖2L2(R) (2.41)

−
6κ2ε

γ

∫
R

Pεu2
ε∂

2
xxuεdx.

Observe that by (2.1) and (2.3),

18aκ2

γ

∫
R

Pεu4
ε∂xuεdx = −

18aκ2

5γ

∫
R

u5
ε∂xPεdx = −

18aκ2

5γ
‖uε(t, ·)‖6L6(R) ,

−
6κ2ε

γ

∫
R

Pεu2
ε∂

2
xxuεdx =

6κ2ε

γ

∫
R

∂xPεu2
ε∂xuεdx +

12κ2ε

γ

∫
R

Pεuε(∂xuε)2dx

=
6κ2ε

γ

∫
R

u3
ε∂xuεdx +

12κ2ε

γ

∫
R

Pεuε(∂xuε)2dx
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=
12κ2ε

γ

∫
R

Pεuε(∂xuε)2dx.

Hence, by (2.41),

−
6κ2

γ

∫
R

Pεu2
ε∂tuεdx = −

18aκ2

5γ
‖uε(t, ·)‖6L6(R) +

6bκ2

γ

∫
R

Pεu3
εdx

+
κ4

γ

∫
R

Pεu5
εdx − 6κ2 ‖Pε(t, ·)uε(t, ·)‖2L2(R)

+
12κ2ε

γ

∫
R

Pεuε(∂xuε)2dx.

(2.42)

Substituting (2.42) in (2.39), we get

dG(t)
dt

+ 2ε ‖uε(t, ·)‖2L2(R) + 6κ2 ‖Pε(t, ·)uε(t, ·)‖2L2(R)

=
8κ2b − 2aγ

γ

∫
R

Pεu3
εdx − 2b ‖Pε(t, ·)‖2L2(R) −

8aκ2

γ
‖uε(t, ·)‖6L6(R)

+
4κ4

γ

(∫
R

u3
εdx

)2

+
κ4

γ

∫
R

Pεu5
εdx +

12κ2ε

γ

∫
R

Pεuε(∂xuε)2dx.

(2.43)

Due to (2.6), (2.7) and the Young inequality and the Hölder inequality,

|8κ2b − 2aγ|
|γ|

∫
R

|Pε||uε|3dx =
|8κ2b − 2aγ|

|γ|

∫
R

|Pεuε|u2
εdx

≤
|8κ2b − 2aγ|

2|γ|

∫
R

P2
εu

2
εdx +

|8κ2b − 2aγ|
2|γ|

‖uε(t, ·)‖4L4(R)

≤
|8κ2b − 2aγ|

2|γ|
‖Pε‖

2
L∞((0,T )×R) ‖uε(t, ·)‖

2
L2(R) + C(T )

(
1 + ‖Pε‖L∞((0,T )×R)

)
≤ C(T ) ‖Pε‖

2
L∞((0,T )×R) + C(T ),

κ4

|γ|

∫
R

|Pε|uε|5dx =
κ4

|γ|

∫
R

|
√

DPεu2
ε|

u3
ε
√

D
dx

≤
Dκ4

2|γ|

∫
R

P2
εu

4
εdx +

κ4

2D|γ|
‖uε(t, ·)‖6L6(R)

=

∫
R

∣∣∣∣∣∣Dκ4P2
εu

2
ε

2
√

E|γ|

∣∣∣∣∣∣ ∣∣∣∣√Eu3
ε

∣∣∣∣ dx +
κ4

2D|γ|
‖uε(t, ·)‖6L6(R)

≤
D2κ8

4Eγ2

∫
R

P4
εu

2
εdx +

(
E
2

+
κ4

2D|γ|

)
‖uε(t, ·)‖6L6(R)

≤
D2κ8

4Eγ2 ‖Pε‖
4
L∞((0,T )×R) ‖uε(t, ·)‖

2
L2(R) +

(
E
2

+
κ4

2D|γ|

)
‖uε(t, ·)‖6L6(R)

≤
D2C(T )

E
‖Pε‖

4
L∞((0,T )×R) +

(
E
2

+
κ4

2D|γ|

)
‖uε(t, ·)‖6L6(R) ,

12κ2ε

|γ|

∫
R

Pεuε(∂xuε)2dx =
12κ2ε

|γ|

∫
R

|Pε∂xuε||uε∂xuε|dx
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≤
6κ2ε

|γ|

∫
R

P2
ε(∂xuε)2dx +

6κ2ε

|γ|
‖uε(t, ·)∂xuε(t, ·)‖2L2(R)

≤
6κ2ε

|γ|
‖Pε‖

2
L∞((0,T )×R) ‖∂xuε(t, ·)‖2L2(R) +

6κ2ε

|γ|
‖uε(t, ·)∂xuε(t, ·)‖2L2(R) ,

4κ4

|γ|

(∫
R

|uε|3dx
)2

≤
4κ4

|γ|

(
‖uε(t, ·)‖L2(R) ‖uε(t, ·)‖

4
L2(R)

)2

≤ C(T ) ‖uε(t, ·)‖4L4(R) ≤ C(T )
(
1 + ‖Pε‖L∞((0,T )×R)

)
≤ C(T ) + C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) ,

where D, E are two positive constants which will be specified later. Consequently, by (2.43),

dG(t)
dt

+ 2ε ‖uε(t, ·)‖2L2(R) + 6κ2 ‖Pε(t, ·)uε(t, ·)‖2L2(R)

≤ 2|b| ‖Pε(t, ·)‖2L2(R) +

(
8|a|κ2

|γ|
+

E
2

+
κ4

2D|γ|

)
‖uε(t, ·)‖6L6(R)

+
6κ2ε

|γ|
‖Pε‖

2
L∞((0,T )×R) ‖∂xuε(t, ·)‖2L2(R) +

6κ2ε

|γ|
‖uε(t, ·)∂xuε(t, ·)‖2L2(R)

+
D2C(T )

E
‖Pε‖

4
L∞((0,T )×R) + C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) + C(T ).

(2.44)

Observe that by (2.40),

2|b| ‖Pε(t, ·)‖2L2(R) = 2|b|G(t) +
4|b|κ2

γ

∫
R

Pεu3
εdx. (2.45)

Thanks to (2.6), (2.7) and the Young inequality,

4|b|κ2

|γ|

∫
R

|Pε||uε|3dx =
4|b|κ2

|γ|

∫
R

|Pεuε|u2
εdx

≤
2|b|κ2

|γ|

∫
R

P2
εu

2
εdx +

2|b|κ2

|γ|
‖uε(t, ·)‖4L4(R)

≤
2|b|κ2

|γ|
‖Pε‖

2
L∞((0,T )×R) ‖uε(t, ·)‖

2
L2(R) + C(T )

(
1 + ‖Pε‖L∞((0,T )×R)

)
≤ C(T ) ‖Pε‖

2
L∞((0,T )×R) + C(T ).

(2.46)

It follows from (2.44), (2.45) and (2.46) that

dG(t)
dt

+ 2ε ‖uε(t, ·)‖2L2(R) + 6κ2 ‖Pε(t, ·)uε(t, ·)‖2L2(R)

≤ 2|b|G(t) +

(
8|a|κ2

|γ|
+

E
2

+
κ4

2D|γ|

)
‖uε(t, ·)‖6L6(R)

+
6κ2ε

|γ|
‖Pε‖

2
L∞((0,T )×R) ‖∂xuε(t, ·)‖2L2(R) +

6κ2ε

|γ|
‖uε(t, ·)∂xuε(t, ·)‖2L2(R)

+
D2C(T )

E
‖Pε‖

4
L∞((0,T )×R) + C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) + C(T ).
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The Gronwall Lemma, (2.2), (2.6), (2.7), (2.40), (2.46) and the Young inequality give

‖Pε(t, ·)‖2L2(R) + 2εe2|b|t
∫ t

0
e−2|b|s ‖uε(s, ·)‖2L2(R) ds

+ 6κ2e2|b|t
∫ t

0
e−2|b|s ‖Pε(s, ·)uε(s, ·)‖2L2(R) ds

≤ C0 +
2κ2

γ

∫
R

Pεu3
εdx

+

(
8|a|κ2

|γ|
+

E
2

+
κ4

2D|γ|

)
e2|b|t

∫ t

0
e−2|b|s ‖uε(s, ·)‖6L6(R) ds

+
6κ2ε

|γ|
‖Pε‖

2
L∞((0,T )×R) e2|b|t

∫ t

0
e−2|b|s ‖∂xuε(s, ·)‖2L2(R) ds

+
6κ2ε

|γ|
e2|b|t

∫ t

0
e−2|b|s ‖uε(s, ·)∂xuε(s, ·)‖2L2(R) ds

+
D2C(T )

E
‖Pε‖

4
L∞((0,T )×R) e2|b|t

∫ t

0
e−2|b|sds

+ C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) e2|b|t
∫ t

0
e−2|b|sds + C(T )e2|b|t

∫ t

0
e−2|b|sds

≤ C(T )
(
8|a|κ2

|γ|
+

E
2

+
κ4

2D|γ|

) ∫ t

0
‖uε(s, ·)‖6L6(R) ds

+ C(T )ε
∫ t

0
‖uε(s, ·)∂xuε(s, ·)‖2L2(R) ds +

D2C(T )
E

‖Pε‖
4
L∞((0,T )×R)

≤ C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) + C(T )

≤ C(T )
(

E
2

+
κ4

2D|γ|

) (
1 + ‖Pε‖L∞((0,T )×R)

)
+ C(T )

(
1 + ‖Pε‖L∞((0,T )×R)

)
+

D2C(T )
E

‖Pε‖
4
L∞((0,T )×R) + C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) + C(T )

≤ C(T )
(

E
2

+
κ4

2D|γ|
+ 1

) (
1 + ‖Pε‖

2
L∞((0,T )×R)

)
+

D2C(T )
E

‖Pε‖
4
L∞((0,T )×R) + C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) + C(T ).

(2.47)

We prove (2.24). Thanks to (2.1), (2.3), (2.6) and the Hölder inequality,

P2
ε(t, x) =2

∫ x

−∞

Pε∂xPεdy ≤ 2
∫
R

|Pε||uε|dx

≤2 ‖Pε(t, ·)‖L2(R) ‖uε(t, ·)‖L2(R) ≤ C(T ) ‖Pε(t, ·)‖L2(R) .

Therefore, by (2.47),

‖Pε‖
4
L∞((0,T )×R) ≤C(T ) ‖Pε(t, ·)‖2L2(R)
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≤C(T )
(

E
2

+
κ4

2D|γ|
+ 1

) (
1 + ‖Pε‖

2
L∞((0,T )×R)

)
+

D2C(T )
E

‖Pε‖
4
L∞((0,T )×R) + C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) + C(T ).

Hence, (
1 −

D2C(T )
E

)
‖Pε‖

4
L∞((0,T )×R) −C(T )

(
E
2

+
κ4

2D|γ|
+ 1

) (
1 + ‖Pε‖

2
L∞((0,T )×R)

)
−C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) −C(T ) ≤ 0.

Choosing

E = D, D =
1

2C(T )
, (2.48)

we have
1
2
‖Pε‖

4
L∞((0,T )×R) −C(T ) ‖Pε(t, ·)‖2L∞((0,T )×R) −C(T ) ≤ 0,

which gives (2.24).
Finally (2.25) follows from (2.7), (2.24), (2.47) and (2.48). �

Following [10, Lemma 3.1], or [19, Lemma 3.1], we prove the following result.

Lemma 2.6. Let T > 0. There exists a constant C(T ) > 0, independent on ε, such that

‖uε‖L∞((0,T )×R) ≤ C(T ), (2.49)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T . We begin by observing that, by (2.24), we have that

|γPε(t, x)| ≤ |γ|C(T ), (t, x) ∈ (0,T ) × R. (2.50)

Therefore,
− |γ|C(T ) ≤ γPε(t, x) ≤ |γ|C(T ). (2.51)

The proof of (2.49) splits into two parts. In the first part, we consider b ≥ 0. Instead, in the second
one, we consider b ≤ 0.

Case b ≥ 0. We assume that
b = α2. (2.52)

Therefore, by the first equation of (2.1), (2.51) and (2.52), we have

∂tuε + a∂xu3
ε − ε∂

2
xxuε ≤ |γ|C(T ) − α2uε − κ2u3

ε. (2.53)

A supersolution of (2.1) satisfies the following ordinary differential equation:

dz1

dt
+ α2z1 + κ2z3

1 − |γ|C(T ) = 0, z1(0) =
∥∥∥uε,0

∥∥∥
L∞(R)

. (2.54)

AIMS Mathematics Volume 4, Issue 3, 437–462.



452

We consider the map
Z1(t) = At + A, t ≥ 0. (2.55)

where A is a positive constant, which will be specified later. Observe that

dZ1

dt
+ α2Z1 + κ2Z3

1 − |γ|C(T ) = A + α2A(t + 1) + κ2A3(t + 1)3 − |γ|C(T )

Choosing
A = |γ|C(T ), (2.56)

we have that

dZ1

dt
+ α2Z1 + κ2Z3

1 − |γ|C(T ) = α2|γ|C(T )(t + 1) + κ2|γ|3C(T )(t + 1)3 ≥ 0, (2.57)

for every t ∈ (0,T ). Then, Z1(t) is a supersolution of (2.54). (2.56), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

uε(t, x) ≤ z1(t) ≤ Z1(t) = |γ|C(T )(t + 1), (t, x) ∈ (0,T ) × R. (2.58)

Observe that, by the first equation of (2.1), (2.51) and (2.52), we have

∂tuε + a∂xu3
ε − ε∂

2
xxuε ≥ −|γ|C(T ) − α2uε − κ2u3

ε. (2.59)

Therefore, a subsolution of (2.1) satisfies the following ordinary differential equation:

dz2

dt
+ α2z2 + κ2z3

2 + |γ|C(T ) = 0, z2(0) =
∥∥∥uε,0

∥∥∥
L∞(R)

. (2.60)

We consider the map
Z2(t) = −Bt − B, t ≥ 0. (2.61)

where B is a positive constant, which will be specified later. Observe that

dZ2

dt
+ α2Z2 + κ2Z3

2 + |γ|C(T ) = −B − α2B(t + 1) − κ2B3(t + 1)3 + |γ|C(T ).

Choosing
B = |γ|C(T ), (2.62)

we have that

dZ1

dt
+ α2Z1 + κ2Z3

1 − |γ|C(T ) = −α2|γ|C(T )(t + 1) − κ2|γ|3C(T )(t + 1)3 ≤ 0, (2.63)

for every t ∈ (0,T ). Then, Z2(t) is a subsolution of (2.61). (2.62), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

− |γ|C(T )(t + 1) = Z2(t) ≤ z2(t) ≤ uε(t, x), (t, x) ∈ (0,T ) × R. (2.64)

It follows from (2.58) and (2.64) that

|uε(t, x)| ≤ |γ|C(T )(t + 1) ≤ |γ|C(T )(T + 1), (2.65)
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which give (2.49).

Case b ≤ 0. We assume that
b = −α2. (2.66)

Thanks to (2.66), arguing as in previous case, we get

∂tuε + a∂xu3
ε − ε∂

2
xxuε ≤ |γ|C(T ) + α2uε − κ2u3

ε. (2.67)

A supersolution of (2.1) satisfies the following ordinary differential equation:

dz3

dt
− α2z3 + κ2z3

3 − |γ|C(T ) = 0, z3(0) =
∥∥∥uε,0

∥∥∥
L∞(R)

. (2.68)

We consider the map
Z3(t) = Dt + E, t ≥ 0. (2.69)

where D, E are two positive constants, which will be specified later. Observe that

dZ3

dt
− α2Z3 + κ2Z3

3 − |γ|C(T )

=D − α2 (Dt + E) + κ2 (Dt + E)3 + |γ|C(T ) (2.70)

=κ2D3t3 + 3κ2D2Et2 + D
(
3κ2E2 − α2

)
t + D + κ2E3 − α2E − |γ|C(T ).

We search D, E such that,

3κ2E2 − α2 ≥ 0, D + κ2E3 − α2E − |γ|C(T ) ≥ 0. (2.71)

From the first inequality of (2.71), we obtain that

E ≥

∣∣∣∣∣∣ α
√

3κ

∣∣∣∣∣∣ . (2.72)

Choosing
D = |γ|C(T ), (2.73)

it follows from the second inequality of (2.71) that

κ2E3 − α2E ≥ 0 ⇒ κ2E2 − α2 ≥ 0,

that is
E ≥

∣∣∣∣∣ακ
∣∣∣∣∣ . (2.74)

From (2.72) and (2.74), we get

E ≥ max
{ ∣∣∣∣∣∣ α
√

3κ

∣∣∣∣∣∣ ,
∣∣∣∣∣ακ

∣∣∣∣∣ } =

∣∣∣∣∣ακ
∣∣∣∣∣ . (2.75)

Choosing

E =

∣∣∣∣∣ακ
∣∣∣∣∣ , (2.76)
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from (2.69) and (2.73), we have that

Z3(t) = Dt + E = |γ|C(T )t +

∣∣∣∣∣ακ
∣∣∣∣∣ . (2.77)

Moreover, by (2.70), (2.73) and (2.76),

dZ3

dt
− α2Z3 + κ2Z3

3 − |γ|C(T ) ≥ 0,

for every 0 ≤ t ≤ T . Then, Z3(t) is a supersolution of (2.68). (2.77), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

uε(t, x) ≤ z3(t) ≤ Z3(t) = |γ|C(T )t +

∣∣∣∣∣ακ
∣∣∣∣∣ , (t, x) ∈ (0,T ) × R. (2.78)

Arguing as in previous case, we have that

∂tuε + a∂xu3
ε − ε∂

2
xxuε ≥ −|γ|C(T ) + α2uε − κ2u3

ε. (2.79)

Therefore, a subsolution of (2.1) satisfies the following ordinary differential equation:

dz4

dt
− α2z4 + κ2z3

4 + |γ|C(T ) = 0, z2(0) =
∥∥∥uε,0

∥∥∥
L∞(R)

. (2.80)

We consider the map
Z4(t) = −Ft −G, t ≥ 0. (2.81)

where F, G are two positive constants, which will be specified later. Observe that

dZ4

dt
− α2Z4 + κ2Z3

4 + |γ|C(T )

= − F + α2 (Ft + G) − κ2 (Ft + G)3 + |γ|C(T ) (2.82)

= − κ2F3t3 − 3κ2F2Gt2 + F
(
α2 − 3κ2G2

)
t − F + α2G − κ2G3 + |γ|C(T )

We search F, G such that

α2 − 3κ2G2 ≤ 0, −F + α2G − κ2G3 + |γ|C(T ) ≤ 0. (2.83)

Choosing
F = |γ|C(T ), (2.84)

by (2.83), we have
3κ2G2 − α2 ≥ 0, κ2G3 − α2G ≥ 0.

Arguing as before, we gain

G ≥ max
{ ∣∣∣∣∣∣ α
√

3κ

∣∣∣∣∣∣ ,
∣∣∣∣∣ακ

∣∣∣∣∣ } =

∣∣∣∣∣ακ
∣∣∣∣∣ . (2.85)

Choosing

G =

∣∣∣∣∣ακ
∣∣∣∣∣ , (2.86)
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then, by (2.81) and (2.84),

Z4(t) = −Ft −G = −|γ|C(T )t −
∣∣∣∣∣ακ

∣∣∣∣∣ . (2.87)

Moreover, by (2.82), (2.84) and (2.86), we have

dZ4

dt
− α2Z4 + κ2Z3

4 + |γ|C(T ) ≤ 0,

for every 0 ≤ t ≤ T . Then, Z4(t) is a subsolution of (2.80). (2.87), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

− |γ|C(T )t −
∣∣∣∣∣ακ

∣∣∣∣∣ ≤ Z4(t) ≤ z4(t) ≤ uε(t, x), (t, x) ∈ (0,T ) × R. (2.88)

It follows from (2.78) and (2.88) that

−|γ|C(T )t −
∣∣∣∣∣ακ

∣∣∣∣∣ ≤ uε(t, x) ≤ |γ|C(T )t +

∣∣∣∣∣ακ
∣∣∣∣∣ .

Hence,

|uε(t, x)| ≤ |γ|C(T )t +

∣∣∣∣∣ακ
∣∣∣∣∣ ≤ |γ|C(T )T +

∣∣∣∣∣ακ
∣∣∣∣∣ ,

which gives (2.49). �

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Let us begin by proving the existence of a distributional solution to (1.10) satisfying (1.13).

Lemma 3.1. Let T > 0. There exists a function u ∈ L∞((0,T ) × R) that is a distributional solution of
(2.1) and satisfies (1.13) for every convex entropy η ∈ C2(R).

We construct a solution by passing to the limit in a sequence {uε}ε>0 of viscosity approximations
(2.1). We use the compensated compactness method [61].

Lemma 3.2. Let T > 0. There exists a subsequence {uεk}k∈N of {uε}ε>0 and a limit function u ∈
L∞((0,T ) × R) such that

uεk → u a.e. and in Lp
loc((0,T ) × R), 1 ≤ p < ∞. (3.1)

Moreover, we have that

Pεk → P a.e. and in Lp
loc((0,T ); W1,p

loc (R)), 1 ≤ p < ∞, (3.2)

where

P(t, x) =

∫ x

0
u(t, y)dy, t ≥ 0, x ∈ R. (3.3)
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Proof. Let η : R→ R be any convex C2 entropy function, and q : R→ R be the corresponding entropy
flux defined by q′(u) = 3au2η′(u). By multiplying the first equation in (2.1) with η′(uε) and using the
chain rule, we get

∂tη(uε) + ∂xq(uε) = ε∂2
xxη(uε)︸     ︷︷     ︸
=:L1,ε

−εη′′(uε) (∂xuε)2︸               ︷︷               ︸
=:L2,ε

+γη′(uε)Pε︸       ︷︷       ︸
=:L3,ε

−bη′(uε)uε︸       ︷︷       ︸
=:L4,ε

−κ2η′(uε)u3
ε︸        ︷︷        ︸

=:L5,ε

where L1,ε, L2,ε, L3,ε, L4,ε and L5,ε are distributions. Let us show that

L1,ε → 0 in H−1((0,T ) × R), T > 0.

Since
ε∂2

xxη(uε) = ∂x(εη′(uε)∂xuε),

by (2.6) and Lemma 2.6,

‖εη′(uε)∂xuε‖
2
L2((0,T )×R) ≤ ε

2 ‖η′‖2L∞(−C(T ),C(T ))

∫ T

0
‖∂xuε(s, ·)‖2L2(R) ds

≤ ε ‖η′‖2L∞(−C(T ),C(T )) C(T )→ 0.

We claim that
{L2,ε}ε>0 is uniformly bounded in L1((0,T ) × R), T > 0.

Again by (2.6) and Lemma 2.6,

∥∥∥εη′′(uε)(∂xuε)2
∥∥∥

L1((0,T )×R)
≤ ‖η′′‖L∞(−C(T ),C(T )) ε

∫ T

0
‖∂xuε(s, ·)‖2L2(R) ds

≤ ‖η′′‖L∞(−C(T ),C(T )) C(T ).

We have that
{L3,ε}ε>0 is uniformly bounded in L1

loc((0,T ) × R), T > 0.

Let K be a compact subset of (0,T ) × R. Using (2.24) and Lemma 2.6,

|γ| ‖η′(uε)Pε‖L1(K) = |γ|

∫∫
K
|η′(uε)||Pε|dtdx

≤ |γ| ‖η′‖L∞(−C(T ),C(T )) ‖Pε‖L∞((0,T )×R) |K|.

We show
{L4,ε}ε>0 is uniformly bounded in L1

loc((0,T ) × R), T > 0.

Let K be a compact subset of (0,T ) × R. By Lemma 2.6,

|b| ‖η′(uε)uε‖L1(K) = |b|
∫∫

K
|η′(uε)||uε|dtdx

≤ |b| ‖η′‖L∞(−C(T ),C(T )) ‖uε‖L∞((0,T )×R) |K|

≤ ‖η′‖L∞(−C(T ),C(T )) |K|C(T ).
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We claim that
{L5,ε}ε>0 is uniformly bounded in L1

loc((0,T ) × R), T > 0.

Let K be a compact subset of (0,T ) × R. Again by Lemma 2.6,

κ2
∥∥∥η′(uε)u3

ε

∥∥∥
L1(K)

= κ2
∫∫

K
|η′(uε)||uε|3dtdx

≤ κ2 ‖η′‖L∞(−C(T ),C(T )) ‖uε‖
3
L∞((0,T )×R) |K|

≤ ‖η′‖L∞(−C(T ),C(T )) |K|C(T ).

Therefore, Murat’s lemma [47] implies that

{∂tη(uε) + ∂xq(uε)}ε>0 lies in a compact subset of H−1
loc((0,T ) × R). (3.4)

The L∞ bound stated in Lemma 2.6, (3.4) and the Tartar’s compensated compactness method [61] give
the existence of a subsequence {uεk}k∈N and a limit function u ∈ L∞((0,T ) × R), T > 0, such that (3.1)
holds.

Finally, (3.2) follows from (3.1), the Hölder inequality and the identity

Pεk =

∫ x

0
uεkdy, ∂xPεk = uεk .

�

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Lemma 3.2 gives the existence of an entropy solution u for (1.9), or equivalently
(1.10).

We prove that u(t, x) is unique and (1.14) holds. Fix T > 0. Let u(t, x) and v(t, x) be two entropy
solution of (1.9), or (1.10) such that

u, v ∈ L∞((0,T ) × R) (3.5)

Consequently, by (3.5), we have that ∣∣∣u3 − v3
∣∣∣ ≤ C(T )|u − v|, (3.6)

where
C(T ) =

3
|a|

sup
(0,T )×R

{
u2, v2

}
. (3.7)

We define
Pu =

∫ x

0
udy, Pv =

∫ x

0
vdy (3.8)

Thanks to (3.6), following [6, 17, 27, 40], we can prove that

∂t(|u − v|) + ∂x[(au3 − av3)sign (u − v)]
− sign (u − v) γ(Pu − Pv) − sign (u − v) b(u − v) − sign (u − v) κ2(u3 − v3) ≤ 0,

AIMS Mathematics Volume 4, Issue 3, 437–462.



458

holds in sense of distributions in (0,∞) × R, and

‖u(t, ·) − v(t, ·)‖I(t) ≤ ‖u0 − v0‖I(0)

+ γ

∫ t

0

∫
I(s)

sign (u − v) (Pu − Pv)dsdx

+ b
∫ t

0

∫
I(s)

sign (u − v) (u − v)dsdx

+ κ2
∫ t

0

∫
I(s)

sign (u − v) (u3 − v3)dsdx,

(3.9)

for 0 < t < T, where
I(s) = [−R −C(T )(t − s),R + C(T )(t − s)]. (3.10)

Observe that

b
∫ t

0

∫
I(s)

sign (u − v) (u − v)dsdx ≤|b|
∫ t

0

∫
I(s)
|u − v|dsdx

=|b|
∫ t

0
‖u(s, ·) − v(s, ·)‖L1(I(s)) ds.

(3.11)

Instead, thanks to (3.6),

κ2
∫ t

0

∫
I(s)

sign (u − v) (u3 − v3)dsdx ≤κ2
∫ t

0

∫
I(s)
|u3 − v3|dsdx

≤C(T )
∫ t

0
‖u(s, ·) − v(s, ·)‖L1(I(s)) ds.

(3.12)

Since
|I(s)| = 2R + 2C(T )(t − s) ≤ 2R + 2C(T )t ≤ C(T ), (3.13)

due to (3.8),

γ

∫ t

0

∫
I(s)

sign (u − v) (Pu − Pv)dsdx ≤ |γ|
∫ t

0

∫
I(s)
|Pu − Pv|dsdx

≤ |γ|

∫ t

0

∫
I(s)

(∣∣∣∣ ∫ x

0
|u − v|dy

∣∣∣∣)dsdx

≤ |γ|

∫ t

0

∫
I(s)

(∣∣∣∣ ∫
I(s)
|u − v|dy

∣∣∣∣)dsdx

= |γ|

∫ t

0
|I(s)| ‖u(s, ·) − v(s, ·)‖L1(I(s)) ds

≤ C(T )
∫ t

0
‖u(s, ·) − v(s, ·)‖L1(I(s)) ds.

(3.14)

Considered the following function,

G1(t) = ‖u(t, ·) − v(t, ·)‖I(t) , t ≥ 0. (3.15)
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It follows from (3.9), (3.11), (3.12) and (3.14) that

G1(t) ≤ G1(0) + C(T )
∫ t

0
G1(s)ds. (3.16)

The Gronwall inequality and (3.15) give

‖u(t, ·) − v(t, ·)‖L1(−R,R) ≤ eC(T )t ‖u0 − v0‖L1(−R−C(T )t,R+C(T )t) ,

that is (1.14). �
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55. T. Schäfer and C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media,
Phys. D, 196 (2004), 90–105.

56. M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Commun. Partial
Differ. Equations, 7 (1982), 959–1000.

57. D. Serre, L1-stability of constants in a model for radiating gases, Commun. Math. Sci., 1 (2003),
197–205.

58. Y. Silberberg, Physics at the attosecond frontier, Nature, 414 (2001), 494–495.

59. S. A. Skobelev, D. V. Kartashov and A. V. Kim, Few-optical-cycle solitons and pulse self-
compression in a Kerr medium, Phys. Rev. Lett., 99 (2007), 203902.

60. A. Stefanov, Y. Shen and P. G. Kevrekidis, Well-posedness and small data scattering for the
generalized Ostrovsky equation, J. Differ. Equations, 249 (2010), 2600–2617.

61. L. Tartar, Compensated compactness and applications to partial differential equations, In:
Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Boston: Pitman, Mass.-
London, 39 (1979), 136–212.

62. N. Tsitsas, T. Horikis, Y. Shen, et al. Short pulse equations and localized structures in frequency
band gaps of nonlinear metamaterials, Phys. Lett. A, 374 (2010), 1384–1388.

63. K. K. Victor, B. B. Thomas and T. C. Kofane, On the conversion of high-frequency soliton
solutions to a (1+1)-dimensional nonlinear partial differential evolution equation, Chinese Phys.
Lett., 25 (2008), 1972–1975.

c© 2019 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 4, Issue 3, 437–462.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Vanishing viscosity approximation
	Proof of Theorem 1.1



