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1. Introduction

In recent years, the ultrafast science has experimentally crossed the threshold from the routine and
direct laser production of few-cycle optical pulses in the 5 —8 fs regime [29,36,37], to subfemtosecond
pulses in the range of hundreds of attoseconds [35, 54], leading to the hitherto unexplored field of
attosecond physics [24,39, 58].

Such short pulse durations and broad spectral content have opened up vast new possibilities for
exploring the fundamental nature of atomic and molecular physics at the fastest time scales, including
molecular vibrations, chemical reactions, and light-matter interactions. Indeed, even single-electron
transition events can now be captured [35] and an absolute measure of time potentially established
[23,25].

Yet the achievement of attosecond pulses in experiments also highlights the difficulties in
measurement and interpretation, especially as the optical field information is interwoven with the
physics of the interaction. Thus, theoretical and experimental methods are needed to help guide the
understanding of attosecond science.
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A first method is based on the master mode-locking (MML) equation. It was developed by Haus
[33,34] and has dominated mode-locking theory for many years.

The Haus theory is fundamentally based upon a center-frequency expansion of the electric field and
a derivation of an envelope approximation of the nonlinear Schrodinger equation (NLS) type. Inherent
in the model is the assumption that the envelope is slow in comparison to the underlying fast carrier.

In the case of the pulses which contain only a few cycles of the carrier, this approximation fails to
hold, even if higher-order terms are incorporated into the NLS-based description. Regardless, the NLS-
based approach has been shown to work quantitatively beyond its expected breakdown, into the tens of
femtoseconds regime, and has been used extensively for modeling supercontinuum generation [28].

However, when pushed to the extreme of a few femtosecond pulses, the NLS description becomes
suspect, and a theory not founded upon a center-frequency expansion is required.

As an alternative to the Haus model, Farnum and Kutz [30-32] develop a model to describe the
pulses like those described in [29,35-37,54] without relying on center-frequency expansion.

The Farnum and Kutz model is based on a short-pulse master mode-locking (SPMML) theory,
which derives from the Maxwell equations [1,2,4,5,38,50,51,55,59]. In such theories, it is assumed
that the propagation occurs for a broadband pulse so that the center-frequency expansion is
circumvented.

From a mathematical point of view, the Farnum and Kutz model is formulated in terms of the
following equation:

6x(8tu+a8xu3+bu+cu3):7u, a, b, c,y eR, (1.1)

also known as SPMML equation, where u(t, x) is the electric field amplitude, ¢ is the time, x is distance
propagated in the laser cavity [55], b is the linear attenuation, ¢ is a cubic gain term giving rise to
intensity discrimination (saturable absorption) [33,34] and v is a real parameter [38,55].
Ifb=c=0,(1.1) reads
0y ((9,u + a@xu3) = yu. (1.2)

It was introduced by Kozlov and Sazonov [38] as a model equation describing the nonlinear
propagation of optical pulses of a few oscillations duration in dielectric media, and by Schifer and
and Wayne [55] as a model equation describing the propagation of ultra-short light pulses in silica
optical fibers. Hence, with respect to Kozlov, Sazonov, Schifer and Wayne, Farnum and Kutz take
into consideration the linear attenuation and the saturable absorption. Moreover, in [42—44] the
authors show that (1.2) is a non-slowly-varying envelope approximation model that describes the
physics of few-cycle-pulse optical solitons.

If we take ¢ = 0 in (1.1), we have the short pulse equation with linear attenuation, which is deduced
in [63].

It also is interesting to remind that Eq (1.2) was proposed earlier in [48] in the context of plasma
physic and that the similar equations describe the dynamics of radiating gases [41,57]. In [62], the
authors deduce (1.2) to describe the short pulse propagation in nonlinear metamaterials characterized
by a weak Kerr-type nonlinearity in their dielectric response. Moreover, [3, 13,52,53] show that (1.2)
is a particular Rabelo equation which describes pseudospherical surfaces.

In literature, we have the following generalization of (1.2):

0, (a,u +adu’ —ﬁ@imu) = yu. (1.3)
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It was derived by Costanzino, Manukian and Jones [22] in the context of the nonlinear Maxwell
equations with high-frequency dispersion. Kozlov and Sazonov [38] show that (1.3) is an more
general equation than (1.2) to describe the nonlinear propagation of optical pulses of a few
oscillations duration in dielectric media.

Recently, wellposedness results for the Cauchy problem of (1.2) are proven in the context of energy
spaces (see [26,49,60]). A similar result is proven in [11, 16] in the context of the entropy solution,
while, in [7, 12, 18], the wellposedness of the homogeneous initial boundary value problem is studied.
Finally, the convergence of a finite difference scheme is studied in [21].

Moreover, mathematical properties of (1.3) are studied in many different contexts, including the
local and global wellposedness in energy spaces [22,49] and stability of solitary waves [22, 46].
Observe that, letting  — 0 in (1.3), we obtain (1.2). Hence, following [9, 45, 56], in [15, 16], the
convergence of the solution of (1.3) to the unique entropy solution of (1.2) is proven.

In this papaer, we assume that ¢ > 0 and we write ¢ = «*. Therefore, (1.1) reads

0, (atu +adu’ + bu + K2u3) = yu. (1.4)

We are interested in the Cauchy problem for this equation, thus we augment (1.4) with the initial
condition
u(0,x) = up(x), xe€R, (1.5)

on which assume that
up(x) € L(R) N Ll(R), fuo(x)dx = 0. (1.6)
R

Following [10, 11, 16], on the function

Po(x) = f uo(y)dy, (1.7)

(%)

" 2
POl e, = fR ( f uo<y>dy) dx < oo. (1.8)

Integrating (1.4) in (0, x), we gain the integro-differential formulation of (1.4) and (1.6).

we assume that

X
Ou+ ad i’ + bu + Ku’ = yf udy, t>0, xeR,
0

(1.9)
u(0, x) = up(x), x €R,
that is equivalent to
O + adu® + bu + K*u® = yP, t>0,xeR,
0,P =u, >0, xeR,
(1.10)
P(,0) =0, t>0,
u(0, x) = up(x), x €R.

One of the main issues in the analysis of (1.10) is that the equation is not preserving the L! norm, as a
consequence the nonlocal source term P and the solution u are a priori only locally bounded. Indeed,
from (1.9) and (1.10) is clear that we cannot have any L® bound without an L' bound. Since we are
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interested in the bounded solutions of (1.4), some assumptions on the decay at infinity of the initial
condition u, are needed (see (1.8)).
The unique useful conserved quantities are

tl—>fu(t,x)dx:0, m-»fuz(t,x)dx. (1.11)

In the sense that if u(z, -) has zero mean at time ¢ = 0, then it will have zero mean at any time ¢ > 0. In
addition, the L? norm of u(t, -) is constant with respect to t. Therefore, we require that initial condition
uy belongs to L?> N L™ and has zero mean.

Due to the regularizing effect of the P equation in (1.10), we have that

ueL”(0,T)xR) = P e L”((0,T); W-(R)), T >D0. (1.12)
Following [10, 11, 16], we give the following definition of solution.

Definition 1.1. We say that u € L*((0, T) X R) is an entropy solution of the initial value problem (1.10)
and (1.5) if

i) u is a distributional solution of (1.10);
ii) for every convex function n € C*(R) the entropy inequality

Amu) + dxq(u) + by Wu + 7' W’ =y WP <0,  qu) =3a f u En'Ede,  (1.13)

holds in the sense of distributions in (0, c0) X R.
The main result of this paper is the following theorem.

Theorem 1.1. Assume (1.6) and (1.8). The initial value problem (1.10) and (1.5) possesses an unique
entropy solution u in the sense of Definitionl.l. Moreover, if u and v are two entropy solutions (1.10)
and (1.5) in the sense of Definition 1.1, the following inequality holds

[lee(2, -) — w(1, ')”Ll(—R,R) <M ||lu(0, ) — v(0, ')”Ll(—R—C(T)t,R+C(T)t) > (1.14)
for almost every 0 <t < T, R > 0, and some suitable constant C(T) > 0.

The paper is organized as follows. In Section 2, we prove several a priori estimates on a vanishing
viscosity approximation of (1.10). Those play a key role in the proof of our main result, that is given
in Section 3.

2. Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation of
(1.10).

Fix &€ > 0 a small number and let u, = u.(¢, x) be the unique classical solution of the following
mixed problem [14,20]:

O, + a@xug + bu, + K2u§ =yP, + eﬂfmus, t>0, xeR,
0.P; = u,, t>0, xeR,
(2.1)
P(1,0) =0, t>0, xR,
u:(0, x) = u,0(x), x €R,
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where u, is a C* approximation of u, such that

|Lw(R) < lluollz=e) » ||u£,0||L2(R) < lluoll2(w) »

ol < Ml [ eat = 22)
R

where Cj is a constant independent on &.

Let us prove some a priori estimates on u, and P,, denoting with C, the constants which depend
only on the initial data, and C(T') the constants which depend also on 7.
Arguing as in [8, Lemma 2.1], or [10, Lemma 2.1], we have the following result.

ua,O

P &0

3
|L2(R) < ”POHLZ(R) s fPS’O(x)us,O(x)dx < Cy,
R

Lemma 2.1. Let us suppose that
P.(t,—00) =0, >0, (orPgt,o0)=0). (2.3)
Then, the following statements are equivalent
fR uslt,x)dx =0, 120, (2.4)

d
E ||M€(t, )H%}(R) + K2 ”l’ts(l’ )”24([&) (25)

+2¢e ”axua(ta )lliZ(R) =2b ||u8(t’ )||iZ(R) s t>0.
Lemma 2.2. For eacht € [0, ), (2.3) and (2.4) hold. In particular, fixed T >t > 0, we have that
t
My + e [ 5, s
t
+ 2gel f e N10,us(s, Nag, ds < C(T). (2.6)
0

Proof. Arguing as in [8, Lemma 2.2], we have (2.3), and (2.4). Lemma 2.1 says that (2.5) also hold.
Therefore, we get

2 2 4
E ”u&‘(t’ .)”LZ(R) + K ”ué‘(ta .)||L4(R)

+2¢e ||axu€(la )”iZ(R) < 2|b| ”Ma(t, ')”iZ(R) .
Fixed T > 0, the Gronwall Lemma and (2.2) give
t
e (2, 72y + K7€ fo e Nlug(s, Mo, ds
!
+ 26 f e N0ste(s, Mg, ds < Nollfaey € < CT),
0
that is (2.6). O
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Lemma 2.3. Fix T > 0. There exists a constant C(T) > 0, independent on &, such that
!
o, M, + 48 fo lae (s, e, s
t
+12¢ f (5, ).t (5, 7oy ds < C(T)(l + ||P8||L°°((O,T)><R))'
0

Proof. Let 0 <t < T. Multiplying (2.1) by 412, an integration on R gives

d
Sty =4 [ w0
di L = ) #eOr
=-12a f uf:axuadx —4b ”u&‘(t’ )”24(]&) - 4K2 ||l/l£(t, )HiG(R)
R

+47fP8uzdx+4sfu§8§xu8dx
R R

4 2 6
= 4b ||I/lg(t, .)”L“(R) - 4K ”us(t’ .)”LG(R)

+dy f Peuldx — 128 |ug(, )0cute (1, 2z, -
R
Hence,

d
T et ey + 45 et ey + 128 ute(t, 0a4o e

=—4b||u.(t, ')”24(1&) + 4ny8ugdx
R

<A4{b| [lue(t, ~)|Ii4(R)+4|7|f|Ps||ugl3dX-
R

Due to (2.6) and the Young inequality,

4yl f IPellucPdx < Ay IPello.7xe) f JuPdx
R R

2 4
< D IP oy Wt My + 2y TPl ey e, M
4
< C(D)IPellso,myxzy + 20 HIPell oo 0,795y 112, ')||L4(R)-

Consequently, by (2.8),

d
T et ey + 45 et Mgy + 128 ute(t, 024ot, e
<4|b| ||u(t, ')||24(R) +C(T) ||Ps||L°°((O,T)><R)

4
+ 2|')’| ||P8||L°°((O,T)XR) ”ua(ta .)||L4(R) .

It follows from (2.2), (2.5) and an integration on (0, ¢) that

f t
llue (2, -)||i4(R)+4K2f llue (s, -)II26<R>dS+128f (s, )05, N2y dS
0 0

2.7)

(2.8)
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!
4
<Co + 4Ib] f it (5, Mgy s + CCT) WPelliso ey
0
!
4
+ 2y ||P£||L°°((O,T)><R)f |z (s, ‘)||L4(R) ds
0
!
21b ~20b 4
<Co + 4lbje™" f 2 [l (s, My s + CCTY 1Pl
0

!
+ 21 IPell o (0,1ymy € f e (8, Mjs g, ds
0
<C(T) (1 + 1Pl o) -
which give (2.7). O

Lemma 2.4. Fix T > 0. For each t € [0, T], we have that

0
a g
f Pults 9 < Z02(6,0) = 91, 0) + C(T) V(I + 1P o) (2.9)
* a , €
P(t, x)dx < —;M;(l, 0) + 7_/6xu€(ta 0) + C(T) \/(1 + ||Ps||L°°((O,T)><R))- (2.10)
0
Moreover,
2
f Po(t, x)dx = —— f B, dx, 12 0. 2.11)
R Y Jr
Proof. We begin by observing that, integrating the second equation of (2.1) on (0, x), we have
P.(t,x) = f us(t,y)dy. (2.12)
0
Consequently, by (2.3),
f u(t, x)dx = 0. (2.13)
0
Differentiating (2.13) with respect to #, we obtain
d (7 -
— f u(t, x)dx = f Ou(t, x)dx = 0. (2.14)
dt Jy 0

Integrating the first equation on (0, x), we have that

Y f P.(t,y)dy = f Auc(t,y)dy + au)(t, x) — au(t,0) — £0,u.(t, x)
0 0

. (2.15)
+ &0,u,(t,0) — bP(t, x) — K* f wl(t, x)dy.
0
It follows from (2.3) and the regularity of u, that
lim (aul(t, x) - 80,u,(t, x) — bP(t,x)) = 0. (2.16)

X——00
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Consequently, by (2.3), (2.14), (2.15) and (2.16),

0% f P.(t, x)dx = —au,(t,0) + £d,u.(t,0) — & f uf,(t, x)dx,
0 0

that is 0 s o
f Po(t, )dx = Lu (1,0) = £0.u.(1,0) - = f (1, x)dx
_ y y v J-

(o0 o0

Due to (2.6), (2.7) and the Holder inequality,

2
—K—f 3dx< f|u£| dx
y
2

_”u&‘(t )”LZ(R)HME(t )||L4(R)

<CT) et My < CT) (1 + 1Pl

(2.9) follows from (2.17) and (2.18).
We prove (2.10). By (2.3) and (2.12), we have

f u(t,x)dx =0
0

Consequently, differentiating (2.19) with respect to ¢, we obtain

d (o] 00
— f ug(t, x)dx = f Oug(t,x)dx =0
dt Jo 0

(2.3) and the the regularity of u, give

lim (auz(t, x) — &0,u.(t, x) — bP(t, x)) =0

X—00

Therefore, by (2.15), (2.20) and (2.21),

* a € <
P.(t,x)dx = ——u.(t,0) + =0, u.(t,0) — — u(t, x)dx
0 Y Y Y Jo

Due to (2.6), (2.7) and the Holder inequality,

2
—K—f 3dx< f|u€|dx
Y Jo
2

_”us(t )”LZ(R)”us(t )||L4(]R)

<CT) e My < O (1 + 1P o)

(2.22) and (2.23) give (2.10).

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Finally, we prove (2.11). Thanks to (2.9) and (2.10), we can consider (2.17) and (2.22) which give

2.11).

O
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Following [15, Lemma 2.4], we prove the following result.
Lemma 2.5. Fix T > 0. There exists a constant C(T) > 0, independent on &, such that
Pell Lo 0.r)xry < C(T). (2.24)
In particular, for every 0 <t < T, we have

1P (2, ')”iz(R) <C(T),
!
f IPe(s, Jue(s, N2, ds <C(T),
0
”l/lg(t, ')||L4(R) SC‘(T')’ (225)
!
f ”us(s’ )”26([&) SC‘(T')a
0

t
& f e (s, )05, 2, ds <C(T).
0

Proof. Let 0 <t < T. We begin by observing that, thanks to (2.9), we can consider the following
function

F(t,x) = fx P.(t,y)dy. (2.26)

o0

Integrating the second equation of (2.1), by (2.3), we get

P.(t,x) = fx ug(t,y)dy. (2.27)

(%)

Differentiating (2.27) with respect to ¢, we obtain that

d X X
0P.(t,x) = Ef u(t,y)dy = f ou(t,y)dy. (2.28)

(%) (%)

Integrating the first equation of (2.1) on (—oo, x), from (2.26), (2.27) and (2.28), we have

X

0,Pe(1, X) = —au)(t, X) — bP(1,x) = & f w) (1, y)dy + YFo(t, X) + £0.u(t, x). (2.29)
Multiplying (2.29) by 2P,, an integration on R give

d 2

TP, =2 [ PaoyPds

=— 2afP€ugdx —2b||P(t, -)IIiz(R) + ZSIPgﬁxugdx (2.30)
R R
— 2 fPE (f ul(t, y)dy) dx + nyPgngx
R —00 R
Observe that, by (2.11) and (2.26),

27fP£F8dx :nyFsangdx:ng(t, 00)
R R

2 K4 2
=7(fP8(t,x)dx) = —(fuidx) )
R Y \JUr
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Again by (2.11) and (2.26),

—2«* fPS (f ui(t,y)dy)dx
R —00

= — 2K F4(t, ) f wdx + 262 f Fauldx
R R

= -2k (f Psdx) (f uidx) + 2K2nguzdx
R R R
2% 2
- (fugdx) +2K2nguzdx.
Y \JUr R

Moreover, by (2.1) and (2.3),
2e f P.du.dx = —2¢ f 0xPitedx = =2€ lus(t, 72, -
R

R
Therefore, it follows from (2.30), (2.31), (2.32) and (2.33) that

d
E ”Pe(ta )HiZ(R) +2¢ ”ué‘(ta )”iZ(R)

= — 2a f Pguidx - 2b ||P8(t9 ')lliZ(R)
R

3kt 2
+ —(f uidx) +2K2ngu2dx.
Y \Ur R

1 b 2
Fult,x) = —3,Po(t, X) + —u3(t, x) + 2 Polt, x) + — f B, y)dy — Z0,u.1, %),
y y y y J- y

(o0

By (2.29), we have

Multiplying (2.35) by 2«*u2, an integration on R gives

2

262 2 26%b
22 f Faldx =— f O Pt + o (1, Moy + = f Paldx
R Y Jr Y Y JUr

2 4 X 2 2
= |8 (f uzdy) dx— =% w0 udx.

&

Y Jr 0 Y R
Since
24t X 4 2
quz(f ugdy)dx =K—(fu2dx) ,
Y R —00 Y R
2k%e

e ui@xugdx =0,
Y R
we have that
2 2

2 2

22 | Faddx =25 | o.Pacddx + 2 o, 1,

& & L°(R)
R Y Jr Y

262b 4 2
+E2 Podx + al (f uidx) .
Y Jr Y \Jr

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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Using (2.36) in (2.34), we get

2 2
E ”Pz-:(t’ ')”LZ(R) +2e ”us(t, .)”LZ(R)

2(k*b — ay)
:#’y ngMde -2b ||P‘9(t’ )”IZJZ(R)
R

4ict S
) 26(1&) + L(f ugdx) + if@,Pguzdx.
Y R Y Jr

ﬁt(Psuz) = 8,P8ui + Pgﬁ,uz = ('LPSug + 3P€u§0tu€.

Observe that

Consequently,

2 d 6 2
Lf@,Pguzdx— i— Pguzdx—ingugc')tugdxdx.
R y dt Y Jr

Using (2.38) in (2.37), we have

dG(1) 2(k*b — ay)
o T2l W) = == RPguzdx

2ak®
—2b ||P£(t, )HZZ(R) + 7 ||M€(t, )lli6(R)

4¢* Y
+ L(f ugdx) - Lnguﬁa,ugdx,
Y R Y Jr

2 26° 3
G(t) = ||P(t, -)||L2(R) — 7 P.u dx.
R

where

6>
Multiplying the first equation of (2.1) by ——P uZ, an integration on R give
Y

6 18ax? 6bK>
X P uzatugdx _ oK nguiﬁxugdx+ il nguzdx
Y Y R Y R

K 5 2 2

+ — Psugdx - 6K ”Pa(ts ')I/lg(t, .)”LZ(R)
Y Jr
6 2

X p U207 udx.

Y R

Observe that by (2.1) and (2.3),

18ax? 18ax’ 18ax’
T Paitdudx = - ——— | 430, Podx = —— fts(t, Mo,
o R 57 R)

Y 5y
6K> 6k 12«2
_2KE P uiaixugdx ——f Peu 20 u.dx + ke fPsug(ﬁxug)zdx
Y Y Jr Y R
6k*e 3 12«% )
=— | w.0u.dx+ Pou (0.u.) dx
Y Jr Y R

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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12«2
ke f P.u.(0,u.)dx.
Y R

Hence, by (2.41),

612 18ax’ 6bK’
a f P2ty = = = [t (1, Yoz + ~ f Poudx
Y Jr 5y Y Jr

4
= f Poiidx = 6k |\Po(t, Jue(t, Mo,
Y JUr

12k%¢
Y

f P.u.(0,u.)dx.
R

Substituting (2.42) in (2.39), we get

dG(t)
dt

2 2 2
+2e ”Mg(t, .)”LZ(R) + 6k ||P8(t’ ')us(t’ .)”LZ(R)

8«x°b — 2ay 8ax®
=T fPsuidx = 26 ||Ps(t, 2z, — > [T .
R

4 4 2 4 12 2
_,_i(f ugdx) +K_fP8uzdx+ - Engug(OxuS)zdx.
Y \Ur Y Jr Y R

Due to (2.6), (2.7) and the Young inequality and the Holder inequality,

) 8 2b 2
u f Pl = BEE =200 f Pt udx

|8K2b - 2ay| 5 5 |8K2b - 2ay| A
< ——— | Pouzdx + ———— |ju:(t,)l|
2k 2yl B
18«%b — 2ay|
< T ||P8||i00((0’T)XR) ”ua(ta )”iZ(R) + C(T) (1 + ”PSHL“’((O,T)XR))

< C(T)||P, ||%w«0 iy + C(T),

P
e |P£|ua| dx =
ly If | | \/_
P2 uldx + (1, )
D/<4P2 2 &
_fR 2VEMI 2Dy

D*i® E K*
< Phiddx + [ = + —— | llu.(t,)II°
4E72fR Mt (2 2D|y|)”u( Moz

2K8 4 2 E K4 6
< 4E)/2 ||P£||L°°((O,T)><R) ”us(t, .)”LZ(R) + 5 + Fh/l ||u8(t, .)”L6(]R)

6
”u&‘(t’ .)”LG(R)

D*C(T) E__« ]
< T ||Pa||L°°((() T)xr) 2D| | [loee (2, .)”LG(R) )
1242 1242
i fpsus(axua)zdx = Lo flpaaxua”usaxualdx
Iyl R R

(2.42)

(2.43)
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6K%e 6K%e
< —— | PO dx + === lue(t, )0,ue(t, 2z,
M Jr Iyl
6K’e 6k>
ST 1P ellZ o 0,77k 1058, M2y + v lute(2, )0t M2y

o ( f | dx) <o (||ug<t Mureen ot M)

< C(T) |lug(t, )||L4(R) < C(T) (1 + 1Pell 0, T)xR))
< C(T) + C(T) 1Pe(t, s 0.17xm) »

where D, E are two positive constants which will be specified later. Consequently, by (2.43),

GO | el

> Ny + 6 1P, e,

2
.)”LZ(R)

8lalk* E K
< 2B 1Pt sy + (W # 5+ g | e

6x’e 6>

+— ] ”Ps”Lw((o T)xR) 110 uc (1, )”LZ(R) b’l |l (2, )0 cuc(t, ')”iz(R)
D*C(T)

+ T ”Pa”iw((o,r)xR) + C(T) ”Pa(t, ')”%‘”((O,T)XR) + C(T)-

Observe that by (2.40),

4|b|k?
2 IP(1, ), = 21BIG@) + 'y'“ f Poidsx.
R

Thanks to (2.6), (2.7) and the Young inequality,

4lb Alb
' L f P P = AP f \Pouglidx
R

lyl
2|b|k? f ) 2|b|> 4
< —— | Pou.dx+ |z (2, -)I|
byl Je yl L'®)
2|b|k?
< SN0y N6t Mgy + Y (14 1Pl o770

W
< C(D) 1Pl o015y + C(T).
It follows from (2.44), (2.45) and (2.46) that

dG(1)
dt

2 2 2
+2¢e ”u&‘(t’ ')”LZ(R) + 6k ”Pé‘(t, ')ub‘(t’ ')”LZ(R)

8alk> K
+ + u(t, -

K2
W

Pl s 0.1 + CD NP, o1y + C(T).

<2|bIG(2) +

61%e
+—— ] ||Ps||Loo((o T)xR) 110 1 (1, )”LZ(R) —— llu(2, )0 u(t, ')”iQ(R)
D*C(T
L@

E

(2.44)

(2.45)

(2.46)
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The Gronwall Lemma, (2.2), (2.6), (2.7), (2.40), (2.46) and the Young inequality give

!
2 2|b =2|b| 2
1Pt + 256 [ s s
0
!
2 2|b| =2|b|s 2
+ 6K | Itf e s ||P8(S’ ')MS(S, .)”LZ(R) ds
0

22
SC0+ifP8ugdx
Y Jr

8lalk> E Kt ) 2lblt f t ~2lb| 6
+ +—+—e e (s, o) ds
( b 27 20m)¢ s e

6K°s 20blt ' ~2lbls 2
+ ] ”Ps”Loo((o T)xR) € e 1101t (s, ')”LZ(R) ds
0

6K%e it

A
=2|b|s 2
¢ 2P |l (5, ) ctto(5, NP ds
Iyl fo L®)
D*C(T
L be@)

t
4 2|b —2|b|s
E ”P‘E”LW((o,T)xR)elltfe s
0

4 1
+ C(T) ||Ps(t’ .)”i”((O,T)XR) 62|b|t f e_zlblsds + C(T)ezlb‘t f e—zlblsds
0 0

8|a|/<2 E K ! p

D’C(T)
+C(T)8f e (s, )0 cus(s, )”LZ(R)d S+ ——F E ”Ps”ioo((o,r)x]g)

< C(D) 1Pt Mioo.1m + C(T)

E 4
< C(T) (5 + 2D|7|) (1 + ||Ps||L°°((O,T)XR))

+C(T) (1 + ||Ps||L"°((O,T)><R))
D*C
, D)
E
E
<CT)|=+
L
D*C
L D@
E
We prove (2.24). Thanks to (2.1), (2.3), (2.6) and the Holder inequality,

WPl 0.1y + CD NP, M o1y + C(T)
4

2Dyl

+ 1) (1 + ”Pslllzfo((O,T)xR))

1Pl 7 0.y + CCI NPt N0,y + C(T)-

P2(t,x) =2 f P.0,P.dy <2 | |Plluldx
—oo R

L2 ||Pe(t, 2wy Nlte (@, 2wy < C(T)IP(E, N 2y -
Therefore, by (2.47),

Pl 0.7m) SCAD Pt o

(2.47)
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E K4 2
<C(T) 5+ DD +1 (1 + ||P£||L°°((O,T)><R))

D*C(T)
+ T ||Ps||iw((0,T)><R) + C(T) ”Pa(t, ')”iw((oj)xR) + C(T)-
Hence,
D*C(T) A E 5
1- T ”Ps”Loo((o,T)xR) - C(T) 5 + 2D|y| +1 (1 + ”Ps”Lm((o,T)xR))
~ C(D) 1Pt )l077x7) — C(T) < 0.
Choosing
1
E=D, D=——, 2.48
2C(T) ( )
we have |
5 WPl oy = CAD Pt lzo.ryxey = C(T) < 0,
which gives (2.24).
Finally (2.25) follows from (2.7), (2.24), (2.47) and (2.48). m|
Following [10, Lemma 3.1], or [19, Lemma 3.1], we prove the following result.
Lemma 2.6. Let T > 0. There exists a constant C(T) > 0, independent on &, such that
lletell o0, 7)xry < C(T), (2.49)
forevery) <t<T.
Proof. Let 0 <t < T. We begin by observing that, by (2.24), we have that
lyPe(t, )| < ly|C(T), (£,x) €(0,T)xR. (2.50)
Therefore,
— YIC(T) < yP(2, x) < yIC(T). (2.51)

The proof of (2.49) splits into two parts. In the first part, we consider b > 0. Instead, in the second
one, we consider b < 0.

Case b > 0. We assume that
b= a?. (2.52)

Therefore, by the first equation of (2.1), (2.51) and (2.52), we have
ou, + a@xug - 88§xu8 < Wy|C(T) - o u, — Kzug. (2.53)

A supersolution of (2.1) satisfies the following ordinary differential equation:

d
el +a’z + Kzz? —WIC(T) =0, z(0)=

- (2.54)

us,O

L*[®R)
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We consider the map

Zi(t)=At+A, t>0. (2.55)
where A is a positive constant, which will be specified later. Observe that
dz
d—tl +@’Z +K°Z - YIC(T) = A+ At + 1) + iPA*(t + 1)’ — |y|C(T)
Choosing
A = [y|C(T), (2.56)
we have that
dzZ
d—tl +@*Zy + K*Z; — yIC(T) = &*[YIC(T)(t + 1) + PlyPC(T)(t + 1)* > 0, (2.57)

for every t € (0,7T). Then, Z(¢) is a supersolution of (2.54). (2.56), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

ut,x) <z1(t) < Z,(t) = WIC(T)t+ 1), (t,x)€(0,T)xR. (2.58)
Observe that, by the first equation of (2.1), (2.51) and (2.52), we have
o, + a@xui - eaixug > —|y|C(T) — @*u, — Kzuz. (2.59)

Therefore, a subsolution of (2.1) satisfies the following ordinary differential equation:

dz,

D+ +YICT) =0, 22(0) = fJus|| o, (2.60)
We consider the map
Z,(H)=—-Br—B, t>0. (2.61)
where B is a positive constant, which will be specified later. Observe that
az
d—; +a’Z +K°Z; + YIC(T) = =B — &*B(t + 1) = KB (t + 1)’ + y|C(T).
Choosing
B = y|C(T), (2.62)
we have that
az
d_;] +*Z) + K°Z — yIC(T) = —?ly|C(T)(t + 1) — ClyPC(T)(t + 1) <0, (2.63)

for every t € (0,7). Then, Z,(¢) is a subsolution of (2.61). (2.62), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

—WIC(T)(t + 1) = Zy(t) < 2o(t) < u(t,x), (t,x)€(0,T)xR. (2.64)
It follows from (2.58) and (2.64) that

lus(t, X)| < YIC(T)( + 1) < YIC(TYT + 1), (2.65)
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which give (2.49).

Case b < 0. We assume that
b=—-a’

Thanks to (2.66), arguing as in previous case, we get

O, + aaxug — 8(9)2€xu5 < WIC(T) + @*u, — Kzuz.

A supersolution of (2.1) satisfies the following ordinary differential equation:

dz
d—j — &Pz + K22 - WIC(T) =0, z(0) =

ua,O

Lo®R)

We consider the map
Zi()=Dt+E, t>0.

where D, E are two positive constants, which will be specified later. Observe that

dz
d—; — &*Zs + K*Z3 — [y|C(T)

=D — a? (Dt + E) + &> (Dt + E)* + [y|C(T)

—*D°F + 3KPD*Ef* + D (3/<2E2 — az) t+ D+ KE® — &*E — |y|C(T).

We search D, E such that,
3CE* —a* >0, D+ KE°—a*E—y|C(T) > 0.

From the first inequality of (2.71), we obtain that

a
E>|—.
V3«
Choosing
D = [y|C(T),

it follows from the second inequality of (2.71) that

KCEE-PE>0 = KE*-a*>0,

that is
a
E>|—
K
From (2.72) and (2.74), we get
a a a
E > max||—]|, |—|{=|—
{ V3kl| 1« } K
Choosing
E=|%,
K

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)
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from (2.69) and (2.73), we have that
Zy(t) = Dt + E = [y|C(T)t + ‘9‘ : 2.77)
K
Moreover, by (2.70), (2.73) and (2.76),

dz
d—; — &*Zs + K73 — [yIC(T) > 0,

for every 0 < t < T. Then, Z;(¢t) is a supersolution of (2.68). (2.77), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

a

K

ug(t, x) < z3(t) < Z3(t) = ly|C(T)t + ‘ ’, (t,x) € (0,T) xR. (2.78)

Arguing as in previous case, we have that
ou, + a@xug - 86ixug > —|y|C(T) + &*u, — Kzui. (2.79)

Therefore, a subsolution of (2.1) satisfies the following ordinary differential equation:

dz
d_; — U+ P+ YCT) =0, 2(0) = [usole e, (2.80)
We consider the map
Zy(ty=-Ft—-G, t>0. (2.81)
where F, G are two positive constants, which will be specified later. Observe that
dZ.
d_: — a*Zy + PZ; + [yIC(T)
=—F+ad*(Ft+G) -« (Ft+G)’ + [y|C(T) (2.82)
= - F*f = 3¢F’G? + F (o? - 3G?) t - F + &’G - K’G’ + h|C(T)
We search F, G such that
@® -3*G* <0, -F+a’G-K*G*+|C(T)<0. (2.83)
Choosing
F = y|C(T), (2.84)
by (2.83), we have
3PG* -’ >0, «K*G*-a*G>0.
Arguing as before, we gain
o’ a
G >max{|—|, |—|{=|— (2.85)
{ V3k| 1« } K
Choosing
G ==, (2.86)
K
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then, by (2.81) and (2.84),
Z4(t) = —=Ft = G = —p|C(T)t - |%' . (2.87)

Moreover, by (2.82), (2.84) and (2.86), we have

dz.
d_t4 — &Z4 + K72 + [yIC(T) < 0,

for every 0 < t < T. Then, Z4(¢) is a subsolution of (2.80). (2.87), the comparison principle for
parabolic equations and the comparison principle for ordinary differential equations yield

a

- yIC(T)t - |; < Zy(1) < z4(t) S ug(t,x), (t,x)€(0,T)xR. (2.88)

It follows from (2.78) and (2.88) that

—[yIC(T)t - ‘%‘ < u(t,x) < y|C(T)t + ’%‘ _

Hence,

lus(t, )| < lyIC(T)t + ‘%
K

< WIC(DT + ‘9
K

2

which gives (2.49). |
3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Let us begin by proving the existence of a distributional solution to (1.10) satisfying (1.13).

Lemma 3.1. Let T > 0. There exists a function u € L*((0,T) X R) that is a distributional solution of
(2.1) and satisfies (1.13) for every convex entropy n € C*(R).

We construct a solution by passing to the limit in a sequence {u.},., of viscosity approximations
(2.1). We use the compensated compactness method [61].

Lemma 3.2. Let T > 0. There exists a subsequence {ug,}ren Of {Uc}e>0 and a limit function u €
L*((0,T) X R) such that

Ug, — ua.e. and in Lf;c((O, T)xR), 1 <p<oco. (3.1
Moreover, we have that
P, — Pae andin L ((0,T); W."(R)), 1 < p < oo, (3.2)
where
P, x) = j: u(t, y)dy, t>0, xeR. 3.3)
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Proof. Letn : R — R be any convex C? entropy function, and g : R — R be the corresponding entropy
flux defined by ¢’(«) = 3au*n’(u). By multiplying the first equation in (2.1) with 7’(u,) and using the
chain rule, we get

Om(ug) + 0.q(uy) = 0% n(us) —en’ (u) Osus)* +yn' )Py —bny (ug)u, —k1 (uo)u
—_—

::Ll_s ::LZ}: ::LS,E ::£4,€ :Z.ES,g

where £ ., Lo, L3, L4 and L5 are distributions. Let us show that
L1, —0in H'((0,T)xR), T > 0.

Since
0% n(us) = 0,(en (u:)0su),

by (2.6) and Lemma 2.6,

T
2 2 2 2
||877,(ue)axus||L2((0,T)><R) =€ ||77,||L°°(—C(T),C(T))£ 1101 (s, ')”LZ(R) ds
2

We claim that
{£L2.5}e>0 is uniformly bounded in L'((0,T) x R), T > 0.

Again by (2.6) and Lemma 2.6,

\len” () (D)

T
2
ormm < I Nscemycay € fo 1Ot (s, iz e, s
< 1"l -ceny.eary CT)-

We have that
{L3.5}s>0 is uniformly bounded in L]

loc

(0, T)xR), T > 0.
Let K be a compact subset of (0, 7)) x R. Using (2.24) and Lemma 2.6,

7 )Pl = f f 7 () 1Poldrdx
K

< WM ooy ey 1Pelli=o.r)xm) 1K1

We show

{L4.¢)es0 18 uniformly bounded in L' ((0,T)xR), T > 0.

loc

Let K be a compact subset of (0, 7) x R. By Lemma 2.6,

7 @il = 1o f f 7 uollugldiddx
K

< BT o —cery.cry 1Mell Loo.ryxmy 1K
< ||77/||L°°(—C(T),C(T)) |K|C(T).
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We claim that
{Ls¢}e>0 18 uniformly bounded in L!

loc

(0, TYyxR), T > 0.
Let K be a compact subset of (0, T) X R. Again by Lemma 2.6,

U1y = K f f 7 (o)l dtdx
K

2 3
<K ||77/||L°°(—C(T),C(T)) ||Me||Lw((0,T)><R) K]
< ||77,||L°°(—C(T),C(T)) IKIC(T).

K2

Therefore, Murat’s lemma [47] implies that
{0m(u;) + 0,q(us)} . lies in a compact subset of Hlj)i((O, T) X R). (3.4

The L* bound stated in Lemma 2.6, (3.4) and the Tartar’s compensated compactness method [61] give
the existence of a subsequence {u,, Jrer and a limit function u € L*((0,7) X R), T > 0, such that (3.1)
holds.

Finally, (3.2) follows from (3.1), the Holder inequality and the identity

P, :f ugdy, 0.Pg = u,,.
0

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Lemma 3.2 gives the existence of an entropy solution u for (1.9), or equivalently
(1.10).

We prove that u(¢, x) is unique and (1.14) holds. Fix T > 0. Let u(¢, x) and v(¢, x) be two entropy
solution of (1.9), or (1.10) such that

u,veL”((0,T)xR) 3.5
Consequently, by (3.5), we have that

i = V| < C(D)lu -, (3.6)
where

_3 2 2
C(T) == sup [u?,v?}. (3.7)
lal o.7)x=

We define

Puzf udy, Pv:f vdy (3.8)
0 0

Thanks to (3.6), following [6,17,27,40], we can prove that

Ay(lu —v|) + d,[(ar® — av3)sign (u—v)]
— sign (u — v) y(P, — P,) — sign (u — v) b(u — v) — sign (u — v) (> = v*) < 0,
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holds in sense of distributions in (0, c0) X R, and

llee(2, -) = v(&, 1y < lleto = vollzo)
t
+ )/f f sign(u —v) (P, — P,)dsdx
0 Jis)

!
+ bf f sign (u — v) (u — v)dsdx
0 1(s)

!
+ K2f f sign (u — v) (® — v¥)dsdx,
0 Jies)

I(s) =[-R—-C(T)(—s),R+ C(T)(t— s)].

for 0 <t < T, where

Observe that
t !
bf f sign (u —v) (u — v)dsdx <|b| f |u — v|dsdx
0 JIs) 0 JIes)

t
=[bl f lluCs, ) = v(s, MLy ds-
0

Instead, thanks to (3.6),

Tt t
Kzf f sign (4 —v) w® —v¥dsdx Ssz f lu® —v3|dsdx
0 JIs) 0 JI(s)
!
SC(T)f lleeCs, -) = v(s, sy ds-
0

Since
1(s)] = 2R+ 2C(T)(t — s) < 2R+ 2C(T)t < C(T),

due to (3.8),

! !
7f f sign (u —v) (P, — P,)dsdx < |y| f |P, — P,|dsdx
0 1(s) 0 1(s)

t X
slylj; fm) (‘fo Iu—VIdy‘)dsdx
t
< —v|dy|)dsd
<|y|fofm(\ i)

f
=|7|f [1(s)] (s, ) = v(s, sy ds
0

!
< C(T) f lluCs, ) = v(s, Mwiqs) ds-
0
Considered the following function,

Gi(t) = llu(t,) =v(t, Ny, t=0.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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It follows from (3.9), (3.11), (3.12) and (3.14) that
Gi(t) <G(0) + C(T)f Gi(s)ds. (3.16)
0

The Gronwall inequality and (3.15) give

oT
ez, ) = v(t, M1 rry < € D g - Vollt (—r-cryer+C () »

that is (1.14). ]
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