
http://www.aimspress.com/journal/Math

AIMS Mathematics, 4(3): 412–419.
DOI:10.3934/math.2019.3.412
Received: 03 April 2019
Accepted: 18 April 2010
Published: 24 April 2019

Research article

On the denseness of certain reciprocal power sums

Xiao Jiang and Shaofang Hong∗

Mathematical College, Sichuan University, Chengdu 610064, P. R. China

* Correspondence: Email: sfhong@scu.edu.cn, s-f.hong@tom.com, hongsf02@yahoo.com;
Tel: +862885412720; Fax: +862885471501.

Abstract: By (Z+)∞ we denote the set of all the infinite sequences S = {si}
∞
i=1 of positive integers (note

that all the si are not necessarily distinct and not necessarily monotonic). Let f (x) be a polynomial
of nonnegative integer coefficients. For any integer n ≥ 1, one lets Sn := {s1, ..., sn} and H f (Sn) :=∑n

k=1
1

f (k)sk . In this paper, we use a result of Kakeya to show that if 1
f (k) ≤

∑∞
i=1

1
f (k+i) holds for all positive

integers k, then the union set
⋃

S∈(Z+)∞
{H f (Sn)|n ∈ Z+} is dense in the interval (0, α f ) with α f :=

∑∞
k=1

1
f (k) .

It is well known that αx2+1 = 1
2

(
π e2π+1

e2π−1 − 1
)
≈ 1.076674. Our dense result infers that for any sufficiently

small ε > 0, there are positive integers n1 and n2 and infinite sequences S(1) and S(2) of positive integers
such that 1 − ε < Hx2+1(S(1)

n1 ) < 1 and 1 < Hx2+1(S(2)
n2 ) < 1 + ε. Finally, we conjecture that for any

polynomial f (x) of integer coefficients satisfying that f (m) , 0 for any positive integer m and for
any infinite sequence S = {si}

∞
i=1 of positive integers (not necessarily increasing and not necessarily

distinct), there is a positive integer N such that for any integer n with n ≥ N, H f (Sn) is not an integer.
Particularly, we guess that for any positive integer n, Hx2+1(Sn) is never equal to 1.
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1. Introduction

Let Z, Z+ and Q be the set of integers, the set of positive integers and the set of rational numbers,
respectively. Let n ∈ Z+. In 1915, Theisinger [9] showed that the n-th harmonic sum 1 + 1

2 + ... + 1
n

is never an integer if n > 1. In 1923, Nagell [8] extended Theisinger’s result by showing that if a
and b are positive integers and n ≥ 2, then the reciprocal sum

∑n−1
i=0

1
a+bi is never an integer. Erdős

and Niven [2] generalized Nagell’s result by considering the integrality of the elementary symmetric
functions of 1

a ,
1

a+b , ...,
1

a+(n−1)b . In the recent years, Erdős and Niven’s result [2] was extended to the
general polynomial sequence, see [1], [4], [7], [10] and [11]. Another interesting and related topic is
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presented in [12].
By (Z+)∞ we denote the set of all the infinite sequence {si}

∞
i=1 of positive integers (note that all the

si are not necessarily distinct and not necessarily monotonic). For any given S = {si}
∞
i=1 ∈ (Z+)∞, we

let Sn := {s1, ..., sn}. Associated to the infinite sequence S of positive integers and a polynomial f (x)
of nonnegative integer coefficients, one can form an infinite sequence {H f (Sn)}∞n=1 of positive rational
fractions with H f (Sn) being defined as follows:

H f (Sn) :=
n∑

k=1

1
f (k)sk

.

Feng, Hong, Jiang and Yin [3] showed that when f (x) is linear, the reciprocal power sum H f (Sn) is
never an integer if n ≥ 2. Associated to any given infinite sequence S of positive integers, we let

H f (S) := {H f (Sn)|n ∈ Z+}

and

α f (S) :=
∞∑

k=1

1
f (k)sk

.

Put

α f :=
∞∑

k=1

1
f (k)

. (1)

Note that α f may be +∞. Then α f (S) ≤ α f and H f (S) ⊆ (inf H f (S), α f (S)). It is clear that H f (S)
is not dense (nowhere dense) in the interval (inf H f (S), α f (S)). However, if we put all the sets H f (S)
together, then one arrives at the following interesting dense result that is the main result of this paper.

Theorem 1.1. Let f (x) be a polynomial of nonnegative integer coefficients and let U f be the union
set defined by

U f :=
⋃
S∈(Z+)∞

H f (S).

(i). If deg f (x) = 1, then U f is dense in the interval (δ,+∞) with δ := 1 if f (x) = x, and δ := 0
otherwise.

(ii). If deg f (x) ≥ 2 and
1

f (k)
≤

∞∑
i=1

1
f (k + i)

(2)

holds for all positive integers k, then U f is dense in the interval (0, α f ) with α f being given in (1).
It is well known that (see, for instance, [6])

∞∑
k=1

1
k2 + 1

=
1
2

(
π

e2π + 1
e2π − 1

− 1
)

:= α. (3)

Furthermore, α ≈ 1.076674. Evidently, for any positive integer n, we have

0 < Hx2+1(Sn) ≤
n∑

k=1

1
k2 + 1

<

∞∑
k=1

1
k2 + 1

< 2.
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One can easily check that (2) is true when f (x) = x2 +1. So Theorem 1.1 infers that for any sufficiently
small ε > 0, there are positive integers n1 and n2 and infinite sequences S(1) and S(2) of positive integers
such that 1 − ε < Hx2+1(S(1)

n1 ) < 1 and 1 < Hx2+1(S(2)
n2 ) < 1 + ε. But it is unclear whether Hx2+1(Sn) can

take 1 as its value. We guess that the answer to this question is negative.
This paper is organized as follows. First, in Section 2, we recall the results due to Kakeya [5], and

then show some preliminary lemmas which are needed in the proof of Theorem 1.1. Then in Section
3, we supply the proof of Theorem 1.1. The final section is devoted to some remarks. Actually, two
conjectures are proposed there.

2. Auxiliary lemmas

In this section, we present several auxiliary lemmas that are needed in the proof of Theorem 1.1.
Now let us state a result obtained by Kakeya in 1914.

Lemma 2.1. [5] Let
∑∞

k=1 ak be an absolutely convergent infinite series of real numbers and let the
set, denoted by S PS , of all the partial sums of the series

∑∞
k=1 ak be defined by

S PS :=
{ m∑

i=1

aki

∣∣∣∣m ∈ Z+ ∪ {∞}, 1 ≤ k1 < ... < km

}
.

Let u := inf S PS and v := sup S PS (note that u may be −∞ and v may be +∞). Then the set U consists
of all the values in the interval (u, v) if and only if

|ak| ≤

∞∑
i=1

|ak+i|

holds for all k ∈ Z+.
Using Lemma 2.1, we can prove the following two useful results that play key roles in the proof of

Theorem 1.1.
Lemma 2.2. Let

∑∞
k=1 ak be a convergent infinite series of positive real numbers and

V :=
{ m∑

i=1

aki

∣∣∣∣m ∈ Z+, 1 ≤ k1 < ... < km

}
.

If

ak ≤

∞∑
i=1

ak+i (4)

holds for all k ∈ Z+, then the set V is dense in the interval (0, v) with v :=
∑∞

k=1 ak.

Proof. From the condition (4) and Lemma 2.1, we know that the set

S PS =
{ m∑

i=1

aki

∣∣∣∣m ∈ Z+ ∪ {∞}, 1 ≤ k1 < ... < km

}
consists of all the values in the interval (0, v) since here inf S PS = 0. Let r be any given real number
in (0, v) and ε be any sufficiently small positive number (one may let ε < min(r, v − r)). Then r ∈ S PS

AIMS Mathematics Volume 4, Issue 3, 412–419.



415

which implies that there is an integer m ∈ Z+ ∪ {∞} and there are m integers k1, ..., km with 1 ≤ k1 <

... < km such that r =
∑m

i=1 aki .
If m ∈ Z+, then r ∈ V . So Lemma 2.2 is true in this case.
If m = ∞, then r =

∑∞
i=1 aki . That is, limitn→∞

∑n
i=1 aki = r. Thus there is a positive integer m′ such

that |r −
∑m′

i=1 aki | < ε. Noticing that all aki are positive, we deduce that r − ε <
∑m′

i=1 aki < r as desired.
This completes the proof of Lemma 2.2. �

Lemma 2.3. Let
∑∞

k=1 ak be a divergent infinite series of positive real numbers with ak decreasing
as k increasing and ak → 0 as k → ∞. Define

V :=
{ m∑

i=1

aki

∣∣∣∣m ∈ Z+, 1 ≤ k1 < ... < km

}
.

Then the set V is dense in the interval (0,+∞).

Proof. Let r be any given real number in (0,+∞) and ε be any sufficiently small positive number (one
may let ε < r). Let a0 := 0 and m0 = 0. Since the series

∑∞
k=0 ak is divergent, there exists a unique

integer m1 ≥ 0 such that
m1∑

k=m0

ak < r

and
m1∑

k=m0

ak + am1+1 ≥ r.

On the one hand, since ak decreases as k increases and ak → 0 as k → ∞, there is an integer m2

with m2 > m1 + 1 and

am2 < r −
m1∑

k=m0

ak ≤ am1+1.

Moreover, there exists an integer m3 satisfying that m3 ≥ m2 and
m1∑

k=m0

ak +

m3∑
k=m2

ak < r

and
m1∑

k=m0

ak +

m3∑
k=m2

ak + am3+1 ≥ r

since
∑∞

k=m2
ak also diverges.

Continuing in this way, we can form an increasing sequence {mk}
∞
k=0 such that

m1∑
k=m0

ak +

m3∑
k=m2

ak + · · · +

m2t+1∑
k=m2t

ak < r

but
m1∑

k=m0

ak +

m3∑
k=m2

ak + · · · +

m2t+1∑
k=m2t

ak + am2t+1+1 ≥ r
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for any nonnegative integer t. Obviously, one has

m1∑
k=m0

ak +

m3∑
k=m2

ak + · · · +

m2t+1∑
k=m2t

ak ∈ V.

On the other hand, since limk→+∞ ak = 0, it follows that there exists a nonnegative integer t0 such
that am2t0+1+1 < ε. That is, we have

r − ε < r − am2t0+1+1 ≤

m1∑
k=m0

ak +

m3∑
k=m2

ak + · · · +

m2t0+1∑
k=m2t0

ak < r.

Hence V is dense in the interval (0,+∞).
This concludes the proof of Lemma 2.3. �

3. Proof of Theorem 1.1

In the section, we present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let

V f :=
{ m∑

i=1

1
f (ki)

∣∣∣∣m ∈ Z+, 1 ≤ k1 < ... < km

}
and

V̄ f :=
{ m∑

i=1

1
f (ki)

∣∣∣∣m ∈ Z+, 2 ≤ k1 < ... < km

}
.

Pick any given real number r in (inf U f , sup U f ) and let ε be any sufficiently small positive number
(one may let ε < min(r − inf U f , sup U f − r)).

(i). Since f (x) is a polynomial of nonnegative integer coefficients and degree one, it follows that∑∞
k=1

1
f (k) (resp.

∑∞
k=2

1
f (k) ) is a divergent infinite series of positive real numbers with

{ 1
f (k)

}∞
k=1 (resp.{ 1

f (k)

}∞
k=2) directly decreasing to 0 as k increases. By Lemma 2.3, we know that V f (resp. V̄ f ) is dense

in the interval (0,+∞). Clearly, we have sup U f = sup V f = +∞.
If f (1) = 1, then f (x) = x which implies that f (2) > 1, inf U f = 1 and r ∈ (inf U f , sup U f ) =

(1,+∞). Since V̄ f is dense in the interval (0,+∞), there is an element

m∑
i=1

1
f (ki)

∈
(
r − 1 − ε, r − 1 −

ε

2

)
(5)

with 2 ≤ k1 < · · · < km. Now let sk = 1 for k ∈ {k1, . . . , km} and sk >
log 2km

ε

log f (2) for k ∈ {2, 3, . . . , km} \

{k1, . . . , km}. Then

0 ≤
km∑
k=2

k<{k1 ,...,km}

1
f (k)sk

<
km

f (2)
log 2km

ε
log f (2)

=
ε

2
. (6)
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It follows from (5) and (6) that

km∑
k=1

1
f (k)sk

= 1 +

km∑
k=2

k<{k1 ,...,km}

1
f (k)sk

+

m∑
i=1

1
f (ki)ski

∈ (r − ε, r).

That is, U f is dense in the interval (inf U f , sup U f ) = (1,+∞) in this case.
If f (1) > 1, then inf U f = 0 and r ∈ (inf U f , sup U f ) = (0,+∞). Since V f is dense in the interval

(0,+∞), there is an element
m∑

i=1

1
f (ki)

∈
(
r − ε, r −

ε

2

)
(7)

with 1 ≤ k1 < · · · < km. Now, let sk = 1 for k ∈ {k1, . . . , km} and sk >
log 2km

ε

log f (1) for k ∈ {1, 2, . . . , km} \

{k1, . . . , km}. One has

0 ≤
km∑
k=1

k<{k1 ,...,km}

1
f (k)sk

<
km

f (1)
log 2km

ε
log f (1)

=
ε

2
, (8)

and so by (7) and (8),

km∑
k=1

1
f (k)sk

=

km∑
k=1

k<{k1 ,...,km}

1
f (k)sk

+

m∑
i=1

1
f (ki)ski

∈ (r − ε, r).

Namely, U f is dense in the interval (inf U f , sup U f ) = (0,+∞) in this case.
(ii). First of all, since f (x) is a polynomial of nonnegative integer coefficients and deg f (x) ≥ 2,

we know that
∑∞

k=1
1

f (k) is a convergent infinite series of positive real numbers. With the hypothesis
1

f (k) ≤
∑∞

i=1
1

f (k+i) for any positive integer k, Lemma 2.2 yields that V f is dense in the interval (0, sup V f ).
We claim that f (1) > 1. Otherwise, f (1) = 1. Then f (x) = xm with m ≥ 2. However,

1
f (1)

= 1 >
π2

6
− 1 =

∞∑
i=1

1
(1 + i)2 ≥

∞∑
i=1

1
f (1 + i)

,

which contradicts with our hypothesis. So we must have f (1) > 1. The claim is proved.
In the following, we let f (1) > 1. Then inf U f = 0, sup U f = sup V f = α f and r ∈ (inf U f , sup U f ) =

(0, α f ). Since V f is dense in the interval (0, sup V f ) = (0, α f ), there is an element

m∑
i=1

1
f (ki)

∈
(
r − ε, r −

ε

2

)
with 1 ≤ k1 < · · · < km. Then letting sk = 1 for k ∈ {k1, . . . , km} and sk >

log 2km
ε

log f (1) for k ∈ {1, 2, . . . , km} \

{k1, . . . , km} gives us that

0 ≤
km∑
k=1

k<{k1 ,...,km}

1
f (k)sk

<
km

f (1)
log 2km

ε
log f (1)

=
ε

2
.
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It infers that
km∑

k=1

1
f (k)sk

=

km∑
k=1

k<{k1 ,...,km}

1
f (k)sk

+

m∑
i=1

1
f (ki)ski

∈ (r − ε, r).

In other words, U f is dense in the interval (0, α f ). So part (ii) is proved.
The proof of Theorem 1.1 is complete. �

4. Final remarks

We let f (x) be a polynomial of nonnegative integer coefficients and of degree at least two, and let
U f be the union set given in Theorem 1.1. Then part (ii) of Theorem 1.1 says that the condition (2)
is a sufficient condition such that the union set U f is dense in the interval (0, α f ). One may ask the
following interesting question: What is the sufficient and necessary condition on f (x) for the union set
U f to be dense in the interval (0, α f )? We propose the following conjecture to answer this problem.

Conjecture 4.1. Let f (x) be not a monomial and be a polynomial of nonnegative integer coefficients
and of degree at least two. Then the set U f is dense in the interval (0, α f ) if and only if the following
inequality holds:

1
f (1)
−

1
f (1)2 ≤

∞∑
k=2

1
f (k)

.

By Theorem 1.1, one knows that for any sufficiently small ε > 0, there are positive integers n1

and n2 and infinite sequences S(1) and S(2) of positive integers such that 1 − ε < Hx2+1(S(1)
n1 ) < 1 and

1 < Hx2+1(S(2)
n2 ) < 1 + ε. But it is not clear whether Hx2+1(Sn) can take 1 as its value. We believe

that the answer to this question is negative. As the conclusion of this paper, we suggest the following
conjecture.

Conjecture 4.2. Let f (x) be a polynomial of integer coefficients satisfying that f (m) , 0 for any
positive integer m andS = {si}

∞
i=1 be an infinite sequence of positive integers (not necessarily increasing

and not necessarily distinct). Then there is a positive integer N such that for any integer n with n ≥ N,
H f (Sn) is not an integer. In particular, for any positive integer n, Hx2+1(Sn) is never equal to 1.
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