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Abstract: Let l ≥ 1 be an integer and a1, . . . , al be arbitrarily given l distinct elements of the finite
field Fq of q elements with the odd prime number p as its characteristic. Let D = Fq\{a1, . . . , al} and
k be an integer such that 2 ≤ k ≤ q − l − 1. For any f (x) ∈ Fq[x], we let f (D) = ( f (y1), . . . , f (yq−l)) if
D = {y1, ..., yq−l} and ck−1( f (x)) be the coefficient of xk−1 of f (x). In this paper, by using Dür’s theorem
on the relation between the covering radius and minimum distance of the generalized projective Reed-
Solomon code GPRSq(D, k), we show that if u(x) ∈ Fq[x] with deg u(x) = k, then the received word
(u(D), ck−1(u(x))) is a deep hole of GPRSq(D, k) if and only if

∑
y∈I

y , 0 for any subset I ⊆ D with

#(I) = k. We show also that if j is an integer with 1 ≤ j ≤ l and u j(x) := λ j(x − a j)q−2 + ν jxk−1 +

f ( j)
≤k−2(x) with λ j ∈ F∗q, ν j ∈ Fq and f ( j)

≤k−2(x) ∈ Fq[x] being a polynomial of degree at most k − 2, then
(u j(D), ck−1(u j(x))) is a deep hole of GPRSq(D, k) if and only if

(
q−2
k−1

)
(−a j)q−1−k ∏

y∈I
(a j − y) + e , 0 for

any subset I ⊆ D with #(I) = k, where e is the identity of F∗q. Furthermore, (u(F∗q), ck−1(u(x))) is not a
deep hole of the primitive projective Reed-Solomon code PPRSq(F∗q, k) if deg u(x) = k, and (u(F∗q), δ)
is a deep hole of PPRSq(F∗q, k) if u(x) = λxq−2 + δxk−1 + f≤k−2(x) with λ ∈ F∗q and δ ∈ Fq.

Keywords: generalized projective Reed-Solomon codes; MDS codes; deep holes; Lagrange
interpolation polynomial
Mathematics Subject Classification: 11C20, 11T71, 94B35, 94B65

1. Introduction and the statements of the main results

Let Fq be the finite field of q elements with p as its characteristic. Let n and k be positive integers
such that k < n. Let D = {x1, · · · , xn} be a subset of Fq, which is called the evaluation set. The
generalized Reed-Solomon code GRSq(D, k) of length n and dimension k over Fq is defined by:

GRSq(D, k) := {( f (x1), . . . , f (xn)) ∈ Fn
q | f (x) ∈ Fq[x], deg f (x) ≤ k − 1}.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2019.2.176


177

Moreover, the generalized projective Reed-Solomon code GPRSq(D, k) of length n + 1 and dimension
k over Fq is defined as follows:

GPRSq(D, k) := {( f (x1), . . . , f (xn), ck−1( f (x))) ∈ Fn+1
q | f (x) ∈ Fq[x], deg f (x) ≤ k − 1},

where ck−1( f (x)) is the coefficient of xk−1 of f (x). If D = F∗q , then it is called primitive projective
Reed-Solomon code, namely,

PPRSq(F∗q, k) := {( f (1), . . . , f (αq−2), ck−1( f (x))) ∈ Fq
q | f (x) ∈ Fq[x], deg f (x) ≤ k − 1},

where α is a primitive element of Fq. If D = Fq, then it is called the extended projective Reed Solomon
code. For u = (u1, . . . , un) ∈ Fn

q, v = (v1, . . . , vn) ∈ Fn
q, the Hamming distance d(u, v) is defined by

d(u, v) := #{1 ≤ i ≤ n | ui , vi, ui ∈ Fq, vi ∈ Fq}.

For any [n, k]q linear code C, the minimum distance d(C) is defined by

d(C) := min{d(x, y) | x ∈ C, y ∈ C, x , y},

where d(·, ·) denotes the Hamming distance of two codewords. A linear [n, k, d] code is called maximum
distance separable (MDS) code if d = n−k+1. The error distance to code C of a received word u ∈ Fn

q

is defined by
d(u,C) := min

v∈C
{d(u, v)}.

Clearly, d(u,C) = 0 if and only if u ∈ C. The maximum error distance

ρ(C) = max{d(u,C) | u ∈ Fn
q}

is called the covering radius of C.
The most important algorithmic problem in coding theory is the maximum likelihood decoding

(MLD): Given a received word u ∈ Fn
q, find a codeword v ∈ C such that d(u, v) = d(u,C), then we

decode u to v [1]. Therefore, it is very crucial to decide d(u,C) for the received word u. Guruswami
and Sudan [2] provided a polynomial time list decoding algorithm for the decoding of u when
d(u,C) ≤ n −

√
nk. When the error distance increases, Guruswami and Vardy [3] showed that

maximum-likelihood decoding is NP-hard for the family of Reed-Solomon codes. We also notice that
Dür [4] studied the Cauchy codes. In particular, Dür [4] got the relation between the covering radius
and minimum distance of GPRSq(D, k). When decoding the generalized projective Reed-Solomon
code GPRSq(D, k), for a received word u = (u1, . . . , un, un+1) ∈ Fn+1

q , we define the Lagrange
interpolation polynomial u(x) of the first n components of u by

u(x) :=
n∑

i=1

ui

n∏
j=1
j,i

x − x j

xi − x j
∈ Fq[x],

i.e., u(x) is the unique polynomial of degree deg u(x) ≤ n − 1 such that u(xi) = ui for 1 ≤ i ≤ n . It is
clear that u ∈ GPRSq(D, k) if and only if d(u,GPRSq(D, k)) = 0 if and only if deg u(x) ≤ k − 1 and
ck−1(u(x)) = un+1. Equivalently, u < GPRSq(D, k) if and only if d(u,GPRSq(D, k)) ≥ 1 if and only if
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k ≤ deg u(x) ≤ n − 1 or ck−1(u(x)) , un+1. Evidently, we have the following simple bounds of
d(u,GRSq(D, k)) which are due to Li and Wan.

Theorem 1.1. [5] Let u be a received word such that u < GRSq(D, k). Then

n − deg u(x) ≤ d(u,GRSq(D, k)) ≤ n − k = ρ(GRSq(D, k)).

Let u ∈ Fn
q. If d(u,GRSq(D, k)) = ρ(GRSq(D, k)), then the received word u is called a deep hole

of GRSq(D, k). From Theorem 1.1, one can easily see that the received word u is a deep hole of
GRSq(D, k) if its Lagrange interpolation polynomial is of degree k. In 2012, Wu and Hong [6] found
another class of deep holes for the standard Reed-Solomon code GRSq(F∗q, k). In fact, if q ≥ 4 and
2 ≤ k ≤ q − 2, then they showed that the received word u is a deep hole if its Lagrange interpolation
polynomial is of the form axq−2 + f≤k−1(x) with a ∈ F∗q and f≤k−1(x) ∈ Fq[x] is a polynomial of degree
at most k − 1. In [7], Hong and Wu proved that the received word u is a deep hole of the generalized
Reed-Solomon code GRSq(D, k) if its Lagrange interpolation polynomial is λ(x − ai)q−2 + f≤k−1(x),
where λ ∈ F∗q, ai ∈ Fq\D and f≤k−1(x) ∈ Fq[x] being a polynomial of degree at most k − 1. In [8],
Zhuang, Lin and Lv investigated the deep hole trees of generalized Reed-Solomon codes.

In what follows, we let l be a positive integer and a1, . . . , al be any fixed l distinct elements of Fq.
Let

D := Fq\{a1, . . . , al}.

We write
D := {y1, . . . , yq−l},

and for any f (x) ∈ Fq[x], we define

f (D) := ( f (y1), . . . , f (yq−l)),

and use ck−1( f (x)) to denote the coefficient of xk−1 of f (x). Then we can rewrite the generalized
projective Reed-Solomon code GPRS(D, k) with evaluation set D as

GPRSq(D, k) := {( f (D), ck−1( f (x))) ∈ Fq−l+1
q | f (x) ∈ Fq[x], deg f (x) ≤ k − 1}.

Let u < GPRSq(D, k). If d(u,GPRSq(D, k)) = ρ(GPRSq(D, k)), then u is also called a deep hole of
generalized projective Reed-Solomon code GPRSq(D, k). In 2016, Zhang and Wan [9] studied the
deep holes of projective Reed-Solomon code GPRS(Fq, k). In fact, under the assumption that the only
deep holes of GRSq(Fq, k) are those received words whose Lagrange interpolation polynomials are of
degree k, they proved the following results by solving a subset sum problem.

Theorem 1.2. [9] Let q be an odd prime power. Assume that 3 ≤ k + 1 ≤ p or
3 ≤ q − p + 1 ≤ k + 1 ≤ q − 2. Then the received word ( f (Fq), ck−1( f (x))) with deg f (x) = k is a deep
hole of GPRS(Fq, k).

Theorem 1.3. [9] Let deg f (x) ≥ k + 1 and s := deg f (x) − k + 1. If there are positive constants c1 and
c2 such that s < c1

√
q, ( s

2 + 2) log2(q) < k < c2q, then ( f (Fq), ck−1( f (x))) is not a deep hole of
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GPRS(Fq, k).

In this paper, our main goal is to investigate the deep holes of the generalized projective
Reed-Solomon code GPRSq(D, k). Actually, we will present characterizations for the received words
of degrees k and q − 2 to be deep holes of generalized projective Reed-Solomon code GPRSq(D, k).
The main results of this paper can be stated as follows.

Theorem 1.4. Let q be a prime power and let k, l be positive integers such that q ≥ 5 and
2 ≤ k ≤ min(q − 3, q − l − 1). Let u(x) ∈ Fq[x] with deg u(x) = k. Then the received word
(u(D), ck−1(u(x))) is a deep hole of the generalized projective Reed-Solomon code GPRSq(D, k) if and
only if

∑
y∈I

y , 0 for any subset I ⊆ D with #(I) = k.

Theorem 1.5. Let q be a prime power and let k, l be positive integers such that q ≥ 4 and
2 ≤ k ≤ q − l − 1. Let j be an integer with 1 ≤ j ≤ l and let u j(x) := λ j(x − a j)q−2 + ν jxk−1 + f ( j)

≤k−2(x)
with λ j ∈ F∗q, ν j ∈ Fq and f ( j)

≤k−2(x) ∈ Fq[x] being a polynomial of degree at most k − 2. Then the
received word (u j(D), ck−1(u j(x))) is a deep hole of the generalized projective Reed-Solomon code
GPRSq(D, k) if and only if

(
q−2
k−1

)
aq−1−k

j
∏
y∈I

(y − a j) , −e for any subset I ⊆ D with #(I) = k, where e is

the identity of the multiplicative group F∗q.

From Theorems 1.4 and 1.5, we can deduce the following results on the deep holes of the primitive
projective Reed-Solomon codes. Note that the proof of Corollary 1.6 relies also on a result about the
zero subsets sum of the group F∗q (see Lemma 2.8 below).

Corollary 1.6. Let q be an odd prime power such that q ≥ 5 and 2 ≤ k ≤ q − 3. If
u(x) = λxk + γxk−1 + f≤k−2(x) with λ ∈ F∗q, γ ∈ Fq and f≤k−2(x) ∈ Fq[x] being a polynomial of degree at
most k − 2, then the received word (u(F∗q), γ) is not a deep hole of the primitive projective
Reed-Solomon code PPRSq(F∗q, k).

Corollary 1.7. Let q ≥ 4 and 2 ≤ k ≤ q − 2. If u(x) = λxq−2 + δxk−1 + f≤k−2(x) with λ ∈ F∗q, δ ∈ Fq and
f≤k−2(x) ∈ Fq[x] being a polynomial of degree at most k − 2, then the received word (u(F∗q), δ) is a
deep hole of the primitive projective Reed-Solomon code PPRSq(F∗q, k).

Remark 1.8. Letting δ = 0. Corollary 1.7 gives us the main result of [10].

In the proofs of Theorems 1.4 and 1.5, the basic tools are the MDS code and Vandemonde
determinant. A key ingredient in these proofs is the so-called Dür’s theorem on the relation between
the covering radius and minimum distance of the generalized projective Reed-Solomon code
GPRSq(D, k) (see Lemma 2.6 below). Another important ingredient is a new result on the zero-sum
problem in the finite field that we will prove in the next section.

This paper is organized as follows. First of all, in Section 2, we recall and prove several preliminary
lemmas that are needed in the proofs of Theorems 1.4 and 1.5. Consequently, in Section 3, we use the
lemmas presented in Section 2 to give the proofs of Theorem 1.4 and Corollary 1.6. Finally, by using
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the results given in Section 2, we supply in Section 4 the proofs of Theorem 1.5 and Corollary 1.7.

2. Preliminary lemmas

In this section, our main goal is to prove several lemmas that are needed in the proof of Theorems
1.4 and 1.5. We begin with the following result on MDS codes.

Lemma 2.1. Let C be a MDS code and u0 ∈ C be a given codeword. Then the received word u is a
deep hole of C if and only if the received word u + u0 is a deep hole of C.

Proof. First of all, let u be a received word. Then by the definition of deep hole, one knows that u is
a deep hole of C if and only if d(u,C) = ρ(C) with ρ(C) being the covering radius of C, if and only if

min
v∈C
{d(u, v)} = ρ(C). (2.1)

Likewise, one has that the received word u + u0 is a deep hole of C if and only if

min
v∈C
{d(u + u0, v)} = ρ(C). (2.2)

Since
{d(u + u0, v)|v ∈ C} = {d(u + u0, v + u0)|v ∈ C},

it follows that

min
v∈C
{d(u + u0, v)} = min

v∈C
{d(u + u0, v + u0)}. (2.3)

But d(u + u0, v + u0) = d(u, v) for any codeword u0. Hence (2.3) tells us that

min
v∈C
{d(u + u0, v)} = min

v∈C
{d(u, v)}. (2.4)

Now from (2.1), (2.2) and (2.4), one can deduce that u is a deep hole of C if and only if u + u0 is a
deep hole of C as one desires. So Lemma 2.1 is proved. �

Remark 2.1. We should point out that if the word u0 is not in C, then Lemma 2.1 is not true.

In what follows, we let

Pk−1 := { f (x) | f (x) ∈ Fq[x], deg f (x) ≤ k − 1}.

We have the following result.

Lemma 2.2. Let #(D) = q − l and let u = (u1, · · · , uq−l, uq−l+1) ∈ Fq−l+1
q and v = (v1, · · · , vq−l, vq−l+1) ∈

Fq−l+1
q be two received words with u(x) and v(x) being the Lagrange interpolation polynomial of the

first q − l components of u and v. If u(x) = λv(x) + f≤k−2(x), uq−l+1 = λvq−l+1, where λ ∈ F∗q and
f≤k−2(x) ∈ Fq[x] is a polynomial of degree at most k − 2, then

d(u,GPRSq(D, k)) = d(v,GPRSq(D, k)).

AIMS Mathematics Volume 4, Issue 2, 176–192.



181

Further, u is a deep hole of GPRSq(D, k) if and only if v is a deep hole of GPRSq(D, k).

Proof. Since u(x) = λv(x) + f≤k−2(x), we have u(D) = λv(D) + f≤k−2(D). By the definition of
Hamming distance, we know that for any code C over Fq, if u and v are two codewords of C, then

d(u, v) = d(u + w, v + w) = d(λu, λv)

hold for any codeword w of C and any λ ∈ F∗q. Then from the definition of error distance and noticing
that u = (u(D), uq−l+1), we can deduce immediately that

d(u,GPRSq(D, k))
= min

g∈Pk−1
d(u, (g(D), ck−1(g(x))))

= min
g∈Pk−1

d((u(D), uq−l+1), (g(D), ck−1(g(x))))

= min
g∈Pk−1

d((λv(D) + f≤k−2(D), uq−l+1), (g(D), ck−1(g(x))))

= min
g∈Pk−1

d((λv(D) + f≤k−2(D), λvq−l+1), (g(D), ck−1(g(x))))

= min
g∈Pk−1

d((λv(D) + f≤k−2(D), λvq−l+1), (g(D) + f≤k−2(D), ck−1(g(x))))

= min
g∈Pk−1

d((λv(D), λvq−l+1), (g(D), ck−1(g(x))))

= min
g∈Pk−1

d((λv(D), λvq−l+1), (λg(D), λck−1(g(x))))(since λ ∈ F∗q)

= min
g∈Pk−1

d((v(D), vq−l+1), (g(D), ck−1(g(x))))

=d((v(D), vq−l+1),GPRSq(D, k))
=d(v,GPRSq(D, k))

as required. The proof of Lemma 2.2 is complete. �

For a linear [n, k] code C with n and k being the length and dimension of C, respectively, we define
the generator matrix, denoted by G, to be the k × n matrix of the form G := (g1, . . . , gk)T , where
{g1, . . . , gk} is a basis of C as a vector space. Since D = {y1, . . . , yq−l}, the following k × (q − l + 1)
matrix 

1(D) ck−1(1)
x(D) ck−1(x)
...

...

xk−2(D) ck−1(xk−2)
xk−1(D) ck−1(xk−1)


=



1 . . . 1 0
y1 . . . yq−l 0
...

...
...

...

yk−2
1 . . . yk−2

q−l 0
yk−1

1 . . . yk−1
q−l 1


(2.5)

forms a generator matrix of GPRSq(D, k). For the purpose of this paper, we will choose the above
matrix as the generator matrix of GPRSq(D, k).

Lemma 2.3. [11] Let C be an [n, k] linear code and G be the generator matrix of C. Then C is a MDS
code if and only if any k distinct columns of G are linear independent over finite field Fq.
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Throughout this paper, for any nonempty set {γ1, . . . , γn} ⊂ Fq, the Vandermonde determinant,
denoted by V(γ1, . . . , γn), is defined as follows:

V(γ1, . . . , γn) := det


1 . . . 1
γ1 . . . γn
...

...
...

γn−1
1 . . . γn−1

n

 .
We have the following well-known result.

Lemma 2.4. [11] One has
V(γ1, . . . , γn) =

∏
1≤i< j≤n

(γ j − γi).

In the following, we show that the generalized projective Reed-Solomon code is a MDS code.

Lemma 2.5. Let D ⊂ Fq. Then GPRSq(D, k) is a [q − l + 1, k] MDS code over finite field Fq.

Proof. Let G be the generator matrix of GPRSq(D, k) given in (2.5). Write G := (G1, . . . ,Gq−l+1).
Let i1, . . . , ik be arbitrary k distinct integers such that 1 ≤ i1 < · · · < ik ≤ q − l + 1. We claim that
det(Gi1 , . . . ,Gik) , 0 which will be proved in what follows.

If ik ≤ q − l, then it follows that

det(Gi1 , . . . ,Gik) = V(yi1 , . . . , yik) =
∏

1≤t<s≤k

(yis − yit) , 0.

The claim is true in this case.
If ik = q − l + 1, then by expanding the determinant according to the last column, we arrive at

det(Gi1 , . . . ,Gik) = V(yi1 , . . . , yik−1) =
∏

1≤t<s≤k−1

(yis − yit) , 0.

The claim is proved in this case.
Now by the claim, we can derive that any k columns of the generator matrix G is linear

independent. Then GPRSq(D, k) is a MDS code by Lemma 2.3. This concludes the proof of Lemma
2.5. �

The following result about the relation between the covering radius and minimum distance of
GPRSq(D, k) will play a key role in this paper which is due to Dür [4].

Lemma 2.6. [4] Let D be a proper subset of Fq. Then

ρ(GPRSq(D, k)) = d(GPRSq(D, k)) − 1.

Now we give a criterion to determine whether a received word is a deep hole of MDS code C.
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Lemma 2.7. Let G be a generator matrix of a MDS code C = [n, k] over the finite field Fq. If the
covering radius ρ(C) = n − k, then a received word u ∈ Fn

q is a deep hole of C if and only if the

(k + 1) × n matrix
(

G
u

)
can be served as the generator matrix of another MDS code.

Proof. We first show the sufficient part. Let C′ be a [n, k + 1] MDS code with
(

G
u

)
as its generator

matrix. Since u ∈ C′\C, one can derived that

n − k = n − (k + 1) + 1 = d(C′) ≤ d(u,C) ≤ ρ(C) = n − k.

It follows that
d(u,C) = ρ(C) = n − k.

Therefore u is a deep hole of C.

Now we turn to prove the necessity part. Assume that
(

G
u

)
cannot be served as a generator matrix

of any MDS code. By lemma 2.3, we known that there exist k + 1 distinct columns of

(
G
u

)
=


g11 . . . g1n
...

...
...

gk1 . . . gkn

u1 . . . un


(k+1)×n

are linear dependent over Fq. Without loss of generality, we can suppose the first k + 1 columns are
linear dependent. Thus we have

rank


g11 . . . g1,k+1
...

...
...

gk1 . . . gk,k+1

u1 . . . uk+1


(k+1)×(k+1)

≤ k.

On the other hand, since G is a generator matrix of the [n, k] MDS code C over the finite field Fq,
one can obtain that

rank


g11 . . . g1k
...

...
...

gk1 . . . gkk


k×k

= k.

Hence there exist k coefficients a1, · · · , ak ∈ Fq that are not all zero such that

(u1, · · · , uk+1) =
k∑

i=1
ai(gi1, · · · , gi,k+1). Now let v =

k∑
i=1

ai(gi1, · · · , gin) ∈ C. One can immediately deduce

that
d(u,C) = min

w∈C
{d(u,w)} ≤ d(u, v) ≤ n − (k + 1) < n − k = ρ,

which is a contradiction with the hypothesis that u is a deep hole of C. So Lemma 2.7 is proved. �
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In what follows, we show a result on the zero-sum problem in the finite field of odd characteristic.

Lemma 2.8. Let q = ps with p being an odd prime number and k be an integer with 2 ≤ k ≤ q − 3.
Then there exist a subset I ⊆ F∗q with #(I) = k such that

∑
z∈I

z = 0.

Proof. Since p is an odd prime number, it follows that for any z ∈ F∗q, one has −z ∈ F∗q and z , −z
since 2z , 0. But |F∗q \ {z,−z}| = q − 3 ≥ 2 since q ≥ k + 3 ≥ 5. Now one can pick z′ ∈ F∗q \ {z,−z}.
Then −z′ ∈ F∗q \ {z,−z, z′} since 2z′ , 0. Continuing in this way, we finally arrive at

F∗q = {z1,−z1, · · · , z q−1
2
,−z q−1

2
}. (2.6)

We consider the following cases.
Case 1. 2 | k. In this case, we let I = {z1,−z1, · · · , z k

2
,−z k

2
}. Then I ⊂ F∗q and we have

∑
z∈I

z =

k
2∑

i=1

(zi + (−zi)) = 0

as desired. Lemma 2.8 holds if 2 | k.
Case 2. 2 - k. Then k ≥ 3 and so q ≥ 7 since 2 ≤ k ≤ q − 3. We claim that there are three distinct

elements z′, z′′, z′′′ ∈ F∗q such that z′ + z′′ + z′′′ = 0, which will be proved by dividing into the following
three subcases.

Case 2.1. p = 3. We pick a z′ ∈ F∗q. Then 3z′ = 0, −z′ , 0 and 2z′ , 0. The latter implies that
z′ , −z′. Since p = 3 and q ≥ 7, we deduce that q ≥ 32 = 9. Thus |F∗q \ {z′,−z′}| = q − 3 ≥ 6. So we
can choose a z′′ ∈ F∗q \ {z′,−z′}. But 2z′′ , 0. Hence −z′′ ∈ F∗q \ {z′,−z′, z′′}. It implies that z′ + z′′ , 0,
namely, z′ + z′′ ∈ F∗q. Furthermore, we have that z′ + z′′ is not equal to anyone of the four elements
z′,−z′, z′′ and −z′′. That is, z′+z′′ ∈ F∗q\{z′,−z′, z′′,−z′′}. Hence −(z′+z′′) ∈ F∗q\{z′,−z′, z′′,−z′′, z′+z′′}.
Therefore there are three distinct elements z′, z′′ and −(z′ + z′′) in F∗q such that their sum equals zero.
The claim holds in this case.

Case 2.2. p = 5. Take a z′ ∈ F∗q. Then 5z′ = 0 and none of z′, 2z′, 3z′ and 4z′ equals zero. It
follows that the four elements z′,−z′, 2z′,−2z′ are pairwise distinct. Since q ≥ 7 > 5, one must have
q ≥ 52 = 25. Thus |F∗q \ {z′,−z′, 2z′,−2z′}| = q − 5 ≥ 20. So we can choose z′′ ∈ F∗q \ {z′,−z′, 2z′,−2z′}.
Then −z′′ ∈ F∗q\{z′,−z′, 2z′,−2z′} and z′+z′′ , 0. The latter one tells us that −(z′+z′′) ∈ F∗q. Obviously,
−z′′ , z′′ since 2z′′ , 0. Hence −z′′ ∈ F∗q \ {z′,−z′, 2z′,−2z′, z′′}.

Furthermore, we can deduce that z′ + z′′ is not equal to any of z′,−z′, 2z′,−2z′, z′′ and −z′′. This
infers that −(z′ + z′′) ∈ F∗q \ {z′,−z′, 2z′,−2z′, z′′,−z′′, z′ + z′′} since 2(z′ + z′′) , 0. Therefore we can
find three distinct elements z′, z′′ and −(z′ + z′′) in F∗q such that their sum equals zero. The claim holds
in this case. The claim is proved in this case.

Case 2.3. p ≥ 7. Then le , 0 for any integer l with 1 ≤ l ≤ 6, where e stands for the identity of the
group F∗q. Since e , 0, 4e , 0 and 5e , 0, we have e , 2e, e , −3e and 2e , −3e. So there are three
different elements e, 2e,−3e in F∗q such that their sum is equal to zero as one desires. The claim is true
in this case.

Now by the claim, we know that there are three integers i1, i2 and i3 such that 1 ≤ i1 < i2 < i3 ≤
q−1

2
and zi1 + zi2 + zi3 = 0.

If q = 7, then letting I = {zi1 , zi2 , zi3} gives us the desired result.
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If q > 7, then F∗q \ {±zi1 ,±zi2 ,±zi3} is nonempty. By (2.6), we obtain that

F∗q \ {±zi1 ,±zi2 ,±zi3}

={±z1, ...,±zi1−1,±zi1+1, ...,±zi2−1,±zi2+1, ...,±zi3−1,±zi3+1, ...,±z q−1
2
}. (2.7)

Since 2 - k, k − 3 is even. Evidently, the sum of the first k − 3 elements on the right hand side of (2.7)
is equal to zero because zi + (−zi) = 0 for all integers 1 ≤ i ≤ q−1

2 . Then the first k − 3 elements on
the right hand side of (2.7) together with the three elements zi1 , zi2 , zi3 gives us the desired result. Thus
Lemma 2.8 is true if 2 - k.

This completes the proof of Lemma 2.8. �

3. Proofs of Theorem 1.4 and Corollary 1.6

In this section, we use the lemmas presented in the previous to give the proofs of Theorem 1.4 and
Corollary 1.6. At first, we show Theorem 1.4.

Proof of Theorem 1.4. Since deg u(x) = k, one may let u(x) = λxk + νxk−1 + f≤k−2(x) with λ ∈ F∗q, ν ∈
Fq and f≤k−2(x) ∈ Fq[x] being a polynomial of degree at most k−2. Then (u(D), ck−1(u(x))) = (u(D), ν).
By Lemma 2.2, we have that (u(D), ν) is a deep hole of the generalized projective Reed-Solomon code
GPRSq(D, k) if and only if (λ−1u(D), λ−1ν) is a deep hole of GPRSq(D, k). But λ−1u(x) = wk(x) + rk(x),
where wk(x) := xk and

rk(x) := λ−1νxk−1 + λ−1 f≤k−2(x).

Then one has

(λ−1u(D), λ−1ν) = (wk(D) + rk(D), λ−1ν) = (wk(D), 0) + (rk(D), λ−1ν).

Since deg rk(x) ≤ k − 1, by the definition of GPRSq(D, k) we have (rk(D), λ−1ν) ∈ GPRSq(D, k).
Then it follows from Lemma 2.1 that (λ−1u(D), λ−1ν) is a deep hole of GPRSq(D, k) if and only if
(wk(D), 0) is a deep hole of GPRSq(D, k). Then we can deduce that (u(D), ck−1(u(x))) is a deep hole of
GPRSq(D, k) if and only if (wk(D), 0) is a deep hole of GPRSq(D, k).

We denote w̄k := (wk(D), 0). Let G be the generator matrix of GPRSq(D, k) as given in (2.5). Then
we have

(
G
w̄k

)
=



1 . . . 1 0
y1 . . . yq−l 0
...

...
...

...

yk−2
1 . . . yk−2

q−l 0
yk−1

1 . . . yk−1
q−l 1

yk
1 . . . yk

q−l 0


:=(Ḡ1, . . . , Ḡq−l, Ḡq−l+1).

Now we pick k + 1 distinct integers with 1 ≤ j1 < · · · < jk+1 ≤ q − l + 1.
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Case 1. jk+1 ≤ q − l. Then one has

det(Ḡ j1 , . . . , Ḡ jk+1) = det



1 . . . 1
y j1 . . . y jk+1
...

...
...

yk−1
j1

. . . yk−1
jk+1

yk
j1

. . . yk
jk+1


=V(y j1 , . . . , y jk+1)

=
∏

1≤t<s≤k+1

(y js − y jt) , 0.

Case 2. jk+1 = q − l + 1. We can compute and get that

det(Ḡ j1 , . . . , Ḡ jk , Ḡ jq−l+1) = det



1 . . . 1 0
y j1 · · · y jk 0
...

...
...

...

yk−2
j1

. . . yk−2
jk

0
yk−1

j1
. . . yk−1

jk
1

yk
1 . . . yk

jk
0



= − det



1 . . . 1
y j1 · · · y jk
...

...
...

yk−2
j1

. . . yk−2
jk

yk
j1

. . . yk
jk


. (3.1)

Now we introduce an auxiliary polynomial g(y) as follows:

g(y) = det



1 . . . 1 1
y j1 · · · y jk y
...

...
...

...

yk−1
j1

. . . yk−1
jk

yk−1

yk
j1

. . . yk
jk

yk


.

Then Lemma 2.4 tells us that

g(y) =
( ∏

1≤s<t≤k

(y jt − y js)
) k∏

i=1

(y − y ji) :=
k∑

i=0

aiyi.

This infers that

ak−1 = −
( k∑

i=1

y ji

) ∏
1≤s<t≤k

(y jt − y js). (3.2)
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But

ak−1 = − det



1 . . . 1
y j1 · · · y jk
...

...
...

yk−2
j1

. . . yk−2
jk

yk
j1

. . . yk
jk


. (3.3)

Finally, (3.1) together with (3.2) and (3.3) gives us that

det(Ḡ j1 , . . . , Ḡ jk , Ḡ jq−l+1) = −
( k∑

i=1

y ji

) ∏
1≤s<t≤k

(y jt − y js). (3.4)

By Lemma 2.5, we know that GPRSq(D, k) is a [q − l + 1, k] MDS code which implies that

d(GPRSq(D, k)) = q − l + 1 − k + 1 = q − l − k + 2.

Then by Lemma 2.6, one can deduce that

ρ(GPRSq(D, k)) =d(GPRSq(D, k)) − 1 (3.5)
=q − l − k + 2 − 1
=q − l + 1 − k.

It then follows immediately from Lemma 2.7 that w̄k = (wk(D), 0) is a deep hole of the generalized

projective Reed-Solomon code GPRSq(D, k) if and only if the (k + 1) × (q − l + 1) matrix
(

G
w̄k

)
can

be served as the generator matrix of a MDS code, if and only if any k + 1 columns of
(

G
w̄k

)
are linear

independent, if and only if for any 1 ≤ j1 < · · · < jk+1 ≤ q − l + 1, one has

det(Ḡ j1 , . . . , Ḡ jk+1) , 0. (3.6)

By the discussion in Cases 1 and 2, (3.4) tells us that (3.6) holds if and only if for any 1 ≤ j1 < · · · <

jk ≤ q − l, one has
k∑

i=1
y ji , 0. Hence we can derive that (wk(D), 0) is a deep hole of the generalized

projective Reed-Solomon code GPRSq(D, k) if and only if the sum
∑
y∈I

y is nonzero for any subset I ⊆ D

with #(I) = k as desired.
Finally, we can conclude that (u(D), ck−1(u(x))) is a deep hole of the generalized projective Reed-

Solomon code GPRSq(D, k) if and only if the sum
∑
y∈I

y is nonzero for any subset I ⊆ D with #(I) = k.

This finishes the proof of Theorem 1.4. �

We can now use Theorem 1.4 to show Corollary 1.6.

Proof of Corollary 1.6. Let l = 1 and a1 = 0. Then D = F∗q. By Lemma 2.8, there exist a
subset I ⊆ F∗q with #(I) = k such that

∑
y∈I

y = 0. It then follows from Theorem 1.4 that the received

word (u(F∗q), ck−1(u(x)))=(u(F∗q), γ) is not a deep hole of the primitive projective Reed-Solomon code
PPRSq(F∗q, k). Therefore Corollary 1.6 is proved. �
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4. Proofs of Theorem 1.5 and Corollary 1.7

In this section, we give the proofs of Theorem 1.5 and Corollary 1.7. We begin with the proof of
Theorem 1.5.

Proof of Theorem 1.5. First of all, we note that j is an integer with 1 ≤ j ≤ l. We introduce a
polynomial f j(x) as follows:

f j(x) = (x − a j)q−2,

and define a word f̄ j associated to f j(x) by

f̄ j := ( f j(D), ck−1( f j(x))).

Then u j(x) = λ j f j(x) + ν jxk−1 + f ( j)
≤k−2(x) which implies that

ck−1(u j(x)) = λ jck−1( f j(x)) + ν j. (4.1)

It follows from (4.1) that

(u j(D), ck−1(u j(x)))

=(λ j f j(D) + ν jxk−1(D) + f ( j)
≤k−2(D), λ jck−1( f j(x)) + ν j)

=(λ j f j(D), λ jck−1( f j(x))) + (ν jxk−1(D) + f ( j)
≤k−2(D), ν j)

=λ j f̄ j + (ν jxk−1(D) + f ( j)
≤k−2(D), ν j).

But
deg(ν jxk−1(x) + f ( j)

≤k−2(x)) ≤ k − 1

and
ck−1(ν jxk−1(x) + f ( j)

≤k−2(x)) = ν j.

Hence
(ν jxk−1(D) + f ( j)

≤k−2(D), ν j) ∈ GPRSq(D, k).

It follows from Lemmas 2.1 and 2.2 that the received word (u j(D), ck−1(u j(x))) is a deep hole of the
generalized projective Reed-Solomon code GPRSq(D, k) if and only if f̄ j is a deep hole of GPRSq(D, k).

Let G be the generator matrix of GPRSq(D, k) as given in (2.5). Since yi , a j for all integers i with
1 ≤ i ≤ q − l, we have (yi − a j)q−2 = (yi − a j)−1. It then follows that

(
G
f̄ j

)
=



1 . . . 1 0
y1 . . . yq−l 0
...

...
...

...

yk−2
1 . . . yk−2

q−l 0
yk−1

1 . . . yk−1
q−l 1

(y1 − a j)−1 . . . (yq−l − a j)−1 ck−1( f j(x))


(4.2)

:=(Ĝ1, . . . , Ĝq−l+1).
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On the other hand, from Lemma 2.7 we can deduce that f̄ j = ( f j(D), ck−1( f j(x))) is a deep hole of

the generalized projective Reed-Solomon code GPRSq(D, k), if and only if
(

G
f̄ j

)
generates a MDS

code, by Lemma 2.3, if and only if any k + 1 columns of
(

G
f̄ j

)
are linear independent, if and only if

for all k + 1 integers j1, . . . , jk+1 with 1 ≤ j1 < · · · < jk+1 ≤ q − l + 1, one has

det(Ĝ j1 , . . . , Ĝ jk+1) , 0. (4.3)

In what follows, we choose arbitrarily k + 1 integers j1, . . . , jk+1 such that 1 ≤ j1 < · · · < jk+1 ≤

q − l + 1. Consider the following two cases.
Case 1. jk+1 , q − l + 1. Then k + 1 ≤ jk+1 ≤ q − l and by (4.2), one has

(Ĝ j1 , . . . , Ĝ jk+1) =



1 . . . 1
y j1 . . . y jk+1
...

...
...

yk−1
j1

. . . yk−1
jk+1

(y j1 − a j)−1 . . . (y jk+1 − a j)−1


.

Thus one can deduce that

det(Ĝ j1 , . . . , Ĝ jk+1)

=

( k+1∏
i=1

(y ji − a j)−1
)

det



y j1 − a j . . . y jk+1 − a j

y j1(y j1 − a j) . . . y jk+1(y jk+1 − a j)
...

...
...

yk−1
j1

(y j1 − a j) . . . yk−1
jk+1

(y jk+1 − a j)
1 . . . 1


=

( k+1∏
i=1

(y ji − a j)−1
)

det


y j1 . . . y jk+1
...

...
...

yk
j1

. . . yk
jk+1

1 . . . 1



=(−1)k

( k+1∏
i=1

(y ji − a j)−1
)
V(y j1 , . . . , y jk+1)

=(−1)k

( k+1∏
i=1

(y ji − a j)−1
) ∏

1≤s<t≤k+1

(y jt − y js) , 0

since y j1 , . . . , y jk+1 are pairwise distinct.
Case 2. jk+1 = q− l + 1. Then 1 ≤ j1 < · · · < jk ≤ q− l. From (4.2) and Lemma 2.4, we can deduce

that

det(Ĝ j1 , . . . , Ĝ jk , Ĝ jq−l+1)
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= det



1 . . . 1 0
y j1 · · · y jk 0
...

...
...

...

yk−2
j1

. . . yk−2
jk

0
yk−1

j1
. . . yk−1

jk
1

(y j1 − a j)−1 . . . (y jk − a j)−1 ck−1( f j(x))



=ck−1( f j(x)) det


1 . . . 1

y j1 · · · y jk
...

...
...

yk−1
j1

. . . yk−1
jk

 − det



1 . . . 1
y j1 · · · y jk
...

...
...

yk−2
j1

. . . yk−2
jk

(y j1 − a j)−1 . . . (y jk − a j)−1



=ck−1( f j(x))V(y j1 , . . . , y jk) − det



1 . . . 1
y j1 · · · y jk
...

...
...

yk−2
j1

. . . yk−2
jk

(y j1 − a j)−1 . . . (y jk − a j)−1


=ck−1( f j(x))V(y j1 , . . . , y jk) −

( k∏
i=1

(y ji − a j)−1
)

det


y j1 . . . y jk
...

...
...

yk−1
j1

. . . yk−1
jk

1 . . . 1


=ck−1( f j(x))V(y j1 , . . . , y jk) + (−1)k

( k∏
i=1

(y ji − a j)−1
)
V(y j1 , . . . , y jk)

=
(
ck−1( f j(x)) + (−1)k

k∏
i=1

(y ji − a j)−1)
) ∏

1≤s<t≤k

(y jt − y js)

=
(
ck−1( f j(x)) +

k∏
i=1

(a j − y ji)
−1)

) ∏
1≤s<t≤k

(y jt − y js). (4.4)

Now from Cases 1 and 2, we can deduce by (4.4) that (4.3) holds for all k + 1 integers j1, . . . , jk+1

with 1 ≤ j1 < · · · < jk+1 ≤ q− l+1 if and only if for all integers j1, . . . , jk with 1 ≤ j1 < · · · < jk ≤ q− l,
one has

ck−1( f j(x)) +

k∏
i=1

(a j − y ji)
−1 , 0,

which is equivalent to

ck−1( f j(x))
k∏

i=1

(a j − y ji) + e , 0. (4.5)

Since f j(x) = (x − a j)q−2, the binomial theorem gives us that

ck−1( f j(x)) =

(
q − 2
k − 1

)
(−a j)q−k−1.
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Then one derives that (4.5) holds for all integers j1, . . . , jk with 1 ≤ j1 < · · · < jk ≤ q − l if and only if
the following is true: (

q − 2
k − 1

)
(−a j)q−k−1

k∏
i=1

(a j − y ji) + e , 0, (4.6)

or equivalently, (
q − 2
k − 1

)
aq−k−1

j

k∏
i=1

(y ji − a j) + e , 0 (4.7)

since q is odd. In other words, f̄ j = ( f j(D), ck−1( f j(x))) is a deep hole of the generalized projective
Reed-Solomon code GPRSq(D, k) if and only if the sum(

q − 2
k − 1

)
aq−1−k

j

∏
y∈I

(y − a j) + e

is nonzero for any subset I ⊆ D with #(I) = k. Hence the desired result follows immediately. The
proof of Theorem 1.5 is complete. �

We can now present the proof of Corollary 1.7 as the conclusion of this paper.

Proof of Corollary 1.7. Letting l = 1 and a1 = 0 gives us that D = F∗q. Then it follows from a1 = 0
that (

q − 2
k − 1

)
aq−1−k

j

∏
y∈I

(y − a j) + e = 0 ·
(
q − 2
k − 1

)∏
y∈I

(y − a j) + e = e , 0

for any subset I ⊆ D with #(I) = k. Hence by Theorem 1.5, one can deduce that (u j(D), ck−1(u j(x))) =

(u(F∗q), δ) is a deep hole of PPRSq(F∗q, k). This ends the proof of Corollary 1.7. �
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