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Abstract: By introducing an auxiliary parameter, the dynamic of RLC electrical circuits of non-
integer order is described by a fractional order differential equation. The order of derivative in the
component models is assumed to be 0 < y < 1. The time and frequency domain characteristics of the
circuit is investigated, and it is shown that three different filter characteristics of low-pass, high-pass
and band-pass filters are obtained. The filter parameters are determined analytically, and the results are
verified numerically.
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1. Introduction

Many of the physical systems show intrinsic fractional order behavior [1, 2—6]. Therefore,
fractional calculus provides more accurate models than classical calculus for such systems [7, 8]. A
significant benefit of fractional modelling appears for systems where hereditary and memory
behaviors are involved since fractional derivative takes into account the past history as well [3, 9, 10].
Another beneficial use appears for the analysis of porous and/or self-similar structures where theory
of fractals are involved [10, 11].

Like many of the physical systems, some electrical systems are also better modelled by fractional
calculus either due to their structures (such as tree structures, domino ladders, etc.) or element
behaviors (coils, capacitors, memristors) [9, 12—15].

A systematic way of constructing fractional differential equation for physical systems consists in
to analyze the dimensionality and to bring the fractional derivative operator in consistency [16]. As
the generalization of this work, F. Gomez, J. Rosales, and M. Guia have obtained an analytical time
domain solution in terms of the Mittag-Lefller function for the fractional RLC circuit [17]. This circuit
is not externally excited but it is forced by the initial charge on the capacitor. They have not studied
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the forced solution of the circuit when it is excited by an external source but commented about the use
of the circuit as fractional filters analogical to ordinary second order electrical RLC filters; the element
behavior equations are also missing.

The purpose of this contribution is to investigate the time and frequency domain responses of the
RLC circuit proposed by F. Gomez at al. under the excitement by an external voltage source; the
frequency responses obtained show that the circuit can be used as fractional low-pass, high-pass and
band-pass filters. Section II is devoted to the introduction of the fractional RLC circuit and its natural
response. Section III covers its frequency response characteristics and its usage as three basic types
of electrical filters. The sinusoidal responses of the obtained filters are studied in Section IV. Finally,
Section V covers the conclusions.

2. Fractional RLC circuit; Natural response

It is well known that a series RLC circuit is described by the homogenous differential equation

d*q(ry _dq(t)  q(1)
L R AN
dr? * dt * C

=0 2.1

where R, L, C are the resistance, inductance, and capacitance in ohms (€2), henries (H), and farads (F),
respectively; g() is the charge circulating in the circuit and accumulated on the capacitor. Each term in
the above formula represents the potential across the associated component so that the total potential
in the circuit sums to zero [18].

A systematic way to construct the fractional differential equation from Eq. (2.1) is to replace the
derivative operator by fractional operator as follows:

d 1 a
— _) _’
dt ol-rdy

(2.2)

where the parameter o has the dimension of seconds and 0 < y < 1 represents the order of Caputo
fractional time derivative [16, 17] defined by

ar o oy f J'(@)
dﬂf(t) =0 D f(0) = T(n —7) (-1 —d

wherere R,n—1<y<neN ={1,2,...}, f" represents the ordinary derivative of order n, and I is
the Gamma function. For I' = 1, Eq. (2.2) gives the usual derivative. Result of application of Eq. (2.2)
to Eq. (2.1) yields the fractional differential equation

L d¥q R dq q) _
o20-7) dr2y * ol drr C

vs(0), (2.3)
where v,(?) is the added voltage source excitation in the circuit as shown in Figure 1. The voltage
across each component and hence the element behavior equations in the circuit are represented by the

following equations:
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Figure 1. Fractional order RLC circuit excited by voltage source v(t).

ve(t) = %,

d’q
ol dr’

ver(?) = Ri(?), i) =

1 d7i(t)
o= drr

VL(I) =L

(2.4)

(2.5)

(2.6)

The homogeneous solution of the fractional differential equation in (2.3) with the initial condition
q(t) = qo 1s obtained by F. Gomez et al. [17]. But there are some conflicts in their solutions and plots.

To be sure, the correct solution is derived for the underdamped case R < 2 VL/C, the result is

7 2&
q(t) = qo Im[ E, (1) + E, (4,1),
woorl =7 /1 — & m V1-¢ !
where
Wo = 1/ VLC,
& = R/2Lwy,

A = woo' ™ (—g + 1 - 52) ,

Y =W |1 —§2|0'.

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

In these formulas, wy is the undamped natural frequency, £ is the damping ratio, A, is a zero of the
characteristic polynomial in powers of s7, and E, g(e) is the 2—parameter Mittag-Lefller function.

The solutions show that the oscillatory damping occurs for values of y near to 1. For values of y

near to zero, the solutions monotonically damp to 0 as ¢t — oo.
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3. Fractional RLC circuit; Forced response

Although analytical and explicit solutions are given for the natural response in [17] and corrected
in (2.7-2.11), these results do not give direct information about the behavior of the RLC circuit of
non-integer order in respect to its time and frequency domain characteristics, that is they do not give
information about the input-output relation of the circuit since it is unexcited by an external forcing
source. In this section, the frequency domain characteristics (gain and phase) and the time domain
characteristics for step responses are obtained, and the relevant filtering property of the circuit excited
by a voltage source is investigated.

Taking the Laplace transform of the equations in (2.3) and (2.4-2.6), and solving them for
Vr(s), Vi(s), Vc(s), where the uppercase lettered signals represent the Laplace transform of the
lowercase lettered signals, we obtain the following transfer functions in the complex frequency
variable s = 0 + jw :

Ro!™Y
Hyp = 2R ¥ 3.1
TV T g Ry 2 G-D
§ L ¥ IC
VL S2y
HHP = V_ = 2’}/ Rol-Y y 0-2(177) ° (3.2)
s s+ R o
2(1-y)
Ve =
LC
Hr = V_ - 2y L Ro'Y oy o N 3.3)
S s°7 + TS + Ic

Obviously, these are the fractional transfer functions resulting with the band pass, high pass and low
pass filter characteristics, respectively. Gain (M) and phase (0) characteristics are obtained by
substituting s = jw and taking the magnitude and phase angle of the transfer functions. The results
are:

Ro'=rwY b4 B
Mgp = ————— 0pp = =y — Argtan —, 3.4
BP LIA BP 27’ rg anA (3.4)
2y B
MHP = W,GHP =y —Argtan Z, (35)
g 2=y B
M;p=———,0,p = —Argtan —, 3.6
LP LCIA LP rg anA (3.6)
where 1 iy
=Y T o -Y
A=w? + Y (— )+ :
w7’ cos(mry) w? cos 2y i7a

B = w¥ sin(rry) + w” sin (gy) ,

Al = |A + jB| = VA + B>
As the numerical example for the underdamped case, consider R = 0.3922327 U2126, L = 1 H,

C =1 F, which corresponds to the case R/2L,/W% - §2 =1/5asin[17],andwy = 1r/s,& = 0.196116,
v = 0.980581 o. The frequency response curves (magnitude and phase) and the step responses are
obtained and plotted in Figures 2—7, for the band pass, high pass and low pass cases. The plots are
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carried for values of y = 1.00,0.92,0.75, 0.25. The overdamped case is not considered as the numerical
example since all the three types of basic filter characteristics valid for underdamped case do not occur
for the overdamped case.

The band pass characteristics plotted in Figure 2 show that the peak value of the magnitude, the
center frequency, and the quality factor decrease with decreasing y. The data including the cutoff
frequencies are shown in Table 1 where w,: Center frequency, M,: Peak magnitude, w, w,: Cut off
frequencies, BW: Band width, Q = w,/BW: Quality factor.

For y = 0.25, it is hard to say that the characteristic is of band-pass type since Q is very small. The
phase responses in the same figure is seen to change from 90° to —90° but flatter with decreasing 7.

Bode Diagram
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Figure 2. Frequency response of the band pass RLC filter of fractional order.

Table 1. The frequency response characteristics of band pass filter.

Y\Char w, (r/s) M,(dB) w (r/s) w,(r/s) BW(r/s) (0]
1.00 1 0 0.823 1.215 0.391 2.556
0.92 0.995 -4.292 0.709 1.396 0.687 1.447
0.75 0.915 -9.400 0.450 1.861 1.411 0.648
0.25 0.017 -15.13 0.001 0.635 0.634 0.026

The step responses of the filters are obtained by multiplying the transfer functions in Egs. (3.7),
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(3.8), (3.9) by 1/s and taking their inverse Laplace transforms. The results for BP, HP, LP filters are
obtained, respectively, as

2
Vi (1) = Jlf_lem (B, ). 3.7)
1-y
Vi, (1) = Wl_i =B ) (3.8)
L=y gy
yin® = 2L m[E,, (1). (3.9)

i@
The step response of the band pass filter is plotted in Figure 3 for values of y = 1.00,0.92,0.75, 0.25.
It is observed that all step responses start from 0 and after several peaks damp to 0. Number of peaks
and their magnitudes (Mpl,Mpz, . ) decrease as vy decreases from 1 to 0.25. The data including
characteristic time values are shown in Table 2. Note that the rise time and the settling time are not
defined for reference value is not defined for BP characteristics. It is important to remark also that
although the element values of R, L, C correspond to an underdamped second order dynamics, the
fractional RLC circuit do not show the oscillatory time response characteristics of an ordinary
underdamped RLC circuit for small values of y (see the plot for v = 0.25 in Figure 3, see also the
natural responses for y = 0.25,0.50 in Figure 1 of [17]). In fact, number of peaks (and hence
oscillations) decreases with decreasing .

03 —
/,,
NN
0.25 f y=1.00
4 W\ y=0.92
/ W\ ¥=0.75
02| f \\ y=0.25
f ."\I
f W SO I— f o ——
0.5 /f Nt
i e ) \
i o \ :
s i b\ FT
0 W “
@ 005l \\ ,/ RN
= \ / Ty N
o \ / - =D
@ \\ T o =,
2 o 7% S
\ 7 3
\ 1
-0.05 |- VNG A
01 "\ //
".\ i
015 W
02 . . . . | . . . .
4] 1 2 3 4 5 6 7 8 9 10
Time

Figure 3. Step response of the band pass RLC filter of fractional order.

The high pass characteristics plotted in Figure 4 show that the 0 frequency and co frequency gains
are 0 and 1, respectively. But the peak value of the magnitude decreases with decreasing y whilst the
peak frequency is increasing. The relevant data are shown in Table 3 in detail. There is no peak value
and stop bandwidth is very narrow for y = 0.25. So, it is hard to say that the characteristic is of high
pass type. The characteristic is like that of a band pass type (with higher peak gains> 0) around the
center frequency for y = 1.00 and 0.92. For y = 0.25, there is no peak in the gain. The phase responses
in the same figure is seen to change from 180° to 0°, but flatter with decreasing y as in the band pass
case.
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Table 2. The step response characteristics of band pass filter.

y\Char. Mpl Mpz Mp3 Mp4 Mp5
Z‘pl (S) tp2 (S) Z‘p3 (S) tp4 (S) tpS (S)
1.00 0.298 0.085 0.024 0.007 0.002
1.401 7.809 14.216 20.624 27.032
0.92 0.275 0.031 0.006 0.002
1.298 8.015 14.697 21.179
0.75 0.235 0.023
1170 8366
0.25 0.171
37.36
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Figure 4. Frequency response of the high pass RLC filter of fractional order.

Table 3. The frequency characteristics of high pass filter.

Y\Char w, (r/s) M,(dB) w; (r/s) wy(r/s) BW(r/s) 0

1.00
0.92
0.75
0.25

1.041
1.124
1.778

8.300
4.299
0.359

1.362 1.215 0.875  2.138
2414 1.396 0.829  0.709
— 1.861 0.768 —
— 0.635 0.103 —

AIMS Mathematics
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The step response of the high pass filter is plotted in Figure 5 for values of y = 1.00, 0.92, 0.75, 0.25;
all the responses start from 1 at # = 0 and approach to zero with increasing time as expected due to
high pass characteristics. It is observed that the magnitude and number of the oscillations reduces
with decreasing y. And the circuit step response gets away from the typical underdamped oscillatory
characteristics of an underdamped second order RLC circuit as y approaches to 0. In fact, the step
response monotonically decays to zero for y = 0.25. The relevant data are shown in Table 4.
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Figure 5. Step response of the high pass RLC filter of fractional order.

Table 4. The step response characteristics of high pass filter.

)/\Char. Mpl Mpz Mpg Mp4 Mp5
z‘pl (S) tp2 (S) tp3 (S) tp4 (S) tpS (S)
1.00 1.000 0.308 0.088 0.025 0.007
0 6.006 12.413 18.821 25.228
0.92 1.000 0.123 0.011 0.006
0 6.152 12.885 19.625 -
0.75 1.000
0
0.25 1.000
0

The low pass characteristics plotted in Figure 6 show that the 0 frequency and oo frequency gains
are 1 and O, respectively. The peak value of the magnitude decreases and disappears with decreasing
Ue30d. For y = 1.00 and y = 0.92, the characteristics is like that of band pass due to high peak
values of the magnitudes. The relevant data are shown in Table 5. For y = 0.25, the characteristic is
of low-pass type with a very narrow band width. The phase responses in Figure 6 are seen to change
from 0° to —180°, but flatter with decreasing y as in the band pass case.
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Bode Diagram
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Figure 6. Frequency response of the low pass RLC filter of fractional order.

Table 5. Frequency response characteristics of low pass filter.

Y\Char w, (r/s) M,(dB) w (r/s) w,(r/s) BW(r/s) 0

1.00 0.961 8.300
0.92 0.880 4.299
0.75 0.359 0.471
0.25

0.734 1.143 0.409  2.351
0.410 1.194 0.784 1.122
— 1.089 1.089 —
— 0.009 0.009 —

The step response of the low pass filter is shown in Figure 7 for values of y = 1.00,0.92,0.75, 0.25.
All the responses start from 0 at ¢ = 0 and increase to unity as t — oo. It is observed that the magnitude
of the oscillations and the number of oscillations reduce with decreasing y. Again, the plots get away
from the typical underdamped oscillatory characteristics of an underdamped second order RLC circuit
as y approaches to 0. In fact, the step response monotonically increases to 1 for y = 0.25. The relevant
data is shown in shown in Table 6. The rise time and the settling time could not be detected be for the
case y = 0.25 since the data is taken up to ¢ = 50s.
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Figure 7. Step response of the low pass RLC filter of fractional order.

Table 6. The step response characteristics of low pass filter.

y\Char. Mpl Mp2 Mp3 Mp4 Mp5 Tr (S)
Z‘pl (S) tp2 (S) tp3 (S) tp4 (S) tpS (S) T (S)

1.00 1.534 1.152  1.043 1.012 1.004 7.273
3.204  9.612  16.020 22427  28.835  13.738

0.92 1.351 1.033 1.002 0.9999 6.654
3.190  9.928 11.971  23.500 - 7.875

0.75 1.077 1.815
3.819 - - 4.959

0.25 1 > 50
) - > 50

4. Sinosoidal responses

When a sine wave voltage is applied at the input, the resulting sinusoidal responses of the filters are
discussed in this section. A sine wave input voltage of magnitude 1 and phase O is used as the voltage
excitation in all the simulations.

The band pass filter sinusoidal response is checked by applying a sine wave of frequency
f = 0.125 Hz, w = 0.257 r/s which is smaller than the center frequencies in Table 1 (except
v = 0.25). The sinusoidal responses are shown in Figure 8, where the peaks and phases of the sine
waves as approaching to steady-state are consistent with the frequency response curves in Figure 2.
All the responses are leading the input by a phase decreasing with y. All the magnitudes decrease
with decreasing y as well. Note that the consistency holds after a few periods of time when the steady
state sinusoidal response has been reached. When the input frequency is increased to w = 1 and 0.4x
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r/s, the sinusoidal responses are shown in Figures 11, 12 and 13 respectively. The consistency with
the frequency response curves in Figure 2 still holds. For example, for w = 0.47, all the responses are
lagging due to the negative phase characteristics at this frequency. Note that all the responses have
almost in phase with the input for w = 1 as seen in Figures 11 and 12, which is expected due to the
small phases in Figure 2 at this frequency for all 7.

Amplitude

Time [s]

Figure 8. The sinusoidal response of BP filter with w < 1r/s.

Amplitude
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=
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Figure 9. The sinusoidal response of BP filter with w = 1r/s.
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Figure 10. The sinusoidal response of BP filter with w > 1r/s.

The sinusoidal response of the high pass filter is obtained at two frequencies w = 0.5 and 1.5. The
results are shown in Figures 11 and 12. It is observed that the sinusoidal responses at the steady state
conditions show the gain and phase characteristics implied by Figure 4.
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Figure 11. The sinusoidal response of HP filter with w = 0.5r/s.

Finally, the sinusoidal response of the low pass filter is obtained for a single frequency w = 0.5 r/s
in the pass band. It is seen in Figure 13 that all the responses are lagging the input in accordance to the
phase response seen in Figure 6. Further, the gain is decreasing with decreasing vy as implied by the
magnitude characteristic of the same figure.
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Figure 12. The sinusoidal response of HP filter with w = 1.5r/s.
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Figure 13. The sinusoidal response of LP filter with w = 0.5r/s.

The steady state variations of the sinusoidal responses in Figures 8—13, that is their variations for
large time, are seen to be in coherence with the following formulas giving the steady state sinusoidal

responses

yap,,, (1) = Mpp(w) sin(wt + Ogp(w)),
yap,, () = Myp(w) sin(wt + Ogp(w)),

yap,,, () = Mp(w) sin(wt + 6.p(w)),
where the gains M;’s and the phases 6;” are as defined in Egs. (3.4), (3.5), (3.6), respectively.
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5. Conclusion

The frequency and time response characteristics of an RLC electrical circuit of non-integer order are
examined in this paper. The circuit is shown to be used as band pass, high pass and low pass filters. The
original RLC values are chosen for a second order ordinary RLC circuit of an underdamped type. The
overdamped case is not considered since not all the considered three types of filter characteristics occur
for this case. FOMCON Toolbox integrated with MATLAB R2017a is used to evaluate the fractional
operations and Bode plots [19]. Fractional order RLC circuit is derived by applying the fractional
derivative operator in consistency with the dimensionality [16] to the Kirchhoft’s voltage low equation
of the ordinary series RLC circuit excited by a voltage source [18]. The results stand as the answer to
the future work indicated by F. Gomez at al. who obtained analytical solutions for time domain natural
responses in terms of the Mittag-Leffler function for the treated fractional unexcited RLC circuit [17].

As the future work, the underdamped forced responses can be studied and the associated analytical
results for the step responses can be searched. Similar research could also be conducted for higher
order fractional RLC circuits.
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