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Abstract: Due to the depletion of fossil fuels and environmental concerns, renewable energy has 

become increasingly popular. Even so, the economic competitiveness and cost of energy in renewable 

systems remain a challenge. Optimization of renewable energy systems from an economic standpoint 

is important not only from the point of view of researchers but also industry owners, stakeholders, and 

governments. Solar collectors are one of the most optimized and developed renewable energy systems. 

However, due to the high degree of nonlinearity and many unknowns associated with these systems, 

optimizing them is an extremely time-consuming and expensive process. This study presents an 

economically optimal design platform for solar power plants with a fast response time using machine 

learning techniques. Compared with traditional mathematical optimization, the speed of economic 

optimization with the help of the machine learning method increased by up to 1100 times. A total of 

seven continuous variables and three discrete variables were selected for optimization of the parabolic 

trough solar collector. The objective functions were to optimize the exergy efficiency and the heat cost. 

As part of the environmental assessment, the cost of carbon dioxide emission was calculated based on 

the system’s exergy and energy efficiencies. According to the sensitivity analysis, the mass flow of 

working fluid and the initial temperature of the fluid play the most significant roles. A simulated solar 

collector in Calgary was optimized in order to evaluate the applicability of the proposed platform.  
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1. Introduction 

It has recently been demonstrated that renewable energy is a viable alternative to fossil fuels in 

solving environmental problems and the energy crisis caused by conventional fuel use (Ashouri et al., 

2015). This makes the use of renewable resources, such as solar energy, essential to promoting human 

sustainability and alleviating environmental concerns. One of the most effective measures to combat 

global warming has been the development of solar energy utilization. This type of energy, particularly 

in areas with higher average radiation levels, can reduce the consumption of fossil-based energy. As a 

result of new policies and government subsidies, the cost of utilizing solar energy has decreased, and 

installed capacity has increased. However, the proportion of this type of energy is still less than 3.6% 

despite all these worldwide initiatives (Pourasl et al., 2023). As a result of climate change, it appears 

that an increase in the proportion of solar energy is impossible unless government policies are changed 

in a paradigmatic manner.  

Solar energy is a low-emission technology with a high potential for scaling up. It is therefore 

inevitable and necessary to increase the capacity of solar electricity to scales of terawatts in order to 

combat climate change. During the past few years, solar generation capacity has increased significantly, 

technology has improved, prices have decreased, and innovative business models have been developed 

to encourage the purchase of residential solar panels. However, further improvements are required in 

order to increase the share of solar energy at a price that is acceptable to society. Solar energy will only 

be able to fulfill this role if it is cost-competitive and cost-effective compared to fossil fuels, if carbon 

dioxide emissions are appropriately penalized, and if subsidies are likely to be significantly reduced 

(Sultan et al., 2020). Any new technology must be able to compete with existing commercially 

available technologies (Nguyen et al., 2023; Omidkar, Alagumalai, et al., 2024; Omidkar, Haddadian, 

et al., 2024; Omidkar et al., 2023). It has been proven that concentrated solar power (CSP) is an 

efficient technology for the production of clean and renewable energy. In essence, it works via focusing 

the sun’s rays by using a reflective surface. There are two types of CSP systems: point focused and 

line focused. Parabolic dish collectors and solar towers are two types of point-focused collectors. There 

are two types of line-focused collectors: parabolic trough collectors (PTCs) and linear Fresnel 

reflectors (LFRs). Focus temperatures can reach over 1000 °C when using point-focused CSPs. At 

temperatures below 500 °C, line-focused CSP systems produce thermal and electrical energy (Cuce & 

Cuce, 2023; Cuce et al., 2021). PTC technology is widely regarded as the preferred CSP technology. 

As a stand-alone system, it can also be combined with other power generation systems to create hybrid 

systems. The nominal power produced by solar collectors directly correlates with radiation, so the 

determination of the geographical location is crucial. Furthermore, the average of sunny hours, wind 

speed, and humidity affect the performance of solar collectors. On the other hand, the performance of 

solar collectors can be described by the exergy conception, which means the maximum theoretical 
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work obtainable from a given thermodynamic state when this reaches thermo-mechanical and chemical 

equilibrium with a reference state on environmental conditions entering a state called “dead state” 

(García-García et al., 2019). Cuse et al. designed a hybrid PTC/TEG energy system created with a 

thermoelectric generator (TEG) energy system (Cuce et al., 2024). They concluded that the overall 

thermal efficiency of PTC-TEG hybrid systems can be increased by 70% compared to PTC systems.  

Elfeky and Wang (Elfeky & Wang, 2023) conducted techno-environ-economic assessment of two 

energy generation technologies, photovoltaic and CSP, in China and Egypt. According to their findings, 

establishing photovoltaic power plants in China is the best option, but concentrating on solar power 

plants in Egypt is the best option. The results show that in optimal conditions, a parabolic trough 

collector (PTC), which concentrates sunlight, produces 33.34% more electricity than a photovoltaic 

plant. Deai et al. introduced a PTC solar system using a micro-structured polymer foil. This system 

generates electricity through an organic Rankine cycle and produces freshwater using a multi-effect 

distillation process (Desai et al., 2021). The proposed system holds significant potential for regions 

facing electricity and water shortages. Using cyclopentane as the working fluid for the organic Rankine 

cycle, the plant achieved a levelized electricity cost of 0.116 EUR/kWhe and a levelized water cost of 

1.13 EUR/m3 for Antofagasta, Chile, and 0.163 EUR/kWhe and 1.62 EUR/m3 for Cape Town, South 

Africa. Gilani and Hoseinzadeh conducted a comparative techno-economic analysis of compound 

parabolic collectors (CPC) in which all incident radiation is focused onto a receiver in solar water 

heating systems in the northern hemisphere (Azad Gilani & Hoseinzadeh, 2021). As a result of the 

study, CPCs are found to consume less auxiliary power in all selected locations than flat plate collectors. 

In all research conducted so far, optimizing design parameters, operational conditions, and input 

variables has remained a major challenge. Energy system efficiency can be affected by factors such as 

operational conditions, material properties, kind of collector and operating fluid, concentrating 

geometry, and cycle system (Mehdipour et al., 2020; Pal & K, 2021; Shafieian et al., 2020; 

Tabarhoseini et al., 2022). Myriads of studies have thus been conducted to determine the 

thermodynamic behavior of these systems using calculational models and predictive technologies like 

machine learning, specifically artificial neural networks (ANN) (Alawi, Kamar, Salih, et al., 2024; 

Brenner et al., 2023; Kottala et al., 2023; Mustafa et al., 2022; Ruiz-Moreno et al., 2022; Vakili & 

Salehi, 2023). Experiments in pilot plants are ineffective due to their high operational costs and time 

requirements. Neural network simulators offer the advantages of simplicity, speed, and the ability to 

handle nonlinear and complex interactions between inputs and variables, making them a promising 

solution for complex data analyses. (Haykin, 1998). A common method of solving multi-objective 

optimization problems (MOPs) is to use evolutionary algorithms (EAs), such as genetic algorithms 

and particle swarm algorithms. Following the development of swarm intelligence (SI) algorithms, 

particle swarm algorithms expanded into multi-objective particle swarm optimization algorithms 

(MOSPO). A number of studies have attempted to utilize ANNs in addition to other concepts for 

evaluating renewable energy systems; however, the number of studies is limited. Recently, there has 

been a surge in interest in employing artificial intelligence techniques to optimize and predict 

renewable energy production systems (Elsheikh et al., 2024; Shboul et al., 2024; Shboul et al., 2024; 

Zayed et al., 2023a; Zayed et al., 2023b; Zayed et al., 2021). Other challenges include high CPU usage, 

optimization, and interpretation. The knowledge gap that motivated this study is illustrated in Table 1.  
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Table 1. Illustration of the knowledge gap and comparison of this study with the literature 

review. * means that the study contains the feature; – means that the study lacks the feature.  

Ref. and year Method MI optimization TEA LCA Applicability of 

other problems 

(Salari et al., 

2024), 2024 

Heat transfer * - - - 

(Alawi, Kamar, 

Abdelrazek, et 

al., 2024), 2024 

Heat transfer * - - - 

(Wu et al., 

2022) 

Linear regression  * - - - 

(Wang et al., 

2021), 2021 

ANN * - - - 

This study Thermodynamic 

and heat transfer 

* * * * 

To overcome these challenges and to be useful in industrial settings, a supervised machine-

learning approach has been developed in this study. The purpose of this study is to optimize energy, 

exergy, heat cost, and carbon dioxide emission costs for a complex renewable energy system using a 

machine-learning approach. 

2. Methods 

2.1. System description 

 

Figure 1. Schematic view of the parabolic trough solar collector system. 



702 

Green Finance  Volume 6, Issue 4, 698–727. 

The system used in this study is depicted in Figure 1. The components of the parabolic trough 

solar collector are a parabolic collector, pump, storage tank or thermal heat exchanger, flow transducer, 

DC motor, piping, working fluid, pressure and temperature sensors, CPU, and data storage. Through 

an absorb tube, the working fluid receives heat and enters the storage tank at a high temperature. 

Energy from the storage tank can be used simultaneously or whenever needed. It is also possible to 

use the storage tank to supply the energy of another working fluid via a heat exchanger for other 

applications such as the Rankine cycle, absorption refrigeration cycle, or the supply of hot water for 

residential use. CPUs can utilize the thermal and hydrodynamic properties of working fluids and 

receive atmospheric conditions from sensors. The system can also be optimized by using the 

aforementioned parameters, the mass flow of the working fluid, and the angle of the reflector. 

2.2. Governing equations  

The difference between solar time and local time can be derived via Equation (1) (Duffie et al., 2020).  

( )4st lt loc stT T L L E− =  − +  (1) 

0.000075 0.001868Cos 0.032077Sin
229.2

0.014615Cos 2 0.04089Sin 2
E

 

 

+ − 
=  

− − 
 (2) 

In Equation (2), the 
( )360 1

365

n


−
=  and the n is the nth day of the year.  

The angle of sunset can be calculated using Equation (3), in which  and  are the latitude and 

deviation angle, respectively (Duffie et al., 2020). 

( )1Cos tan tan  −= − 
 (3) 

( )360 284
23.45sin

365

n


+ 
=  

   
(4) 

The pressure drop inside the absorber tube can be calculated by Equation (5).  

2

1

22
Darcy

V L
P f

gD
 =

 
(5) 

1 2

2

4m
V

D
=

 
(6) 

In Equations (5) and (6), P is pressure loss along the length of L in the pipe, D2 is the inner 

diameter of the absorber pipe, g is the gravitational acceleration, V1 is the average velocity of fluid 

inside the pipe, m is mass flow, and  is the density of the fluid. Depending on the laminar or turbulent 

flow regime, 
Darcyf  can be derived using Equations (7) or (8), in which f is the friction factor and   is 

the pipe’s effective roughness height. 
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Based on Figure 2, the energy balance in one element of the tube in which the temperature 

gradient is linear can be established using the system of Equations (9–13). 

 

Figure 2. Heat flux in one element of the parabolic trough solar collector. q1-2, conv: 

convection heat transfer between the inner surface of the absorber tube and working fluid. 

q2-3, cond: conduction heat transfer between the outer and inner surfaces of the absorber tube. 

q5solabs: solar irradiation absorption from the incident solar irradiation to the outer glass 

envelope surface. q3solabs: solar irradiation absorption from the incident solar irradiation to 

the outer surface of the absorber tube. q4-2, conv: convection heat transfer from the absorber 

tube outer surface to the envelope inner surface. q4-2, rad: radiation heat transfer from the 

absorber tube outer surface to the envelope inner surface. q4-5, cond: conduction heat transfer 

from the envelope’s inner surface to the envelope’s outer surface. q5-6, conv: convection heat 

transfer from the envelope’s outer surface to the atmosphere. q5-7, rad: radiation heat transfer 

from the envelope’s outer surface to the sky.  
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( )12,conv outlet inletq mc T T = −
 

(9) 

12, 23,conv condq q =
 (10) 

3, 34, 34, 23, ,SolAbs conv rad cond cond bracketq q q q q    = + + +
 (11) 

34, 34, 45,conv rad condq q q  + =
 (12) 

45, 5, 56, 57,cond Soldos conv radq q q q   + = +
 (13) 

In the energy conservation system of equations, 
12,convq  is the convection heat transfer between 

the absorber tube’s inner surface and working fluid derived by Equations (14) and (15) (Bergman, 

2011; Gnielinski, 1976; Jehring, 1992). h1 is the convection heat transfer coefficient of fluid at T1, D2 

is the inner diameter of the absorber tube, T2 is the temperature of the absorber tube’s inner surface, T1 

is the temperature of working fluid, and NuD2 is the Nusselt number based on D2 and k1. Depending on 

the flow regime (laminar, transient, and turbulent), the Nusselt number can be derived.  
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 (15) 

Between the inner and outer surfaces of the absorber pipe, the mechanism of heat transfer is based 

on Equation (16). k23 is the conduction heat transfer coefficient of the absorber tube, T3 is the outer 

surface temperature of the absorber tube, and D3 is the outer diameter of the absorber tube.  

( )23
23, 2 3

3

2

2

ln
cond

k
q T T

D

D


 = −  

(16) 

Heat transfer mechanisms can vary depending on the pressure between the envelope cover 

(mostly made of glass) and the absorber tube. Heat is transferred between the envelope and the 

absorber tube by free molecular convection when the pressure is lower than 1 Torr. When the pressure 

exceeds 1 Torr, the heat transfer mechanism becomes natural convection. 
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 (18) 

D3 is the inner diameter of the envelope, D4 is the diameter of the outer surface of the envelope, 

h34 is the convection heat transfer coefficient at the average temperature T34, T4 is the inner temperature 

of the envelope, and kstd is the conduction heat transfer of the gas. b is the interaction factor,  is the 

mean free path, a is a correlation factor,  is the ratio of specific heats of the gas, T34 is the average 

temperature, Pa is the pressure of the gas inside the envelope (mmHg), and  is the molecular diameter 

of the gas. For the equation related to the higher pressure, Pr34 is the Prandtl number, RaD3 is the 

Rayleigh number, and  is the thermal expansion coefficient of the gas. 

The heat transfer mechanism between the absorber tube and the envelope is radiation, which can 

be derived via Equation (19).  is the Stefan- Boltzmann constant, 3 is the emissivity coefficient of 

the absorber, and 4 is the emissivity coefficient of the envelope.  
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(19) 

The conduction heat transfer in the envelope is similar to the conduction heat transfer in the 

absorber tube [Equation (16)]. 
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There are two mechanisms for heat transfer between the atmosphere and the envelope: convection 

and radiation. Depending on the wind speed, convection can be natural or forced. The radiation heat 

loss exists due to the temperature difference between the envelope and the sky. The convection heat 

transfer between the envelope and the atmosphere is the main resource for heat loss, specifically when 

there is wind. T5 is the outer temperature of the envelope, T6 is the atmospheric temperature, h56 is the 

convection heat transfer coefficient of the air at the average temperature, k is the conduction heat 

transfer coefficient at the average temperature, D5 is the outer diameter of the envelope, and NuD5 is 

the Nusselt number based on the outer diameter of the envelope.  

( )
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=
 (20) 

If there is no wind (wind speed lower than 0.1 m/s), the heat transfer mechanism between the 

envelope and the atmosphere is natural convection.  
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 (21) 

RaD5 is the Rayleigh number for the air based on the outer diameter of the envelope, g is the 

gravitational acceleration, 56 is the thermal diffusivity of the air at T56,  is the volumetric expansion 

coefficient for an ideal gas, Pr56 is the Prandtl number for the air at temperature T56, 56 is the kinematic 

viscosity of the air and temperature T56, and T56 is the average temperature of the film. If the wind speed 

becomes higher than 0.1 m/s, the heat transfer between the envelope and atmosphere is forced convection. 
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(22) 
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The radiation heat transfer between the envelope and the sky because of the temperature 

difference between the outer surface of the envelope and the sky can be derived from Equation (23).  

( )4 4

57, 5 5 5 7radq D T T  = −  (23) 

5 and T7 are the emissivity of the outer surface of the envelope and sky temperature, respectively. 

Generally, the sky temperature is 8 °C lower than the atmospheric temperature.  

The absorption of sunlight can be derived by Equation (24).  

5,

1 2 3 4 5 6

2cos 0.000884 0.00005369

SolAbs si env env

env cl

q q

K

K

 

       

  

 =

     =

= + −

 (24) 

siq  is the radiation of light along the receiver, env  is the light efficiency of the envelope, and 

env  is the absorption of the envelope. 1   is the collector’s shadow, 2   is the localization error, 3   is 

the geometry error, 4    is the fouling on the mirrors, 5    is the fouling on the collectors, 6    is the 

unconsidered error, and cl  is the reflection factor of the clean mirror. The factor K is the correction 

factor of the light angle, and   is the deviation angle of the solar collector.  

The light absorption in the absorber tube can be derived from Equation (25). 

3,SolAbs si abs abs

abs env env

q q  

  

 =

=
 (25) 

abs  is the light efficiency in the absorber tube, abs is the absorption coefficient of the absorber 

tube, and env  is the light transmission coefficient in the envelope. 

The envelope and the absorber tube at the focal length of the solar collector are maintained by the 

supporters. Generally, at the end of each solar element, there is one supporter every 4 m. The heat loss, 

assuming the support bracket behaves as an infinite fin with a temperature 10 °C lower than T3, can be 

derived from Equation (26): 

( )6

, ,

base

bracket cond b b b cs b

HCE

T T
q h P k A

L

−
 =  (26) 

In Equation (26), 
bh  is the convection heat transfer of the supporter, which depends on the wind 

speed, Pb is the perimeter of the supporter, kb is the conduction heat transfer coefficient, Acs,b is the 

area of the cross-section of the bracket, Tbase is the base temperature of the bracket supporter, T6 is the 

atmospheric temperature, and LHCE is the length of the solar collector.  

2.3. Exergy analysis 

By applying the second law of thermodynamics to the control volume of the solar collector, 

Equation (27) is obtained: 

, ,f in s f out l desEx Ex Ex Ex Ex+ = + +  (27) 
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,f inEx  is the inflow of exergy to the fluid, 
sEx is the inflow of exergy from sunlight, 

,f outEx  is the 

outflow of exergy of the fluid, 
lEx  is the exergy loss, and 

desEx  is the exergy destruction. The exergy 

of the sunlight can be calculated using (Landsberg & Mallinson, 1976). Tsun is the surface temperature 

of the sun (5780 K), and l is the interaction factor. fH is the view factor, which explains the geometry 

correlation between the radiation source and the receiver, H  is the dilution factor, and fr is the 

geometry factor of reflection by the absorber.  

4

0.25

4 1
1

3 3

amb amb
s s

sun sun

H H

r r

T T
Ex Q a

T l T l

f
l
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 



    
 =  −  +    
      

 
=  
 

 (28) 

The useful exergy is defined as the difference between the inflow exergy and the outflow exergy 

of the fluid (Badescu, 2018).  

, , ln out
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in f f

T P
Ex Ex Ex Q m C T m T

T T

  
= − = − − 

 
 (29) 

The exergy loss can be calculated using Equation (30) (Bellos & Tzivanidis, 2017). 
,l optEx  is light 

exergy loss and 
,l thermalEx  is the thermal exergy loss.  
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 
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(30) 

The exergy destruction shows irreversibility due to heat loss. Specifically, this parameter defines 

a probable work that disappears when there is thermal energy flow between hot and cold sources. The 

exergy destruction can be derived using Equation (31) (Kalogirou, 2004). In the solar collector, exergy 

destruction can occur mainly from two sources: between the absorber tube and the sun and between 

the absorber tube and the working fluid.  
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Exergy efficiency can be calculated using Equation (32).  
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2.4. Economical modeling 

The net price cost of the solar collector can be calculated as Equation (33). The CRF is the capital 

recovery factor, CO&M is the operational and maintenance cost (which is considered as 2% of capital 

investment), Cs is the capital investment, i is the interest rate (4%), and n is the total operational years 

(Frangopoulos, 1987). CH is the cost of heat production by the collector, N is the total annual 

operational hours, and qu is the efficient heat transfer to the working fluid.  
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(33) 

The purchase cost of various components of solar collectors can be found in Table 2. 

Table 2. Purchase cost of each component of a solar collector. 

Component Unit Cost 

Solar collector $/m2 266.7 

Working fluid $/lit 7.4 

Storage tank $/m3 44 

Pump $/kW 2100 

2.5. Energy-environment analysis 

The environmental emission of a solar collector system can be derived using Equation (34) (Faizal 

et al., 2015). 

2 2, ,CO eq CO eq u operationalx y Q t=    
(34) 

2 ,CO eqx  is the equivalent emitted CO2 during the operational time of t operational, 
2 ,CO eqy  is the emitted 

CO2 of the reference boundary control system, which is calculated using life cycle assessment methods, 

and 
uQ  is the produced power of the reference boundary system.  

2.6. Exergy-environment analysis  

Environmental assessment can also be carried out by another method. In this kind of assessment, 

which is similar to that of section 2.5, instead of power, the amount of exergy inside the system will 

be taken into account. This method is more conservative and accurate than energy-environment analysis.  

2 2, ,CO eq CO eq u operationalx y Ex t=    (35) 
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2.7. Energy-environment-economy analysis 

According to (Deniz & Çınar, 2016), the economic effects of producing carbon dioxide can be 

derived from Equation (36). CCO2 is the economic-environmental parameter of the system, and cCO2 is 

the cost of carbon dioxide production. It is possible to prevent climate change and other phenomena 

such as global warming by reducing carbon dioxide emissions as much as possible. By employing a 

conservative approach, the carbon emission cost method aims to provide a more tangible view of the 

environmental impacts. By formulating incentives and punishment policies, this method seeks to 

reduce the environmental impact of energy systems. 

2 2 2CO CO COC x c=   (36) 

2.8. Machine learning method: Support vector regression 

The support vector regression technique follows the principle of structural risk minimization and 

has been successfully applied to data classification, regression, and nonlinear systems modeling 

(Vapnik, 1999). In a regression model with a training set ( ) ,
n d

i i i
G x y R R=   , in which xi and yi 

are the input and output variables, respectively, of ith pair of datasets, and n indicates the total number 

of datasets, the SVR is a kernel method that performs the nonlinear regression using a kernel trick. The 

kernel-induced feature space F is used to perform linear regression on each input d

ix R   via a 

nonlinear feature map ( ) • . For all training data, SVR aims to find a function that has minimum 

deviation   from the actual target yi. Deviations greater than   are not accepted. Accordingly, SVR 

considers the following linear estimation function in order to achieve the stated objective: 

( ) ( )

: ,     n

f x x b

R F F



 

= +

→ 
 (37) 

In Equation (37),   and b are coefficients and ( )x  indicates the high-dimensional feature space 

that is nonlinearly mapped from the input space x. The coefficients w and b can be estimated by 

minimizing the regularized risk function. 
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In Equation (38), 

2

2


 is the Euclidean norm; this parameter is used to estimate the flatness of 

the function. This feature is used to avoid over-fitting. The difference between measured values and 

values calculated by the regression function is shown by  . It is possible to visualize this difference 

as a tube surrounding the regression function. The parameter C represents the cost function measuring 

empirical risk; it is used to determine the trade-off between empirical risk and model flatness. In this 

context, C > 0 represents the penalty degree of the sample with error exceeding  . The loss function 
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( )( )i iL f x y −  is referred to as the  -insensitive loss function. In the empirical analysis, C and   are 

parameters that are defined by the user. 

Overall, SVR is a versatile and powerful tool for regression tasks, especially when dealing with 

nonlinear data and high-dimensional feature spaces. However, the choice of the machine learning 

method should always be guided by the specific characteristics of the dataset and the problem at hand. 

Statistical parameters are used to evaluate the performance of the SVR model for the training and 

testing sets: the coefficient of determination (R2), mean absolute error (MAE), root mean square error 

(RMSE), and mean squared error (MSE). 
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2.9. Firefly opt imization algorithm  

An optimization algorithm based on the flashing behavior of fireflies is called the firefly 

algorithm (FA). Bioluminescence is used by fireflies to communicate and attract mates. In order to 

optimize solutions to various optimization problems, the algorithm simulates this behavior. As a result 

of this knowledge, we can idealize some of the flashing characteristics of fireflies in order to develop 

algorithms that are inspired by fireflies. The FA is described by the following rules: 

• Since fireflies are unisex, one firefly will be attracted to another firefly regardless of their gender. 

• The attractiveness of a firefly is directly proportional to its brightness. Consequently, if there 

are two flashing fireflies, the less bright one will move toward the brighter one. There is a direct 

relationship between attractiveness and brightness, both of which decrease as their distance increases. 

A firefly will move randomly if there is no other that is brighter. 

• Fireflies’ brightness is affected or determined by the objective function’s landscape. 

The FA is a relatively simple, yet effective, optimization algorithm that has gained significant 

attention due to its ease of implementation and strong global exploration capabilities. The algorithm’s 

inherent ability to thoroughly search the solution space reduces the likelihood of becoming trapped in 

local optima. Its adaptability to various problem types, including continuous, discrete, and multi-

objective optimization, further enhances its versatility. Furthermore, FA’s parallel processing nature 

can significantly accelerate the optimization process. Its robustness to dynamic and noisy 

environments makes it well-suited for real-world applications. 
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Compared to other metaheuristic algorithms, FA offers several advantages. Unlike genetic 

algorithms (GA), FA relies on a more straightforward attraction mechanism, which can lead to faster 

convergence. While simulated annealing (SA) explores the solution space sequentially, FA’s 

simultaneous exploration of multiple solutions can potentially accelerate the search process. 

Additionally, FA’s independence from pheromone-based information reduces computational overhead 

and simplifies implementation. Its suitability for non-differentiable, complex, and multi-modal 

functions further underscores its versatility. 

More information about this method and pseudo code is available in (Fister et al., 2013; Johari et 

al., 2013; Yang, 2010). 

2.10. Research methodology 

The research methodology is illustrated in Figure 3. Initially, a dataset is produced using input 

variables and solving the governing equations mentioned in previous sections. The produced dataset 

is used for training the SVR model. Then, the SVR model is optimized by the firefly optimization 

method to maximize accuracy. Then, this model is used by the genetic algorithm (GA) for the 

optimization of design parameters. 

 

Figure 3. Schematic of research methodology. 

The FA and GA are metaheuristic optimization algorithms that offer complementary strengths. 

FA excels in global exploration, efficiently traversing the search space, while GA is adept at local 

exploitation, refining solutions through crossover and mutation. By hybridizing these algorithms, it is 

possible to achieve a more balanced search process, combining the global exploration capabilities of 

FA with the local exploitation capabilities of GA. The hybrid approach can potentially improve 

convergence speed and solution quality. FA can guide the search toward promising regions of the 

solution space, while GA can refine these solutions further. This synergy can result in faster 

convergence to high-quality solutions compared to using either algorithm alone. Optimization 

problems in AI models, like tuning hyperparameters for SVR, often involve complex, multi-

dimensional search spaces with multiple local optima. The hybrid method is well-suited for navigating 

such landscapes, as it combines the global search ability of GA with the local search refinement of FA 

(El-Shorbagy & El-Refaey, 2022; Mazen et al., 2016; Wahid et al., 2019; Wahid et al., 2019). 
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3. Results and discussion 

3.1. Mathematical model validation 

The mathematical model has been validated by (Forristall, 2003). The weather conditions and 

solar collector characterization in (Forristall, 2003) have been used as the input data. Table 3 depicts 

the performance of the mathematical model in terms of each component. 

Table 3. Performance of the model by comparing the outcome and experimental data in (Forristall, 2003). 

Variable Ref. (Forristall, 2003) Model Relative error (%) 

Toutlet 124 127.2 2.51 

Effective heat (W/m) 3402 3470.2 1.96 

Energy efficiency (%) 72.5 77.1 5.97 

The maximum relative error is the energy efficiency, which equals 5.97%. This high relative error 

is mainly due to the high nonlinearity degree of the system.  

3.2. Application of the recommended SVR model 

Table 4. Continuous variables used for the optimization. 

 Factors Unit Lower bound Upper bound 

 

Inner diameter of the absorber tube m 0.01 0.1 

Distance between absorber tube and 

envelope 

m 0.005 0.1 

Length m 1 150 

Width m 0.5 8 

Mass flow Kg/s 0.001 10 

Pressure inside envelope Pa 0 100,000 

Initial temperature °C 15 65 

In this study, the SVR machine learning model is presented for solving nonlinear and complex 

problems in order to calculate economic metrics and assess environmental impacts. The model will be 

implemented in detail, and it can be applied to other complex projects as well. An example of the 

complexity of this study is dealing with a system of nonlinear equations and numerous variables. Time, 

energy, and money will be consumed in solving five nonlinear equations in order to derive the 

temperature profile. According to the solution, the CPU time for the solution of the main function is 

approximately 10 s. The optimization of a problem with 250 generations and a population of 200 takes 

approximately 138 h. The optimization time for this problem is high, as can be seen from the example. 

Minitab V 22.1 was used to generate the standard input data. The discrete and continuous factors were 

selected as 3 and 7, respectively (Table 4). By using Minitab software, 1500 input datasets were created. 

Then, by using computational code, all datasets were used as input, and a system of equations using 

these input data was solved. For the training of the SVR model, the sets of inputs and outputs were 

selected. The outputs include energy efficiency, exergy efficiency, heat cost, CO2 emission cost based 

on energy, and CO2 emission cost based on the exergy. The heat cost function includes cost function 
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($) and heat gain (W), which relate to energy efficiency. The input and output of the SVR model are 

depicted in Table 4 and Table 5. The input design is also depicted in Table 6. 

Table 5. Discrete variables used for the optimization of the solar collector. 

Working fluid Gas inside the envelope Material of absorber tube 

Hitec XL Air Stainless steel 312 

Water Argon Copper 

Dowtherm Q Hydrogen Aluminium 2023 

Therminol VP1   

Therminol TD12   

Therminol 72   

Table 6. Input design parameters and output of the model. 

 Symbol Unit Description 

Input Din,abs m Inner diameter of the absorber tube 

Ren-abs m Distance between absorber tube and envelope 

m  Kg/s Working fluid mass flow 

Tin °C Initial temperature of the working fluid 

L m Length of collector 

w m Width of collector 

Penv Pa Pressure inside of the envelope  

Xabs  Material of absorber tube 

XWf  Working fluid 

Xenv  Gas inside the envelope 

Output 
energy  % Energy efficiency 

exergy  % Exergy efficiency 

CH $/kWh Heat cost 

CO2-energy $ CO2 emission cost 

CO2-exergy $ CO2 emission cost 

For the regression of the dataset, a Gaussian kernel was selected.   was selected for optimization 

using the firefly algorithm with the characterization as in Table 7. 

Table 7. Characterization of firefly algorithm for optimization. 

Characterization Description  

Object of optimization  

Initial population 30 

Iteration 50 

Object function Mean squared error (MSE) 

Stop criteria 50th iteration 

Structure of fireflies  Based on the scale of the kernel  

Figure 4 (a) illustrates the process of optimizing the SVR machine learning model. The MSE 

becomes constant after the 25th iteration of the optimization using the Firefly algorithm. Figure 4 (b) 

shows the regression results for all training, validation, and test data. According to the results, an ideal 

regression is obtained, and the regression number for the test data is 0.994. As well as using different 

methods to enhance accuracy, accuracy is primarily achieved by scaling input and output data to an 

appropriate range and applying nonlinear constraints to ensure meaningfulness. As a result of scaling 


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data, large weights are not produced from the training model. An unstable model often exhibits high 

coefficient values, which may result in poor learning performance and sensitivity to input values, 

which may result in larger errors. Based on the analysis of the results, it is evident that there is a lack 

of data for regression for areas with nonlinear limitations on data generation. As a result, there are no 

data in this area, since these data are contradictory to reality and the fundamental physics of the 

problem. By following this approach, it is possible to avoid misdirection, incorrect training of machine 

learning algorithms, and the creation of unrealistic results. The optimization results are depicted in 

Figure 4 (c) by comparison between SVR and optimized SVR. 

 

Figure 4. Performance of the SVR model: a) optimization procedure; b) results of the regression; 

c) comparison of performance and accuracy of the model before and after optimization. 

3.3. Optimization 

An effective and efficient way to provide accurate and appropriate machine learning models is to 

optimize and analyze the desired goals using different decision variables in order to solve the 

previously complex and time-consuming problem. Two object functions have been defined for the 

optimization of the design parameters of the system derived from the SVR model: exergy efficiency 

(%) and heat cost ($/kWh). As previously mentioned, the main reason for selecting the heat cost 
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function was that it includes both the cost function ($) and the increase in useful heat gain (W), which 

are related to overall energy efficiency. In general, the optimization process aims to maximize exergy 

efficiency and minimize heat costs. Table 8 illustrates the main parameters of the genetic algorithm 

used in this study to optimize design parameters. The SVR model has the advantage of reducing the 

optimization process. 

Table 8. Characterization of the genetic algorithm for optimization of design parameters. 

Characterization Multi-objective genetic algorithm 

Decision-making variables  10 

Population 200 

Crossover 0.6 

Mutation operator adaptfeasible 

Exchange function Intermediate 

Selection function tournament 

Accuracy 10-4 

Generation 250 

Optimization time 5.1 min 

Figure 5 illustrates the Pareto front, which indicates the two objective functions derived from the 

trained model. In accordance with the Pareto front, exergy efficiency increases as the heat cost function 

increases. Since energy efficiency decreases with an increase in exergy efficiency, which increases the 

cost function, there is an ideal point in the Pareto front that cannot be reached, but the optimal point is 

the closest to the ideal point. 

 

Figure 5. Pareto front for two optimization functions: heat cost and exergy efficiency. 

As a result, the optimum reachable point based on the optimized design is the exergy efficiency 

of 14.05% with a heat cost of 0.0137 $/kWh. The optimized design parameters are illustrated in Table 9.  
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Table 9. Optimized design parameters. 

Optimized value Unit Optimized value 

Inner diameter of the absorber tube m 0.016 

Distance between absorber tube and envelope m 0.008 

Working fluid mass flow Kg/s 0.46 

Initial temperature of the working fluid °C 55.1 

Length of collector m 2.69 

Width of collector m 2.11 

Pressure inside of the envelope  Pa 0 

Material of absorber tube  Copper 

Working fluid  Water 

Gas inside the envelope  Argon 

3.4. Relation between design parameters and economic metrics 

 

Figure 6. Effect of the inner diameter of the absorber tube on A) energy and exergy 

efficiencies, and B) heat cost-, energy-, and exergy-based CO2 emission cost. 
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Figure 6 shows the energy efficiency, exergy efficiency, heat cost, and CO2 emission cost based 

on energy and exergy according to the inner diameter. The heat cost will increase with an increase in 

diameter from 0.01 to 0.1 m. There is a descending trend in energy efficiency and exergy efficiency 

except for small diameters. Consequently, as the diameter decreases, both efficiencies will decrease. 

In small diameters, the pressure drop and the required power for pumping is high. As the diameter 

increases, the efficiency decreases due to a decrease in the Nusselt number and convection coefficient, 

which results in less heat being generated and more exergy being destroyed. So, there is a maximum 

point for the energy and exergy efficiencies when the inner diameter varies depending on whether the 

pressure drop or Nusselt number effect is dominant.  

 

Figure 7. Effect of distance between the envelope and absorber tube on A) energy and 

exergy efficiencies, and B) Heat cost-, energy-, and exergy-based CO2 emission cost. 
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It is necessary to provide a gap between the tubular absorber and the metallic reflector in order to 

prevent conduction heat loss from the absorber to the reflector and to provide a glass envelope around 

the absorber, which will increase the thermal efficiency of the compound parabolic concentrator (CPC) 

module at high temperatures. As a result of the gap between the absorber and the envelope, light 

incident on the absorber is lost, which is referred to as “gap losses”. It is therefore necessary a 

compromise between optical and thermal performance. Figure 7 depicts energy efficiency, exergy 

efficiency, heat cost, and CO2 emission cost based on the energy and exergy efficiency vs. distance 

between absorber and envelope. With an increase in the distance from 0.01 to 0.05 m, the energy and 

exergy efficiencies will decrease due to the increase of convection heat transfer in annulus space. 

 

Figure 8. Effect of mass flow of working fluid on A) energy and exergy efficiencies, and 

B) heat cost-, energy-, and exergy-based CO2 emission cost. 
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Figure 8 illustrates the effect of working fluid mass flow on efficiency and economic parameters. 

The increase in the mass flow will result in an exergy efficiency decrease. There is a maximum point 

for energy efficiency when mass flow rises. By increasing the mass flow by more than 0.2 kg/s, energy 

efficiency will decrease because of the lower heat transfer. The higher speed of the working fluid 

decreases the residence time of volume control of fluid inside the collector; therefore, the heat transfer 

and output temperature will decrease. In this analysis, energy efficiency is influenced by two main 

parameters: pressure drop and heat transfer coefficient. With the increase of mass flow rate, both 

increase; at a low mass flow rate, the convective heat transfer coefficient is dominant. However, energy 

efficiency is first upward and then downward. The cost of carbon dioxide emission based on energy 

and the cost of carbon dioxide emission based on exergy is shown as a function of the previously 

presented parameters.  

 

Figure 9. Effect of the initial temperature of working fluid on A) energy and exergy 

efficiencies, and B) heat cost-, energy-, and exergy-based CO2 emission cost. 
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Based on Figure 9, with an increase in the inlet temperature, the energy efficiency decreases 

because the temperature difference between the fluid and the ambient environment decreases, resulting 

in a rise in the cost of heat. A temperature gap between hot and cold sources contributes to exergy 

destruction. By reducing the temperature difference, exergy destruction is reduced, which increases 

exergy efficiency. 

3.5. Sensitivity analysis 

Based on the trained model, a sensitivity analysis of all continuous and discrete variables was 

performed using the proposed machine learning approach. The sensitivity analysis was carried out 

based on the one factor at a time (OFAT) methodology. Based on the  10% change in the design 

parameters, the percentage of change in energy efficiency, exergy efficiency, and heat cost was 

calculated. As can be seen from Figure 10, the results indicate that the most important parameter is the 

initial temperature of the working fluid.  

  

Figure 10. Sensitivity analysis of design parameters on energy efficiency, exergy 

efficiency, and heat cost. 
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3.6. Case study: Economic optimization of a solar collector in Calgary  

In order to demonstrate the applicability of the proposed platform, a case study was developed to 

optimize a parabolic trough solar collector in Calgary (51.0447° N, 114.0719° W). Table 10 depicts 

the average monthly weather conditions with average solar irradiation.  

Table 10. Monthly average of weather conditions in Calgary. 

Month Temperature (°C) Wind speed (km/h) Solar irradiation 

(kWh/m2/day) 

Average sunlight (h/day) 

January −9.2 11.6 2.3 3.2 

February −4.1 13.8 3.2 4.1 

March −3.8 15.1 4.3 6.1 

April 5.4 17.7 5.2 7.7 

May 15.3 16.0 5.7 10.1 

Jun 16.6 16.3 5.5 8.9 

July 18.1 13.1 6.4 6.2 

August 18.2 12.5 5.9 5.3 

September 13.4 12.7 5.1 3.6 

October 5.3 12.4 3.9 5.1 

November 2.0 11.2 2.8 3.7 

December 0.6 11.1 2.1 3.1 

 

The platform was used to optimize the design of a parabolic trough solar collector and the 

optimum parameters for this system were determined (Table 11). As can be seen from Table 11, due to 

a higher average wind speed in Calgary, the average heat loss will be higher than the design parameters 

in Table 9. This resulted in a decrease in the distance between the envelope and the absorber tube. 

Therefore, the envelope cross-sectional area would be smaller, thereby decreasing forced convection 

heat transfer. Because the average number of sunny hours per day in (Forristall, 2003) is higher than 

in Calgary, the mass flow in the optimized design in Calgary was reduced, and the width of the collector 

was increased. 

Table 11. Optimum design parameters for a solar collector located in Calgary, Alberta. 

Optimized value Unit Optimized value 

Inner diameter of the absorber tube m 0.019 

Distance between absorber tube and envelope m 0.005 

Working fluid mass flow Kg/s 0.31 

Initial temperature of the working fluid °C 59.8 

Length of collector m 2.15 

Width of collector m 3.01 

Pressure inside of the envelope  Pa 0 

Material of absorber tube  Copper 

Working fluid  Water 

Gas inside the envelope  Argon 

It is clear that the proposed platform can be used for optimizing the solar collector in each location 

based on the inputs and weather conditions. At optimum design parameters and operational conditions, 

the heat cost would be 0.0141 $/kWh, and the levelized cost of gas generation would be 0.15 $/kWh. 
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However, the expected levelized cost of renewable energy in Alberta is 0.05 $/kWh by 2035 (Ali, 2018; 

Barrington-Leigh & Ouliaris, 2017; Patel & Parkins, 2023). 

4. Conclusions 

In this comprehensive study, a support vector regression (SVR) algorithm was synergistically 

integrated with the firefly metaheuristic and genetic algorithms to forecast the economic profitability 

of solar power plants. Initially, mathematical modeling was employed to construct a robust dataset, 

which was subsequently utilized as the foundation for training the predictive model. Following the 

optimization of the SVR algorithm, the model was adeptly applied to evaluate the economic feasibility 

of the solar power plant. It was found that an increase in the inner diameter of the absorber tube was 

correlated with an escalation in heat costs, attributable to diminished energy and exergy efficiencies. 

Furthermore, it was observed that an increase in the distance between the envelope and the absorber 

tube resulted in a decline in heat cost, energy, and exergy efficiency, while paradoxically elevating CO2 

emission costs. An optimal heat transfer fluid flow rate of 0.4 kg/s was identified. Through sensitivity 

analysis, the paramount importance of the initial fluid temperature as a critical design parameter was 

underscored. Additionally, it was determined that the width of the collector and the pressure within the 

envelope space significantly influenced the leveled cost of energy. 

In conclusion, the proposed hybrid optimization strategy was found to proficiently generate 

highly precise models, while concurrently fulfilling the objective of cost minimization. This 

methodology is considered to hold substantial promise for feasibility studies and conceptual design 

phases, offering a robust framework to evaluate the economic and environmental viability of energy 

projects prior to their construction. 
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