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Abstract: The integration of renewable generation sources into wholesale electricity markets is 

expected to reduce day-ahead marginal prices. This effect has been widely evidenced by previous 

literature and is commonly referred to as the merit order effect. However, the factors influencing the 

components of final prices, other than the day-ahead market price, have not been subjected to as much 

study. Nevertheless, they may prove crucial in understanding the dynamics between the interrelated 

trading segments in the wholesale electricity market. Furthermore, in the context of the energy 

transition process, the penetration of intermittent renewable energy sources (mainly wind and solar 

photovoltaic) and the non-storability of electricity at a large scale may result in increased market 

balancing needs and costs. The objective of this study was to identify the primary drivers of final 

wholesale electricity prices in the Iberian electricity market, apart from the day-ahead market price, 

using machine learning techniques. The results indicate that the share of renewable generation in the 

day-ahead market is a significant factor influencing both the cost of managing technical constraints, 

which aims to address network capacity issues, and the cost of managing balancing processes and 

resolving adjustment issues by the TSO. However, both of these costs can be readily accommodated 

by the market, as they represent a minimal percentage of the final price. These findings are of interest 

to both practitioners and regulators, as they provide a better understanding of the functioning of the 

market and have implications for the restructuring of the market towards a more sustainable and 

competitive electricity system. 
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1. Introduction 

The promotion of clean energy is a key component of energy policy aimed at facilitating the 

global transition towards decarbonisation. The transition to low-carbon and climate-resilient 

economies requires the integration of renewable energy sources into the power generation mix. One 

of the most discussed issues is the impact of the high penetration of renewables on electricity prices, 

highlighting the need for comprehensive analysis and policy adaptation. 

On the one hand, due to their low opportunity costs, renewable generators can bid at very low 

prices, or even at zero, and participate as price takers in the day-ahead auction market, which is based 

on a marginal pricing system. A sufficient number of low-price bids from renewable generators can 

shift the supply offer curve in such a way that the resulting auction price is set at a lower level. As a 

result, more renewable production is expected to lead to lower marginal prices. This is the so-called 

merit order effect of renewables, which refers to the reduction in day-ahead market prices due to the 

introduction of renewable generation sources into the electricity system, and it is well documented in 

the literature [Holttinen (2004) in the Nord Pool; Sensfuβ et al. (2008) and De Lagarde and Lantz 

(2018) in the German market; McConell et al. (2013) in the Australian market; and Sánchez de Miera 

et al. (2008) and Ballester and Furió (2015) in the Spanish market, among others1]. 

On the other hand, the non-storability of electricity at a large scale, together with the intermittency 

of the main renewable energy sources (wind and solar PV), may result in higher market balancing 

requirements and costs. As electricity is a non-storable commodity, its delivery must be planned in 

advance, typically on the day ahead market2. Up to the time of delivery, adjustments are usually 

necessary to deal with unexpected deviations from the scheduled delivery. The wholesale electricity 

market typically consists of a series of interrelated markets: (i) the day-ahead market, (ii) the intraday 

markets for short-term adjustments, and finally (iii) balancing markets to handle the remaining 

deviations and other technical issues. The variability and limited predictability of renewable generation 

could increase the need for load balancing to ensure the electricity supply at the moment of delivery. 

Therefore, greater renewable production could result in a need for more balancing and therefore more 

balancing costs, which could ultimately drive up final wholesale electricity prices3. 

 
1 For a complete overview of past research on the merit order effect of renewables, see Würzburg et al. (2013), and more 

recently for the Iberian market, Carvalho and Pereira (2019). 

2 The so-called spot market is actually a day-ahead market, where electricity is traded (at t) for delivery during the 24 hours 

of the following day (at t+1).  

3 In this regard, Gianfreda et al. (2018) found a significant positive difference between real-time and day-ahead market 

prices, particularly for wind electricity in the Italian market. 
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While many previous studies have focused on the impact of renewables on day-ahead market 

prices, our analysis goes a step further by examining their potential influence on the additional costs 

incurred in the subsequent processes leading up to real-time electricity delivery. This comprehensive 

approach represents a departure from conventional research and addresses a significant and previously 

underexplored gap in current literature. By extending our investigation beyond the immediate pricing 

effects on the day-ahead market and delving into the intricacies of the additional costs associated with 

real-time electricity delivery, we shed light on a crucial yet under-researched aspect of renewable 

energy integration.  

These additional price components, beyond day-ahead and intraday prices, mainly stem from 

intermediate processes aimed at ensuring continuous supply and system reliability. For the purposes 

of this study, the Iberian market is chosen as a paradigmatic example due to the high penetration of 

renewable energy in recent years, growing by 44% over the period 2017–20214.In order to carry out 

the analysis, a complete dataset with 67 predictor variables is generated. To manage such an exhaustive 

list of variables, we use machine learning techniques, which are a relatively recent addition to this 

branch of the literature and are preferable to other classical parametric models that impose assumptions 

that our series do not necessarily meet. As Breiman (2001a) pointed out, when dealing with highly 

complex realities such as medical, genetic, or financial datasets, it may be more appropriate to assume 

that the observed data are generated by a complex and unknowable mechanism rather than to impose 

one of the established classical parametric models, such as linear regression, logistic regression, or the 

Cox model. Therefore, efforts should be redirected from the search for a reasonably good classical 

model to the identification of an algorithm, such as neural networks or decision trees—collectively 

known as machine learning algorithms (MLAs)—capable of processing the observed data (input 

variables) to yield accurate predictions (response variables) through iteration and convergence. 

Although these algorithms lack the interpretability of classical models, they can provide greater 

accuracy and may be better suited to addressing a broader range of problems. Since their introduction 

in 2001, the use of MLAs has increased exponentially, and they have evolved to become not only more 

accurate but also more informative about how nature relates response variables to input variables, 

potentially revealing causal relationships. This latter aspect is very much in line with the objectives of 

our work. In this regard, Prasanna et al. (2019) summarised the advances of MLAs in agent-based 

modelling of energy markets. Tschora et al. (2022) and Schnürch and Wagner (2019) evaluated the 

use of MLAs to forecast spot electricity prices, Qays et al. (2020) applied the backpropagation neural 

network MLA to check the charge condition of photovoltaic battery hybrid systems, whereas Duras et 

al. (2023) evaluated the performance of various machine learning techniques when selecting relevant 

input variables. 

One such approach, machine learning–based causal models, has recently gained traction across a 

wide range of fields to estimate conditional average treatment effects (CATE). Machine learning-based 

causal models have emerged as a robust methodological framework in academic research, providing a 

 
4 The specific growth rates by generation technology were 150%, 61%, 31%, 26%, 14%, and −12%, respectively, for solar 

photovoltaic, hydraulics, the “other renewables” group including biogas, biomass, marine hydraulics, and geothermal, 

wind, hydraulic wind, and solar thermal. 
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powerful means of analysing complex systems and discerning causal relationships. These models 

facilitate the identification of causal effects without being constrained by certain limitations inherent 

to conventional econometric models. Because of their flexible and adaptive nature, machine learning-

based causal models are making a significant contribution to advancing our understanding of complex 

phenomena and increasing the depth of empirical analysis in various fields of study. In agriculture, 

Quigley et al. (2023) employed the causal random forest approach to explore the impact of persistent 

warming temperatures on the use of cover crops. Zhang et al. (2022) investigated the impact of speed 

cameras on road safety using generalised random forests, selected for their superior performance in 

simulation exercises compared with other causal methods such as outcome regression, propensity 

score, and doubly robust estimation. Li et al. (2024) applied a generalised doubly robust causal 

machine learning approach to study the effect of crashes on traffic speed, while in the labour market 

domain, Elamin (2023) used the random forest method to examine the effects of informal job search 

on wages and job satisfaction. Finally, Mizuguchi and Sawamura (2023) and Xu et al. (2024) focused 

on the areas of health and finance, respectively, employing random forest techniques for predictive 

purposes. All of these previous studies analysed causal relationships between variables. In this study, 

we use causal random forest regression and partial dependence plots to identify the main factors 

explaining Spanish final electricity prices.  

The contributions of the paper are as follows. First, our research addresses a significant gap in 

the existing literature by examining electricity cost components beyond spot prices. This study focuses 

on the costs of balancing and other technical processes that have been largely overlooked in previous 

studies. Second, we employ a range of innovative techniques within this branch of literature for 

comparative purposes. This includes the use of machine learning-based causal models to estimate 

CATE, which provides insights into the impact of renewable generation on various cost components. 

Third, the methodology employed can be readily extrapolated to other electricity market areas. This 

adaptability allows for the study of the effect of renewable generation on balancing and adjustment 

costs across different wholesale market designs and regulatory environments, thereby enhancing the 

broader applicability of our findings. 

The remainder of this paper is structured as follows. Section 2 provides a concise overview of the 

Spanish electricity system. Section 3 lists the dataset used. Section 4 presents the methodology adopted, 

including details on the data pre-processing and performance measures used to evaluate the algorithms. 

Section 5 provides and discusses the results. Finally, Section 6 outlines the main findings and concludes. 

2. The Iberian electricity market 

Since 2007, the Spanish and Portuguese electricity systems have been integrated into a common 

market area, the Iberian Electricity Market. The wholesale electricity market5 consists mainly of (i) a 

day-ahead market, (ii) an intraday market, and (iii) other balancing processes.  

The day-ahead market is a daily uniform price auction in which participants submit their bids to 

purchase or sell electricity for each of the 24 hours of the following day. The resulting price for each 

 
5 The wholesale market represents 89% of the total energy generated in the Iberian market. 
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specific hour is determined by the point at which the supply and demand curves meet, according to a 

marginal pricing system.  

The intraday market allows participants to adjust the resulting day-ahead market schedule by 

utilising more up-to-date and accurate forecasts. This market is currently structured into an auction 

market and a continuous market. The intraday auction market consists of six consecutive auction 

sessions, each of which comprises several scheduled periods closer to the delivery date6. In contrast, 

the intraday continuous market is a continuous European cross-border market.  

In the initial phase, the Nominated Electricity Market Operator (NEMO) obtains the resulting 

marginal price and assigned electricity from the auctions in both the day-ahead and intraday markets. 

This is done on the basis of purely economic criteria. It is then necessary to ensure the technical 

feasibility of the allocations of electricity to generators and retailers and/or end consumers, which 

initially originate from the day-ahead and intraday markets. Red Eléctrica de España (REE), as 

Transmission System Operator (TSO), is the entity responsible for validating them from a technical 

perspective through what is known as the management of the system’s technical constraints, which 

involves resolving network congestion. In other words, the capacity of the network is analysed to 

determine whether it is sufficient to meet demand, given that the electricity should flow from the 

generation plants to the consumption points under conditions that are sufficiently reliable. 

Consequently, the outcomes of the day-ahead and intraday market auctions are provisional and subject 

to modification.  

In addition to the management of technical constraints due to network capacity issues, there are 

other balancing or adjustment processes to ensure the operation of the system for which the TSO is 

responsible: (i) the market mechanism for additional upward reserve power, whose purpose is to 

provide the system with the estimated necessary level of upward reserve power; (ii) the secondary 

control band, designed to maintain the balance between generation and demand by correcting 

deviations in temporary action horizons ranging from 20 seconds to 15 minutes; (iii) the tertiary control, 

to resolve deviations between generation and consumption and to restore the secondary control band 

reserve used; and finally, (iv) the real-time deviation management processes7. 

Consequently, final wholesale electricity prices include several costs other than the day-ahead 

market price (its main component) and the difference between it and the intraday market price (which 

may be positive or negative and is merely residual8). It is worth taking a closer look at these other costs 

 
6 Details of the opening and closing times of each session of the intraday market can be found on the Iberian NEMO website 

(www.omie.es). Last accessed: March 2022 

7 There are two other components of final electricity prices: capacity payments and the so-called interruptibility service. 

Capacity payments are paid to stand-by generators to act as a backup during periods of excess demand in order to prevent 

power outages. The interruptibility service, which ceased to be in force on June 30, 2020, was provided by some 

authorised large consumers by reducing their consumption (when requested by the TSO) to maintain the balance between 

generation and demand during periods when demand exceeds supply. 

8 That price difference is added to the day-ahead market price to capture the impact (positive or negative) of intraday 

trading when computing the final price. 
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included in final wholesale electricity prices in order to identify their determinants, focusing in 

particular on the impact of renewables, among an exhaustive list of potentially key variables. 

3. Data  

The first dataset used is the price series of the components of the final wholesale prices, other 

than the day-ahead market price, at an hourly frequency, from January 2017 to December 20219. In 

particular, (i) the daily average of the hourly price series of the intraday market (IM) component, which 

captures the net effect of the six sessions of the intraday market on the final price; (ii) the daily average 

of the hourly net effect on the final price of the procedure to solve technical constraints (TTCC), which 

includes the costs incurred to manage technical constraints after the day-ahead market auction, after 

each of the intraday markets auctions, and in the real-time market; (iii) the daily average of the hourly 

costs resulting from ancillary services and deviation management (SO); (iv) the daily average of the 

hourly costs related to capacity payments (CP); and (v) the daily average of the hourly costs associated 

with the interruptibility service (IS). 

In addition, we compute the daily average of the hourly series of bids (price and amount of power) 

individually submitted by market participants in order to buy or sell energy, distinguishing between 

matched and non-matched bids, both in the day-ahead and in the first session of the intraday market, 

since this session is the one in which most of the intraday market liquidity is concentrated10.  

Other energy-related price series included in the analysis are: (i) the Dutch TTF (Title Transfer 

Facility) futures price11. as the natural gas benchmark in Europe (Chuliá et al., 2019); (ii) the API2 

index for the coal price12; (iii) the European Emission Allowances (EUA) futures price13; and (iv) 

several data from the France–Spain interconnection, specifically the percentage of hours with 100% 

use (both sides) and the spread, calculated as the Spanish day-ahead market price minus the French 

day-ahead market price14. In addition, the percentage of water reserves in the reservoirs of the Iberian 

Peninsula is also considered15. In total, the dataset used contains 122,432 observations.  

4. Methodology 

A regression tree, a non-parametric supervised machine learning algorithm for regression tasks, 

is used to estimate each of the aforementioned cost components of the final wholesale electricity price. 

 
9 Prices are all expressed in €/MWh and are publicly available on the website of the Spanish National Commission for 

Markets and Competition (www.cnmc.es). 

10 The entire supply and demand curves can be found on the OMIE website (www.omie.es), except for four suspended 

intraday trading sessions on 1 January 2019, 30 and 31 July 2021 and 1 November 2021. 

11 Source: Thomson Reuters database 

12 Source: Thomson Reuters database 

13 Available at http://www.sendeco2.com. 

14 Available on the webpage of the Electricity Interconnection in South–Western Europe (www.iesoe.eu). 

15 Available on the webpage of the Spanish Ministry of Economy and Digital Transformation (www.miteco.gov.es). 



369 

 

Green Finance  Volume 6, Issue 2, 363–382. 

The algorithm is based on a recursive partitioning of the feature space represented by a tree growing. 

The starting point is a root node, which is the space containing all observations. The space is divided 

into regions and the target is modelled as the mean of each region. The split point that allows the space 

to be divided into regions is the one with the best fit (the one with the lowest estimation error), i.e., the 

one that shows different separation conditions (e.g., day-ahead price above 50 MWh). Each split point 

drives to a new node (or sub-region), called a leaf, from which new branches are derived until a stop 

criterion is applied (usually the minimum size of the sub-region or the maximum number of split 

points). It should be noted that this is a non-parametric procedure that has interesting advantages in 

that it allows us to handle non-normal data or multicollinearity. It is also robust even when there are 

outliers or missing values. 

There are several versions of the algorithm. The most basic version is known as the Classification 

and Regression Tree (hereinafter referred to as CART). The root node is split into two leaf nodes 

according to the following criteria: given a set of predictors {X1,X2,...Xp}, the goal is to select one of 

them, Xj, and the split point c to obtain two sub-regions: R1={X|Xj<c} and R2={X|Xj>=c} in such a 

way that the following measure is minimised: 

RSST=RSS1+RSS2= ∑ (𝑦𝑖 − 𝑦𝑅1̂)
2

𝑖∈𝑅1 + ∑ (𝑦𝑖 − 𝑦𝑅2̂)
2

𝑖∈𝑅2       (1) 

where yi denotes the target observed for the region Ri; 𝑦𝑅𝑖̂ is the estimated target (the mean) for the 

region Ri; and RSSi refers to the residual sum of squares for the region Ri. In this way, a partition is 

chosen that minimises the total residual sum of squares.  

However, this first version of the algorithm does have some drawbacks, such as a lower prediction 

accuracy compared to other techniques, a high variance in the outcomes, and a tendency to overfit. To 

overcome these shortcomings, improved algorithms have been introduced, such as random forest and, 

more recently, its generalisation, causal forest. 

The random forest version reduces the variance by estimating more trees and using bootstrap 

according to the following procedure. First, different samples with different sets of predictors are 

generated with bootstrap. Second, a regression tree is fitted to each of the samples. Finally, the average 

of the predictions using all the trees is the final prediction of the target. 

Causal forest (Athey and Stefan, 2019; Credit and Lehnert, 2023) is a generalisation of random 

forest to estimate heterogeneity treatment effects. Keeping the same structure as random forest, an 

adaptive-kernel nearest-neighbour method is used to obtain the predicted values, where closeness is 

measured in terms of the characteristics of the training observations that fall into the same leaf. Each 

test observation drops into a particular leaf according to its characteristics, and a list of similar training 

observations is generated. A neighbourhood weight for each training observation is then calculated 

based on the number of times it falls into the same leaf as a given test observation. The predicted value 

for each test data point is the neighbourhood-weighted average difference of the outcome variable 

between treated and untreated observations. In addition, the splitting criterion used to construct the 

tree is to maximise the difference between the target observed in treated and untreated observations 

(according to a linear approximation of the mean difference gradient), rather than to minimise the 

prediction error as in traditional random forest. Following an honest estimation strategy, two samples 

are selected: one devoted to splitting each tree and the other to estimating causal effects. Whereas 
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random forest produces predicted values of the outcome variable, causal forest obtains predicted values 

of the conditional average treatment effects at the unit level. 

In this paper, the three versions discussed are applied for comparative purposes: random forest, 

causal forest, and the most basic version, CART, as a benchmark. Note that the random forest versions 

are chosen instead of others, such as boosting, because they are considered to be more effective in 

assessing importance measures for predictors, which is our main point of interest (Chen et al., 2023). 

Calculating an importance measure is not an easy task when dealing with machine learning models. In 

fact, they are often referred to as black boxes. The most common random forest importance measures 

are based on the permutation principle. The values of a predictor are permutated as a way of reducing 

noise, and the difference in the prediction accuracy of a random forest before and after permutating 

the values is seen as a quantification of the importance of predicting the outcome. (Breiman, 2001b; 

Strobl et al., 2008). For the purposes of this research, we select the importance measure proposed by 

Debeer and Strobl (2020), which is a conditional permutation random measure that is strongly 

recommended when there is a correlation between the predictors.  

The procedure therefore consists of several steps. First, the sample is randomly split into two 

samples: a training sample, which contains 70% of the total sample and is used to train the algorithm, 

and a test sample, which uses the remaining 30% of the sample to evaluate the predictive power of the 

model. Second, the cost arising from managing technical constraints and the cost derived from TSO 

balancing and technical processes are estimated using the three regression tree versions mentioned 

above: CART, random forest, and causal forest. Third, the mean absolute error (MAE) and the root 

mean squared error (RMSE) in both the training and test samples are calculated for comparison 

purposes. Next, the determinants of each cost are extracted based on unconditional and conditional 

permutation importance measures from random forest and causal forest fitted models, respectively. 

Finally, the relationship between these determinants and the costs is explored in order to obtain the 

marginal effect of each variable on the outcome of each of the fitted models16. 

5. Results 

Due to space constraints, we only present results for the cost derived from managing technical 

constraints and the cost derived from TSO balancing and technical processes. The remaining 

components of the final price, other than the day-ahead market price, have a very limited impact and 

are very stable, suggesting that their levels do not depend on the amount of renewable energy in the 

day-ahead market. This intuition is confirmed by the results obtained for these components, which are 

available upon request from the corresponding author. Therefore, the cost derived from managing 

technical constraints (TTCC) and the cost of the balancing processes managed by the TSO (SO) are 

chosen as dependent variables, or targets, for the machine learning algorithms. 

 

 
16 The software used is the R packages “rpart” (Therneau and Atkinson, 2018), “randomForest” (Liaw and Wiener, 2002), 

“moreParty” (Robette, 2022), and, for the calculation of conditional importance measures, “permimp” (Debeer et al., 

2021). The random forest packages also provide the unconditional importance measure of the permutation type. 
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Table 1. Predictors for the models.  

Source Variables Denoted by: 

Day-

ahead 

market 

The difference between Spanish spot price and Portuguese spot 

price 

Mean offer price to sell by cc plants 

Mean offer price to sell by hydro plants 

Mean offer price to sell by bump. hydro plants 

Mean offer price to sell by nuclear plants 

Mean offer price to sell by renewable plants 

Mean offer price to sell by thermal plants 

Share of power sold by cc plants 

Share of power sold by hydro plants 

Share of power sold by bump. hydro plants 

Share of power sold by nuclear plants 

Share of power sold by renewable plants 

Share of power sold by thermal plants 

 

DM_Spread_ESPT 

DM_OPSELL_CC 

DM_OPSELL_CH 

DM_OPSELL_CH_B 

DM_OPSELL_CN 

DM_OPSELL_CR 

DM_OPSELL_CT 

DM_PCT_CC 

DM_PCT_CH 

DM_PCT_CH_B 

DM_PCT_CN 

DM_PCT_CR 

DM_PCT_CT 

Intraday 

market 

session 1 

1-lagged mean offer price to purchase by cc plants  

1-lagged mean offer price to purchase by hydro plants  

1-lagged mean offer price to purchase by bump. hydro plants  

1-lagged mean offer price to purchase by nuclear plants  

1-lagged mean offer price to purchase by renewables  

1-lagged mean offer price to purchase by thermal plants  

1-lagged mean offer price to sell by cc plants  

1-lagged mean offer price to sell by hydro plants  

1-lagged mean offer price to sell by bump. hydro plants  

1-lagged mean offer price to sell by nuclear plants  

1-lagged mean offer price to sell by renewable plants  

1-lagged mean offer price to sell by thermal plants  

1-lagged percentage of sell offers matched  

1-lagged percentage of purchase offers matched  

1-lagged difference of percentage of sell and purchase offers 

matched 

IM_OPPURCHASE_CC_lag_1 

IM_OPPURCHASE_CH_lag_1 

IM_OPPURCHASE_CH_B_lag_1 

IM_OPPURCHASE_CN_lag_1 

IM_OPPURCHASE_CR_lag_1 

IM_OPPURCHASE_CT_lag_1 

IM_OPSELL_CC_lag_1 

IM_OPSELL_CH_lag_1 

IM_OPSELL_CH_B_lag_1 

IM_OPSELL_CN_lag_1 

IM_OPSELL_CR_lag_1 

IM_OPSELL_CT_lag_1 

IM_PCT_EMS_lag_1 

IM_PCT_EMP_lag_1 

 

IM_DIF_PCT_EM_lag_1 

Balancin

g costs 

and 

regulated 

payments 

1-lagged intraday market cost  

1-lagged technical constraints cost  

1-lagged TSO technical processes cost  

1-lagged capacity payment cost 

1-lagged interruptibility service cost 

1-lagged non capacity payment dummy  

1-lagged non interruptibility service dummy 

IM_lag_1 

TTCC_lag_1 

SO_lag_1 

CP_lag_1 

IS_lag_1 

In_CP_lag_1 

In IS_lag_1 

Energy-

related 

commodi

ty prices 

1-lagged TTF Dutch natural gas prices 

1-lagged EUA futures prices  

1-lagged API2 coal prices  

1-lagged reservoir levels in Spain 

TTF_lag_1 

EUA_lag_1 

API2_lag_1 

PCT_WR_lag_1 

Interconn

ection: 

spread 

and 

capacity 

1-lagged difference between Spanish spot price and French spot 

price 

1-lagged percentage of hours with 100% use Spain -> France 

1-lagged percentage of hours with 100% use France -> Spain 

 

SpreadESFR_lag_1 

Phu_ESFR_lag_1 

 

Phu_FRES_lag_1 

Calendar 

dummy 

variables 

Yearly dummies 

Monthly dummies 

Day of week dummies 

Non-business day dummy (holiday and weekends) 

2017…, 2021 

February…, December  

Monday…, Saturday 

(Non-holiday) from Monday to Friday 

As mentioned above, a total of 67 variables are used as potential predictors for each one of the 

targets (Table 1). The variables are grouped as follows: (i) variables derived from the day-ahead market 

data: the difference between the day-ahead price for the Spanish market and the day-ahead price for 
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the Portuguese market, in an attempt to capture the effect of network bottlenecks between the two 

areas; the mean offer price to sell electricity and the share of power sold in the day-ahead market, 

grouped by technology: combined cycle plants (denoted by CC), hydroelectric (CH), pumped 

hydroelectric (CH_B), nuclear (CN), renewables [mainly wind and solar]17 (CR), and thermal (CT); 

(ii) variables generated from the first session of the intraday market data: mean offer prices to either 

purchase or sell electricity, grouped by generation technology, and the percentage of matching offers 

to sell or purchase, as well as the difference between the two; (iii) balancing costs and regulated 

payments, and two daily dummies that take the value 1 if there is no capacity payment on day t-1 or if 

there is no interruptibility service on t-1, respectively, and 0 otherwise; (iv) other energy-related 

commodity prices, such as natural gas prices (TTF), coal prices (API2) and carbon prices (EUA), as 

well as Spanish water reservoir levels; (v) several data series from the France–Spain interconnection, 

namely the difference between the Spanish and French spot prices, the percentage of hours at 100% 

load on the power flow from Spain to France and the percentage of hours at 100% load on the power 

flow from France to Spain; and finally, (v) calendar variables to control for seasonality (yearly, 

monthly, day of the week) and a labour dummy that takes the value 1 if it is a non-holiday weekday 

and 0 otherwise. It should be noted that the variables from the day-ahead market can be predictors for 

the same day of the target, while the rest of the variables are one-lagged.  

The CART version requires an additional process, the so-called pruning method, to prevent 

overfitting. The aim here is to reduce the number of branches by eliminating those that do not 

contribute to the prediction and may cause overfitting. To determine the optimal size for a tree, a tree 

pruning method using cross-validation (CV) is used, following Hastie et al. (2001). In this method, we 

first omit one observation for training and then use the resulting model to predict the omitted 

observation. However, full leave-one-out cross-validation is computationally more costly, so it is 

better to work with k-fold cross-validation and a cost-complexity function to reduce the number of fits 

required. A cost-complexity function for trees is CC (tree) = ∑RSSi + λ, which is the sum of the 

squared residuals of all terminal nodes plus λ, where the parameter λ is the number of terminal nodes. 

In practice, the parameter CP (cost complexity) is used, calculated as CP =λ/RSS, where RSS is the 

sum of squared residuals in a tree with no branches. Finally, the pruning strategy consists of growing 

a large tree and then pruning it back, considering the smallest sub-tree with a CV error within one 

standard error of the minimum18.  

For the random forest version, the number of trees should not be set too low in order to ensure 

that each input row is predicted at least a few times, thereby obtaining more stable outcomes. 

Accordingly, the number of trees selected is 500. In the splitting process, variables are selected at 

random in order to avoid overfitting. The default number of variables to be considered in regression 

 
17 This category also includes bids coming from cogeneration and surplus production, but these latter bids are actually of 

minimal importance because of their relatively limited associated volume during the studied period. 

18 The other parameters used are CP = 0.01 in the initial tree without pruning; MinSplit=20, the minimum number of 

observations in a sub-region to be split; MinBucket=20/3 (default value); xval=10, the number of cross-validations; and 

maxdepht=30, the maximum number of levels in a tree.  
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trees is p/3 in each step, where p is the number of predictors (67 in this case). Next, for the causal 

forest version, the number of trees and the number of variables to be used in the regression trees are 

the same as for the random forest (500 trees and p/3). 

Table 2. Performance metrics. 

Target Algorithm MAE RMSE 

Training Test Training Test 

TTCC CART 

Random forest 

Causal forest  

0.3921 

0.1803 

0.1693 

0.5050 

0.4210 

0.4551 

0.5253 

0.2658 

0.5398 

0.7168 

0.5808 

0.6277 

SO CART 

Random forest 

Causal forest 

0.1809 

0.0823 

0.1693 

0.2282 

0.1854 

0.1912 

0.2452 

0.1222 

0.2476 

0.3355 

0.2654 

0.2727 

Note: MAE (mean absolute error) and RMSE (root mean squared error). 

Table 2 presents the performance metrics obtained for each target under the random forest and 

the causal forest approaches. As can be observed, the CART version, which is the simplest, has the 

poorest performance, as it gives the highest overall error metrics (MAE and RMSE) for both targets. 

Furthermore, despite the rigorous estimation process, there is some evidence of overfitting. In fact, the 

overall error metrics are marginally higher for the test sample than for the training sample, which 

suggests that overfitting may be an issue. However, as the main goal is to identify the factors 

influencing the targets, a satisfactory performance on the training sample without excessive overfitting 

is deemed sufficient. As can be seen, the random forest version outperforms the causal forest version 

in terms of the error metrics considered, with overall lower error rates for the former. Therefore, our 

results indicate that random forest shows a higher predictive capacity than causal forest. Nevertheless, 

it is important to emphasise that our goal is not to predict future values of the targets but to identify 

the primary factors driving them. 

Once the algorithms have been trained, we proceed to obtain an importance measure that will 

allow us to extract from the set of 67 variables included in this empirical exercise the main 

determinants of the costs arising from managing technical constraints and the TSO technical processes. 

The importance measure will provide the ranking of the fundamentals for each of the targets. It is 

computed using the out-of-bag samples that are reserved during the construction of the regression trees 

in accordance with the permutation concept. The out-of-bag samples are generated in the regression 

trees following Breiman (2001b). Before each tree is constructed, the training set is bootstrapped into 

two samples; one is used to construct the tree, and the other, the out-of-bag portion, is saved internally 

for validation and also to estimate importance measures. The prediction is run twice on the out-of-bag 

examples, once with the values of the variables intact and once with the values of the variables 

randomly permutated. The differences in accuracy obtained are used to calculate the measure of the 

importance variable. As mentioned above, two importance measures are calculated: the unconditional 
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permutation importance measure using the random forest approach19, where the values of each variable 

are permutated at random, and the conditional permutation importance measure with casual forest, 

according to Deeber and Strobl (2020). 

Table 3 shows the ranking of the determinants or predictors for each target. Panel A exhibits the 

unconditional permutation importance measure ranking, based on random forest estimation, while Panel 

B shows the conditional permutation importance measure ranking, based on causal forest estimation.  

Table 3. Variable importance measure (IM). 

Panel A. Unconditional permutation IM ranking based on the random forest model. 

TTCC SO 

Determinants  IM Determinants IM 

TTCC_lag_1 26.41 SO_lag_1 22.13 

DM_PCT_CC 20.16 DM_PCT_CC 20.72 

DM_OPSELL_CC 16.77 DM_OPSELL_CC 19.58 

DM_PCT_CR 16.58 DM_PCT_CR 16.92 

DM_OPSELL_CH_B 15.35 TTF_lag_1 15.04 

DM_PCT_CT 14.68 DM_PCT_CH 13.17 

PCT_WR_lag_1 14.26 EUA_lag_1 12.88 

DM_OPSELL_CH 13.27 API2_lag_1 12.1 

IM_OPSELL_CH_B_lag_1 12.94 IM_OPSELL_CH_lag_1 11.82 

Sunday 12.24 DM_OPSELL_CR 11.63 

 

Panel B. Conditional permutation IM ranking based on the causal forest model. 

TTCC SO 

Determinants IM Determinants IM 

Holiday 3.5110 Holiday 0.4337 

TTCC_lag_1 1.9357 SO_lag_1 0.3266 

Sunday 1.6475 October 0.2673 

DM_PCT_CR 0.7587 Spread_ESPT 0.1910 

DM_Spread_ESPT 0.6188 Sunday 0.1071 

IM_lag_1 0.5043 December 0.0972 

DM_PCT_CN 0.4666 January 0.0935 

DM_PCT_CC 0.3632 DM_PCT_CR 0.0696 

Saturday 0.3617 August 0.0652 

Monday 0.3226 DM_OPSELL_CR 0.0502 

The results obtained under the random forest approach (Table 3, Panel A) indicate that the main 

determinants of the technical constraints cost are, in order of importance: the one-period lagged 

technical constraints cost; the share of electricity sold by combined cycle plants in the day-ahead 

market; the mean offer price to sell electricity by combined cycle plants in the day-ahead market; the 

share of electricity sold by renewable energy plants in the day-ahead market; the mean offer price to 

 
19 The package R “randomForest” (importance function) is used. 
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sell electricity by bumping electricity plants in the day-ahead market; the share of electricity sold by 

thermal plants in the day-ahead market; the one-period lagged water reservoir levels; the mean offer 

price to sell electricity by hydroelectric plants in the day-ahead market; the one-period lagged mean 

offer price to sell electricity by bumping hydroelectric plants in the intraday market; and the Sunday 

dummy variable. 

Regarding the cost of TSO technical processes up to the real-time delivery of electricity, the 

unconditional permutation importance measure based on the random forest version provides the 

following ranking of the main predictors: the one-lagged cost of TSO processes; the share of electricity 

sold by combined cycle plants in the day-ahead market; the mean offer price to sell electricity by 

combined cycle plants in the day-ahead market; the share of electricity sold by renewable plants in the 

day-ahead market; the one-lagged TTF natural gas futures price; the share of electricity sold by 

hydroelectric plants in the day-ahead market; the one-lagged EUA carbon futures price; the one-lagged 

API2 coal futures index; the one-lagged mean offer price to sell electricity by hydroelectric plants in 

the intraday market; and the mean offer price to sell electricity by renewable energy plants in the day-

ahead market. 

These are the primary factors influencing the costs associated with the management of technical 

constraints and other balancing processes within the Iberian electricity market according to the random 

forest methodology, which has been shown to offer lower prediction errors. However, the conditional 

permutation importance measure calculated under the causal forest approach is more effective at 

inferring causality, particularly in our case where the variables included as potential predictors can be 

highly correlated. In contrast to the random forest approach, the causal forest approach permits the 

potential determinants to be correlated, rendering it more suitable for the purposes of our work and 

ensuring the reliability of the results. 

The causal forest estimation indicates that the factors that can explain the cost of managing 

technical constraints are, in order of decreasing relevance: the holiday dummy variable; the one-

period-lagged technical constraints cost; the Sunday dummy variable; the share of electricity sold by 

renewable plants in the day-ahead market; the spread between the Spanish and Portuguese day-ahead 

market price; the one-period lagged intraday market cost; the share of electricity sold by nuclear plants 

in the day-ahead market; the share of electricity sold by combined cycle plants in the day-ahead market; 

the Saturday dummy variable; and the Monday dummy variable (Table 3, Panel B). It is notable that 

three variables have been identified by both random forest and causal forest as being among the ten 

factors with the greatest impact on the cost of managing technical restrictions. These variables are the 

one-lagged technical restrictions cost, the Sunday dummy, and the share of electricity sold by 

renewable plants in the day-ahead market. 

With regard to the cost of TSO processes, only the share of electricity sold by renewable plants in 

the day-ahead market is selected as one of the main determinants by both approaches. Apart from the 

share of renewable generation in the day-ahead market, the other variables that feature among the top 

ten determinants and may help to explain the cost of TSO technical processes, according to the conditional 

permutation importance measure based on the causal forest estimation, are the holiday dummy 

variable; the one-lagged TSO processes costs; the October, December, January, and August dummy 

variables; and the spread calculated as the difference between the Spanish and the French spot price.  
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Each of the two approaches allows us to identify the top determinants of each target. However, 

they do not provide further details, such as whether the relationship between each determinant and its 

target is direct or inverse, or whether it is shown to be stable or may have breakpoints. Therefore, to 

complete the analysis, we use the accumulated local effects plots (ALE plots) methodology. 

The ALE plots display the mean effect of the variable at a certain value compared to the average 

prediction of each of its determinants. On the abscissa axis, we see the values of the predictor, while 

on the ordinate axis, we see the estimated local effect following the ALE method, which is 

recommended for explaining machine learning models when predictors are correlated (Apley, 2018)20. 

The estimated local effect is centred. For example, a negative (positive) ALE estimation value equal 

to −2 (+2) on the ordinate axis at x=30 in the graph would indicate that the predicted value is estimated 

to be lower (higher) by two compared to the average prediction. Therefore, the relationship between 

each predictor and the target estimation can be observed by plotting the accumulated local effects.  

 

Figure 1. ALE Plots TTCC Model. 

Figure 1 shows the ALE plots for the cost of managing technical constraints and the 

corresponding previously selected top ten significant factors. As can be seen, the cost of technical 

 
20 We use the R package ALEPlot. 
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constraints is significantly higher than its average value for holidays, Sunday, and Saturday, while it 

is lower for Monday. It is also higher than its average value as long as the one-period lagged technical 

constraints cost is close to or higher than its mean. The cost of technical constraints is higher than its 

average value when the Spanish spot price is lower than the Portuguese spot price, as well as for 

negative values of the impact of the intraday market trading on final wholesale market prices, and 

lower than its average value otherwise. Finally, the greater or lesser participation of the different 

generation sources in the day-ahead market also has a significant effect on the cost associated with the 

management of technical constraints. Thus, according to our results, this cost is expected to be higher 

(lower) than the average cost when the share of renewable generation is above (below) 55%, as well 

as when the share of nuclear generation exceeds (does not reach) 11%, while it is expected to be lower 

(higher) when the share of combined cycle generation is higher (lower) than 7%. 

Our results show that the cost of managing technical constraints appears to be higher in periods 

that are generally characterised by low day-ahead market prices. Indeed, this is the case for holidays, 

Saturdays, and Sundays, when electricity demand is often lower than on workdays. In line with these 

results, the cost of technical constraints is also found to be lower on (non-holiday) Mondays. 

Furthermore, an increase in the share of renewable generation and/or nuclear generation in the day 

ahead market would be followed by higher technical constraints costs. Both renewable and nuclear 

plants often bid at very low prices because their opportunity costs are close to zero. And due to the 

merit order effect, in general, the higher the share of renewable and/or nuclear generation in the day-

ahead market, the lower the spot price.  

These findings may seem counterintuitive, as one would associate network congestion problems 

with situations of high demand (which usually leads to higher prices), or at least with sufficiently high 

levels of demand concentrated around network points identified as critical due to insufficient network 

capacity. However, our findings could also be explained by the strategic bidding behaviour of flexible 

generators, such as combined cycle plants, which may have an economic incentive to avoid (at least 

partially) being dispatched in the day-ahead market in order to participate in the technical restrictions 

market and obtain a higher price for their electricity, thereby maximising their overall profit. It should 

be noted that generators in the Iberian market are obliged to submit offers to sell all their available 

electricity in the day-ahead market. However, they could stay out of the day-ahead market by 

submitting artificially high offer prices in the corresponding auctions in order to have spare capacity 

to generate electricity in the technical restrictions market, similar to the strategies described in Furió 

and Lucia (2009). Such strategic behaviour would be consistent with our findings that the cost of 

managing technical restrictions increases when the share of combined cycle generation in the day-

ahead market decreases and/or when the share of renewable and/or nuclear generation in the day-ahead 

market increases21.  

 
21 A substitution effect is usually observed between generation technologies with low variable costs (such as nuclear, 

wind, or solar) and generation technologies with high variable costs (such as combined cycle natural gas or thermal, 

among others).  
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Figure 2. ALE Plots SO model. 

The ALE plots for the cost of TSO technical processes (SO) and each of its ten most important 

drivers are displayed in Figure 2. As can be seen, the SO exhibits monthly and daily patterns. For 

example, there is a greater need for these technical processes during holidays, on Sundays, and in the 

months of October, January, and August, as the cost appears to be higher than its average for these 

periods, while it is lower for December. The SO variable lagged one period shows an effect on the 

current level of SO, in the sense that the higher the SO lagged one period, the higher the current TSO 

cost. The spread between the Spanish and the Portuguese spot prices is also one of its determinants. 

Similarly to the case of the cost of managing technical constraints, the TSO cost would be higher 

(lower) than its average cost for negative (positive) values of the spread. Finally, the share of electricity 

sold by renewable plants in the day-ahead market would cause the TSO cost to be higher than the 

average as long as the share exceeds 57%, while the lower (higher) the average offer price to sell 

electricity by renewable plants, the higher (lower) the SO. Regarding the potential impact of renewable 

generation on the cost of TSO technical processes, both findings align, as, ceteris paribus, lower offer 

prices are likely to lead to higher shares of renewables in the day-ahead market. 
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6. Conclusions  

The factors driving the components of final wholesale electricity prices, other than the day-ahead 

market price, are much less studied but are key to gaining further insight into the dynamics between 

the interrelated trading segments and the technical processes involved, and should therefore be taken 

into account when assessing changes in market design aimed at creating a more efficient and resilient 

electricity system. 

The aim of this paper is to investigate the impact of renewable generation on the costs of 

managing network congestion and maintaining the energy balance between supply and demand, up to 

the real-time delivery of electricity under standards of reliability. In addition, the methodology 

employed has enabled us to identify the primary drivers of the costs associated with the technical 

processes required to ensure the security of supply. 

The results of our study indicate that the share of renewable generation in the Spanish day-ahead 

market is a significant factor influencing both the cost of managing technical constraints, which aims 

to solve network capacity problems, and the cost of managing balancing processes and adjustment 

issues by the TSO. In particular, higher levels of renewable generation in the day-ahead market will 

lead to (i) an increased cost of managing technical constraints and (ii) a greater need for the 

management of deviations by the TSO, which in turn will result in higher costs. It is evident that both 

factors will contribute to pushing up final prices. It is important to note, however, that these costs 

represent a very small percentage of the final price and do not appear to have a significant impact on 

final wholesale electricity prices throughout the period analysed. This finding suggests that the price 

increase resulting from the elevated share of renewables in the generation mix is not appreciably 

greater than the price reduction attributable to the merit order effect.  

In conclusion, the results obtained shed light on the overall impact of renewable generation on 

electricity prices and suggest interesting avenues for further investigation. First, we present insightful 

evidence-based information on the successful integration of large amounts of renewable energy into 

the electricity generation mix, as required by the energy transition, without incurring excessive costs. 

Second, the empirical analysis could be extended to other countries in order to further investigate 

whether and to what extent progressively increasing shares of renewable generation will entail 

additional costs that ultimately lead to rising prices. Third, in pursuit of greater market efficiency, it 

would be advisable for regulators to investigate strategic bidding behaviour in this new paradigm, with 

the objective of identifying any potential abuse of market power. Finally, we anticipate that our 

findings will be of interest to both practitioners and regulators, as they provide a more comprehensive 

understanding of the market’s functioning and have implications for the restructuring of the market 

towards a more sustainable and competitive electricity system. 

Future research could investigate a number of avenues to enhance our understanding of the impact 

of renewable generation on electricity markets and inform policy decisions. For instance, extending 

the empirical analysis to other countries would provide valuable insights into whether the findings 

observed in the Spanish market are consistent across different regulatory environments and market 

structures. Furthermore, an investigation into the dynamics of strategic bidding behaviour in the 

context of renewable energy integration, with a focus on identifying and mitigating possible 
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interferences in price or market abuse, would be of significant importance for ensuring market 

efficiency and fairness. 

Acknowledgments 

Financial support from the Spanish Ministry of Science, Innovation and Universities (Project 

PGC2018-093645-B-100) is gratefully acknowledged. We would like to express our gratitude to two 

anonymous for their constructive comments, which contributed to improving the paper, and to the 

assistant editor for their valuable work in handling this manuscript. All errors are our own responsibility. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article. 

Conflict of interest  

The authors declare that there are no conflicts of interest in this paper. 

References 

Apley D (2018) ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots. 

R package version 1.1. Available from: https://CRAN.R-project.org/package=ALEPlot. 

Athey S, Stefan W (2019) Estimating Treatment Effects with Causal Forests: An Application. Obs 

Stud 5: 37–51, Crossref. https://doi.org/10.1353/obs.2019.0001. 

Ballester C, Furió D (2015) Effects of renewables on the stylized facts of electricity prices. Renew Sust 

Energ Rev 52: 1596–1609. https://doi.org/10.1016/j.rser.2015.07.168 

Breiman L (2001a) Statistical Modeling: The Two Cultures. Stat Sci 16: 199–231. 

https://doi.org/10.1214/ss/1009213726 

Breiman L (2001b) Random Forests. Mach Learn 45: 5–32. https://doi.org/10.1023/A:1010933404324 

Carvalho N, Pereira P (2019) The ‘merit order effect’ of wind and solar power. Volatility and 

determinants. Renew Sust Energ Rev 102: 54–62. https://doi.org/10.1016/j.rser.2018.11.042 

Chen T, He T, Benesty M et al. (2023). xgboost: Extreme Gradient Boosting. R package version 0.71.1. 

Available from: https://CRAN.R-project.org/package=xgboost. 

Chuliá H, Furió M, Uribe JM (2019) Volatility spillovers in Energy Markets. Energy J 40: 173–198.  

Credit K, Lehnert MA (2023) A structured comparison of causal machine learning methods to assess 

heterogeneous treatment effects in spatial data. J Geogr Syst 2023: 1–28. 

https://doi.org/10.1007/s10109-023-00413-0 

Debeer D, Strobl C (2020) Conditional permutation importance revisited. BMC Brief 21: 307. 

https://doi.org/10.1186/s12859-020-03622-2 

https://doi.org/10.1353/obs.2019.0001
https://doi.org/10.1023/A:1010933404324


381 

 

Green Finance  Volume 6, Issue 2, 363–382. 

Debeer D, Hothorn T, Strobl C (2021) permimp: Conditional Permutation Importance. R package 

version 1.0–2. Available from: https://urldefense.com/v3/__https://CRAN.R-

project.org/package=permimp__;!!D9dNQwwGXtA!Si7ijZba0umEBlLcxRbIt09Pg0rMLgl8N2

cQjJsbKN4SiuCSUk6A2q1ERjzqJ2NGI7EXDjeteO31jpDeBlWI8MxbE7fPIvM$. 

De Lagarde MC, Lantz F (2018) How renewable production depresses electricity prices: Evidence 

from the German market. Energ Policy 117: 263–277. 

https://doi.org/10.1016/j.enpol.2018.02.048 

Duras T, Javed F, Mansson K, et al. (2023) Using machine learning to select variables in data 

envelopment analysis: Simulations and application using electricity distribution data. Energ Econ 

120: 106621. https://doi.org/10.1016/j.eneco.2023.106621. 

Elamin OA (2023) The causal effect of informal job search on wage and job satisfaction: evidence 

from Egypt and Jordan using random forest method.  Int J Soc Econ 50: 522–536. 

https://doi.org/10.1108/IJSE-05-2022-0318 

Furió D, Lucia JJ (2009) Congestion management rules and trading strategies in the Spanish electricity 

market. Energ Econ 31: 48–60. https://doi.org/10.1016/j.eneco.2008.07.004 

Gianfreda A, Parisio L, Pelagatti M (2018) A review of balancing costs in Italy before and after RES 

introduction. Renew Sust Energ Rev 91: 549–563. https://doi.org/10.1016/j.rser.2018.04.009 

Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction. Second Edition. Springer Series in Statistics Ed. Springer 

Holttinen H (2004) The Impact of large scale Wind Power Production on the Nordic Electricity System. 

Dissertation for the title of Doctor of Science in Technology, Helsinki University of Technology. 

Li S, Pu Z, Cui Z, et al. (2024) Inferring Heterogeneous Treatment Effects of Crashes on Highway 

Traffic: A Doubly Robust Causal Machine Learning Approach.  Transport Res C-Emer 160: 

104537. https://doi.org/10.1016/j.trc.2024.104537 

Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2: 18–22. 

McConnell D, Hearps P, Eales D, et al. (2013) Retrospective modelling of the merit-order effect on 

wholesale electricity prices from distributed photovoltaic generation in the Australian National 

Electricity Market. Energ Policy 58: 17–27. https://doi.org/10.1016/j.enpol.2013.01.052 

Mizuguchi T, Sawamura S (2023) Machine learning-based causal models for predicting the response 

of individual patients to dexamethasone treatment as prophylactic antiemetic. Sci Rep 13: 1–10. 

https://doi.org/10.1038/s41598-023-34505-0 

Prasanna A, Holzhauer S, Krebs F (2019) Overview of machine learning and data-driven methods in 

agent-based modeling of energy markets. In: David, K., Geihs, K., Lange, M. & Stumme, G. 

(Hrsg.), INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. 

Bonn: Gesellschaft fürInformatike.V. (S. 571–584). https://doi.org/10.18420/inf2019_73 

Qays O, Buswig Y, Hossain L, et al. (2020) Active Charge Balancing Strategy Using the State of 

Charge Estimation Technique for a PV-Battery Hybrid System. Energies 13: 3434. 

https://doi.org/10.3390/en13133434 

Quigley DT, Che Y, Yasar M, et al. (2023) Cover Crop Adoption and Climate Risks: An Application 

of Causal Random Forests. 2023 Annual Meeting, July 23–25, Agricultural and Applied 

Economics Association, Washington D.C. 



382 

 

Green Finance  Volume 6, Issue 2, 363–382. 

Robette N (2022) moreparty: A Toolbox for Conditional Inference Trees and Random Forests. R 

package version. Available from: https://urldefense.com/v3/__https://CRAN.R-

project.org/package=moreparty__;!!D9dNQwwGXtA!Si7ijZba0umEBlLcxRbIt09Pg0rMLgl8N

2cQjJsbKN4SiuCSUk6A2q1ERjzqJ2NGI7EXDjeteO31jpDeBlWI8MxbJKa66QA$. 

Saénz de Miera G, Del Río P, Vizcaíno I (2008) Analysing the impact of renewable electricity support 

schemes on power prices: The case of wind electricity in Spain. Energ Policy 36: 3345–3359. 

https://doi.org/10.1016/j.enpol.2008.04.022 

Schnürch S, Wagner A (2019) Machine Learning on EPEX Order Books: Insights and Forecasts. arXiv 

preprint. https://doi.org/10.48550/arXiv.1906.06248 

Sensfuβ F, Ragwitz M, Genoese M (2008) The merit-order effect: A detailed analysis of the price 

effect of renewable electricity generation on spot market prices in Germany. Energy Policy 36: 

3086–3094. https://doi.org/10.1016/j.enpol.2008.03.035 

Strobl C, Boulesteix AL, Kneib T, et al. (2008) Conditional variable importance for random forests. 

BMC Bioinformatics 9: 307. http://doi.org/10.1186/1471-2105-9-307 

Therneau T, Atkinson B (2018) rpart: Recursive Partitioning and Regression Trees. R package version 

4.1–1. Available from: https://CRAN.R-project.org/package=rpart. 

Tschora L, Erwan P, Plantevit M, et al. (2022) Electricity price forecasting on the day-ahead market 

using machine learning. Appl Energ 313: 118752. 

https://doi.org/10.1016/j.apenergy.2022.118752 

Würzburg K, Labandeira X, Linares P (2013) Renewable generation and electricity prices: Taking 

stock and new evidence for Germany and Austria. Energ Econ 40: S159–S171. 

https://doi.org/10.1016/j.eneco.2013.09.011 

Xu X, Ye T, Gao J, et al. (2024) The effect of green, supply chain factors in predicting China’s stock 

price crash risk: evidence from random forest model.  Environ Dev Sustain 2024: 1–24. 

https://doi.org/10.1007/s10668-023-04300-y 

Zhang Y, Li H, Gang R (2022) Estimating heterogeneous treatment effects in road safety analysis 

using generalized random forests. Accident Anal Prev 165: 106507. 

https://doi.org/10.1016/j.aap.2021.106507 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

 

http://doi.org/10.1186/1471-2105-9-307
https://cran.r-project.org/package=rpart

