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Abstract: This paper examines if clean energy stocks help investors in managing carbon risk. We use 

the price of the European Union Allowance (EUA) and European clean energy index (ERIX) for the 

three phases of the EU-Emission Trading Scheme. Analyzing the time-varying correlation and 

volatility of EUA stock and ERIX through generalized orthogonal GO-GARCH model, the empirical 

results reveal relative independence of the European renewable energy market from the carbon market 

providing diversification benefits and value addition by including carbon assets in clean energy stock 

portfolio. Furthermore, three portfolios with different weight allocation strategies reveal that the 

carbon asset provides risk and downside risk benefits when mixed with a clean energy stock portfolio. 

These results are useful for investors who enter the market for value maximization and the regulators 

striving to make strategies for managing carbon risk. 
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1. Introduction  

Climate change has always been one of the most challenging environmental issues of recent times. 

Climate change concerns, like global warming, have challenged human communities for sustainable 

development due to the large amounts of greenhouse gas emissions (GHG). CO2 emissions are the 

eminent cause of climate change (Lashof & Ahuja, 1990), contributing approximately 80% of the 

GHGs responsible for global warming. An international agreement addressed these and other growing 

concerns about global warming—the Kyoto Protocol in 2005 (International Energy Agency, 2012). To 
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keep the climate intact various tactics were used to mitigate climate change. Among all, the European 

Union Emission Trading Scheme (EU-ETS), which was launched in 2005, represents the biggest 

carbon trading system in the world. It provides EU members with incentives to mitigate emissions and 

has become an essential tool for managing CO2 reduction (Bing et al., 2015). The EU-ETS operates 

through a cap-and-trade program on the total volume of carbon emission allowances allocated per year; 

companies not corresponding to their CO2 allowances face severe sanctions. A firm may emit less 

carbon than is allowed resulting in a surplus. This surplus can be sold to companies whose emission is 

greater than the allowance, making EU allowances a tradable commodity and carbon market as a mimic 

of the financial market (Benz et al., 2006; Uddin & Holtedahl, 2013).  

In addition to the carbon market, Governments are promoting the clean energy sector all around 

the globe (Kazemilari et al., 2017) to minimize the adverse environmental effects caused by GHG 

emissions. Previous studies by Balcılar et al. (2016) and Reboredo et al. (2019) suggest that the main 

reason for the growth in renewable energy is increasing CO2 emissions. Thus, one can say that carbon 

emission prices may affect the investments of renewable energy stocks. According to Creti et al. (2012), 

there is a linkage between energy commodities and carbon assets. Several authors have studied this 

linkage (Convery & Redmond, 2007; Bunn & Fezzi, 2007; Gronwald et al., 2011; Keppler & 

Mansanet-Bataller, 2010; Kumar et al., 2012; Marimoutou & Soury, 2015; Reboredo, 2014; Reboredo, 

2015; Sadorsky, 2012; Tian et al., 2016; Wen et al., 2017; Zhang & Du, 2017; Zhang and Sun, 2016) 

and found significant effects. 

Earlier studies have focused on the relationship between CO2 and fossil fuels, yet the linkage 

between CO2 allowances and the renewable energy market remains understudied. The effects of the 

EUA market on renewable energy stocks are initially specified by Kumar et al. (2012). Further, Koch 

et al. (2014) and Dutta (2018) focused on the return and volatility linkages between carbon emissions 

and renewable energy stock prices. The existing studies are limited to examine the return and volatility 

patterns among EUA and clean energy markets; however, it is crucial for investors to seek investment 

opportunities in alternative asset classes (carbon to clean energy market or vice versa) to reduce their 

risk. Hence, the main objective of this study is to measure the impact on risk and returns of clean 

energy stocks if carbon asset is included in the portfolio and examine diversification benefits. This 

paper contributes to the standing literature in the following ways.  

To the best of our knowledge, this is the first study that employs the Generalized Orthogonal-

GARCH model to examine the time-varying relationship between the markets under consideration. 

This model is computationally simpler and has no dimensionality constraints. In addition to GO-

GARCH, the symmetric and asymmetric DCCs are applied with a multivariate student-t distribution 

to check non-normality in the distribution. Then we estimate GO GARCH with a multivariate affine 

negative inverse Gaussian (MANIG) distribution.  

Secondly, it is pioneer research to investigate whether the carbon assets add to the value of clean 

energy stock portfolios. As earlier studies have indicated, both the clean energy sector and carbon 

market have seen significant growth and are expected to grow even more in the future, thus, the need 

for more attention. In addition, it will help investors decide whether to add carbon assets to their 

portfolios to increase return or not and to what extent these assets can be added for portfolio 

optimization (Arouri et al., 2015). Thus, these findings will assist investors during portfolio 

optimization and weight allocation. 

Third, this research comparatively measures the diversification benefits of the alternate market 

(clean energy markets) for the carbon market. 



497 

Green Finance  Volume 3, Issue 4, 495–507. 

Fourth, this paper is a source of information for policymakers to design energy policies: promoting 

portfolios comprised of carbon assets and clean energy stocks to reduce GHG emissions further.  

Finally, the three phases of carbon allowance are represented in the study, thus making the 

empirical analysis more comprehensive and robust.  

Since the emergence of the EU-ETS in 2005, the body of knowledge on clean energy and the 

carbon market has shown rapid growth. Considering EUAs as a production factor, Kara et al. (2008) 

found that 1 euro/ton CO2 change might result in 0.74 euro/MWH rise in power prices. Based on the 

argument that carbon prices impact the energy sector because of their significant exposure to overall 

EU CO2 emissions. Therefore, replacing fuel oil, coal, and natural gas influences the price of carbon 

allowances due to the disparity in carbon emissions through these fossil fuels. Exploring the topic 

holds immense importance for diversification in portfolio management (Luo & Wu, 2016). Carbon 

assets can control risk in the portfolio management of energy stocks (Reboredo, 2015). Dutta et al. 

(2018), Reboredo (2013), Reboredo (2014), and Luo & Wu (2016) suggested that carbon assets have 

likely diversification benefits due to their relative independence from financial markets. Wen et al. 

(2017) confirmed the results by creating portfolios that included EUAs.  

In contrast, Leitao et al. (2021) argue that green assets such as green bonds significantly influence 

CO2 prices. The portfolio risk of the portfolios having CO2 futures was lower than that of energy stocks 

without CO2 futures. Moreover, Andersson et al. (2016) concluded that investors can hedge their risk 

through carbon allowances as the financial returns are not sacrificed, and the risk is significantly 

reduced while the tracking error is minimized. These results can be informative for passive investors. 

Assessing the values of energy commodity futures with the carbons assets, Wen et al. (2017) found 

that dynamic portfolio diversification is better than the hedged portfolios in reducing carbon risk. 

Adding to this, Zhang et al. (2017) checked the diversification benefits of including carbon assets in 

financial portfolios. They first studied the correlation between the carbon market and other financial 

markets and found a highly significant relationship in the short term, which diminishes in the long run. 

Consequently, their results revealed that carbon assets help lessen the volatility of an optimal portfolio, 

but the overall return seems to fall. 

Several studies have used copula models to model market dependency. For example, Reboredo et 

al. (2019) and Reboredo (2013) test the dependency between EUA and crude oil prices. Bai et al. (2019) 

used a robust portfolio approach to examine the portfolio performance of renewable energy. However, 

due to its convenience and effectiveness, multivariate GARCH remains the most popular model for 

analyzing dependency between markets. Various studies have used GARCH models to capture the 

linkage between carbon variables and other financial markets. Koch et al. (2014) checked the 

dependency between the allowance market and the energy market with the same approach. Zhang et 

al. (2017) and Zhang and Sun (2016) analyzed volatility spillovers between carbon and other financial 

markets through DCC GARCH models. Luo and Wu (2016) applied the GARCH model to investigate 

the correlation among EUAs, crude oil, and the stock market; however, Mean-Variance and CoVaR 

methods were used to examine portfolio performance. Moreover, Dutta (2019), Lin and Chen (2019); 

Lin and Jia (2020) are the recent studies to use multivariate GARCH models.  

In the present study, the GO-GARCH model is employed for testing the time-varying dependency 

between clean energy stock and carbon assets. Furthermore, risk reduction effectiveness and value-at-

risk reduction strategies are used for evaluating portfolio performance. Multivariate GARCH models 

have been frequently used to study the volatility and co-volatility between several markets (Papantonis, 

2016). Commonly, there are numerous risk factors in stock indices that need to be modeled through 
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covariance matrix dynamics, making the process of estimating portfolio risk cumbersome. In 

comparison to other models which possess the above difficulty, GO-GARCH is computationally 

uncomplicated and yet efficient. By taking few principal components, GARCH can be extended to 

generalized O-GARCH, which applies calculations to a few main factors, capturing the orthogonal 

deviations in the root data (Ding, 1994; Lam et al., 2009). Thus, it possesses the simplicity of the 

univariate model and the efficiency of the multivariate model. Moreover, this approach is superior to 

multivariate models as it results in no noise in the data, has no dimensionality constraints, and can be 

applied to even unreliable and scant data (Alexander, 2000). According to Engle (2002), GO-GARCH 

is preferred to all other alternatives of estimating dynamic covariance matrices. 

Introduction in section 1 of the paper covers the background of the study, objectives, significance, 

and related literature. The remainder of the paper is organized as follows. Section 2 deals with the data 

and the overview of the methodology. The next section describes the results, followed by the discussion 

part in section 4. Finally, section 5 consists of the conclusion, implications, and limitations of the study. 

2. Methods 

2.1. Data 

We consider the daily prices of carbon assets (EUA) and the clean energy index (ERIX). The EUA 

in EU-ETS represents the leading carbon trading allowance market in the world, and the ERIX index 

is the most representative renewable energy market index of Europe. It consists of the top ten largest 

and most liquid companies in the wind, solar, hydro, and biomass energy sectors.  

The data is obtained from Datastream, a glog bal database of Thomson Reuters. The sample period 

starts from the trading date of the ERIX index from October 13, 2005, to October 13, 2020, covering 

almost all three phases of EUA (Phase-III ended in December 2020). 

 

     Figure 1. Price movements of ERIX and EUA. 

Figure 1 is showing the price trends of the EUA and ERIX index, where allowance prices depict 

greater volatility than the clean energy stocks. In 2008, a sharp decline in the prices can be seen; the 

possible reason being the global financial crises that severely affected the Eurozone, driving energy 

demand downwards; thus, reducing the demand for carbon allowances. This decline can again be 

witnessed in mid-2011 and 2020 due to the economic slowdown in Eurozone and Covid-19 pandemic 

causing global economic downturns.  
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Table 1. Descriptive statistics. 

 EUA ERIX 

Min −0.4321 −0.1297 

Max 0.2382 0.0795 

Mean 0.0067 0.0033 

Std. Dev. 0.0316 0.0164 

Skewness −0.8162 −0.3595 

Kurtosis 17.7436 6.2519 

Table 1 presents the summary statistics of the return series of both indices. The volatility and 

range between maximum and minimum values are higher for EUA than ERIX, whereas the mean of 

both return series is positive and exhibits excess kurtosis. 

Table 2. Correlation matrix. 

 ERIX EUA 

ERIX 1  

EUA −0.40* 1 

Notes: *Represents significance at 10% level. 

Table 2 presents the Pearson Correlation results of the variable ERIX and EUA. Both the markets 

are negatively correlated to each other with 10% significance. The correlation value is −0.40 which is 

negative, implying that adding carbon assets to the clean energy stock portfolio might yield higher 

value as the markets move in the opposite direction. 

Table 3. Unit Root diagnostics test. 

 PP ADF KPSS 

EUA −54.6872*** −20.0822*** 0.0477 

ERIX −53.9489*** −25.1472*** 0.0838 

Notes: PP, ADF, and KPSS are unit root tests. *** represents the rejection of the null hypothesis of unit root and non-

stationarity at 1% significance level. 

Table 3 shows the unit root diagnostic tests of both markets. The results confirm the stationarity 

with significant PP (Phillips and Perron) and ADF (Augmented Dickey-Fuller), and insignificant 

KPSS (Kwiatkowski–Phillips–Schmidt–Shin). 

2.2. Methodology 

2.2.1. Generalized Orthogonal GARCH 

We chose the generalized OGARCH model to examine the carbon asset association with other 

markets, such as the clean energy market. The GO-GARCH model of Van der Weide (2002) is linked 

with a set of independent univariate and conditionally uncorrelated GARCH processes, which uses 
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marginal density parameters and relate them to the observed data (Ghalanos, 2014) that can offer more 

flexibility in the estimation, compared to other MGARCH models.  

In the GO-GARCH model, the market return is denoted by (rt), the conditional mean (mt) which 

is a function of (rt) contains error term (εt) and an AR(1) term.  

Qt = rt + εt           (1) 

The model draws Qt−rt on a set of unobservable independent factorsft.  

εt = Aft           (2) 

where the mixing matrix A is divided into a rotational matrix U and an unconditional covariance 

matrix. The covariance matrix of rt will then be computed as:  

ogt = var(rt) = wtvar(Qt)wt
T = wtztwt

T      (3) 

where Zt = diag matrix, with the dependent column variance in Qt represented by its elements modeled 

by GARCH (1, 1). 

Qi,j = vi +  ɛi,j   

σi,j
2 = ∝0+ ∝1 ɛi,j−12 +∝2 σi,j−1

2        (4) 

where Qi,j is the i-th principle component on j time, vi is a constant, σi,j
2 is the conditional variance of 

ɛi,j , ɛi=σi,j µi,j with µi,j ~ N(0,1) for j=1, … , T. 

Solving for 𝑜𝑔𝑡, conditional coefficient between security i and e is given as: 

Qi,e =  
𝐨𝐠tie

√(𝐨𝐠tii𝐨𝐠tie)
          (5) 

2.2.2. Portfolio strategies 

The optimal weights are achieved according to the weights designed by (Jammazi and Reboredo, 

2016; Chkili et al., 2016), which uses correlations provided by the bivariate models of DCC, ADCC, 

and GO-GARCH. The output of the portfolios (II, III, and IV) is contrasted to that of the Portfolio 

benchmark (I), which consists solely of renewable energy. Portfolio II is designed according to Kroner 

and Ng (1998), and its construction is as under: 

𝑤𝑡
𝐹 =

ℎ𝑡
𝑆−ℎ𝑡

𝐹𝑆

ℎ𝑡
𝐶−2ℎ𝑡

𝐹𝑆+ℎ𝑡
𝑆            (6) 

where the conditional variance and covariance on the spot (clean energy) and future (clean energy and 

carbon market) returns are denoted by ℎ𝐹,𝑡 and ℎ𝑆𝐹,𝑡. By construction, the weight of the clean energy 

stock in the portfolio is equal to (1 − 𝑤𝑡
𝐹).  

Portfolio III follows variance minimizing strategy, which means an investor has a long position 

in spot assets (clean energy stock market) and a short position in futures assets (mixed portfolio), which 

is given by 

𝛽𝑡 =
ℎ𝑡

𝐹𝑆

ℎ𝑡
𝐹            (7) 

 

https://www.sciencedirect.com/science/article/pii/S0301420718305014#bib21
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Portfolio IV is an equally weighted portfolio that follows DeMiguel et al. (2009) with a good out-

of-sample approach. 

The risk reduction effectiveness (RE) measured for Portfolios II, III, and IV is determined by the 

percentage reduction in the variance compared to Portfolio (I). It is represented as follows 

𝑅𝐸 = 1 −
𝑉𝑎𝑟(𝑃𝑖)

𝑉𝑎𝑟(𝐼)
           (8) 

where i= II, III, IV and the variances in the clean energy and carbon assets portfolios and the variance 

of the benchmark portfolio (I), respectively, are expressed by Var (Pi) and Var (PI). Higher positive 

values suggest greater efficacy of risk-reduction. 

A portfolio’s value-at-risk can be given by considering a certain confidence level (1-p): 

𝑉𝑎𝑅(𝑝) = 𝜇𝑡 − 𝑡𝑣
−1(𝑝)√ℎ𝑡          (9) 

where μt and ht denote the portfolio’s conditional mean and standard deviation, accordingly, and tv
-1 

(p) signifies the pth quartile of the distribution of t and the degrees of freedom of v. 

3. Results 

The GO-GARCH model is compared with DCC and ADCC to estimate volatility and correlation 

forecasts. The symmetric and asymmetric DCCs are estimated with a multivariate student-t distribution 

to check non-normality in the distribution and estimate GO-GARCH with a multivariate affine 

negative inverse Gaussian (MANIG) distribution. 

Table 4 shows the estimated parameters of DCC and ADCC. For all stock indices, the conditional 

mean (μ) for the DCC GARCH model is statistically significant and positive; however, the mean value 

is greater for ERIX. The estimated coefficients for AR(1) for both DCC and ADCC are statistically 

negative and insignificant in the case of ERIX, whereas significantly positive for EUA. For both DCC 

and ADCC models, the coefficient values (ω) of the conditional variance are slightly higher for the 

clean energy market (ERIX) compared to the carbon market (EUA). The estimated coefficients of the 

(α) terms representing the long-run volatility persistence are positive and statistically significant in 

both markets for DCC models; however, for ADCC models, only EUA coefficients are significant. For 

short-term volatility persistence, the coefficients of (β) are significantly positive in the case of ERIX 

and EUA for both models. 

Moreover, the asymmetric coefficients (ϒ) are statistically significant and positive for the clean 

energy market, whereas negatively insignificant in the carbon market. These results of (ϒ) for ERIX 

show that the negative residuals will increase the conditional volatility for this series. The findings of 

this study are in line with Basher and Sadorsky (2016), which argues that different leverage effects 

may be seen due to different contract liquidity, arbitrage activities, or asymmetric information. The 

shape parameters (λ) are equivalent to degrees of freedom (d.f). As the number of d.f. reaches infinity, 

the shape of the t-distribution changes to normal distribution. The shape parameters for both markets 

are more than 8 in both models but greater in the case of the ADCC model. 
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Table 4. Estimates of DCC and ADCC models. 

  ERIX EUA 

Parameter Estimates of DCC 

µ 0.065336*** 0.013284*** 

 (0.01434) (0.004765) 

AR (1) −0.014715 0.04878*** 

 (0.014575) (0.014827) 

ω  0.014713*** 0.000944*** 

 (0.004167) (0.000208) 

α 0.086571*** 0.036735*** 

 (0.010249) (0.002429) 

β 0.908122*** 0.955794*** 

 (0.010326) (0.000661) 

λ 8.155709*** 8.629631*** 

 (0.946984) (1.021479) 

Parameter Estimates of ADCC 

µ 0.033114** 0.01379*** 

 (0.014424) (0.00482) 

AR(1) −0.009366 0.048458*** 

 (0.014271) (0.014808) 

ω 0.020955*** 0.000868*** 

 (0.004707) (0.000204) 

α 0.00000 0.039941*** 

 (0.007577) (0.00507) 

β 0.908073*** 0.957142*** 

 (0.011583) (0.000532) 

ϒ 0.154644*** -0.007307 

 (0.020096) (0.007914) 

λ 9.74964*** 8.663788*** 

 (1.337822) (1.027544) 

Note: ***, **, * shows significance at 1%, 5% and 10% levels. The values in parenthesis are standard errors. 

Table 5. GO-GARCH parameters estimates. 

 F1 (ERIX) F2 (EUA) 

Omega 0.008023 0.007469 

Alpha1 0.043078 0.080302 

Beta1 0.950262 0.913516 

Skewness 0.062621 0.126950 

Shape 0.822276 3.197485 

Note: All specifications in the GO-GARCH model include a constant and an AR(1) term in the mean equation. 

We use the generalized orthogonal GO-GARCH (Generalized Autoregressive Conditional 

Heteroskedasticity) model to estimate volatility and correlation forecasts. GO-GARCH is used to 
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measure the dependency and the volatility of an asset. In Table 5, it appears that the short-run 

persistence of volatility (α) alpha is lower than the (β) beta long-term persistence of volatility, which 

implies that the EUA and ERIX take a long time to get out of the market shocks completely. The 

combined value of alpha and beta is for EUA and ERIX is near to 1, implying that volatility effects 

remain in the markets for a long time. The research findings of the GO-GARCH model are consistent 

with the research findings of the DCC and ADCC models. 

Table 6. Portfolio optimization. 

 Portfolio II Portfolio III Portfolio IV 

Risk Reduction 0.9433 0.0192 0.7535 

VaR Reduction 0.7641 0.0124 0.5050 

Note: Table shows risk reduction effectiveness and VaR reduction results. Portfolio I is the benchmark portfolio composed 

of clean energy stocks; Portfolios II and III are given by Eq. (9) and (10). Portfolio IV has equal weights.  

We will compare the clean energy portfolio performance containing carbon assets (Portfolio II, 

III, IV) with the clean energy stock portfolio not containing any carbon assets (Portfolio I) to assess 

any value-addition using different portfolio strategies. Thus, the results in table 6 depict risk reduction 

relative to the returns of the assets. Risk reduction gains and diversification benefits are greater in 

Portfolio II and IV. Regarding the downside risk measures (value-at-risk reduction at 95% level of 

confidence), Portfolio II provides the highest VaR reduction followed by Portfolio IV and III. Portfolio 

(II) based on risk minimization strategy and Portfolio IV with equally allocated weights outperforms 

the benchmark Portfolio (I) with clean energy stock only.  

Thus, one can say that adding carbon assets to the clean energy stock adds significant value to the 

clean energy stock portfolio and the best optimization strategy is Portfolio II. The results are consistent 

with Zhang et al. (2017) study, which found that adding carbon assets to financial portfolios yields 

diversification benefits. 

4. Discussion 

EUA can be considered a turning point in lowering environmental damage (Benz et al., 2006). 

However, continuing allowance trading is insufficient to meet the emission reduction targets 

successfully; it is also important to establish risk control strategies for carbon risk (Balcılar et al., 2016). 

Since most previous studies have concentrated on general co-movements between carbon assets and 

clean energy stocks, they overlooked the value addition to clean energy stock portfolios by including 

carbon assets, which creates a gap. We add to the literature using the GO-GARCH model to examine 

the time-varying relationship between the markets under consideration and then build optimal 

portfolios to compare the values of clean energy stock portfolios with and without carbon assets. We 

focus on the EU-ETS and ERIX index, the biggest and most representative markets of the assets in 

consideration. Our results indicate that the EUA stock is independent of the ERIX index leading to 

value addition by adding carbon assets to the clean energy stock portfolio. This is an initial study on 

the impact of the addition of the carbon assets to clean energy stock portfolios while modeling the 

dependence of the variables through GO-GARCH and considering the risk and downside risk measures 

for portfolio diversification. The empirical analysis reveals that the EUA prices negatively affect clean 

energy prices, but this effect is significantly positive with green bonds (Leitao et al., 2021). We build 
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portfolio strategies to assess the impact on the value against the benchmark Portfolio strategy I (clean 

energy stocks). However, Portfolio II, III, and IV are computed relative to risk-minimizing strategy, 

variance-minimizing strategy, and equally weighted portfolio. The results indicate that the inclusion 

of carbon assets to clean energy stocks provides the highest risk reduction for Portfolio II. In particular, 

carbon assets can decrease portfolio risk and increase portfolio return when added to a clean energy 

stock portfolio. Moreover, our findings are in line with the studies of Liu et al. (2015), which proposed 

that the carbon assets are weakly correlated to clean energy stock portfolios. 

5. Conclusions 

EUA allowances and clean energy are imperative for lowering carbon emissions on a global scale. 

However, the relation of carbon assets and clean energy stock remains understudied, as the risk 

management strategies essential for achieving the carbon emission targets have been consistently 

overlooked. The present paper is an effort to fill this vacuum by elucidating the impact of adding 

carbon assets to the clean energy stock portfolios. Upon adding carbon assets to alternate assets (clean 

energy stock portfolios), the risk and the downside risk both tend to fall, and diversification benefits 

can be achieved. Thus, establishing that simultaneous investment in carbon assets and clean energy 

stock portfolio is more profitable for clean investors. Therefore, the results highlight the importance 

of mixed portfolio construction for diversification purposes. 

The study has important implications for investors, policymakers, and portfolio managers. 

Adequate knowledge about value addition by carbon assets can help investors to make better decisions 

regarding asset allocation. Thus, investors can maximize their value and protect their investment from 

downside risk by using the information. For policymakers, this information can assist them in 

designing incentive strategies to attract investors towards more green investments. As the primary goal 

of emission trading schemes and clean energy stock is to reduce GHG emissions, these policies can 

provide opportunities for shifting towards green technology. Furthermore, the results allow portfolio 

managers to devise diversification strategies based on mixed portfolios.  

Moreover, this paper is limited to only the European carbon and clean energy market; however, 

it can be extended to Chinese emerging carbon markets and the clean energy sector. Global and sectoral 

clean energy indices can also be considered. Other than emission trading schemes, another way of 

pricing carbon to reduce GHG is to apply a carbon tax due to its simplicity, scope, compatibility with 

low-carbon transition, and cost-effectiveness (O’Mahony, 2020). Advanced methodologies such as 

copula and switching copula can be applied to measure the dependence patterns of these markets in 

different regimes. 
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