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Abstract:  This paper investigates the space-time decay properties of solutions to the three-
dimensional compressible quantum magnetohydrodynamic (QMHD) model. By employing weighted
Sobolev space techniques, we establish the optimal decay rate for the k-th order spatial derivatives
of solutions with k£ € [0, 4], which concides with the heat equation. Specifically, we prove that the
decay rate in the weighted space Hﬁ(R3) is given by 375% for the spatial derivatives of order k. The
key contribution lies in developing a unified framework that connects the weighted energy estimates
with time decay analysis, which enables us to simultaneously capture both the spatial regularity and
temporal decay characteristics of the solution. This result generalizes the previous decay estimates and
provides a new description of the solution’s asymptotic behavior in quantum magnetohydrodynamic
systems.
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1. Introduction

In this paper, we consider the space-time decay rates for derivatives of strong solutions to the fol-
lowing 3D compressible viscous quantum magnetohydrodynamic (vQMHD) model in (x,7) € R3 xR,

p: +div(pu) =0,
(ou), + div(pu ® u) — pAu — (u + A)Vdivu + VP(p) — %sz(%ﬁ) = (VX B)XB, (1.1)
B,—-VX(uxB)=-Vx®VxB), divB =0,

where the symbol ® represents the Kronecker tensor product. The unknown functions p = p(x, 1),

u = (uy, up, uz)(x,t), and B = (By, By, B3)(x, t) represent the density, velocity field, and magnetic field,
respectively. The pressure P = P(p) = ap” satisfies a > 0 and y > 1. The viscosity coefficients y and
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A adhere to the physical constraints:
2
M > 0, g/,l +1>0,

while v > 0 denotes the magnetic diffusivity. The quantum effect parameter 9} > O corresponds to the

scaled Planck constant. The Bohm quantum potential term AW satisfies the identity:

\/‘5
A
20V (Tf) = VAp — 4div(V \p ® V D).

The system (1.1) is complemented by initial data:

(o, u, B)| _, = (o(x), uo(x), Bo(x)), (1.2)
with the initial perturbation vanishing at spatial infinity:
|1|im (Po — 1, uo, Bo)(x) = 0. (1.3)

1.1. History of the problem

Quantum fluid models provide a fundamental framework for semiconductor simulation and quan-
tum plasma dynamics, with applications spanning quantum semiconductors [1], Bose-Einstein con-
densates [2], and Bohmian mechanics [3]. The quantum magnetohydrodynamic (QMHD) system,
originally derived by Hass [4] via the Wigner—Maxwell formalism, reduces to classical MHD equa-
tions when quantum effects are neglected.

Extensive research has been conducted on decay properties of compressible fluid systems. For
comprehensive surveys, see [5—11]. We highlight key advances relevant to our work. Pu and Guo [10]
established optimal decay rates for full MHD solutions near equilibrium in R? via spectral methods.
Subsequent work by Pu and Xu [12] demonstrated the decay rate for the QMHD system:

V%o = DYOllgs-t + IV u@llgas + IV B@Ollgas < CA+D7F, k=0, 1. (1.4)

The method is based on spectral analysis and nonlinear energy estimates. Employing the energy meth-
ods from [13], Pu and Xu [14] extended these results to higher-order derivatives under initial perturba-
tions in (HV** N H™*) x (HY*' " H™*) x (HY N H™*) for N > 3, s € [0, 2). Recent progress by Xi, Pu,
and Guo [15] via Fourier splitting yielded refined estimates:

V(0 = (@)l + IV @l + IV B@llgss < CA+07F, k=0,1,2,3. (1.5)
Wang and Zhang [16] further established decay rates for higher-order derivatives:
V4 = D@)||,,, +|[V*u@) . + |V*BO)|,. < €A +1)7%, (1.6)

V30 = D@)||,. +|[V* @), + |V*B )|, < €1 + 1%, (1.7)

It should be mentioned that due to the presence of the Bohm potential, the fifth-order spatial derivative
of the density is faster than the ones of the velocity and magnetic, which is different from the MHD
system [10].
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While temporal decay rates are well-established, the weighted spatial decay properties remain un-
explored. Motivated by Weng [17] where space-time decay estimates for the incompressible viscous
resistive MHD and Hall-MHD equations were established, we investigate the space-time decay esti-
mates for the viscous QMHD system. More precisely, we resolve this issue by proving that solutions to
the viscous QMHD system exhibit the weighted L*-decay rate 372" in Hi(R3) for spatial derivatives
of order k € [0,4], where Hi(R3) is the spatial-time weighted Sobolev space defined in the following
notation. Compared to Wang and Zhang [16], the new difficulties lie in closing the uniform spatial-
time weighted energy estimates. Our analysis combines weighted energy estimates with time-decay
frameworks, providing new insights into the spatial-temporal asymptotics of quantum magnetohydro-
dynamic systems. The results are novel and contribute meaningfully to the analysis of quantum fluid
models, with potential applications in semiconductor simulation and plasma dynamics.

1.2. Notation

We first introduce the notation and function spaces used throughout this paper. Let H*(R?) denote
the standard Sobolev space with norm || - ||, and LP(R?) for 1 < p < oo represent the usual Lebesgue
spaces. The notation ||(A, B)||x := ||Allx + ||Bl|x will denote the sum of norms in space X. Constants
independent of time ¢ are generically denoted by C, and we write A < B if A < CB for some constant
C>0.

Fory € Rand 2 < p < oo, the weighted Lebesgue space L}(R?) is defined by:

LY(R’) := {f e L'®) : IIfIY, = f X 1f (ol dx < 00}-
Y R3

The associated weighted Sobolev space H’;(R3) is given by:

HARY) = {f € LIRY) : IIfIE = D012, < oo}.

le|<k
We denote L*(R?) := Li(R?) and H*(R?) := H}(R?). The notation V* with integer k > 0 represents any
k-th order spatial derivative. A function belongs to the Schwartz class S(R?) if it satisfies:

sup [x*® f(x)] < 0 Ya,B e N,

x€R3

1.3. Main results

We recall the following key proposition from prior work, which serves as the foundation for our
analysis:

Proposition 1.1 ( [16, Theorem 1.1]). Suppose the initial data (oy — 1,u, By) € H>(R®) x H*(R?) x
H*R?) satisfies:
lloo — Ulas + lluollgs + [|Bollgs < &, (1.8)

for sufficiently small € > 0. Then the system (1.1)—(1.3) admits a unique global solution (p, u, B)
satisfying:

(o = 1, u, YD)l + FIVp()II7s + f IV, B, 9p)(5)Il3uds (1.9)
0
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< C(llo = U + ol + 1Boll%s) - (1.10)
Moreover, if (py — 1, ug, By) € L'(R?), then it holds that
IV* (o = D(@llgs—s + IV*u@llgos + IV*B@)llgos < C(1+0)7F (1.11)
fork=0,1,2,3,4.
Our main result establishes the weighted decay properties:

Theorem 1.2. Under the assumptions of Proposition 1.1, the global solution (p, u, B) satisfies:
V(o = DYOllggs + IV 4@l + IV BOl s < (1 + 075, (1.12)
fork=0,1,2,3,4and 0 <y < co.

Remark 1.3. Theorem 1.2 establishes the space-time decay rate 7372 for k-th order derivatives in
Hi(R3). The proof strategy involves three main steps:
1) Base Case (k = 0): We derive weighted energy estimates by handling critical terms like:

2

0
-7 | |x|27VAQ - udx,
R‘

through integration by parts and interpolation techniques. This yields the key identity:

92 5 9 d , W )
_I fR3 |x|“"VAo - udx :§E”VQHL5 + Z ng V(x|?) - Ao - udx
92 5 )
+ 7 |x|*V(odivu + u - Vo) - Vodx (1.13)
R3
192

— | V() Vo - div udx.
4 R3

2) General Case: For k > 1, we extend (1.13) to higher derivatives through induction. Particularly,
we can prove that

ﬂzf | |27vk+lA Vk d _02 d||vk+l ”2 + ﬂzf V(l |2)’) VkA Vk d
4 Jos 7L L E R I oy uax
2

0
T f x|V (o divu + u - Vo) - V¥ odx (1.14)
R3
9 2 el ok
- — V(x7") - V"0 - V¥ div udx.
4 R3
3) Decay Analysis: The energy functional &(r) := [[Voll?, + lloll}, + llull>, + [IBII7, satisfies:

d 3 Y- 3 Y-
ZE < Cot 36 + CLr 78D + Crr 7M. (1.15)

leading to the optimal decay rate through nonlinear Gronwall-type arguments. Detailed proofs for
higher-order cases (k = 1,2, 3, 4) are provided in subsequent lemmas.
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2. Reformulation and preliminaries

We reformulate the original system (1.1) in perturbation form by setting o = p — 1:

0,0 +divu = Gy,
By — pAu — (u+ DV divu + Vo — LVAQ = G, 2.1)
0,B — vAB = G3,
with nonlinear terms defined as:
G, :=-odivu—u-Vp,
Gy :=—-u-Vu+ f(o)(uAu + (u+ A)Vdivu) — F(o)Vo
92 9% (|Vol*V VoA Vo - V?
- T fovae+ o (ZE8 Teme. TP T
4 4 \(d+0)FX ((d+0)* (A+0)
+g)((V X B) X B),
G; .=V X(uXxXB),
where the coeflicient functions satisfy:
g < C, |f(@l<Clol, and [F(o)|< Clol (2.2)
The initial data satisfy the far-field condition:
|)}|1_1;130(QO9 Uy, BO)(-X) = (0’ Oa O) (23)

Lemma 2.1 (Gagliardo—Nirenberg Inequalities). For f € H*R?) with 0 < j < i < k, the following

estimates hold:

1) General case (1 < p,q,r < ):
IV flle < IV fll NIV £

where a € [i, 1] satisfies:

i1 _(J N (k]
5‘;‘(3 q)“ ““(s )

2) Special case (p =q=r=2):
k=i
k—

IV fllzz < IV AL VA AL

3) Sobolev embeddings:

1 llzs < IV flliz,
Il < IALZIV AL,
Il S UVFllen  (f € HXRY)).

Electronic Research Archive
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Proof. The proof can be found in [18].
Lemma 2.2 (Nonlinear Gronwall Inequality). Let F € C!'([1, 0); [0, 00)) satisfy:

—F(t) < Cot™ ™F(f) + Z Cit F@P + C3",

i=1
with initial bound F(1) < K, where the parameters satisfy:

ceay>la<1,B8<1(@(=1,2)
oy[::1“’>0(1—12)

Assume that vy, > vy, and then there exists a positive C* depending on «y,ay,B.a2,[,, Ko, Co,
Cy,C,, Cs,Cy4 such that:
F(t) < C*'t" Vt>1. 2.4)

Proof. The proof can be found in [19].

Lemma 2.3 (Convolution Estimate). For ry,r, > 0 and € > 0, the temporal integral satisfies:

t
f(l +1— S)_r](l + S)—rzds < (1 + t)—mirl{r],rz,}’]-i—rz—l—g}'
0

3. Proof of Theorem 1.2

First, we establish the decay properties of solutions in weighted L2 norms. To do this, by setting
EQ@®) = IIVQ|| + ||Q|| + ||u|| + ||B||22 and making careful energy estimates, we can show that

E(r) satisfies a Gronwall -type 1nequa11ty (see (3.37) for details). Then, applying Lemma 2.2 for this
inequality and using an interpolation trick, we can prove the following decay rates of solutions in
weighted Li norms, which is stated in the following lemma.

Lemma 3.1. Under the assumptions of Proposition 1.1, there exists T > O such that the global solution
satisfies:
3
lolly + M@l +IBOllz < Cri, ¥y =0,1> T, 3.1)

where C > 0 is time-independent.
Proof. We begin by reformulating the momentum equation through perturbation analysis:

ﬁZ
—pAu — (u+ )Vdivu + Vo - Zg(Q)VAQ

_, P (Vel'Vo _ Voo  Vo-Vio
T a1 +0P (1402 (1402

where the nonlinear term G4 contains critical interactions:

Gy = —u-Vu+ f(0)(uAu + (u + )V div u)
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— F(o)Vo + g(0)((V X B) X B).

Multiplying the system by |x|**(o, u, B) and integrating over R? yields:

il o2, + (x>0, divu) = (X170, Gy,
2 .
< (IxPull?, + S llxl Vol ) + plllx? Vull2, + G+ Dl div ul2,
~(|xo, divu) = (xPu, Gy) + X1, M;,
d|\xBI2, + vl VB2, = (x> B,Gs) + Ms.

1
2
1
2

1
2
Thus, by summing up (3.2), we have
33 f le”( IVQI2 +lo* + |ul* + |BF*) dx + f x| Vul* dux
+(u+ Q) f |x|?|divul* dx + v f |x|?|VB|* dx

IX*"o - Gy dx + f IX*"B - G5 dx + f |X[*"u - G4 dx
R3
+ M+ M, + Mz + My + Mg+ Mg + M; + Mg

where the functions M, M,, M5, M4, Ms, Mg, M7 and Mg are defined by

M, = —,uf V(Ix*)u - Vu dx,
R3

M, = —(u+A) f V(|x*)u - divu dx,
R3
M; = f V(x?)u - o dx,
R3

ﬁ2
M, = ——f V(IxI?)r0 - u dx,
R3

02
Ms = T f V(|x*)Vo - divu dx,
R3

Mg :——f X[V (o - divie + u - Vo) - Vo dx,

My = & f (|VQ|2VQ VoAo VoV’
4 (1+0) (1+0? (1+0)?
and
Mg :=v f 3 V(x[*")B - VB dx.
R

For terms M,—M¢ and M3, by virtue of Cauchy’s inequality and Holder’s inequality, we obtain

My + M| < gl Vallzllel,2 |+ e+ DIl div alz 2

2 .
< el Vully, + &(u + Dl div ully, +|IMIIL2 ,

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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M| 5 llollzlulz
y-1

f X772 . Vo -udx
R3

2 2
S Vel + llullz + &llVul
Y= Y-

|My] < +

f IX?!- Vo - Vu dx
R3

2
2
Ly ’

2 2
IMs| < Vel + &llVull
2

29
LV

IMs| < IVoll=l1V (0, w)lI7, + IV2(0, )l Vell 2lI(e, wll ¢
Ly Y y

S IVolle IV (o, u)llg + Ve, il IVell2 (1V e, wllz + llto, w2 )

< IV Vel + e, i, + &lVull,
.

and
My < IV Bl 1Bl

2 2
< ellVBII, + 1IBll7, .
2 2

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

where € is a small positive constant to be determined later. For the term M5 , using integration by parts,

Holder’s inequality, Cauchy’s inequality, and the Sobolev inequality, we have

1M5] < 1IVoll2 IVollfllulls + 1Vl 21V 2ol llull ¢
Y Y Y Y

2

2 2
< Vol + llully,  + llVull;,,
Ly L, Ly

where ¢ is a sufficiently small constant and we have used the fact that

llullzy < IV APl < 11Vl + llallyz -

Next, we deal with the term| f |X|27Q - G dx|. To begin with, we notice that
R3

f|x|27Q~G1 dx flxl”gzdivu dx
R3 R3

For the term My, by using the Holder, Cauchy and Sobolev inequalities, we get

< +

| o) g ax
R3
L= Mg + MIO

|Mo| < [IVollslloll 2l

2 2 2 2
< IVl ol + N, + ellVully,
3

For the term M,,, we have from integration by parts that

|Mo| =

f u - V(x0?) d
]R3

< I1¥ell N2l g + Nl ol a2

2 2 2 2
< IVl ol + N, + ellVull;.
:

Electronic Research Archive Volume 33, Issue 7,
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(3.21)
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Substituting the estimates (3.21) and (3.22) into (3.20), we get

f |X|ZVQ -Gy dx
R3

< ”VQ”i]l”Q”i% + a7, ot SIIVMIIi%- (3.23)
2

For the term f |x|”” B - G5 dx|, it holds that
R3
IXB-Gsdx| <| | IX*B-u-VBdx|+ f |x*" |B* - Vu dx
R3 R3 R3
| [ P 1BR diva dad + f X'B - u - divB dx (3:24)
R3 R3
=M+ M+ Mz + M.
By using the Holder, Cauchy and Sobolev inequalities, we have
|Miy| + |Ma] < VBl Bll 2l s
< VB 2 B 2 2 V 2 (325)
S IVBIGIBIE + lulf; |+ ellVadf.
\Mio| + |Mi3] < |[Vul || Bll 2| Bl s
2 pI2 2 2 (3.26)
< VUl IBIZ, +11BIZ, + &lIVBIL,.
;
Then we have
f3 1XI”’B - G3 dx| < ||V(u, B)IlfpllBlli% + |, B)II7. ot &llV(u, B)|I7.. (3.27)
R y- Y
Finally, we deal with the term |xI*’u - G, dx|. From (3.2) , we have
R3
f Ix*u- Gy dx| < f X7 (u - Vi) - udx| + p f Ix|* f(0)Au - u dx
R3 R3 R3
+(u+ Q) ' f IXI? f(0)Vdivu - u dx| + f IX[* F(0)Vo - u dx (3.28)
R3 R3 ’

19
+ = ZM,-.

i=15

f ¥ g()[B - VB~ V(B  u dx
R3

The terms on right-hand side of the above equation can be estimated as follows. Using the Holder,
Cauchy and Sobolev inequalities and the uniform bound (1.8), we have

|Mis| < [Vaull s llull 2 loel s

o 2 oo (3.29)
< ellVall + el +1Vull
:

and
2
|M6| < IIQIILwIIVu||L5 + Vol Vel 2l s

+ llell= 1Vl el
Y
< (ol + Vel (Il + i, )
2

2 2
S Vol IVl + Mlullz -
2

(3.30)

Electronic Research Archive Volume 33, Issue 7, 4184-4204.
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Similarly, we also have

IMi7] < ”VQ”Hl”Vu”i% + lull? - (3.31)
2
For Mg, and M9, similar to My, we have
|Mis| < |IVollsliollzllulls < IIVQII,ZL,IIIQHg + IIMIIiifl + 8||Vu||25, (3.32)
and
|Mio| S IVBIlwsl|Bll2llulls < SIIVullig + IILtllii_1 + IIVBIIIZLIIIIBII%. (3.33)

Thus by substituting (3.29)—(3.33) into (3.28) and using the smallness of &, we get

f |x[*’u - G4 dx
R3

Consequently, plugging the estimates (3.12)—(3.18), (3.23), (3.27), and (3.34) into (3.3) and using the
uniform bound (1.8) and the smallness of &, we have

< Vo, u, B)l|mI(0, u, B)II% + IIMIIiz_I + [Vl IIVullig- (3.34)

1d (9 .
P (vamﬁg +llolly; + lulf; + ||B||ig) + pllVulf; + (u+ Dlidiva, + VIVBIE,
S IV (e, u. B)li=l1V0. 0., Bl + llollzllullz | +11(Ve.o.u BI: (3-35)
3

2 2 . 2 2 2
+ el Vull, + sullVull, + e + Dl div ull, + el VBIZ, + [Vollu IVul;.

P N
Using the inequality || f];2 S I1£1] L; Ilf IIZ2 , by leveraging the uniform-in-time bounds established in
- Y

Proposition 1.1, the assumption of small &, and a sufficiently large positive time 7'}, we can derive the
desired conclusion:

d ﬂz 2 2 2 2 2 . ) )
T (ZHVQIIL% + IIQllL% + llullL% + IIBIIL% +u||Vu||L% + (u+ /l)||d1vu||L% + V”VB”Lg

r-1 1

S IV G- u. B)lielIVe. ., Bl + ol } el (3.36)

20-D 2

+(Vo, 0, u, B)IIL{ I(Vo, 0, u, B)II},

for all £ > T. Denoting E(¢) := ||VQ||§2 + ||Q||i2 + ||u||i2 + ||B|I?,, we can obtain
Y Y Y

L’
d _s IR EEN
&E(t) < Cot *E(t) + Cit #E(@®) ™ + Cot 7E(t) 7, (3.37)
_5 _3 — 2y-1 _ 3 — r-l — ;
where ap = 7, @) = E"B‘ =5 = 27,’52 =5 C5; = 0. To assure that @ < 1, @, < 1, we require
y>3. Hence,y1 = {5t =2y -3 >y, = % =y — 2. Thus, by the virtue of Lemma 2.2, we deduce
from (3.37) that,
3
E(t) < Cr' = Cr %, (3.38)
Applying the interpolation inequality into (3.38) yields
-2 n 3
1(Vo, 0,1, BYD)llzz, < ClI(Ve, 0,1, B * I(Ve, 0,1, BYDI > < Crim, (3.39)
for all vy € [0, y], and thus completes the proof. O
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Similarly, we can establish the space-time decay behavior of the first-order spatial derivatives of the
solution.

Lemma 3.2 (First-Order Derivative Decay). Under the assumptions of Proposition 1.1, there exists
T, > 0 such that the global solution satisfies:

Vo)l + IVu()ll2 + IVB@)z < Crir, Vi> T, (3.40)

where C > 0 is time-independent.
Proof. Since the proof is similar to that of Lemma (3.1), we omit the details for simplicity. O

Similarly, we have the following space-time decay behavior of the second-order spatial derivatives
of the solution.

Lemma 3.3. Under the assumptions of Proposition 1.1, there exists a large time T5 such that the global
solution (o, u, B) satisfies the estimates

IVl + IVu(llz + IV2BOlz < Cr i, (3.41)

where C is a positive constant independent of time.
Proof. Since the proof is similar to that of Lemma (3.1), we omit the details for simplicity. O
Next, we establish the space-time decay rate for the third-order spatial derivative of the solution.

Lemma 3.4. Under the assumptions of Proposition 1.1, there exists a large time Ty, and then the global
solution (o, u, B) has the estimates

V0@l + IV u@llz + IV BOlz < Cr i+, (3.42)

where C is a positive constant independent of time.
Proof. Since the proof is similar to that of Lemma (3.1), we omit the details for simplicity. O

Finally, we establish the space-time decay rate for the fourth-order spatial derivative of the solution.
Compared to the proofs of Lemmas 3.1-3.4, the new difficulties lie in dealing with the trouble terms
including the highest-order derivatives. We will employ integration by parts, making full use of the
equations and making careful energy estimates to overcome these difficulties.

Lemma 3.5. Under the assumptions of Proposition 1.1, there exists a large time Ts, and then the global
solution (o, u, B) has the estimates

IV 0@l + IV u@)lz + IV*BOIl; < Cr 47, (3.43)
where C is a positive constant independent of time.

Proof. First, we rewrite (2.1), as follows:

92 9% ([Vol’'Vo  VoAo  Vo-Vio
—puAu — (u+ )Vdivu + Vo — —g(0)VAo = G4 + — - - .
u; — uAu — (u )Vdivu Y 4g(Q) Y 4 4 \(1+0@ (1+0?2 (1+o)2

Electronic Research Archive Volume 33, Issue 7, 4184—-4204.
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In the above equation:
Gy =-u-Vu+ f(o) uAu + (u + A)Vdivu) — F(0)Vo + g(o) (VX B) X B).

Then multiplying V4(2.1),, V4(2.1), and V*(2.1); by |x|?V*0, |x*’V*u and |x|*’V*B, respectively, and
integrating over R?, then summing up, we have

1d
55[ lezy( |VSQ|2+ V4o + [Vl + |V* B )dx+#f KPITuE
R3

+(u+ Q) f |x|?|V*divul® dx + v f |x|*|V B> dx
R3 R3

(3.44)
= f IX[?Vio - VG dx + f IX?V*B - V4G5 dx + f X2V - V4G, dx
R3 R3 R3
+ i+ h+ S+t Js5+Jg+ I+ Jg,
where the functions Jy, J», J3, J4, Js, Js, J7 and Jg are defined by
Ji = —u f V(|x*)Vu - V*u dx, (3.45)
R3
Jr = —(u+ A) f V(x*)V*u - V*divu dx, (3.46)
R3
Js 1= f V(Ix?)V*u - V4o dx, (3.47)
R3
ﬁZ
Jyi= —— f V(x*)V*r0 - Vu dx, (3.48)
4 R3
9 29\ oS 41
Js = Z V(|x[7")V°0 - V'divu dx, (3.49)
Jo = —— f |x|27V5(Q divu +u - Vo) - VSQ dx, (3.50)
Vol|*V VoA Vo - V?
f||2yv4v4|9| o _ Veho Vo-Viol .. (3.51)
(I+0° (A+0? (1+0)
and
Jg = f V(x*")V*B - V°B dx. (3.52)
R3
For terms J;—Js and Jg, by virtue of Cauchy’s inequality and Holder’s inequality, we obtain
il + 1ol s pllV2ullzlIV0ulle |+ G+ DIV div a2Vl 2
! ! 3.53
< sl V2ull2, + s(u + DIV div uII + ||V4u||Lz ; (59
/3] < IIV4QIIL5IIV4MIIL;I, (3.54)
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|Ja] < f X772 V2o - Vi dx| + f X771 Vo0 - VPu dx
R3 R? (3.55)
S IVSIR, + IV, +ellVoull,,
y-1 y-1 Y
sl < [IV0ll2. ot 8||V5u||i%, (3.56)
2
sl < IV°Bll2MIV*Bll,2
(3.57)
< ellVOBIE, +IVBI; .
2
To bound the term Jg, we first notice that
9 29 05( 1 A 5
|Jg| =|— X"V (odivu + u - Vo) - V'o dx
4 R3
9 2905 1 5 9 2y 5
=|— x|V (o divu) - Vo dx| + |— X"V (u - Vo) - Vo dx (3.58)
4 R3 4 R3 ’
2
= J6,i-
i=1
For the term Jg 1, we have
Jo1 < f Ix[*0 - Vou - Vodx| + ‘ f 1X|*Vo - V’u - V’odx
R3 R3
+ IX|?V?0 - V*u - Vodx| + IX?V30 - V3u - Vodx
R3 R3
(3.59)
+| | kY4 - V2u - Viodx| + f IX[*V30 - Vu - V2 odx
R3 R3
6
= Z Jo.1-
i=1
By virtue of Holder’s inequality, Cauchy’s inequality, Lemma 2.1, and Proposition 1.1, we have
_B _3
oal S 0 + 394Ul + 1Volle Vel 60
+IVool2. +&lViully., '
y-1 Y
and
el + 16,1 < 1IVG, )=V (o, wll 21V ll 2 G
< IV wllel Vel + el Vull,. |
Taking the summation of the term Jg’] and the term Jg’l , we can arrive that
ol + 1.l s 1IV2(0, wlla Ve, wll sl V0l
< IVl IV, 0z + IV w2 ) IVl (3.62)
< Vi, M)”HZHVSQHZ% + IV wll2. ot 3”V5M”22/-
2
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For the fourth term in the right-hand side of (3.59), using integration by parts, Holder’s inequality,
Cauchy’s inequality, the Sobolev inequality, Lemma 2.1, and Proposition 1.1, we have

Jail < 190l [Vl 192wl
< t‘§+27+t‘4||VSQ||i§. (569
Combining the estimates (3.60)—(3.63) into (3.59), we get
61| < r‘%+27+r‘§llV5ulli§ +[IV*(Vo. 0, “)”2;1 +sIIV5u||§%+IIV(9, u)”HZHVSQ”i%- (3.64)
For the term Jg,, we have
Joo < jl; 3 |X[*u - Voo - Vodx| + ‘ fR 3 |X|?Vu - V2o - V2 odx
+ 3|x|27V2u Vo - Vodx| + }|x|27V3u V30 - Vodx
R R-
] VA - V2o - Viodax| + fR % I Vu - Vo - Vodx (5:69)

6
R i
= s
i=1

Next, we estimate six terms in the right-hand side of the above equation. For the first term, it follows
from integration by parts that

gl < IIVulleHVSQIIi% + ||VSQ||33_I~ (3.66)
Similar to (3.61)-(3.62), we can obtain
ol + 178, < 11V, M)HHZHVSQ”i%+8”V5u”i5- (3.67)
and
ool + 15,1 < 11V, M)IIHZIIVSQH%%HIV“(Q, u)llii_] +8||V5u||i5- (3.68)

For the fourth term in the right-hand side of (3.65), using integration by parts, Holder’s inequality,
Cauchy’s inequality, the Sobolev inequality, Lemma 2.1, and Proposition 1.1, we have

72 < I9%ulles ||Vl 2 190l
1 ' (3.69)
S IVl
Combining the estimates (3.66)—(3.69) into (3.65), we get
13
ool < VGl IVl +1IV* (Vo 0.l + ellVully + 1727, (3.70)
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Thus, it is easy to deduce that

1
el < IIV(Q,M)IImIIVSQIIiz+|IV4(VQ,Q,M)II§ +1 T
7 ! 3.71)
—30a5.12 5112 Q.
+ 11|V ””Lg + £||V ullL%.

For the term J; , using integration by parts, Holder’s inequality, Cauchy’s inequality and Lemma 2.1,
we have

2 5 o
|J7] = » f V(|x|27V4u)V3(|VQ| Vo VoMo Vo-V Q) dx‘
R3

4 (I+07° (I+0? (1+0)

9> Vol|*V VoA Vo - V2
—1fvmWw3'“ o Voho Vo Vel
F Jo (+0F (+0F (+0r

92 VoPVo Voho Vo-V?
Tf |x|2yV3(| o’Vo  VoAo Vo Q)VSde
R3

<

" (1+0F (+of (1+0F 3.72)
S IVl [Vl 2 [Vl + 19l 19"l [Vl
Vel o 9l [¥ell2 , + 19l [[V7ul],; Vel 2
+[[V%ell, [[Vull,; [l + [Vl [197ull; V7]
$ Vel V' Voo 0; + (1976l [V V- @2+ & [9ully; + 1757,
For the term | f |x|27V4Q - V*G, dx]|, we have
R3
IXPVVAG, dx|l <| | 5PV (edivu) - Vo dx| + f IX|?V*(u - Vo)V*o dx
- - B3 (3.73)
= Jo + Jyo.
For the term Jy, using Holder’s inequality, we have
|Jol < X[V - Vu - V*o dx| + f IX?V30 - VZu - Vi dx
R3 R3
+ IX?V?0 - VPu - Vo dx| + IX?Vo - Viu - V4o dx
R3 R3
3.74
+ X170 - Vou - Vo dx ( )
R3

5
= Z Jg,i.
i=1

Using Holder’s inequality, Cauchy’s inequality, the Sobolev inequality and the lower bound of density,

we can obtain
o + [ou| < IV, - [V, ]| - [V

(3.75)
<[Vl [Vl
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ool + [Jo3] < V2@, )| [P (. |2 1]l 2
<[V, [Vell; + V@]l [V, ]l
[os| < llelle [Vl [Vl

< Vel [[Velly; + & [ vull;

(3.76)

(3.77)

Substituting (3.75)—(3.77) into (3.74) and using the uniform bound (1.8), we get
sl < V(. )l [V, ]z + [V, ]l [V, 0, + & [l (3.78)
For the term Jy, its method is consistent with that of the term Jy, so it is easy to get
V1ol < VG0, s || V(Yo 0, u)llig + || V30w, [V o u>||; : (3.79)

Substituting (3.78) and (3.79) into (3.73), we get

IX[?V*V*G, dx
R3

< V(o s ||V (Vo 0, u)||i; (3.80)

+V @ 0l 9@ 0l + £ [l

Next, for the term | &3 x> V4uV*G, dx|, we have

Ix?V*uV*G, dx

R3

Ix?'V*uV*(u - Vu) dx

R3

+ f X VAuV*(fo)[uAu + (u + AVdivu)]) dx
R3

<

+ IX|? V*uV*(F(0)Vo) dx

R3

(3.81)

+ f |x|27V4uV4(g(Q)[B-VB—%V(IBlz)]) dx
R3

By using the Leibniz formula, we have

Ix*"V*u - Vi - Vu dx
R3

[l < +

f [xPV3u - V2u - Viu dx
R3

X'V - V*u - Vu dx
R3

IxP'V3u - V2u - Vi dx
R3

[x*u - Viu - Vu dx
R3

5
= E J11,,'.
i=1

Electronic Research Archive Volume 33, Issue 7, 4184-4204.

+

+

(3.82)
_l_




4200

Using Holder’s inequality, Cauchy’s inequality, the Sobolev inequality and the lower bound of density,
we can obtain

uaal + sl < 92l 19l (3.83)
[unal + sl < 92l 9l + 92l 92 (3.84)

5 4
[ivs| < Nl [V {92,
5 .2 s e (3.85)
< ||V”||H1 ||V ”“L% + SHV ””Lg'
Therefore, we have

i1l < IVl ||V4u||; + (|93, ||V3u||; + 8||V5u||; . (3.86)

Next, we use Holder’s inequality, Cauchy’s inequality, the Sobolev inequality and mathematical induc-
tion to get

ol <INl [Vl + 9%l + 9%l (I9*ull + [9°l: ) (3.87)

2 2
Vial 5 & |[Vul; + [V
L7 Lyfl

(3.88)
+ Vel (vl + Vel ).
il 5 & [[Vull, + [Vull; + 1V Bl (V@ B, + [V B, )

(3.89)
+IVBIZ, ||VZB||;_2 .

Substituting (3.86)—(3.89) into (3.81), and using Holder’s inequality, Cauchy’s inequality, and the
Sobolev inequality, we can obtain

f]pg WP VV'Gy dy| 5 6|Vl +||V4“||i;1 + V(0. . Bl V(0. . B 5
A L e L L 390

+ 1B [[7B[  + 19l [Vl

Finally, for the term | fRS [x>V*BV*G; dx|, we have

Ix|?*V*BV*G; dx| < IX|?*V*BV*(u - VB) dx| + f |x|?*V*BV*(B - Vu) dx
R3 R3 R3
+| | xPV*BV}(Bdivu) dx| + | [ [x[?'V*BV*(udivB) dx (3.91)
R3 R3 ’
18
= Z J,’.
i=15
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By using the Leibniz formula, we have

/15| < +

f |x[*’V*B - V*u - VB dx
R3

f |x*’V*B - V3u - V?B dx
R3

[x]*V*B - V?u - V’B dx
R3

f IX|?*V*B - u- V°B dx
R3

5
= Z]]ii.
i=1

Using Holder’s inequality, Cauchy’s inequality, the Sobolev inequality and the lower bound of density,
we can obtain

|x|*’V*B - V*B - Vu dx
R3

- +

(3.92)
+

isa] + Visal < [V B, V4, B, (3.93)
1ol + [isal < [V Bl [V B[ + [V, B, 9B - (3.94)

5 4
[iss| < lull- [[V°B] . [|7°B]

(3.95)
<19, 98], + |95l
Therefore, we have
il < IV, B)llgs ||V4 s, B)||; + |V B, [V, B)||; te ||VSB||;. (3.96)
Similar to the J;5, we have
el o112l < IV Bl [V, B[, + [V, By [V B, + & [V, (3.97)
and
sl < IV G, Bl ||V (u, B)||; + |V, B)||,, V3, B)||; +e ||VSB||; . (3.98)
Substituting (3.96)—(3.98) into (3.91), we get
X'V BV'Gs da| < IV, Bllys |[V*(u, B[ + ||V, B, V2. B
- ; v (3.99)

2 2
+&|[VB][ ; + &|Vull; -
In the end, substituting (3.53)—(3.57), (3.71), (3.72), (3.80), (3.90) and (3.99) into (3.44), and using the
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uniform bound and the smallness of &, we can conclude that

20\ 4
+(u+ /l)llV“divulli% + v||v53||§%

1d (¢
—( |VSQ||25+||V4Q||i§+||V4M||i§+||V4B||i§ +#|IV5ullig

< IV(0, u, B)|| 3 ||V4(VQ, o, U, B)”; + ||V2Q||H3 ||V4(VQ, 0, u)”iz/ + ||V4@||L§||V4u||L§_l (3.100)

2 2 .
+||V*(Vo,0.u, B)|,. 11Vl ||V5u||L% + 8/J||V5u||i% + e(u + )||V* div ulli%
:
_3 _13 2
+ VUl + 72+ el Vully + el VBI, + IV, Bl [V, u. B[,
3

+[V@. . B0 [V (0. B + 1B |98

Using the inequality ||VXf| =y < |IVkf ||Z?||ka ||Li, and by leveraging the uniform-in-time bounds es-

tablished in Proposition (1.1), the assumption of small €, and a sufficiently large positive time 75, we
can derive the desired conclusion:

d (9

ar\'4

+ (u+ ﬂ)llV“divulli% + v||VSB||i§

5 12 4 112 4 112 4 |2 5012
IV0ll7; + IV*oll3; + IV*ully; + IV*BI, | + ulVully,

(3.101)
2 2
< V. . By [V (Ve 0.0, B)| o + [Vl s [[V*(Vo. 0. )|
r1 1 20-1) P
IV NIVl IVl + [V Ve, B + [V (Ve.0.w. B, + 175>
for all t > T's. Then, we are able to define the temporal energy functional as follows:
B0 = V%02, + IVl + IVl + IV*BIE,. (3.102)
By direct calculation, we can obtain
d - s Sl 2l TR ] 1,
EE(I) < Cot *E(t) + C1t "E(t)™> + Cot »E(t) v + C3t 277, (3.103)
Here ag = %, a) = —%,ﬁl = %, ap = %,ﬁz = yy;l . To assure that @, < 1, @, < 1, we require y > %
Hence, ¥, = % =2y - % >y, = i:;; =vy- % Thus, with the help of Lemma 2.2, we deduce from
(3.272) that
~ ~ 11
E@®y<cr =cr=*, (3.104)

Applying the interpolation inequality into (3.273) yields

_Y
17 11

Y0
IV¥(Vo, o, u, BYD)llpz, < ClIIV*(Vo, 0. u, B, " IIV*(Vo, 0, u, B, < Cr o, (3.105)

12

for all yy € [0, y], and this completes the proof. i
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