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Abstract: This paper investigates the space-time decay properties of solutions to the three-
dimensional compressible quantum magnetohydrodynamic (QMHD) model. By employing weighted
Sobolev space techniques, we establish the optimal decay rate for the k-th order spatial derivatives
of solutions with k ∈ [0, 4], which concides with the heat equation. Specifically, we prove that the
decay rate in the weighted space H2

γ(R3) is given by t−
3
4−

k
2 +γ for the spatial derivatives of order k. The

key contribution lies in developing a unified framework that connects the weighted energy estimates
with time decay analysis, which enables us to simultaneously capture both the spatial regularity and
temporal decay characteristics of the solution. This result generalizes the previous decay estimates and
provides a new description of the solution’s asymptotic behavior in quantum magnetohydrodynamic
systems.
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1. Introduction

In this paper, we consider the space-time decay rates for derivatives of strong solutions to the fol-
lowing 3D compressible viscous quantum magnetohydrodynamic (vQMHD) model in (x, t) ∈ R3×R+:

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) − µ∆u − (µ + λ)∇divu + ∇P(ρ) − ϑ2

2 ρ∇(∆
√
ρ

√
ρ

) = (∇ × B) × B,

Bt − ∇ × (u × B) = −∇ × (ν∇ × B), divB = 0,

(1.1)

where the symbol ⊗ represents the Kronecker tensor product. The unknown functions ρ = ρ(x, t),
u = (u1, u2, u3)(x, t), and B = (B1, B2, B3)(x, t) represent the density, velocity field, and magnetic field,
respectively. The pressure P = P(ρ) = aργ satisfies a > 0 and γ ≥ 1. The viscosity coefficients µ and
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λ adhere to the physical constraints:

µ > 0,
2
3
µ + λ ≥ 0,

while ν > 0 denotes the magnetic diffusivity. The quantum effect parameter ϑ > 0 corresponds to the
scaled Planck constant. The Bohm quantum potential term ∆

√
ρ

√
ρ

satisfies the identity:

2ρ∇
(
∆
√
ρ

√
ρ

)
= ∇∆ρ − 4 div(∇

√
ρ ⊗ ∇

√
ρ).

The system (1.1) is complemented by initial data:

(ρ, u, B)
∣∣∣
t=0

= (ρ0(x), u0(x), B0(x)), (1.2)

with the initial perturbation vanishing at spatial infinity:

lim
|x|→∞

(ρ0 − 1, u0, B0)(x) = 0. (1.3)

1.1. History of the problem

Quantum fluid models provide a fundamental framework for semiconductor simulation and quan-
tum plasma dynamics, with applications spanning quantum semiconductors [1], Bose-Einstein con-
densates [2], and Bohmian mechanics [3]. The quantum magnetohydrodynamic (QMHD) system,
originally derived by Hass [4] via the Wigner–Maxwell formalism, reduces to classical MHD equa-
tions when quantum effects are neglected.

Extensive research has been conducted on decay properties of compressible fluid systems. For
comprehensive surveys, see [5–11]. We highlight key advances relevant to our work. Pu and Guo [10]
established optimal decay rates for full MHD solutions near equilibrium in R3 via spectral methods.
Subsequent work by Pu and Xu [12] demonstrated the decay rate for the QMHD system:

‖∇k(ρ − 1)(t)‖H5−k + ‖∇ku(t)‖H4−k + ‖∇kB(t)‖H4−k ≤ C(1 + t)−
3+2k

4 , k = 0, 1. (1.4)

The method is based on spectral analysis and nonlinear energy estimates. Employing the energy meth-
ods from [13], Pu and Xu [14] extended these results to higher-order derivatives under initial perturba-
tions in (HN+2 ∩ Ḣ−s) × (HN+1 ∩ Ḣ−s) × (HN ∩ Ḣ−s) for N ≥ 3, s ∈ [0, 3

2 ). Recent progress by Xi, Pu,
and Guo [15] via Fourier splitting yielded refined estimates:

‖∇k(ρ − 1)(t)‖H5−k + ‖∇ku(t)‖H4−k + ‖∇kB(t)‖H4−k ≤ C(1 + t)−
3+2k

4 , k = 0, 1, 2, 3. (1.5)

Wang and Zhang [16] further established decay rates for higher-order derivatives:∥∥∥∇4(ρ − 1)(t)
∥∥∥

H1 +
∥∥∥∇4u(t)

∥∥∥
L2 +

∥∥∥∇4B(t)
∥∥∥

L2 ≤ C(1 + t)−
11
4 , (1.6)∥∥∥∇5(ρ − 1)(t)

∥∥∥
L2 +

∥∥∥∇4uh(t)
∥∥∥

L2 +
∥∥∥∇4Bh(t)

∥∥∥
L2 ≤ C(1 + t)−

13
4 . (1.7)

It should be mentioned that due to the presence of the Bohm potential, the fifth-order spatial derivative
of the density is faster than the ones of the velocity and magnetic, which is different from the MHD
system [10].
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While temporal decay rates are well-established, the weighted spatial decay properties remain un-
explored. Motivated by Weng [17] where space-time decay estimates for the incompressible viscous
resistive MHD and Hall-MHD equations were established, we investigate the space-time decay esti-
mates for the viscous QMHD system. More precisely, we resolve this issue by proving that solutions to
the viscous QMHD system exhibit the weighted L2-decay rate t−

3
4−

k
2 +γ in H2

γ(R3) for spatial derivatives
of order k ∈ [0, 4], where H2

γ(R3) is the spatial-time weighted Sobolev space defined in the following
notation. Compared to Wang and Zhang [16], the new difficulties lie in closing the uniform spatial-
time weighted energy estimates. Our analysis combines weighted energy estimates with time-decay
frameworks, providing new insights into the spatial-temporal asymptotics of quantum magnetohydro-
dynamic systems. The results are novel and contribute meaningfully to the analysis of quantum fluid
models, with potential applications in semiconductor simulation and plasma dynamics.

1.2. Notation

We first introduce the notation and function spaces used throughout this paper. Let Hk(R3) denote
the standard Sobolev space with norm ‖ · ‖Hk , and Lp(R3) for 1 ≤ p ≤ ∞ represent the usual Lebesgue
spaces. The notation ‖(A, B)‖X := ‖A‖X + ‖B‖X will denote the sum of norms in space X. Constants
independent of time t are generically denoted by C, and we write A . B if A ≤ CB for some constant
C > 0.

For γ ∈ R and 2 ≤ p < ∞, the weighted Lebesgue space Lp
γ(R3) is defined by:

Lp
γ(R3) :=

{
f ∈ Lp(R3) : ‖ f ‖p

Lp
γ

=

∫
R3
|x|pγ| f (x)|pdx < ∞

}
.

The associated weighted Sobolev space Hk
γ(R

3) is given by:

Hk
γ(R

3) :=

 f ∈ L2
γ(R

3) : ‖ f ‖2Hk
γ

=
∑
|α|≤k

‖∂α f ‖2L2
γ
< ∞

 .
We denote L2(R3) := L2

0(R3) and Hk(R3) := Hk
0(R3). The notation ∇k with integer k ≥ 0 represents any

k-th order spatial derivative. A function belongs to the Schwartz class S(R3) if it satisfies:

sup
x∈R3
|xα∂β f (x)| < ∞ ∀α, β ∈ N3.

1.3. Main results

We recall the following key proposition from prior work, which serves as the foundation for our
analysis:

Proposition 1.1 ( [16, Theorem 1.1]). Suppose the initial data (ρ0 − 1, u0, B0) ∈ H5(R3) × H4(R3) ×
H4(R3) satisfies:

‖ρ0 − 1‖H5 + ‖u0‖H4 + ‖B0‖H4 ≤ ε, (1.8)

for sufficiently small ε > 0. Then the system (1.1)–(1.3) admits a unique global solution (ρ, u, B)
satisfying:

‖(ρ − 1, u, B)(t)‖2H4 + ϑ2‖∇ρ(t)‖2H4 +

∫ t

0
‖∇(u, B, ϑρ)(s)‖2H4ds (1.9)
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≤ C
(
‖ρ0 − 1‖2H5 + ‖u0‖

2
H4 + ‖B0‖

2
H4

)
. (1.10)

Moreover, if (ρ0 − 1, u0, B0) ∈ L1(R3), then it holds that

‖∇k(ρ − 1)(t)‖H5−k + ‖∇ku(t)‖H4−k + ‖∇kB(t)‖H4−k ≤ C(1 + t)−
3+2k

4 , (1.11)

for k = 0, 1, 2, 3, 4.

Our main result establishes the weighted decay properties:

Theorem 1.2. Under the assumptions of Proposition 1.1, the global solution (ρ, u, B) satisfies:

‖∇k(ρ − 1)(t)‖H5−k
γ

+ ‖∇ku(t)‖H4−k
γ

+ ‖∇kB(t)‖H4−k
γ
. (1 + t)−

3+2k
4 +γ, (1.12)

for k = 0, 1, 2, 3, 4 and 0 ≤ γ < ∞.

Remark 1.3. Theorem 1.2 establishes the space-time decay rate t−
3
4−

k
2 +γ for k-th order derivatives in

H2
γ(R3). The proof strategy involves three main steps:

1) Base Case (k = 0): We derive weighted energy estimates by handling critical terms like:

−
ϑ2

4

∫
R3
|x|2γ∇∆% · udx,

through integration by parts and interpolation techniques. This yields the key identity:

−
ϑ2

4

∫
R3
|x|2γ∇∆% · udx =

ϑ2

8
d
dt
‖∇%‖2L2

γ
+
ϑ2

4

∫
R3
∇(|x|2γ) · ∆% · udx

+
ϑ2

4

∫
R3
|x|2γ∇(% div u + u · ∇%) · ∇%dx

−
ϑ2

4

∫
R3
∇(|x|2γ) · ∇% · div udx.

(1.13)

2) General Case: For k ≥ 1, we extend (1.13) to higher derivatives through induction. Particularly,
we can prove that

−
ϑ2

4

∫
R3
|x|2γ∇k+1∆% · ∇kudx =

ϑ2

8
d
dt
‖∇k+1%‖2L2

γ
+
ϑ2

4

∫
R3
∇(|x|2γ) · ∇k∆% · ∇kudx

+
ϑ2

4

∫
R3
|x|2γ∇k+1(% div u + u · ∇%) · ∇k+1%dx

−
ϑ2

4

∫
R3
∇(|x|2γ) · ∇k+1% · ∇k div udx.

(1.14)

3) Decay Analysis: The energy functional E(t) := ‖∇%‖2
L2
γ

+ ‖%‖2
L2
γ

+ ‖u‖2
L2
γ

+ ‖B‖2
L2
γ

satisfies:

d
dt
E(t) ≤ C0t−

5
4E(t) + C1t−

3
4γE(t)

2γ−1
2γ + C2t−

3
2γE(t)

γ−1
γ , (1.15)

leading to the optimal decay rate through nonlinear Gronwall-type arguments. Detailed proofs for
higher-order cases (k = 1, 2, 3, 4) are provided in subsequent lemmas.
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2. Reformulation and preliminaries

We reformulate the original system (1.1) in perturbation form by setting % = ρ − 1:
∂t% + div u = G1,

∂tu − µ∆u − (µ + λ)∇ div u + ∇% − ϑ2

4 ∇∆% = G2,

∂tB − ν∆B = G3,

(2.1)

with nonlinear terms defined as:

G1 := −% div u − u · ∇%,

G2 := −u · ∇u + f (%)(µ∆u + (µ + λ)∇ div u) − F(%)∇%

−
ϑ2

4
f (%)∇∆% +

ϑ2

4

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
+ g(%)((∇ × B) × B),

G3 := ∇ × (u × B),

where the coefficient functions satisfy:

|g(%)| ≤ C, | f (%)| ≤ C|%|, and |F(%)| ≤ C|%|. (2.2)

The initial data satisfy the far-field condition:

lim
|x|→∞

(%0, u0, B0)(x) = (0, 0, 0). (2.3)

Lemma 2.1 (Gagliardo–Nirenberg Inequalities). For f ∈ Hk(R3) with 0 ≤ j ≤ i ≤ k, the following
estimates hold:

1) General case (1 ≤ p, q, r ≤ ∞):

‖∇i f ‖Lp . ‖∇ j f ‖1−αLq ‖∇
k f ‖αLr ,

where α ∈ [ i
k , 1] satisfies:

i
3
−

1
p

=

(
j
3
−

1
q

)
(1 − α) +

(
k
3
−

1
r

)
α.

2) Special case (p = q = r = 2):

‖∇i f ‖L2 . ‖∇ j f ‖
k−i
k− j

L2 ‖∇
k f ‖

i− j
k− j

L2 .

3) Sobolev embeddings:

‖ f ‖L6 . ‖∇ f ‖L2 ,

‖ f ‖L3 . ‖ f ‖1/2
L2 ‖∇ f ‖1/2

L2 ,

‖ f ‖L∞ . ‖∇ f ‖H1 ( f ∈ H2(R3)).
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Proof. The proof can be found in [18].

Lemma 2.2 (Nonlinear Gronwall Inequality). Let F ∈ C1([1,∞); [0,∞)) satisfy:

d
dt

F(t) ≤ C0t−α0F(t) +

2∑
i=1

Cit−αiF(t)βi + C3tγ2−1,

with initial bound F(1) ≤ K0, where the parameters satisfy:

• α0 > 1, αi < 1, βi < 1 (i = 1, 2)
• γi := 1−αi

1−βi
> 0 (i = 1, 2).

Assume that γ1 ≥ γ2, and then there exists a positive C∗ depending on α0, α1, β,α2, β2,K0,C0,

C1,C2,C3,C4 such that:
F(t) ≤ C∗tγ1 ∀t ≥ 1. (2.4)

Proof. The proof can be found in [19].

Lemma 2.3 (Convolution Estimate). For r1, r2 > 0 and ε > 0, the temporal integral satisfies:∫ t

0
(1 + t − s)−r1(1 + s)−r2ds . (1 + t)−min{r1,r2,r1+r2−1−ε}.

3. Proof of Theorem 1.2

First, we establish the decay properties of solutions in weighted L2
γ norms. To do this, by setting

E(t) := ‖∇%‖2
L2
γ

+ ‖%‖2
L2
γ

+ ‖u‖2
L2
γ

+ ‖B‖2
L2
γ

and making careful energy estimates, we can show that
E(t) satisfies a Gronwall-type inequality (see (3.37) for details). Then, applying Lemma 2.2 for this
inequality and using an interpolation trick, we can prove the following decay rates of solutions in
weighted L2

γ norms, which is stated in the following lemma.

Lemma 3.1. Under the assumptions of Proposition 1.1, there exists T1 > 0 such that the global solution
satisfies:

‖%(t)‖H1
γ

+ ‖u(t)‖L2
γ

+ ‖B(t)‖L2
γ
≤ Ct−

3
4 +γ, ∀γ ≥ 0, t > T1, (3.1)

where C > 0 is time-independent.

Proof. We begin by reformulating the momentum equation through perturbation analysis:

ut − µ∆u − (µ + λ)∇ div u + ∇% −
ϑ2

4
g(%)∇∆%

= G4 +
ϑ2

4

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
,

where the nonlinear term G4 contains critical interactions:

G4 := −u · ∇u + f (%)(µ∆u + (µ + λ)∇ div u)
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− F(%)∇% + g(%)((∇ × B) × B).

Multiplying the system by |x|2γ(%, u, B) and integrating over R3 yields:
1
2

d
dt‖|x|

γ%‖2L2 + 〈|x|2γ%, div u〉 = 〈|x|2γ%,G1〉,
1
2

d
dt

(
‖|x|γu‖2L2 + ϑ2

4 ‖|x|
γ∇%‖2L2

)
+ µ‖|x|γ∇u‖2L2 + (µ + λ)‖|x|γ div u‖2L2

−〈|x|2γ%, div u〉 = 〈|x|2γu,G4〉 +
∑7

i=1 Mi,
1
2

d
dt‖|x|

γB‖2L2 + ν‖|x|γ∇B‖2L2 = 〈|x|2γB,G3〉 + M8.

(3.2)

Thus, by summing up (3.2), we have

1
2

d
dt

∫
R3
|x|2γ(

ϑ2

4
|∇%|2 + |%|2 + |u|2 + |B|2) dx + µ

∫
R3
|x|2γ|∇u|2 dx

+ (µ + λ)
∫
R3
|x|2γ|divu|2 dx + ν

∫
R3
|x|2γ|∇B|2 dx

=

∫
R3
|x|2γ% ·G1 dx +

∫
R3
|x|2γB ·G3 dx +

∫
R3
|x|2γu ·G4 dx

+ M1 + M2 + M3 + M4 + M5 + M6 + M7 + M8

(3.3)

where the functions M1,M2,M3,M4,M5,M6,M7 and M8 are defined by

M1 := −µ
∫
R3
∇(|x|2γ)u · ∇u dx, (3.4)

M2 := −(µ + λ)
∫
R3
∇(|x|2γ)u · divu dx, (3.5)

M3 :=
∫
R3
∇(|x|2γ)u · % dx, (3.6)

M4 := −
ϑ2

4

∫
R3
∇(|x|2γ)4% · u dx, (3.7)

M5 :=
ϑ2

4

∫
R3
∇(|x|2γ)∇% · divu dx, (3.8)

M6 := −
ϑ2

4

∫
R3
|x|2γ∇(% · divu + u · ∇%) · ∇% dx, (3.9)

M7 :=
ϑ2

4

∫
R3
|x|2γ

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
· u dx, (3.10)

and
M8 := ν

∫
R3
∇(|x|2γ)B · ∇B dx. (3.11)

For terms M1–M6 and M8, by virtue of Cauchy’s inequality and Hölder’s inequality, we obtain

|M1| + |M2| . µ‖∇u‖L2
γ
‖u‖L2

γ−1
+ (µ + λ)‖ div u‖L2

γ
‖u‖L2

γ−1

. εµ‖∇u‖2L2
γ

+ ε(µ + λ)‖ div u‖2L2
γ

+ ‖u‖2L2
γ−1
,

(3.12)

Electronic Research Archive Volume 33, Issue 7, 4184–4204.



4191

|M3| . ‖%‖L2
γ
‖u‖L2

γ−1
, (3.13)

|M4| .

∣∣∣∣∣∫
R3
|x|2γ−2 · ∇% · u dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ−1 · ∇% · ∇u dx

∣∣∣∣∣
. ‖∇%‖2L2

γ−1
+ ‖u‖2L2

γ−1
+ ε‖∇u‖2L2

γ
,

(3.14)

|M5| . ‖∇%‖
2
L2
γ−1

+ ε‖∇u‖2L2
γ
, (3.15)

|M6| . ‖∇%‖L∞‖∇(%, u)‖2L2
γ

+ ‖∇2(%, u)‖L3‖∇%‖L2
γ
‖(%, u)‖L6

γ

. ‖∇%‖H2‖∇(%, u)‖2L2
γ

+ ‖∇(%, u)‖H2‖∇%‖L2
γ
(‖∇(%, u)‖L2

γ
+ ‖(%, u)‖L2

γ−1
)

. ‖∇(%, u)‖H2‖∇%‖2L2
γ

+ ‖(%, u)‖2L2
γ−1

+ ε‖∇u‖2L2
γ
,

(3.16)

and
|M8| . ‖∇B‖L2

γ
‖B‖L2

γ−1

. ε‖∇B‖2L2
γ

+ ‖B‖2L2
γ−1
.

(3.17)

where ε is a small positive constant to be determined later. For the term M7 , using integration by parts,
Hölder’s inequality, Cauchy’s inequality, and the Sobolev inequality, we have

|M7| . ‖∇%‖L2
γ
‖∇%‖2L6‖u‖L6

γ
+ ‖∇%‖L2

γ
‖∇2%‖L3‖u‖L6

γ

. ‖∇%‖2L2
γ

+ ‖u‖2L2
γ−1

+ ε‖∇u‖2L2
γ
,

(3.18)

where ε is a sufficiently small constant and we have used the fact that

‖u‖L6
γ
. ‖∇ (|x|γu)‖L2

γ
. ‖∇u‖L2

γ
+ ‖u‖L2

γ−1
. (3.19)

Next, we deal with the term|
∫
R3
|x|2γ% ·G1 dx|. To begin with, we notice that

∣∣∣∣∣∫
R3
|x|2γ% ·G1 dx

∣∣∣∣∣ . ∣∣∣∣∣∫
R3
|x|2γ(u · ∇%) · % dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ%2divu dx

∣∣∣∣∣
: = M9 + M10

(3.20)

For the term M9, by using the Hölder, Cauchy and Sobolev inequalities, we get

|M9| . ‖∇%‖L3‖%‖L2
γ
‖u‖L6

γ

. ‖∇%‖2H1‖%‖
2
L2
γ

+ ‖u‖2L2
γ−1

+ ε‖∇u‖2L2
γ
,

(3.21)

For the term M10, we have from integration by parts that

|M10| =

∣∣∣∣∣∫
R3

u · ∇(|x|2γ%2) dx
∣∣∣∣∣

. ‖∇%‖L3‖%‖L2
γ
‖u‖L6

γ
+ ‖%‖L∞‖%‖L2

γ
‖u‖L2

γ−1

. ‖∇%‖2H1‖%‖
2
L2
γ

+ ‖u‖2L2
γ−1

+ ε‖∇u‖2L2
γ
.

(3.22)
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Substituting the estimates (3.21) and (3.22) into (3.20), we get∣∣∣∣∣∫
R3
|x|2γ% ·G1 dx

∣∣∣∣∣ . ‖∇%‖2H1‖%‖
2
L2
γ

+ ‖u‖2L2
γ−1

+ ε‖∇u‖2L2
γ
. (3.23)

For the term
∣∣∣∣∣∫
R3
|x|2γB ·G3 dx

∣∣∣∣∣, it holds that∣∣∣∣∣∫
R3
|x|2γB ·G3 dx

∣∣∣∣∣ . ∣∣∣∣∣∫
R3
|x|2γB · u · ∇B dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ |B|2 · ∇u dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ |B|2 divu dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γB · u · divB dx

∣∣∣∣∣
: = M11 + M12 + M13 + M14.

(3.24)

By using the Hölder, Cauchy and Sobolev inequalities, we have

|M11| + |M14| . ‖∇B‖L3‖B‖L2
γ
‖u‖L6

γ

. ‖∇B‖2H1‖B‖2L2
γ

+ ‖u‖2L2
γ−1

+ ε‖∇u‖2L2
γ
,

(3.25)

|M12| + |M13| . ‖∇u‖L3‖B‖L2
γ
‖B‖L6

γ

. ‖∇u‖2H1‖B‖2L2
γ

+ ‖B‖2L2
γ−1

+ ε‖∇B‖2L2
γ
.

(3.26)

Then we have ∣∣∣∣∣∫
R3
|x|2γB ·G3 dx

∣∣∣∣∣ . ‖∇(u, B)‖2H1‖B‖2L2
γ

+ ‖(u, B)‖2L2
γ−1

+ ε‖∇(u, B)‖2L2
γ
. (3.27)

Finally, we deal with the term
∣∣∣∣∣∫
R3
|x|2γu ·G4 dx

∣∣∣∣∣. From (3.2) , we have∣∣∣∣∣∫
R3
|x|2γu ·G4 dx

∣∣∣∣∣ . ∣∣∣∣∣∫
R3
|x|2γ(u · ∇u) · u dx

∣∣∣∣∣ + µ

∣∣∣∣∣∫
R3
|x|2γ f (%)∆u · u dx

∣∣∣∣∣
+ (µ + λ)

∣∣∣∣∣∫
R3
|x|2γ f (%)∇divu · u dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γF(%)∇% · u dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γg(%)[B · ∇B −

1
2
∇(|B|2)] · u dx

∣∣∣∣∣ :=
19∑

i=15

Mi.

(3.28)

The terms on right-hand side of the above equation can be estimated as follows. Using the Hölder,
Cauchy and Sobolev inequalities and the uniform bound (1.8), we have

|M15| . ‖∇u‖L3‖u‖L2
γ
‖u‖L6

γ

. ε‖∇u‖2L2
γ

+ ‖u‖2L2
γ−1

+ ‖∇u‖2H1‖u‖2L2
γ
,

(3.29)

and
|M16| . ‖%‖L∞‖∇u‖2L2

γ
+ ‖∇%‖L3‖∇u‖L2

γ
‖u‖L6

γ

+ ‖%‖L∞‖∇u‖L2
γ
‖u‖L2

γ−1

. (‖%‖L∞ + ‖∇%‖L3)
(
‖∇u‖2L2

γ
+ ‖u‖2L2

γ−1

)
. ‖∇%‖H1‖∇u‖2L2

γ
+ ‖u‖2L2

γ−1
.

(3.30)
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Similarly, we also have
|M17| . ‖∇%‖H1‖∇u‖2L2

γ
+ ‖u‖2L2

γ−1
. (3.31)

For M18, and M19, similar to M9, we have

|M18| . ‖∇%‖L3‖%‖L2
γ
‖u‖L6

γ
. ‖∇%‖2H1‖%‖

2
L2
γ

+ ‖u‖2L2
γ−1

+ ε‖∇u‖2L2
γ
, (3.32)

and
|M19| . ‖∇B‖L3‖B‖L2

γ
‖u‖L6

γ
. ε‖∇u‖2L2

γ
+ ‖u‖2L2

γ−1
+ ‖∇B‖2H1‖B‖2L2

γ
. (3.33)

Thus by substituting (3.29)–(3.33) into (3.28) and using the smallness of ε, we get∣∣∣∣∣∫
R3
|x|2γu ·G4 dx

∣∣∣∣∣ . ‖∇(%, u, B)‖H1‖(%, u, B)‖2L2
γ

+ ‖u‖2L2
γ−1

+ ‖∇%‖H1‖∇u‖2L2
γ
. (3.34)

Consequently, plugging the estimates (3.12)–(3.18), (3.23), (3.27), and (3.34) into (3.3) and using the
uniform bound (1.8) and the smallness of ε, we have

1
2

d
dt

(
ϑ2

4
‖∇%‖2L2

γ
+ ‖%‖2L2

γ
+ ‖u‖2L2

γ
+ ‖B‖2L2

γ

)
+ µ‖∇u‖2L2

γ
+ (µ + λ)‖divu‖2L2

γ
+ ν‖∇B‖2L2

γ

. ‖∇(%, u, B)‖H2‖∇%, %, u, B‖2L2
γ

+ ‖%‖L2
γ
‖u‖L2

γ−1
+ ‖(∇%, %, u, B)‖2L2

γ−1

+ ε‖∇u‖2L2
γ

+ εµ‖∇u‖2L2
γ

+ ε(µ + λ)‖ div u‖2L2
γ

+ ε‖∇B‖2L2
γ

+ ‖∇%‖H1‖∇u‖2L2
γ
.

(3.35)

Using the inequality ‖ f ‖L2
γ−1
. ‖ f ‖

γ−1
γ

L2
γ
‖ f ‖

1
γ

L2 , by leveraging the uniform-in-time bounds established in
Proposition 1.1, the assumption of small ε, and a sufficiently large positive time T1, we can derive the
desired conclusion:

d
dt

(
ϑ2

4
‖∇%‖2L2

γ
+ ‖%‖2L2

γ
+ ‖u‖2L2

γ
+ ‖B‖2L2

γ

)
+ µ‖∇u‖2L2

γ
+ (µ + λ)‖divu‖2L2

γ
+ ν‖∇B‖2L2

γ

. ‖∇(%, u, B)‖H2‖∇%, %, u, B‖2L2
γ

+ ‖%‖L2
γ
‖u‖

γ−1
γ

L2
γ
‖u‖

1
γ

L2

+ ‖(∇%, %, u, B)‖
2(γ−1)
γ

L2
γ
‖(∇%, %, u, B)‖

2
γ

L2

(3.36)

for all t ≥ T1. Denoting E(t) := ‖∇%‖2
L2
γ

+ ‖%‖2
L2
γ

+ ‖u‖2
L2
γ

+ ‖B‖2
L2
γ
, we can obtain

d
dt

E(t) ≤ C0t−
5
4 E(t) + C1t−

3
4γ E(t)

2γ−1
2γ + C2t−

3
2γ E(t)

γ−1
γ , (3.37)

where α0 = 5
4 , α1 = 3

4γ , β1 =
2γ−1

2γ , α2 = 3
2γ , β2 =

γ−1
γ

, C3 = 0. To assure that α1 < 1, α2 < 1, we require
γ > 3

2 . Hence, γ1 = 1−α1
1−β1

= 2γ − 3
2 > γ2 = 1−α2

1−β2
= γ − 3

2 . Thus, by the virtue of Lemma 2.2, we deduce
from (3.37) that,

E(t) ≤ Ctγ1 = Ct−
3
2 +2γ. (3.38)

Applying the interpolation inequality into (3.38) yields

‖(∇%, %, u, B)(t)‖L2
γ0
≤ C‖(∇%, %, u, B)(t)‖

1− γ0
γ

L2 ‖(∇%, %, u, B)(t)‖
γ0
γ

L2
γ
≤ Ct−

3
4 +γ0 , (3.39)

for all γ0 ∈ [0, γ], and thus completes the proof. �
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Similarly, we can establish the space-time decay behavior of the first-order spatial derivatives of the
solution.

Lemma 3.2 (First-Order Derivative Decay). Under the assumptions of Proposition 1.1, there exists
T2 > 0 such that the global solution satisfies:

‖∇%(t)‖H1
γ

+ ‖∇u(t)‖L2
γ

+ ‖∇B(t)‖L2
γ
≤ Ct−

5
4 +γ, ∀t > T2, (3.40)

where C > 0 is time-independent.

Proof. Since the proof is similar to that of Lemma (3.1), we omit the details for simplicity. �

Similarly, we have the following space-time decay behavior of the second-order spatial derivatives
of the solution.

Lemma 3.3. Under the assumptions of Proposition 1.1, there exists a large time T3 such that the global
solution (%, u, B) satisfies the estimates

‖∇2%(t)‖H1
γ

+ ‖∇2u(t)‖L2
γ

+ ‖∇2B(t)‖L2
γ
≤ Ct−

7
4 +γ, (3.41)

where C is a positive constant independent of time.

Proof. Since the proof is similar to that of Lemma (3.1), we omit the details for simplicity. �

Next, we establish the space-time decay rate for the third-order spatial derivative of the solution.

Lemma 3.4. Under the assumptions of Proposition 1.1, there exists a large time T4, and then the global
solution (%, u, B) has the estimates

‖∇3%(t)‖H1
γ

+ ‖∇3u(t)‖L2
γ

+ ‖∇3B(t)‖L2
γ
≤ Ct−

9
4 +γ, (3.42)

where C is a positive constant independent of time.

Proof. Since the proof is similar to that of Lemma (3.1), we omit the details for simplicity. �

Finally, we establish the space-time decay rate for the fourth-order spatial derivative of the solution.
Compared to the proofs of Lemmas 3.1–3.4, the new difficulties lie in dealing with the trouble terms
including the highest-order derivatives. We will employ integration by parts, making full use of the
equations and making careful energy estimates to overcome these difficulties.

Lemma 3.5. Under the assumptions of Proposition 1.1, there exists a large time T5, and then the global
solution (%, u, B) has the estimates

‖∇4%(t)‖H1
γ

+ ‖∇4u(t)‖L2
γ

+ ‖∇4B(t)‖L2
γ
≤ Ct−

11
4 +γ, (3.43)

where C is a positive constant independent of time.

Proof. First, we rewrite (2.1)2 as follows:

ut − µ∆u − (µ + λ)∇div u + ∇% −
ϑ2

4
g(%)∇∆% = G4 +

ϑ2

4

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
.
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In the above equation:

G4 = −u · ∇u + f (%) (µ∆u + (µ + λ)∇div u) − F(%)∇% + g(%) ((∇ × B) × B) .

Then multiplying ∇4(2.1)1,∇
4(2.1)2 and ∇4(2.1)3 by |x|2γ∇4%, |x|2γ∇4u and |x|2γ∇4B, respectively, and

integrating over R3, then summing up, we have

1
2

d
dt

∫
R3
|x|2γ(

ϑ2

4
|∇5%|2 + |∇4%|2 + |∇4u|2 + |∇4B|2) dx + µ

∫
R3
|x|2γ|∇5u|2 dx

+ (µ + λ)
∫
R3
|x|2γ|∇4divu|2 dx + ν

∫
R3
|x|2γ|∇5B|2 dx

=

∫
R3
|x|2γ∇4% · ∇4G1 dx +

∫
R3
|x|2γ∇4B · ∇4G3 dx +

∫
R3
|x|2γ∇4u · ∇4G4 dx

+ J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8,

(3.44)

where the functions J1, J2, J3, J4, J5, J6, J7 and J8 are defined by

J1 := −µ
∫
R3
∇(|x|2γ)∇5u · ∇4u dx, (3.45)

J2 := −(µ + λ)
∫
R3
∇(|x|2γ)∇4u · ∇4divu dx, (3.46)

J3 :=
∫
R3
∇(|x|2γ)∇4u · ∇4% dx, (3.47)

J4 := −
ϑ2

4

∫
R3
∇(|x|2γ)∇44% · ∇4u dx, (3.48)

J5 :=
ϑ2

4

∫
R3
∇(|x|2γ)∇5% · ∇4divu dx, (3.49)

J6 := −
ϑ2

4

∫
R3
|x|2γ∇5(% · divu + u · ∇%) · ∇5% dx, (3.50)

J7 :=
ϑ2

4

∫
R3
|x|2γ∇4u∇4

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
dx, (3.51)

and

J8 := ν

∫
R3
∇(|x|2γ)∇4B · ∇5B dx. (3.52)

For terms J1–J5 and J8, by virtue of Cauchy’s inequality and Hölder’s inequality, we obtain

|J1| + |J2| . µ‖∇
5u‖L2

γ
‖∇4u‖L2

γ−1
+ (µ + λ)‖∇4 div u‖L2

γ
‖∇4u‖L2

γ−1

. εµ‖∇5u‖2L2
γ

+ ε(µ + λ)‖∇4 div u‖2L2
γ

+ ‖∇4u‖2L2
γ−1
,

(3.53)

|J3| . ‖∇
4%‖L2

γ
‖∇4u‖L2

γ−1
, (3.54)
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|J4| .

∣∣∣∣∣∫
R3
|x|2γ−2 · ∇5% · ∇4u dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ−1 · ∇5% · ∇5u dx

∣∣∣∣∣
. ‖∇5%‖2L2

γ−1
+ ‖∇4u‖2L2

γ−1
+ ε‖∇5u‖2L2

γ
,

(3.55)

|J5| . ‖∇
5%‖2L2

γ−1
+ ε‖∇5u‖2L2

γ
, (3.56)

|J8| . ‖∇
5B‖L2

γ
‖∇4B‖L2

γ−1

. ε‖∇5B‖2L2
γ

+ ‖∇4B‖2L2
γ−1
.

(3.57)

To bound the term J6, we first notice that

|J6| =

∣∣∣∣∣∣ϑ2

4

∫
R3
|x|2γ∇5(% div u + u · ∇%) · ∇5% dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣ϑ2

4

∫
R3
|x|2γ∇5(% div u) · ∇5% dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣ϑ2

4

∫
R3
|x|2γ∇5(u · ∇%) · ∇5% dx

∣∣∣∣∣∣
:=

2∑
i=1

J6,i.

(3.58)

For the term J6,1, we have

J6,1 .

∣∣∣∣∣∫
R3
|x|2γ% · ∇6u · ∇5%dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇% · ∇5u · ∇5%dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇2% · ∇4u · ∇5%dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇3% · ∇3u · ∇5%dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4% · ∇2u · ∇5%dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇5% · ∇u · ∇5%dx

∣∣∣∣∣
:=

6∑
i=1

Ji
6,1.

(3.59)

By virtue of Hölder’s inequality, Cauchy’s inequality, Lemma 2.1, and Proposition 1.1, we have

|J1
6,1| . t−

13
2 +2γ + t−

5
4 ‖∇4u‖2L2

γ
+ ‖∇%‖H2‖∇5%‖2L2

γ

+ ‖∇5%‖2L2
γ−1

+ ε‖∇5u‖2L2
γ
,

(3.60)

and

|J2
6,1| + |J

6
6,1| . ‖∇(%, u)‖L∞‖∇5(%, u)‖L2

γ
‖∇5%‖L2

γ

. ‖∇(%, u)‖H2‖∇5%‖2L2
γ

+ ε‖∇5u‖2L2
γ
.

(3.61)

Taking the summation of the term J3
6,1 and the term J5

6,1 , we can arrive that

|J3
6,1| + |J

5
6,1| . ‖∇

2(%, u)‖L3‖∇4(%, u)‖L6
γ
‖∇5%‖L2

γ

. ‖∇2(%, u)‖L3

(
‖∇5(%, u)‖L2

γ
+ ‖∇4(%, u)‖L2

γ−1

)
‖∇5%‖L2

γ

. ‖∇(%, u)‖H2‖∇5%‖2L2
γ

+ ‖∇4(%, u)‖2L2
γ−1

+ ε‖∇5u‖2L2
γ
.

(3.62)
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For the fourth term in the right–hand side of (3.59), using integration by parts, Hölder’s inequality,
Cauchy’s inequality, the Sobolev inequality, Lemma 2.1, and Proposition 1.1, we have∣∣∣J4

6,1

∣∣∣ . ‖∇3%‖L3

∥∥∥∇5%
∥∥∥

L2
γ
‖∇3u‖L6

γ

. t−
13
2 +2γ + t−4‖∇5%‖2L2

γ
.

(3.63)

Combining the estimates (3.60)–(3.63) into (3.59), we get∣∣∣J6,1

∣∣∣ . t−
13
2 +2γ + t−

5
4 ‖∇5u‖2L2

γ
+ ‖∇4(∇%, %, u)‖2L2

γ−1
+ ε‖∇5u‖2L2

γ
+ ‖∇(%, u)‖H2‖∇5%‖2L2

γ
. (3.64)

For the term J6,2, we have

J6,2 .

∣∣∣∣∣∫
R3
|x|2γu · ∇6% · ∇5%dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇u · ∇5% · ∇5%dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇2u · ∇4% · ∇5%dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇3u · ∇3% · ∇5%dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4u · ∇2% · ∇5%dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇5u · ∇% · ∇5%dx

∣∣∣∣∣
:=

6∑
i=1

Ji
6,2.

(3.65)

Next, we estimate six terms in the right–hand side of the above equation. For the first term, it follows
from integration by parts that

|J1
6,2| . ‖∇u‖H2‖∇5%‖2L2

γ
+ ‖∇5%‖2L2

γ−1
. (3.66)

Similar to (3.61)–(3.62), we can obtain

|J2
6,2| + |J

6
6,2| . ‖∇(%, u)‖H2‖∇5%‖2L2

γ
+ ε‖∇5u‖2L2

γ
. (3.67)

and

|J3
6,2| + |J

5
6,2| . ‖∇(%, u)‖H2‖∇5%‖2L2

γ
+ ‖∇4(%, u)‖2L2

γ−1
+ ε‖∇5u‖2L2

γ
. (3.68)

For the fourth term in the right–hand side of (3.65), using integration by parts, Hölder’s inequality,
Cauchy’s inequality, the Sobolev inequality, Lemma 2.1, and Proposition 1.1, we have∣∣∣J4

6,2

∣∣∣ . ‖∇3u‖L3

∥∥∥∇5%
∥∥∥

L2
γ
‖∇3%‖L6

γ

. t−
13
2 +2γ + t−4‖∇5%‖2L2

γ
.

(3.69)

Combining the estimates (3.66)–(3.69) into (3.65), we get∣∣∣J6,2

∣∣∣ . ‖∇(%, u)‖H2‖∇5%‖2L2
γ

+ ‖∇4(∇%, %, u)‖2L2
γ−1

+ ε‖∇5u‖2L2
γ

+ t−
13
2 +2γ. (3.70)
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Thus, it is easy to deduce that

|J6| . ‖∇(%, u)‖H2‖∇5%‖2L2
γ

+ ‖∇4(∇%, %, u)‖2L2
γ−1

+ t−
13
2 +2γ

+ t−
5
4 ‖∇5u‖2L2

γ
+ ε‖∇5u‖2L2

γ
.

(3.71)

For the term J7 , using integration by parts, Hölder’s inequality, Cauchy’s inequality and Lemma 2.1,
we have

|J7| =

∣∣∣∣∣∣ϑ2

4

∫
R3
∇(|x|2γ∇4u)∇3

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
dx

∣∣∣∣∣∣
.

∣∣∣∣∣∣ϑ2

4

∫
R3
∇(|x|2γ)∇3

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
∇4u dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣ϑ2

4

∫
R3
|x|2γ∇3

(
|∇%|2∇%

(1 + %)3 −
∇%∆%

(1 + %)2 −
∇% · ∇2%

(1 + %)2

)
∇5u dx

∣∣∣∣∣∣
. ‖∇%‖L∞

∥∥∥∇4u
∥∥∥

L2
γ

∥∥∥∇5%
∥∥∥

L2
γ−1

+
∥∥∥∇2%

∥∥∥
L∞

∥∥∥∇4u
∥∥∥

L2
γ

∥∥∥∇4%
∥∥∥

L2
γ−1

+
∥∥∥∇3%

∥∥∥
L∞

∥∥∥∇4u
∥∥∥

L2
γ

∥∥∥∇3%
∥∥∥

L2
γ−1

+ ‖∇%‖L∞
∥∥∥∇5u

∥∥∥
L2
γ

∥∥∥∇5%
∥∥∥

L2
γ

+
∥∥∥∇2%

∥∥∥
L∞

∥∥∥∇5u
∥∥∥

L2
γ

∥∥∥∇4%
∥∥∥

L2
γ

+
∥∥∥∇3%

∥∥∥
L∞

∥∥∥∇5u
∥∥∥

L2
γ

∥∥∥∇3%
∥∥∥

L2
γ

.
∥∥∥∇2%

∥∥∥
H3

∥∥∥∇4(∇%, %, u)
∥∥∥2

L2
γ

+
∥∥∥∇2%

∥∥∥
H2

∥∥∥∇4(∇%, %)
∥∥∥2

L2
γ−1

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ

+ t−
13
2 +2γ.

(3.72)

For the term |
∫
R3
|x|2γ∇4% · ∇4G1 dx|, we have

∣∣∣∣∣∫
R3
|x|2γ∇4%∇4G1 dx

∣∣∣∣∣ . ∣∣∣∣∣∫
R3
|x|2γ∇4(%divu) · ∇4% dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇4(u · ∇%)∇4% dx

∣∣∣∣∣
:= J9 + J10.

(3.73)

For the term J9, using Hölder’s inequality, we have

|J9| .

∣∣∣∣∣∫
R3
|x|2γ∇4% · ∇u · ∇4% dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇3% · ∇2u · ∇4% dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇2% · ∇3u · ∇4% dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇% · ∇4u · ∇4% dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ% · ∇5u · ∇4% dx

∣∣∣∣∣
:=

5∑
i=1

J9,i.

(3.74)

Using Hölder’s inequality, Cauchy’s inequality, the Sobolev inequality and the lower bound of density,
we can obtain ∣∣∣J9,1

∣∣∣ +
∣∣∣J9,4

∣∣∣ . ‖∇(%, u)‖L∞
∥∥∥∇4(%, u)

∥∥∥
L2
γ

∥∥∥∇4%
∥∥∥

L2
γ

.
∥∥∥∇2(%, u)

∥∥∥
H1

∥∥∥∇4(%, u)
∥∥∥2

L2
γ
,

(3.75)
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4199∣∣∣J9,2

∣∣∣ +
∣∣∣J9,3

∣∣∣ . ∥∥∥∇2(%, u)
∥∥∥

L∞

∥∥∥∇3(%, u)
∥∥∥

L2
γ

∥∥∥∇4%
∥∥∥

L2
γ

.
∥∥∥∇3(%, u)

∥∥∥
H1

∥∥∥∇4%
∥∥∥2

L2
γ

+
∥∥∥∇3(%, u)

∥∥∥
H1

∥∥∥∇3(%, u)
∥∥∥2

L2
γ
,

(3.76)

∣∣∣J9,5

∣∣∣ . ‖%‖L∞ ∥∥∥∇5u
∥∥∥

L2
γ

∥∥∥∇4%
∥∥∥

L2
γ

. ‖∇%‖2H1

∥∥∥∇4%
∥∥∥2

L2
γ

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ
.

(3.77)

Substituting (3.75)–(3.77) into (3.74) and using the uniform bound (1.8), we get

|J9| . ‖∇(%, u)‖H3

∥∥∥∇4(%, u)
∥∥∥2

L2
γ

+
∥∥∥∇3(%, u)

∥∥∥
H1

∥∥∥∇3(%, u)
∥∥∥2

L2
γ

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ
. (3.78)

For the term J10, its method is consistent with that of the term J9, so it is easy to get

|J10| . ‖∇(%, u)‖H3

∥∥∥∇4(∇%, %, u)
∥∥∥2

L2
γ

+
∥∥∥∇3(%, u)

∥∥∥
H1

∥∥∥∇3(%, u)
∥∥∥2

L2
γ
. (3.79)

Substituting (3.78) and (3.79) into (3.73), we get∣∣∣∣∣∫
R3
|x|2γ∇4%∇4G1 dx

∣∣∣∣∣ . ‖∇(%, u)‖H3

∥∥∥∇4(∇%, %, u)
∥∥∥2

L2
γ

+
∥∥∥∇3(%, u)

∥∥∥
H1

∥∥∥∇3(%, u)
∥∥∥2

L2
γ

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ
.

(3.80)

Next, for the term
∣∣∣∫
R3 |x|2γ∇4u∇4G4 dx

∣∣∣, we have∣∣∣∣∣∫
R3
|x|2γ∇4u∇4G4 dx

∣∣∣∣∣ . ∣∣∣∣∣∫
R3
|x|2γ∇4u∇4(u · ∇u) dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4u∇4( f (%)[µ∆u + (µ + λ∇divu)]) dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4u∇4(F(%)∇%) dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4u∇4(g(%)[B · ∇B −

1
2
∇(|B|2)]) dx

∣∣∣∣∣
:=

14∑
i=11

Ji.

(3.81)

By using the Leibniz formula, we have

|J11| .

∣∣∣∣∣∫
R3
|x|2γ∇4u · ∇4u · ∇u dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇3u · ∇2u · ∇4u dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇3u · ∇2u · ∇4u dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇4u · ∇4u · ∇u dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γu · ∇4u · ∇5u dx

∣∣∣∣∣
:=

5∑
i=1

J11,i.

(3.82)
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Using Hölder’s inequality, Cauchy’s inequality, the Sobolev inequality and the lower bound of density,
we can obtain ∣∣∣J11,1

∣∣∣ +
∣∣∣J11,4

∣∣∣ . ∥∥∥∇2u
∥∥∥

H1

∥∥∥∇4u
∥∥∥2

L2
γ
. (3.83)∣∣∣J11,2

∣∣∣ +
∣∣∣J11,3

∣∣∣ . ∥∥∥∇3u
∥∥∥

H1

∥∥∥∇4u
∥∥∥2

L2
γ

+
∥∥∥∇3u

∥∥∥
H1

∥∥∥∇3u
∥∥∥2

L2
γ
, (3.84)∣∣∣J11,5

∣∣∣ . ‖u‖L∞ ∥∥∥∇5u
∥∥∥

L2
γ

∥∥∥∇4u
∥∥∥

L2
γ

. ‖∇u‖2H1

∥∥∥∇4u
∥∥∥2

L2
γ

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ
.

(3.85)

Therefore, we have

|J11| . ‖∇u‖H3

∥∥∥∇4u
∥∥∥2

L2
γ

+
∥∥∥∇3u

∥∥∥
H1

∥∥∥∇3u
∥∥∥2

L2
γ

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ
. (3.86)

Next, we use Hölder’s inequality, Cauchy’s inequality, the Sobolev inequality and mathematical induc-
tion to get

|J12| . ‖∇%‖
2
H1

∥∥∥∇5u
∥∥∥2

L2
γ

+
∥∥∥∇4u

∥∥∥2

L2
γ−1

+
∥∥∥∇2%

∥∥∥2

H1 (
∥∥∥∇4u

∥∥∥2

L2
γ

+
∥∥∥∇3u

∥∥∥2

L2
γ−1

), (3.87)

|J13| . ε
∥∥∥∇5u

∥∥∥2

L2
γ

+
∥∥∥∇4u

∥∥∥2

L2
γ−1

+ ‖∇%‖2H1 (
∥∥∥∇4%

∥∥∥2

L2
γ

+
∥∥∥∇3%

∥∥∥2

L2
γ−1

),
(3.88)

|J14| . ε
∥∥∥∇5u

∥∥∥2

L2
γ

+
∥∥∥∇4u

∥∥∥2

L2
γ−1

+ ‖∇(%, B)‖2H1 (
∥∥∥∇4(%, B)

∥∥∥2

L2
γ

+
∥∥∥∇3(%, B)

∥∥∥2

L2
γ−1

)

+ ‖∇B‖2H1

∥∥∥∇2B
∥∥∥2

L2
γ−2
.

(3.89)

Substituting (3.86)–(3.89) into (3.81), and using Hölder’s inequality, Cauchy’s inequality, and the
Sobolev inequality, we can obtain∣∣∣∣∣∫

R3
|x|2γ∇4u∇4G4 dx

∣∣∣∣∣ . ε
∥∥∥∇5u

∥∥∥2

L2
γ

+
∥∥∥∇4u

∥∥∥2

L2
γ−1

+ ‖∇(%, u, B)‖H3

∥∥∥∇4(%, u, B)
∥∥∥2

L2
γ

+ ‖∇(%, B)‖2H2

∥∥∥∇3(%, u, B)
∥∥∥2

L2
γ−1

+
∥∥∥∇3u

∥∥∥
H1

∥∥∥∇3u
∥∥∥2

L2
γ

+ ‖∇B‖2H1

∥∥∥∇2B
∥∥∥2

L2
γ−2

+ ‖∇%‖2H1

∥∥∥∇5u
∥∥∥2

L2
γ
.

(3.90)

Finally, for the term
∣∣∣∫
R3 |x|2γ∇4B∇4G3 dx

∣∣∣, we have∣∣∣∣∣∫
R3
|x|2γ∇4B∇4G3 dx

∣∣∣∣∣ . ∣∣∣∣∣∫
R3
|x|2γ∇4B∇4(u · ∇B) dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇4B∇4(B · ∇u) dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4B∇4(Bdivu) dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇4B∇4(udivB) dx

∣∣∣∣∣
:=

18∑
i=15

Ji.

(3.91)
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By using the Leibniz formula, we have

|J15| .

∣∣∣∣∣∫
R3
|x|2γ∇4B · ∇4u · ∇B dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇4B · ∇3u · ∇2B dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4B · ∇2u · ∇3B dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3
|x|2γ∇4B · ∇4B · ∇u dx

∣∣∣∣∣
+

∣∣∣∣∣∫
R3
|x|2γ∇4B · u · ∇5B dx

∣∣∣∣∣
:=

5∑
i=1

J15,i.

(3.92)

Using Hölder’s inequality, Cauchy’s inequality, the Sobolev inequality and the lower bound of density,
we can obtain ∣∣∣J15,1

∣∣∣ +
∣∣∣J15,4

∣∣∣ . ∥∥∥∇2(u, B)
∥∥∥

H1

∥∥∥∇4(u, B)
∥∥∥2

L2
γ
, (3.93)

∣∣∣J15,2

∣∣∣ +
∣∣∣J15,3

∣∣∣ . ∥∥∥∇3(u, B)
∥∥∥

H1

∥∥∥∇3(u, B)
∥∥∥2

L2
γ

+
∥∥∥∇3(u, B)

∥∥∥
H1

∥∥∥∇4B
∥∥∥2

L2
γ
, (3.94)

∣∣∣J15,5

∣∣∣ . ‖u‖L∞ ∥∥∥∇5B
∥∥∥

L2
γ

∥∥∥∇4B
∥∥∥

L2
γ

. ‖∇u‖2H1

∥∥∥∇4B
∥∥∥2

L2
γ

+ ε
∥∥∥∇5B

∥∥∥2

L2
γ
.

(3.95)

Therefore, we have

|J15| . ‖∇(u, B)‖H3

∥∥∥∇4(u, B)
∥∥∥2

L2
γ

+
∥∥∥∇3(u, B)

∥∥∥
H1

∥∥∥∇3(u, B)
∥∥∥2

L2
γ

+ ε
∥∥∥∇5B

∥∥∥2

L2
γ
. (3.96)

Similar to the J15, we have

|J16| , |J17| . ‖∇(u, B)‖H3

∥∥∥∇4(u, B)
∥∥∥2

L2
γ

+
∥∥∥∇3(u, B)

∥∥∥
H1

∥∥∥∇3(u, B)
∥∥∥2

L2
γ

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ

(3.97)

and

|J18| . ‖∇(u, B)‖H3

∥∥∥∇4(u, B)
∥∥∥2

L2
γ

+
∥∥∥∇3(u, B)

∥∥∥
H1

∥∥∥∇3(u, B)
∥∥∥2

L2
γ

+ ε
∥∥∥∇5B

∥∥∥2

L2
γ
. (3.98)

Substituting (3.96)–(3.98) into (3.91), we get∣∣∣∣∣∫
R3
|x|2γ∇4B∇4G3 dx

∣∣∣∣∣ . ‖∇(u, B)‖H3

∥∥∥∇4(u, B)
∥∥∥2

L2
γ

+
∥∥∥∇3(u, B)

∥∥∥
H1

∥∥∥∇3(u, B)
∥∥∥2

L2
γ

+ ε
∥∥∥∇5B

∥∥∥2

L2
γ

+ ε
∥∥∥∇5u

∥∥∥2

L2
γ
.

(3.99)

In the end, substituting (3.53)–(3.57), (3.71), (3.72), (3.80), (3.90) and (3.99) into (3.44), and using the
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uniform bound and the smallness of ε, we can conclude that

1
2

d
dt

(
ϑ2

4
‖∇5%‖2L2

γ
+ ‖∇4%‖2L2

γ
+ ‖∇4u‖2L2

γ
+ ‖∇4B‖2L2

γ

)
+ µ‖∇5u‖2L2

γ

+ (µ + λ)‖∇4divu‖2L2
γ

+ ν‖∇5B‖2L2
γ

. ‖∇(%, u, B)‖H3

∥∥∥∇4(∇%, %, u, B)
∥∥∥2

L2
γ

+
∥∥∥∇2%

∥∥∥
H3

∥∥∥∇4(∇%, %, u)
∥∥∥2

L2
γ

+ ‖∇4%‖L2
γ
‖∇4u‖L2

γ−1

+
∥∥∥∇4(∇%, %, u, B)

∥∥∥2

L2
γ−1

+ ‖∇%‖H1

∥∥∥∇5u
∥∥∥2

L2
γ

+ εµ‖∇5u‖2L2
γ

+ ε(µ + λ)‖∇4 div u‖2L2
γ

+ t−
5
4 ‖∇5u‖2L2

γ
+ t−

13
2 +2γ + ε‖∇5u‖2L2

γ
+ ε‖∇5B‖2L2

γ
+ ‖∇(%, B)‖2H2

∥∥∥∇3(%, u, B)
∥∥∥2

L2
γ−1

+
∥∥∥∇3(%, u, B)

∥∥∥
H1

∥∥∥∇3(%, u, B)
∥∥∥2

L2
γ

+ ‖∇B‖2H1

∥∥∥∇2B
∥∥∥2

L2
γ−2
.

(3.100)

Using the inequality ‖∇k f ‖L2
γ−1
≤ ‖∇k f ‖

γ−1
γ

L2
γ
‖∇k f ‖

1
γ

L2 , and by leveraging the uniform-in-time bounds es-
tablished in Proposition (1.1), the assumption of small ε, and a sufficiently large positive time T5, we
can derive the desired conclusion:

d
dt

(
ϑ2

4
‖∇5%‖2L2

γ
+ ‖∇4%‖2L2

γ
+ ‖∇4u‖2L2

γ
+ ‖∇4B‖2L2

γ

)
+ µ‖∇5u‖2L2

γ

+ (µ + λ)‖∇4divu‖2L2
γ

+ ν‖∇5B‖2L2
γ

. ‖∇(%, u, B)‖H3

∥∥∥∇4(∇%, %, u, B)
∥∥∥2

L2
γ

+
∥∥∥∇2%

∥∥∥
H3

∥∥∥∇4(∇%, %, u)
∥∥∥2

L2
γ

+ ‖∇4%‖L2
γ
‖∇4u‖

γ−1
γ

L2
γ
‖∇4u‖

1
γ

L2 +
∥∥∥∇4(∇%, %, u, B)

∥∥∥ 2(γ−1)
γ

L2
γ

+
∥∥∥∇4(∇%, %, u, B)

∥∥∥ 2
γ

L2 + t−
13
2 +2γ

(3.101)

for all t ≥ T5. Then, we are able to define the temporal energy functional as follows:

Ẽ(t) := ‖∇5%‖2L2
γ

+ ‖∇4%‖2L2
γ

+ ‖∇4u‖2L2
γ

+ ‖∇4B‖2L2
γ
. (3.102)

By direct calculation, we can obtain

d
dt

Ẽ(t) ≤ C0t−
5
4 Ẽ(t) + C1t−

11
4γ Ẽ(t)

2γ−1
2γ + C2t−

11
2γ Ẽ(t)

γ−1
γ + C3t−

13
2 +γ. (3.103)

Here α̃0 = 5
4 , α̃1 = − 11

4γ , β̃1 =
2γ−1

2γ , α̃2 = 11
2γ , β̃2 =

γ−1
γ

. To assure that α̃1 < 1, α̃2 < 1, we require γ > 11
2 .

Hence, γ̃1 = 1−α̃1
1−β1

= 2γ − 11
2 > γ̃2 = 1−α̃2

1−β2
= γ − 11

2 . Thus, with the help of Lemma 2.2, we deduce from
(3.272) that

Ẽ(t) ≤ Ctγ̃1 = Ct−
11
2 +2γ. (3.104)

Applying the interpolation inequality into (3.273) yields

‖∇4(∇%, %, u, B)(t)‖L2
γ0
≤ C‖∇4(∇%, %, u, B)(t)‖

1− γ0
γ

L2 ‖∇
4(∇%, %, u, B)(t)‖

γ0
γ

L2
γ
≤ Ct−

11
4 +γ0 , (3.105)

for all γ0 ∈ [0, γ], and this completes the proof. �
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