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Abstract: Bird sound recognition has important applications in bird monitoring and ecological 
protection. However, in complicated environments, noise and insufficient sample data are the major 
factors affecting recognition accuracy. We proposed a bird sound recognition method based on a 
developed transfer deep residual shrinkage network. First, a deep residual shrinkage network with 
noise resistance was constructed based on the structural characteristics of the residual shrinkage 
module, multi-scale operations, and the characteristics of bird sound Mel spectrograms. Then, the deep 
residual shrinkage network was pre-trained using a bird sound dataset, applying an unfreezing fine-
tuning strategy, to mitigate the impact of insufficient training data. A transfer learning alleviated the 
problem of data scarcity by utilizing pre-trained models, while the deep residual shrinkage network 
enhanced the performance of the model in a noisy environment by optimizing the network structure. 
Experimental results showed that this method achieves high recognition accuracy under noise and 
small data sets. It has advantages over the compared methods and is suitable for ecological monitoring 
fields such as bird population monitoring. The method has good application prospects. 

Keywords: bioacoustics; bird sound recognition; audio signal processing; machine learning; deep 
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1. Introduction 

As an important part of the ecosystem, birds play a vital role in maintaining ecological balance 
and promoting biodiversity [1,2]. Bird sound, as the main way of communication, reflects the species, 
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activity status, and habitat of birds. With the increasing demand for bird monitoring, previous bird 
monitoring methods, such as manual observation and infrared camera monitoring, have problems such 
as high costs, low monitoring efficiency, and data lag. Automatic recognition methods based on bird 
sounds have become a hot research topic. It can monitor the species and number of birds efficiently 
with low cost, especially in complex ecological environments. 

With the outstanding performance of deep learning [3–6], researchers have drawn on deep 
learning methods to process bird sounds. Sprengel constructed a convolutional neural network suitable 
for birdsong recognition using five convolutional layers and extracted spectrograms from birdsong 
signals [7]. Rajan extracted Mel spectrograms from birdsong signals and input them into Visual 
Geometry Group Network (VGGNet). Based on the Xeno-Canto dataset, the researchers achieved an 
average F1 score of 0.65 [8]. Saad used ResNet50 and MobileNetv1 as birdsong classification and 
recognition models, and extracted STFT (short-time Fourier transform) spectrograms and MFCC (Mel 
frequency cepstrum coefficient) from birdsong signals with a duration of 1 second as model inputs. 
They conducted experiments based on 10 bird song sounds in the Xeno-Canto dataset [9]. However, 
bird sound recognition technology faces some challenges: First, data in the wild are usually interfered 
by a lot of background noise; second, the collection of birdsong sample data is often limited by time 
and space, resulting in insufficient sample data; and finally, existing recognition methods perform 
poorly when dealing with noisy and small sample data. Many scholars have conducted relevant 
research. Chen studied a noise-resistant bird sound recognition system based on time-frequency texture 
features and random forest classifiers, but due to insufficient sample data, the experiment was difficult 
to carry out on a large scale [10]. Therefore, how to effectively improve recognition accuracy in a 
noisy environment, solve the problem of data scarcity, and improve the robustness of the model has 
become an urgent problem to be solved in the field of bird sound recognition. 

To address the problem of excessive noise in birdsong signals and insufficient sample data during 
field monitoring, a transfer deep residual shrinkage network (TDRSN) was proposed for bird sound 
recognition. By introducing transfer learning and a deep residual shrinkage network, the recognition 
accuracy and robustness were effectively improved. Transfer learning alleviates the problem of data 
scarcity by utilizing pre-trained models, while the deep residual shrinkage network enhances the 
performance of the model in a noisy environment by optimizing the network structure. The TDRSN 
aims to improve the accuracy of bird sound recognition, especially in the case of noise interference 
and scarce sample data. 

2. Transfer deep residual shrinkage network 

In TDRSN, first, a deep residual shrinkage network with noise resistance was constructed based 
on the structural characteristics of the residual shrinkage module, multi-scale operations, and the 
characteristics of birdsong Mel spectrograms. Then, the deep residual shrinkage network was pre-
trained using a birdsong dataset, and applying an unfreezing fine-tuning strategy, to mitigate the impact 
of insufficient training data. 

2.1. Residual shrinkage module 

The residual shrinkage module added a soft threshold processing function and a threshold 
acquisition subnetwork to a standard residual module, which is the fundamental module for the residual 



4137 

Electronic Research Archive  Volume 33, Issue 7, 4135-4150. 

network [11,12]. The network structure is shown in Figure 1. Global average pooling (GAP) represents 
global average pooling, FC represents the fully connected layer, and each channel is given an 
independent threshold. BN represents batch normalization, which converts the data into data with a 
mean of 0 and a variance of 1. 
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Figure 1. The residual shrinkage module. 

The soft threshold processing is a key step in many signal denoising [13–15] and signal processing 
algorithms [16–18], especially those based on the wavelet transform method [19,20]. Unlike the ReLU 
(rectified linear unit) activation function [21], which directly sets negative values to zero, soft threshold 
processing removes noise with amplitude close to zero and retains the feature data of negative values, 
thereby better retaining the effective signal. The soft threshold function is as follows: 

0

x x
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x x
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                                  (1) 

where x is the input feature, y is the output feature, and τ is the threshold. τ is automatically learned 
through the threshold acquisition sub-network. The process is to take the absolute value of the feature 
map x, and pass it through GAP, BN (batch normalization), ReLU, and two fully connected layers. The 
final scaling parameter α was calculated using the Sigmoid function. The Sigmoid function is as follows: 

1

1 ze
 


                                  (2) 

In the formula, z and α are the characteristic and scaling parameters of the neuron, respectively, 
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and the calculation formula of the threshold is as follows: 

 average                                      (3) 

Here, average( ) represents the average operation. 

2.2. Mel spectrograms and birdsong signal processing [1] 

The Mel spectrogram was calculated using Mel filters. Mel filters were defined as 
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where m is the filter serial number, M is the number of filters used, H m(k) is the m-th filter in the filter 
bank, f1 (m), f1 (m-1), and f1 (m+1) are the center frequencies of the m-th, m-1st, m+1 filters in the 
first filter bank, fs is the sampling frequency, fh is the highest frequency within the frequency range of 
the sound signal, fl is the lowest frequency within the frequency range of the sound signal, 𝐹ሺ𝑧ሻ ൌ
1127 ∗ 𝑙𝑛ሺ 1 ൅ 𝑧/700ሻ, and 𝐹ିଵሺ𝑧ሻ ൌ 700ሺ𝑒௭/ଵଵଶହ െ 1ሻ. 

In this study, the sampling frequency was 8000 Hz, the minimum signal frequency was 0 Hz, the 
maximum signal frequency was 4000 Hz, M was 24, and the Fourier transform point number was 1024. 

A segment of the original signal was divided into pieces of 25 ms, and the first 5 ms of each piece 
coincided with the last 5 ms of the last piece. When each piece has N data, it was augmented by 

𝑑ሺ𝑛ሻ ൌ 𝑑ଵሺ𝑛ሻ െ 0.97𝑑ଵሺ𝑛 െ 1ሻ                          (5) 

Here, 0 ≤ n ≤ N-1, 𝑑ଵሺ𝑛ሻ is the nth data of the piece (n = 0, 1, 2, ..., N-1), 𝑑ሺ𝑛ሻ is the nth data of the 
enhanced signal, and n is the serial number of the data. 

To gain the frequency, a discrete Fourier transform was used on d, 

𝐷ሺ𝑘ሻ ൌ ∑ 𝑑ሺ𝑛ሻ𝑒
ష೔మഏ೙ೖ

ಿேିଵ
௡ୀ଴                           (6) 

where, 0 ≤ n ≤ N-1, 0 ≤ k ≤ N-1, i is an imaginary unit, 𝑖 ൌ √െ1, d (n) is the n-th data of the signal, 

and D (k) is the k-th data of the spectrum of the signal. 
The power spectrum P was calculated by 

𝑃ሺ𝑘ሻ ൌ |𝐷ሺ𝑘ሻ|ଶ                               (7) 

where P (k) represents the k-th data in the power spectrum of the sound signal, 0 ≤ k ≤ N-1. 

2.3. Deep residual shrinkage network 

According to the characteristics of the residual shrinkage module that can highlight both 
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important features and reduce noise, a deep residual shrinkage network (DRSN) suitable for the task 
of bird sound recognition was constructed. The structure of DRSN is shown in Table 1. The input size 
of the network was 224-by-224-by-3. Convolution_1 down-sampled the Mel-speech spectrogram of 
bird sound through convolution with a stride of 2, padding of 3, and 64 convolution kernels. 
Convolution_2 captured features and noise information of different scales through multi-scale operation. 
Then, 15 residual shrinkage modules were connected in series to extract deep features of bird sound 
and reduce noise-related information. Convolution_2 included four branches. The first branch used 
two 3-by-3 convolution layers to simulate 5-by-5 convolutions, the second branch used 3-by-3 
convolutions, the third branch used 3-by-3 pooling, and the fourth branch used 1-by-1 convolution. 
The stride of various operations in the four branches was 1. Each branch modeled the features and 
noise information of bird sound through operations of different scales [22]. The input and output sizes 
of the process of Convolution_3 remained unchanged, and the step size of the first residual shrinkage 
module in Convolution_4, Convolution_5, and Convolution_6 was 2 to achieve down-sampling of input 
features. Finally, the network was classified and recognized through Softmax. 

Table 1. DRSN structure. 

Layer Name parameter Output size 
Convolution_1 7 × 7, S = 2 112 × 112 × 64 
Max pooling 3 × 3, S = 2 56 × 56 × 64 

Convolution_2 
1×1

1×1

1×1
3×3

3×3

1×1

3×3

Pool

1×1 56 × 56 × 64 

Convolution_3 ×2

3×3
3×3 
FC 64
FC 64

56 × 56 × 64 

Convolution_4 ×4

3×3
3×3 

FC 128
FC 128

28 × 28 × 128 

Convolution_5 ×6

3×3
3×3 

FC 256
FC 256

14 × 14 × 256 

Convolution_6 ×3

3×3
3×3 

FC 512
FC 512

7 × 7 × 512 

Global average pooling 7 × 7 1 × 1 × 512 
Classification layer 23D 1 × 1 × 23 
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2.4. Transfer learning 

Transfer learning [23] is a cross-task domain learning method that aims to efficiently transfer 
information from the source domain to the target domain. According to the method, transfer learning 
can be divided into domain adaptation, feature extraction, and fine-tuning methods. In the actual bird 
sound recognition, it is usually impossible to collect a large number of samples, and fewer samples 
will lead to poor network training results, and also lead to unsatisfactory recognition results. To solve 
the above problems, we adopted a transfer learning method based on fine-tuning. The process is shown 
in Figure 2. The Xeno-Canto dataset was divided into two datasets, Xeno-Canto-A and Xeno-Canto-
B. Then, the Xeno-Canto-A dataset was used as a pre-training dataset to pre-train the deep residual 
shrinkage network, and then fine-tuned on the training set divided by the Xeno-Canto-B dataset. The 
Xeno-Canto-B dataset included Dusky Warbler, Woodlark, Great Cuckoo, Skylark, Eurasian Robin, 
Wren, Gray Dove, Black Woodpecker, Great Reed Warbler, House Swallow, Jackdaw, Night Heron, 
Smith's Thrush, House Sparrow, Purple-winged Starling, Hooded Crow, Eurasian Magpie, Wood 
Warbler, Blue-throated Robin, Ghost Owl, Ochre-tailed Robin, Mute Swan, and Red-collared Green 
Parrot. The fine-tuning-based transfer learning method unfroze some layers of the pre-trained model. 
The parameters of these unfrozen layers can be fixed or fully unfrozen to meet the needs of specific 
tasks. Fine-tuning learning allows the use of common features of pre-trained models, speeding up the 
training process while reducing the risk of overfitting on the target task, especially when the amount 
of data is small. 

Xeno-Canto-A

DRSN

Xeno-Canto-B

Pre‐trained DRSN

Transfer 
Learning

Task Task

Xeno-Canto 
Dataset

 

Figure 2. Transfer learning based on fine-tuning. 

2.5. The framework of TDRSN 

Different from the traditional fine-tuning transfer learning method, by training on the source 
domain, the model can learn the audio features in the dataset. These features are not only highly 
versatile, but also can effectively capture low-level features (such as frequency and amplitude) and 
high-level features (such as audio mode, timbre, etc.) in audio data. The purpose of this stage is to 
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initialize the parameters of the network through transfer learning so that the model can converge 
quickly in the target task with less training data. 

After completing the pre-training, we migrated the pre-trained model to the Xeno-Canto-B dataset 
and fine-tuned it on its training set. The key to the fine-tuning stage is to refine the pre-trained model 
to adapt to the specific tasks and data distribution of the Xeno-Canto-B dataset. During the fine-tuning 
process, the parameters of the low-level network were usually frozen because the low-level features 
(such as the fundamental frequency and amplitude of the audio) have good versatility in the source 
and target tasks, while the high-level network will be adjusted according to the needs of the target task. 
However, the target task and the source task in this study were the same. Therefore, not freezing the 
low-level parameters and enabling them to be fine-tuned according to the target task can make the 
model better adapt to the details of the target task, thereby improving performance. This strategy 
enables the target task to be effectively trained in a short time, avoiding the huge computational 
overhead of training from scratch. 

By combining transfer learning with deep residual shrinkage network, we effectively utilized the 
Xeno-Canto-A dataset, reduced the demand for the dataset, and improved the generalization ability of 
the model. Transfer learning can significantly reduce the target task dependence on a large amount of 
labeled data, while the residual connection structure of the deep residual shrinkage network ensured 
that the gradient was effectively propagated in the deep network, avoiding the gradient vanishing 
problem. This combination not only sped up the training process of the target task, but also improved 
the model’s robustness to noise and feature extraction capabilities. 

Table 2. Class and quantity of birds. 

Class quantity type quantity 
Dark Green Warbler 866 Smith’s Night Thrush 816 
Lin Bailing 833 House Sparrow 1053 
Rhododendron 1004 Purple-winged Starling 861 
lark 861 Hooded Crow 879 
Eurasian Robin 788 Eurasian magpie 821 
Wren 917 Lin Liuying 898 
Gray dove 935 Bluethroat Robin 851 
Black Woodpecker 791 Ghost Owl 825 
Great Reed Warbler 913 Ochre Redstart 916 
swallow 997 Mute swan 833 
Jackdaw 847 Red collared parrot 804 
Night Heron 1098   

3. Experiments 

3.1. Dataset 

The birdsong datasets used in the experiments of this study are all from the Xeno-Canto world 
wild bird sound public dataset (https://xeno-canto.org/). Xeno-Canto dataset is a large-scale bird song 
dataset, in which all audio data is recorded and uploaded by various public welfare organizations and 
bird enthusiasts around the world using professional equipment in natural environments such as forests, 
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grasslands, wetlands, and lakes. These audio data are unprocessed, contain environmental noise, and 
have different durations. Experimental testing using this dataset can more accurately reflect the 
recognition performance of bird song recognition methods in natural environments. Due to its high 
audio quality and easy access, many bird song researchers both domestically and internationally have 
chosen this dataset as their experimental dataset. 

When applying transfer learning, the dataset was first divided into two subsets: Xeno-Canto-A 
and Xeno-Canto-B. The Xeno-Canto-A dataset was used as the source domain to pre-train the DRSN. 
After completing the pre-training, we migrated the pre-trained model to the Xeno-Canto-B dataset and 
the fine-tuned model. The class distribution is shown in Table 2. 

3.2. Experimental setting 

The experiments were conducted under the Ubuntu operating system, and the GPU model of the 
hardware device was NVIDIA RTX 2080Ti, the network model was built using the TensorFlow 
framework, and the programming language was Python. The test process of the method in this study 
is shown in Figure 3. First, a DRCN was built according to the description of this study, and then the 
Mel spectrogram extracted from the Xeno-Canto-A dataset was input into the network for pre-training. 
After the pre-training was completed, no layer of the network was frozen, and then the network was 
fine-tuned using the divided training set, and the initial learning rate was set to 0.0001. Except for the 
comparative experiment based on the sub-dataset, other experiments were carried out using a five-fold 
cross-validation method, and the five sample groups were named A, B, C, D, and E. In order to analyze 
the TDRSN from multiple aspects, 4 experiments were set up to verify the method in this study. The 
four experiments focused on effectiveness experiments, comparative experiments with different 
acoustic features, noise experiments, and comparative experiments with other methods. In the four 
experiments, except for the comparative experiments of different acoustic features, the network input 
features of the other experiments were all Mel spectrograms. The confidence level was 95%. 

Building a Deep 
Residual Contraction 

Network

Deep residual 
network pre‐training 

completed
Test Results

Pre‐training Fine‐tuning

test  

Figure 3. Test processing. 

3.3. Evaluation metrics 

Accuracy and F1-score were used to evaluate the recognition performance of a method. In binary 
classification tasks, the calculation of accuracy and F1-score involved four sample categories. The first 
category was called True Positive (TP) with a true category of 1 and a predicted category of 1. The 
second category was called True Negative (TN) with a true category of 0 and a predicted category 
of 0. The third category was called False Positive (FP) with a true category of 0 and a predicted 
category of 1. The fourth category was called False Negative (FN) with a true category of 1 and a 
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predicted category of 0. 
The accuracy represents the proportion of correctly predicted samples to the total number of 

samples. The calculation formula is 

TP TN
Accurctcy

TP TN FP FN




  
                               (8) 

The F1-score evaluation for imbalanced classification tasks is more reliable because it strikes a 
balance between accuracy and recall. The calculation formula is 

2 Recall Precision
F1 score

Recall Precision

 
 


                               (9) 

4. Results and discussion 

To explore the influence of different acoustic features on the recognition effect of the TDRSN 
method, the spectrogram and Mel spectrogram were used as network inputs, respectively, and 
experiments were first conducted based on the Xeno-Canto-B dataset. The extraction process of the 
spectrogram and the Mel spectrogram was similar. The extraction process of the two acoustic features 
is shown in Figure 4. Taking the gray dove as an example, the spectrogram of the gray dove sound and 
its Mel spectrogram are shown in Figure 5. The experiment first extracted spectrograms and Mel 
spectrograms from the Xeno-Canto-A dataset and the Xeno-Canto-B dataset, respectively, and then 
pre-trained the network using the bird sound features extracted from the Xeno-CantoA dataset. After 
the pre-training was completed, no layer of the network was frozen, and the network was fine-tuned 
using the training set divided by the Xeno-Canto-B dataset. The experimental results are shown in 
Table 3. From the experimental results, we found that the accuracy of the Mel-spectrogram was higher 
than that of the spectrogram. This was because the frequency resolution allocation methods of the Mel-
spectrogram and the spectrogram are relatively different. The frequency resolution of the spectrogram 
is uniform in each frequency band, while the Mel-spectrogram, based on the spectrogram, readjusts 
the frequency axis and allocates higher frequency resolution to the lower frequency part, while the 
energy of the birdsongs is mainly distributed in the low-frequency part. All the following experiments 
used a Mel spectrogram. 

Table 3. Comparative experimental results of different acoustic characteristics. 

Acoustic characteristics Accuracy (%) 
Spectrogram 86.38 
Mel Spectrogram 87.51 

To evaluate the performance of the TDRSN and verify its effectiveness, it was experimented with 
based on the Xeno-Canto-B dataset. The accuracy and F1-score were used to evaluate the recognition 
performance. The average F1-score values of bird sound recognition are shown in Table 4, and the 
accuracy is shown in Table 5. The experimental results showed that in the 5 tests, the average F1-score 
of 23 bird songs was not less than 0.7844, of which the average F1-score of 22 bird calls was higher 
than 0.8, and the average F1-score of 6 bird calls was higher than 0.9. The average accuracy rate 
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reached 87.51%, which showed that the TDRSN method could identify bird songs more efficiently. 
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windowing
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Mel filter bank filtering

Mel Spectrogram

 

Figure 4. Extraction process of two acoustic features. 

 

Figure 5. The sound of a gray dove and its two acoustic characteristics. 

Birdsong signals collected in natural environments usually carry environmental noise of varying 
sizes. To test the recognition effect of the designed method in this study in noises of different intensities, 
an anti-noise experiment was designed based on the Xeno-Canto-B dataset. We first added Gaussian 
white noise of different intensities to all bird sound signals in the Xeno-Canto-B dataset to control the 
signal-to-noise ratio (SNR), then extracted the Mel spectrograms from the bird sound signals with 
added noise, and finally input these Mel spectrograms into the network for training and testing. Taking 
the gray dove as an example, the gray dove sound signals with different SNRs and their Mel 
spectrograms are shown in Figure 6. From the first sub-image, it can be seen that, although the original 
gray dove sound signal contained a certain amount of noise, the noise energy was small, so the Mel 
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spectrogram had more obvious features near 500 Hz. As the signal-to-noise ratio decreased, the 
brightness and darkness difference of the Mel spectrogram at different positions gradually decreased, 
and the texture of the sound features became blurred, which increased the difficulty of network 
classification and recognition of bird sounds. We tested the recognition effects of two methods under 
six different signal-to-noise ratios, namely, improved DRSN and the TDRSN. The experimental results 
are shown in Figure 7. From the experimental results, with the decrease of the SNR, the accuracy of 
both methods decreased. Under the signal-to-noise ratios of -2, 0, 2, 4, 6, and 8 dB, the accuracy of 
TDRSN was higher than that of DRSN, showing better robustness and accuracy. 

 

Figure 6. The sound signals of a gray dove and their Mel spectrograms at different SNRs. 

 

Figure 7. Noise test results. 
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To further verify the performance of the TDRSN method, it was compared with several other 
current methods, including EMSCNN [24], AlexNet [25], VGGNet [8], and DRSN, on the Xeno-
Canto-B dataset, and the experimental results are shown in Table 6. From the experimental results, we 
found that the average recognition accuracy achieved by the TDRSN was 2.14% higher than that of 
DRSN, 5.24% higher than that of EMSCNN, 16.83% higher than that of AlexNet, and 13.48% higher 
than that of VGGNet, which proved that transfer learning is helpful to improve the recognition 
accuracy of birdsong. This test once again verified the effectiveness and advancement of the 
TDRSN method. 

Table 4. Average F1-score of birds. 

Type F1-score Type F1-score 
Dark Green Warbler 0.9150 Smith’s Night Thrush 0.9162 
Lin Bailing 0.8647 House Sparrow 0.9074 
Rhododendron 0.9529 Purple-winged Starling 0.8208 
lark 0.9038 Hooded Crow 0.8693 
Eurasian Robin 0.8498 Eurasian magpie 0.8856 
Wren 0.8418 Lin Liuying 0.8348 
Gray dove 0.8623 Bluethroat Robin 0.8693 
Black Woodpecker 0.8776 Ghost Owl 0.9301 
Great Reed Warbler 0.8857 Ochre Redstart 0.8389 
swallow 0.8680 Mute swan 0.8883 
Jackdaw 0.7844 Red collared parrot 0.8800 
Night Heron 0.8627   

Table 5. Accuracy. 

Training set / test set Accuracy (%) 
A, B, C, D/E 88.12 
A, B, C, E/D 87.46 
A, B, D, E/C 86.58 
A, C, D, E/B 88.47 
B, C, D, E/A 86.92 
Average 87.51 

To verify the recognition performance of the TDRSN in a small data set, the Xeno-Canto-B data 
set was randomly divided into 10 sub-datasets. The number of fragment samples in 7 sub-datasets 
was 2041, and the number of fragment samples in 3 sub-datasets was 2040. 

The 10 Xeno-Canto-B sub-datasets were randomly divided into training sets and test sets at a 
ratio of 4:1. All methods were trained and tested on the 10 Xeno-Canto sub-datasets, respectively. The 
final recognition accuracy was the average of the 10 Xeno-Canto sub-datasets. The comparative 
experimental results are shown in Table 7. Comparing Tables 6 and 7, after the number of samples was 
reduced to one-tenth of the original, the accuracy of all methods decreased. This was because the 
reduction in the number of samples led to a poor network training effect and could not be well 
generalized to new bird sound data. Although the accuracy of all methods decreased, the degree of 
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accuracy decrease of different methods was different. Alex network (AlexNet), VGGNet, and DRSN 
were more affected by insufficient sample data due to their large number of layers and large number 
of parameters. Ensemble multi-scale convolutional neural network) (EMSCNN) was less affected by 
insufficient sample data due to its small number of layers and parameters. After the number of samples 
was reduced, the accuracy achieved by DRSN was 69.02%, which was more than ten percentage points 
lower than before the number of samples was reduced. The accuracy of the TDRSN method in the 
Xeno-Canto-B sub-dataset reached 81.64 %, the highest value among all methods, which was about 
six percentage points lower than before the sample size reduction. The experimental results of the 
above two methods were quite different. This was because the Mel spectrograms of different types of 
bird calls had common features. DRSN learned these common features in the pre-training stage. In the 
fine-tuning stage, only a small amount of sample data was needed to adjust the network parameters to 
achieve better recognition results. The above experimental results proved that transfer learning is 
helpful in solving the problem of insufficient sample data. 

Table 6. Comparative experimental results based on the Xeno-Canto dataset. 

Method Accuracy (%) 
EMSCNN [24]  82.27 
AlexNet [25] 70.68 
VGGNet [8] 74.03 
DRSN 85.37 
TDRSN 87.51 

Table 7. Comparative experimental results of Xeno-Canto-B sub-dataset. 

Method Accuracy (%)
EMSCNN 73.10
AlexNet 53.22
VGGNet 51.76
DRSN 69.06
TDRSN 81.64

In terms of network performance, we compared TDRSN with DRSN in quantitative analysis. The 
training time of DRSN was about 2.58 h, and that of TDRSN was 3.76 h in our computer. After 
performing DRSN training, TDRSN needed one more training round based on fine-tuning. Therefore, 
its training time was longer that DRSN. The parameter count of the TDRSN was the same as the DRSN. 
The inference times of the two methods in the tests were in the sub-second range, and there was no 
difference in actual use. Considering the improvement of the accuracy, it was worth it. Since some 
embedded systems now support DRSN, the TRDSN is also possible for embedded deployment in 
wildlife monitoring devices. 

5. Conclusions 

To reduce the impact of noise and insufficient sample data, we proposed a new network based on 
the residual shrinkage module and multi-scale operation. Using the non-freezing fine-tuning strategy, 
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it achieved an accuracy of 87.51% in the Xeno-Canto-B dataset and 81.64% in the Xeno-Canto-B sub-
dataset, which was divided from the Xeno-Canto-B dataset. In the Xeno-Canto-B dataset, we 
compared the recognition effects of the spectrogram and the Mel spectrogram, proved the effectiveness 
of the Mel spectrogram, tested the recognition effects of various methods under different signal-to-
noise ratios, and proved that the deep residual shrinkage network can suppress noise to a certain extent. 
The experimental results show that transfer learning can reduce the impact of insufficient sample data 
to a certain extent. The TDRSN method for bird sound recognition shows excellent performance in 
noisy environments and small datasets. Future research can further explore more efficient network 
structures by combining with 3D conventional network [26], noise analysis [27], etc., to improve 
recognition accuracy and robustness.  
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