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Abstract: In this article, a Cauchy problem for a coupled system of the generalized Korteweg-de Vries
equations (gKdV) is considered. In the periodic case, it is shown that the system is locally well-posed
in a large class of analytic functions and conditions for which weak solutions extend holomorphically
in a symmetric strip of the complex plane around the x-axis at large times. In addition, the uniform
analyticity radius of the solution does not change as time progresses. Also, information about the
regularity of the solution in the time variable is obtained.
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1. Introduction

Equation
∂tu + a∂xu + ∂3

xu + g(u)∂xu = 0,

includes and models important phenomena in the propagation of nonlinear waves applied in energy
and industry named the Korteweg-de Vries equation for g(u) = u and the modified Korteweg-de Vries
equation for g(u) = ±u2, which describes the propagation of one-dimensional nonlinear waves in media
with and without dissipation. Similar issues were previously considered in articles [1–6]. Article [7]
considers the problem for the equation

∂tu + ∂xu + ∂3
xu + g(u)∂xu + b(x)u = 0, (1.1)

is considered. It is assumed that the function b is non-negative and lies in the space L2(0, L). The
function g is such that g(0) = 0 and satisfies a certain condition. It was shown that the problem (1.1)
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has a unique solution in the space

C([0,T ]; L2(0, L)) ∩ L2(0,T ; H1(0, L)).

If it is additionally known that the support of the function b contains an open non-empty subset (0, L),
then the decay rate for such solutions is obtained. Earlier in the article [8], for problem (1.1), similar
results were obtained for p = 1, and stronger conditions on b are satisfied than in the article [7].

In [9] it was shown that in the case g(u) = u4, if u0 ∈ L2(0, L) has a sufficiently small norm,
problem (1.1) has a solution in the space

C([0,T ]; L2(0, L)) ∩ L2(0,T ; H1(0, L)), T > 0.

In [10], the questions of existence, uniqueness of solutions, and their decrease at large times for the
initial boundary value problem in the case of more general equations were considered; see [11–13].

For u = u(x, t) and v = v(x, t), a coupled system is considered in the Hamiltonian form.{
∂tu + ∂3

xu + µ∂x (Gu(u, v)) = 0
∂tv + ∂3

xv + µ∂x (Gv(u, v)) = 0,
(1.2)

where u and v are real-valued functions, Gu and Gv are the derivatives of a smooth function G with
respect to u and v, respectively, and µ > 0, which we normalize to be ±1.

For µ = 1 and
G(u, v) = Au3 + Bv3 +Cu2v + Duv2,

with A, B,C, and D being real constants, the system was considered in [14]. If

G(u, v) = u2v

system (1.2) is a special case of the system treated in [15].
We consider the IVP for a coupled system of gKdV equations.

∂tu + ∂3
xu + µ∂x( f (u, v)) = 0

∂tv + ∂3
xv + µ∂x(g(u, v)) = 0, t > 0, x ∈ T

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ,

(1.3)

where, for k ≥ 1, we take
f (u, v) = au2k+1 + bukvk+1 + k+2

k cuk+1vk + duk−1vk+2.

g(u, v) = av2k+1 + bvkuk+1 + k+2
k dvk+1uk + cvk−1uk+2.

(1.4)

Here a, b, c, and d are nonnegative real constants.
The initial data u0(x) and v0(x) belong to a class of 2π-periodic analytic functions Gλ,s that can be

extended holomorphically in a symmetric strip

S λ = {a + ib : |b| < λ}, λ > 0,

of the complex plane around the x-axis.

Gλ,s(T) =

w ∈ L2(T) : ∥w∥2Gλ,s(T) =
∑
n∈Z

|n|2se2λ|n||ŵ(n)|2 < ∞

 .
For more detail on this type of space, please see [16–19].
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2. Locally well-posed

Our first goal is to study the local well-posedness of (1.3) in Gλ,s(T)×Gλ,s(T). One consequence of
this result is that the radius of the uniform analysis of the solution (u, v) during its local lifetime is the
same as the radius of the initial data, (u0, v0).

Theorem 2.1. Assume that s ≥ 1/2, λ > 0. Taking (u0, v0) small in

Gλ,s(T) ×Gλ,s(T),

then (1.3) is locally well-posed in

C
(
[−1, 1],Gλ,s(T)

)
×C

(
[−1, 1],Gλ,s(T)

)
.

2.1. Existence

By Fourier transform with respect to x in (1.3), and inverse Fourier transform reduces the
system (1.3) to be given as

u(x, t) = W(t)u0(x) −
∫ t

0
W(t − τ)(w1(x, τ) + w2(x, τ) + w3(x, τ) + w4(x, τ))dτ, (2.1)

v(x, t) = W(t)v0(x) −
∫ t

0
W(t − τ)(w5(x, τ) + w6(x, τ) + w7(x, τ) + w8(x, τ))dτ. (2.2)

Where W(t) = e−t∂3
x and

w1 = a∂xu2k+1,

w2 = b∂xukvk+1,

w3 =
k + 2

k
c∂x(uk+1vk),

w4 = d∂x(uk−1vk+2),
w5 = a∂xv2k+1,

w6 = b∂x(vkuk+1),

w7 =
k + 2

k
d∂x(vk+1uk),

w8 = c∂x(vk−1uk+2).

Localizing in t by using a cut-off function ϖ(t) ∈ C∞0 (−2, 2) where 0 ≤ ϖ ≤ 1 and ϖ(t) = 1 for |t| < 1.
Multiplying (2.1) and (2.2) by ϖ to get

ϖ(t)u = ϖ(t)W(t)u0(x) −ϖ(t)
∫ t

0
W(t − τ)(w1(x, τ) + w2(x, τ) + w3(x, τ) + w4(x, τ))dτ,

ϖ(t)v = ϖ(t)W(t)v0(x) −ϖ(t)
∫ t

0
W(t − τ)(w5(x, τ) + w6(x, τ) + w7(x, τ) + w8(x, τ))dτ.

Then

ϖ(t)u =ϖ(t)
∑
n∈Z

ei(nx+n3t)û0(n)

Electronic Research Archive Volume 33, Issue 7, 4119–4134.



4122

+ iϖ(t)
∑
n∈Z

ei(nx+n3t)
∫ ∞

−∞

ei(ξ−n3)t − 1
ξ − n3

(ŵ1(n, ξ) + ŵ2(n, ξ) + ŵ3(n, ξ) + ŵ4(n, ξ))dξ,

ϖ(t)v =ϖ(t)
∑
n∈Z

ei(nx+n3t)v̂0(n)

+ iϖ(t)
∑
n∈Z

ei(nx+n3t)
∫ ∞

−∞

ei(ξ−n3)t − 1
ξ − n3

(ŵ5(n, ξ) + ŵ6(n, ξ) + ŵ7(n, ξ) + ŵ8(n, ξ))dξ.

Now, we limit our attention to the zero-mean data (see [17], page 238).

û0(0) =
1

2π

∫
T

u0(x)dx = 0,

v̂0(0) =
1

2π

∫
T

v0(x)dx = 0.

We introduce the RHS of (2.1) by T1u and (2.2) by T2u,

T1u =ϖ(t)
∑
n∈Z∗

ei(nx+n3t)û0(n)

+ i
∞∑
j=1

i jt j

j!
ϖ(t)

∑
n∈Z∗

ei(nx+n3t)
∫
R

ϖ
(
ξ − n3

) (
ξ − n3

) j−1

(ŵ1(n, ξ) + ŵ2(n, ξ) + ŵ3(n, ξ) + ŵ4(n, ξ))dξ

+ iϖ(t)
∑
n∈Z∗

einx
∫
R

(1 −ϖ)
(
ξ − n3

)
ξ − n3 eiξt

(ŵ1(n, ξ) + ŵ2(n, ξ) + ŵ3(n, ξ) + ŵ4(n, ξ))dξ

− iϖ(t)
∑
n∈Z∗

ei(nx+n3t)
∫
R

(1 −ϖ)
(
ξ − n3

)
ξ − n3

(ŵ1(n, ξ) + ŵ2(n, ξ) + ŵ3(n, ξ) + ŵ4(n, ξ))dξ,

T2v =ϖ(t)
∑
n∈Z∗

ei(nx+n3t)v̂0(n)

+ i
∞∑
j=1

i jt j

j!
ϖ(t)

∑
n∈Z∗

ei(nx+n3t)
∫
R

ϖ
(
ξ − n3

) (
ξ − n3

) j−1

(ŵ5(n, ξ) + ŵ6(n, ξ) + ŵ7(n, ξ) + ŵ8(n, ξ))dξ

+ iϖ(t)
∑
n∈Z∗

einx
∫
R

(1 −ϖ)
(
ξ − n3

)
ξ − n3 eiξt
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(ŵ5(n, ξ) + ŵ6(n, ξ) + ŵ7(n, ξ) + ŵ8(n, ξ))dξ

− iϖ(t)
∑
n∈Z∗

ei(nx+n3t)
∫
R

(1 −ϖ)
(
ξ − n3

)
ξ − n3

(ŵ5(n, ξ) + ŵ6(n, ξ) + ŵ7(n, ξ) + ŵ8(n, ξ))dξ,

where

ŵ1(n, ξ) = ̂a∂xu2k+1 ≃ a(nû ∗ û ∗ · · · ∗ û︸            ︷︷            ︸
2k+1

)(n, ξ)

ŵ2(n, ξ) = ̂b∂x(ukvk+1) ≃ b(nû ∗ û ∗ · · · ∗ û︸            ︷︷            ︸
k

)(v̂ ∗ v̂ ∗ · · · ∗ v̂︸          ︷︷          ︸
k+1

)(n, ξ)

ŵ3(n, ξ) =
k + 2

k
c ̂∂x(uk+1vk) ≃

k + 2
k

c(nû ∗ û ∗ · · · ∗ û︸            ︷︷            ︸
k+1

)(v̂ ∗ v̂ ∗ · · · ∗ v̂︸          ︷︷          ︸
k

)(n, ξ)

ŵ4(n, ξ) = d ̂∂x(uk−1vk+2) ≃ d(nû ∗ û ∗ · · · ∗ û︸            ︷︷            ︸
k−1

)(v̂ ∗ v̂ ∗ · · · ∗ v̂︸          ︷︷          ︸
k+2

)(n, ξ)

ŵ5(n, ξ) = ̂a∂xv2k+1 ≃ a(nv̂ ∗ v̂ ∗ · · · ∗ v̂︸           ︷︷           ︸
2k+1

)(n, ξ)

ŵ6(n, ξ) = ̂b∂x(vkuk+1) ≃ b(nv̂ ∗ v̂ ∗ · · · ∗ v̂︸           ︷︷           ︸
k

)(û ∗ û ∗ · · · ∗ û︸          ︷︷          ︸
k+1

)(n, ξ)

ŵ7(n, ξ) =
k + 2

k
c ̂∂x(vk+1uk) ≃

k + 2
k

c(nv̂ ∗ v̂ ∗ · · · ∗ v̂︸           ︷︷           ︸
k+1

)(û ∗ û ∗ · · · ∗ û︸          ︷︷          ︸
k

)(n, ξ)

ŵ8(n, ξ) = d ̂∂x(vk−1uk+2) ≃ d(nv̂ ∗ v̂ ∗ · · · ∗ v̂︸           ︷︷           ︸
k−1

)(û ∗ û ∗ · · · ∗ û︸          ︷︷          ︸
k+2

)(n, ξ),

and
Z∗ = Z\{0}.

We are now ready to solve the system (T1u,T2v) = (u, v). We define the required spaces. This can be
considered a periodic version of the spaces in [20].

For λ > 0, s ≥ 0, let us define

Xλ,s(T × R) = Xλ,s =
{
w ∈ L2(T × R) : ∥w∥2Xλ,s < ∞

}
,

where
∥w∥2Xλ,s =

∑
n∈Z

∫
R

(
1 +

∣∣∣τ − n3
∣∣∣) |n|2se2λ|n||ŵ(n, τ)|2dτ.

As in [20], it is clear that the space Xλ,s(T × R) is the natural periodic extension of the space Xλ,s,1/2.
In the periodic case, the constant b should be taken as b = 1/2 to show the multi-linear estimates in
Xs, which is consistent with the condition λ = 0; please see [21]. Because if b = 1/2, we have no
continuous embedding Xλ,s(T × R) ↪→ C

(
[0,T ],Gλ,s(T)

)
used in [20].
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Definition 2.1. For λ > 0, s ≥ 0, let

Yλ,s(T × R) = Yλ,s =
{
w ∈ L2(T × R) : ∥w∥2Yλ,s < ∞

}
,

where
∥w∥Yλ,s = ∥w∥Xλ,s +

∑
n∈Z

|n|2se2λ|n|
[∫
R

|ŵ(n, τ)|dτ
]2

1
2

.

Definition 2.2. For λ > 0, s ≥ 0, let

Yλ,s(T × R) = Yλ,s =
{
(u, v) ∈ L2(T × R) × L2(T × R) : ∥(u, v)∥2

Yλ,s
< ∞

}
,

where
Yλ,s = Yλ,s × Yλ,s = Xλ,s × Xλ,s + Zλ,s × Zλ,s,

with norm
∥(u, v)∥Yλ,s = ∥u∥Yλ,s + ∥v∥Yλ,s = ∥(u, v)∥Xλ,s + ∥(u, v)∥Zλ,s ,

∥(u, v)∥Xλ,s = ∥u∥Xλ,s + ∥v∥Xλ,s

=

∑
n∈Z

∫
R

(
1 +

∣∣∣τ − n3
∣∣∣) |n|2se2λ|n||û(n, τ)|2dτ


+

∑
n∈Z

∫
R

(
1 +

∣∣∣τ − n3
∣∣∣) |n|2se2λ|n||v̂(n, τ)|2dτ

 ,
and

∥(u, v)∥Zλ,s = ∥u∥Zλ,s + ∥v∥Zλ,s

=

∑
n∈Z

|n|2se2λ|n|
[∫
R

|û(n, τ)|dτ
]2

1
2

+

∑
n∈Z

|n|2se2λ|n|
[∫
R

|v̂(n, τ)|dτ
]2

1
2

.

The spaces Yλ,s possess the following important property.

Lemma 2.1. We have

Yλ,s(T × R) ↪→ C
(
[−T,T ],Gλ,s(T)

)
×C

(
[−T,T ],Gλ,s(T)

)
, ∀T > 0.

Proof. Let T > 0 be given. Recalling that the norm of

(u, v) ∈ C
(
[−T,T ],Gλ,s(T)

)
×C

(
[−T,T ],Gλ,s(T)

)
,

is defined as
|(u, v)|CT,λ,s = sup

|t|≤T
∥u(·, t)∥Gλ,s(T) + sup

|t|≤T
∥v(·, t)∥Gλ,s(T),

we have

∥u(·, t)∥Gλ,s(T) =

∑
n∈Z

|n|2se2λ|n|
∣∣∣∣∣ 1
2π

∫
R

eiτtû(n, τ)dτ
∣∣∣∣∣2


1
2

≤
1

2π

∑
n∈Z

|n|2se2λ|n|
(∫
R

|û(n, τ)|dτ
)2

1
2

≤
1

2π
∥u∥Yλ,s ,
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and

∥v(·, t)∥Gλ,s(T) =

∑
n∈Z

|n|2se2λ|n|
∣∣∣∣∣ 1
2π

∫
R

eiτtv̂(n, τ)dτ
∣∣∣∣∣2


1
2

≤
1

2π

∑
n∈Z

|n|2se2λ|n|
(∫
R

|v̂(n, τ)|dτ
)2

1
2

≤
1

2π
∥v∥Yλ,s .

Thus,

|(u, v)|CT,λ,s = sup
|t|≤T
∥u(·, t)∥Gλ,s(T) + sup

|t|≤T
∥v(·, t)∥Gλ,s(T) ≤

1
π
∥(u, v)∥Yλ,s .

□

Next, computing the Yλ,s norm of T1u and T2v, we have

Lemma 2.2. [17] For s ≥ 1/2, ∃cϖ > 0 where

∥T1u∥Yλ,s ≤ cϖ
(
∥w1∥Zλ,s + ∥w2∥Zλ,s + ∥w3∥Zλ,s + ∥w4∥Zλ,s + ∥u0∥Gλ,s

)
, (2.3)

and
∥T2v∥Yλ,s ≤ cϖ

(
∥w5∥Zλ,s + ∥w6∥Zλ,s + ∥w7∥Zλ,s + ∥w8∥Zλ,s + ∥v0∥Gλ,s

)
, (2.4)

for all u, v ∈ Yλ,s, where

∥wi∥Zλ,s =

∑
n∈Z∗
|n|2se2λ|n|

∫
R

|ŵi(n, ξ)|2

1 +
∣∣∣ξ − n3

∣∣∣dξ


1
2

+

∑
n∈Z∗
|n|2se2λ|k|

∫
R

|ŵi(n, ξ)|
1 +

∣∣∣ξ − n3
∣∣∣dξ

2
1
2

, i = 1, 2, · · · 8.

Proposition 2.1. For s ≥ 1/2 and u1, u2, . . . , uk+2 ∈ Yλ,s and v1, v2, . . . , vk+2 ∈ Yλ,s, we have

∥w1∥Zλ,s = ∥a∂x(u1 · u2 · . . . · u2k+1)∥Zλ,s ≲ ∥u1∥Yλ,s ∥u2∥Yλ,s . . . ∥u2k+1∥Yλ,s , (2.5)

∥w2∥Zλ,s = ∥b∂x(u1 · u2 · . . . · uk)(v1 · v2 · . . . · vk+1)∥Zλ,s
≲ ∥u1∥Yλ,s ∥u2∥Yλ,s . . . ∥uk∥Yλ,s ∥v1∥Yλ,s ∥v2∥Yλ,s . . . ∥vk+1∥Yλ,s , (2.6)

∥w3∥Zλ,s =

∥∥∥∥∥k + 2
k

c∂x(u1 · u2 · . . . · uk+1)(v1 · v2 · . . . · vk)
∥∥∥∥∥

Zλ,s

≲ ∥u1∥Yλ,s ∥u2∥Yλ,s . . . ∥uk+1∥Yλ,s ∥v1∥Yλ,s ∥v2∥Yλ,s . . . ∥vk∥Yλ,s , (2.7)

∥w4∥Zλ,s = ∥d∂x(u1 · u2 · . . . · uk−1)(v1 · v2 · . . . · vk+2)∥Zλ,s
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≲ ∥u1∥Yλ,s ∥u2∥Yλ,s . . . ∥uk−1∥Yλ,s ∥v1∥Yλ,s ∥v2∥Yλ,s . . . ∥vk+2∥Yλ,s , (2.8)

∥w5∥Zλ,s = ∥a∂x(v1 · v2 · . . . · v2k+1)∥Zλ,s ≲ ∥v1∥Yλ,s ∥v2∥Yλ,s . . . ∥v2k+1∥Yλ,s , (2.9)

∥w6∥Zλ,s = ∥a∂x(v1 · v2 · . . . · vk)(u1 · u2 · . . . · uk+1)∥Zλ,s
≲ ∥v1∥Yλ,s ∥v2∥Yλ,s . . . ∥vk∥Yλ,s ∥u1∥Yλ,s ∥u2∥Yλ,s . . . ∥uk+1∥Yλ,s , (2.10)

∥w7∥Zλ,s =

∥∥∥∥∥k + 2
k

d∂x(v1 · v2 · . . . · vk+1)(u1 · u2 · . . . · uk)
∥∥∥∥∥

Zλ,s

≲ ∥v1∥Yλ,s ∥v2∥Yλ,s . . . ∥vk+1∥Yλ,s ∥u1∥Yλ,s ∥u2∥Yλ,s . . . ∥uk∥Yλ,s , (2.11)

∥w8∥Zλ,s = ∥c∂x(v1 · v2 · . . . · vk−1)(u1 · u2 · . . . · uk+2)∥Zλ,s
≲ ∥v1∥Yλ,s ∥v2∥Yλ,s . . . ∥vk−1∥Yλ,s ∥u1∥Yλ,s ∥u2∥Yλ,s . . . ∥uk+2∥Yλ,s . (2.12)

Proof. The operator Λ given by

Λ̂u(n, ξ) = eλ|n|û(n, ξ), Λ̂v(n, ξ) = eλ|n|v̂(n, ξ),

satisfies
∥u∥Yλ,s = ∥Λu∥Ys , for all u ∈ Yλ,s,

∥v∥Yλ,s = ∥Λv∥Ys , for all v ∈ Yλ,s.

Inequality (2.5): For any u1, u2 . . . u2k+1 ∈ Yλ,s it satisfies the relation

∥∂x(u1 · u2 · · · u2k+1)∥Zλ,s = ∥Λ(∂x(u1 · u2 · · · u2k+1))∥Zs
.

Then, to establish (2.5), it suffices to prove that

∥Λ(∂x(u1 · u2 · · · u2k+1))∥Zs
≤ ∥(Λu1) (Λu2) · · · (Λu2k+1)∥Zs

. (2.13)

By Proposition 1 of [13], we have

∥Λ(∂x(u1 · u2 · · · u2k+1))∥Zs
≤ ∥Λu1∥Ys ∥Λu1∥Ys

· . . . · ∥Λu2k+1∥Ys
.

Let us prove (2.13), we have

∥Λ(∂x(u1 · u2 · · · u2k+1))∥Zs

=

∑
n∈Z∗
|n|2s

∫
R

| ̂Λ(∂x(u1u2 · · · u2k+1))(n, ξ)|2

1 +
∣∣∣ξ − n3

∣∣∣ dξ


1
2

+

∑
n∈Z∗
|n|2s

∫
R

| ̂Λ(∂x(u1u2 · · · u2k+1))(n, ξ)|
1 +

∣∣∣ξ − n3
∣∣∣ dξ

2
1
2

=

∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n (
û1 ∗ û2 ∗ · · · ∗ û2k+1

)
(n, ξ)

∣∣∣2
1 +

∣∣∣ξ − n3
∣∣∣ dξ


1
2

+

∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n (
û1 ∗ û2 ∗ · · · ∗ û2k+1

)
(n, ξ)

∣∣∣
1 +

∣∣∣ξ − n3
∣∣∣ dξ

2
1
2

.
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We have∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n (
û1 ∗ û2 ∗ · · · ∗ û2k+1

)
(n, ξ)

∣∣∣2
1 +

∣∣∣ξ − n3
∣∣∣ dξ


1
2

=

∑
n∈Z∗
|n|2s

∫
R

| eλ|n|
∑
n1∈Z

∫
R1

. . .
∑
n2k∈Z

∫
R2k

∑
n2k+1∈Z

∫
R2k+1

n1û1(n − n1, ξ − ξ1)û2(n1 − n2, ξ1 − ξ2) . . .

× û2k(n2k−1 − n2k, ξ2k−1 − ξ2k)û2k+1(n2k, ξ2k)dξ1dξ2 . . . dξ2k+1

∣∣∣2 (
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ
) 1

2

=

∑
n∈Z∗
|n|2s

∫
R

| eλ|n|
∑
n1∈Z

∫
R1

. . .
∑
n2k∈Z

∫
R2k

∑
n2k+1∈Z

∫
R2k+1

n1eλ|n−n1 |û1(n − n1, ξ − ξ1)eλ|n1−n2 |û2(n1 − n2, ξ1 − ξ2) . . .

× eλ|n2k−1−n2k |û2k(n2k−1 − n2k, ξ2k−1 − ξ2k)eλ|n2k |û2k+1(n2k, ξ2k)dξ1dξ2 . . . dξ2k+1

∣∣∣2 (
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ
) 1

2

≤

∑
n∈Z∗
|n|2s

∫
R

|
∑
n1∈Z

∫
R1

. . .
∑
n2k∈Z

∫
R2k

∑
n2k+1∈Z

∫
R2k+1

∂xΛ̂u1(n − n1, ξ − ξ1Λ̂u2(n1 − n2, ξ1 − ξ2) . . .

× Λ̂u2k(n2k−1 − n2k, ξ2k−1 − ξ2k)Λ̂u2k+1(n2k, ξ2k)dξ1dξ2 . . . dξ2k+1

∣∣∣∣2 (
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ
) 1

2

≤

∑
n∈Z∗
|n|2s

∫
R

|
(
∂xΛ̂u1 ∗ Λ̂u2 ∗ · · · ∗ Λ̂u2k+1

)
(n, ξ)|2

(
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ


1
2

.

Similarly, we obtain

∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n (
û1 ∗ û2 ∗ · · · ∗ û2k+1

)
(n, ξ)

∣∣∣
1 +

∣∣∣ξ − n3
∣∣∣ dξ

2
1
2

≤

∑
n∈Z∗
|n|2s

∫
R

|
(
∂xΛ̂u1 ∗ Λ̂u2 ∗ · · · ∗ Λ̂u2k+1

)
(n, ξ)|

1 +
∣∣∣ξ − n3

∣∣∣ dξ


2

1
2

.

Then (2.13) is met.
Inequality (2.6): For any u1, u2, . . . , uk ∈ Yλ,s and v1, v2, . . . , vk+1 ∈ Yλ,s it satisfies the relation

∥∂x((u1u2 · · · uk)(v1v2 · · · vk+1))∥Zλ,s = ∥Λ(∂x((u1u2 · · · uk)(v1v2 · · · vk+1)))∥Zs
.

Then, to show (2.5), it suffices to prove that

∥Λ(∂x((u1u2 · · · uk)(v1v2 · · · vk+1)))∥Zs
≤ ∥(Λu1) (Λu2) · · · (Λuk) (Λv1) (Λv2) · · · (Λvk+1)∥Zs

. (2.14)

By Proposition 1 of [13], we have

∥Λ(∂x((u1u2 · · · uk)(v1v2 · · · vk+1)))∥Zs
≲ ∥Λu1∥Ys ∥Λu1∥Ys

· · · ∥Λuk∥Ys ∥Λv1∥Ys ∥Λv2∥Ys
· · · ∥Λvk+1∥Ys

.
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Let us prove (2.14), we have

∥Λ(∂x((u1u2 · · · uk)(v1v2 · · · vk+1)))∥Zs

=

∑
n∈Z∗
|n|2s

∫
R

| ̂Λ(∂x((u1u2 · · · uk)(v1v2 · · · vk+1)))(n, ξ)|2

1 +
∣∣∣ξ − n3

∣∣∣ dξ


1
2

+

∑
n∈Z∗
|n|2s

∫
R

| ̂Λ(∂x((u1u2 · · · uk)(v1v2 · · · vk+1)))(n, ξ)|
1 +

∣∣∣ξ − n3
∣∣∣ dξ

2
1
2

=

∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n(
(
û1 ∗ û2 ∗ · · · ∗ ûk

) (
v̂1 ∗ v̂2 ∗ · · · ∗ v̂k+1

)
)(n, ξ)

∣∣∣2
1 +

∣∣∣ξ − n3
∣∣∣ dξ


1
2

+

∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n(
(
û1 ∗ û2 ∗ · · · ∗ ûk

) (
v̂1 ∗ v̂2 ∗ · · · ∗ v̂k+1

)
)(n, ξ)

∣∣∣
1 +

∣∣∣ξ − n3
∣∣∣ dξ

2
1
2

.

Next, we analyze the first part of the last sum.

∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n(
(
û1 ∗ û2 ∗ · · · ∗ ûk

) (
v̂1 ∗ v̂2 ∗ · · · ∗ v̂k+1

)
)(n, ξ)

∣∣∣2
1 +

∣∣∣ξ − n3
∣∣∣ dξ


1
2

=

∑
n∈Z∗
|n|2s

∫
R

| eλ|n|
∑
n1∈Z

∫
R1

. . .
∑
n2k∈Z

∫
R2k

∑
n2k+1∈Z

∫
R2k+1

n1û1(n − n1, ξ − ξ1û2(n1 − n2, ξ1 − ξ2) . . .

× v̂k(n2k−1 − n2k, ξ2k−1 − ξ2k)v̂k+1(n2k, ξ2k)dξ1dξ2 . . . dξ2k+1

∣∣∣2 (
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ
) 1

2

≤

∑
n∈Z∗
|n|2s

∫
R

| eλ|n|
∑
n1∈Z

∫
R1

. . .
∑
n2k∈Z

∫
R2k

∑
n2k+1∈Z

∫
R2k+1

n1eλ|n−n1 |û1(n − n1, ξ − ξ1eλ|n1−n2 |û2(n1 − n2, ξ1 − ξ2) . . .

× eλ|n2k−1−n2k |v̂k(n2k−1 − n2k, ξ2k−1 − ξ2k)eλ|n2k |v̂k+1(n2k, ξ2k)dξ1dξ2 . . . dξ2k+1

∣∣∣2 (
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ
) 1

2

≤

∑
n∈Z∗
|n|2s

∫
R

|
∑
n1∈Z

∫
R1

. . .
∑
n2k∈Z

∫
R2k

∑
n2k+1∈Z

∫
R2k+1

∂xΛ̂u1(n − n1, ξ − ξ1)Λ̂u2(n1 − n2, ξ1 − ξ2) . . .

× Λ̂vk(n2k−1 − n2k, ξ2k−1 − ξ2k)Λ̂vk+1(n2k, ξ2k)dξ1dξ2 . . . dξ2k+1

∣∣∣∣2 (
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ
) 1

2

≤

∑
n∈Z∗
|n|2s

∫
R

|
(
∂xΛ̂u1 ∗ Λ̂u2 ∗ · · · ∗ Λ̂vk ∗ Λ̂vk+1

)
(n, ξ)|2

(
1 +

∣∣∣ξ − n3
∣∣∣)−1

dξ


1
2

.
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Similarly, we obtain

∑
n∈Z∗
|n|2s

∫
R

∣∣∣eλ|n|n (
û1 ∗ û2 ∗ · · · ∗ v̂kv̂k+1

)
(n, ξ)

∣∣∣
1 +

∣∣∣ξ − n3
∣∣∣ dξ

2
1
2

≤

∑
n∈Z∗
|n|2s

∫
R

|
(
∂xΛ̂u1 ∗ Λ̂u2 ∗ · · · ∗ Λ̂vk ∗ Λ̂vk+1

)
(n, ξ)|

1 +
∣∣∣ξ − n3

∣∣∣ dξ


2

1
2

.

Adding the above two inequalities gives (2.14). □

By Lemma 2.2 and Proposition 2.1, we have

Proposition 2.2. For s ≥ 1/2,∃cϖ > 0 such that

∥T1u∥Yλ,s ≤ cϖ(∥u∥2k+1
Yλ,s + ∥u∥

k
Yλ,s∥v∥

k+1
Yλ,s + ∥u∥

k+1
Yλ,s ∥v∥

k
Yλ,s + ∥u∥

k−1
Yλ,s ∥v∥

k+2
Yλ,s ) + cϖ∥u0∥Gλ,s(T), u ∈ Yλ,s,

∥T2v∥Yλ,s ≤ cϖ(∥v∥2k+1
Yλ,s + ∥v∥

k
Yλ,s∥u∥

k+1
Yλ,s + ∥v∥

k+1
Yλ,s ∥u∥

k
Yλ,s + ∥v∥

k−1
Yλ,s ∥u∥

k+2
Yλ,s ) + cϖ∥v0∥Gλ,s(T), v ∈ Yλ,s,

and

∥T1u − T1u∗∥Yλ,s ≤ cϖ

2k+1∑
ℓ=0

∥u∥(2k+1)−ℓ
Yλ,s

∥u∗∥ℓYλ,s +
k∑
ℓ=0

∥u∥k−ℓYλ,s∥u
∗∥ℓYλ,s

k+1∑
ℓ=0

∥v∥(k+1)−ℓ
Yλ,s

∥v∗∥ℓYλ,s

+

k+1∑
ℓ=0

∥u∥(k+1)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

k∑
ℓ=0

∥v∥k−ℓYλ,s∥v
∗∥ℓYλ,s

+

k−1∑
ℓ=0

∥u∥(k−1)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

k+2∑
ℓ=0

∥u∥(k+2)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

 ∥u − u∗∥Yλ,s ,

∥T2u − T2u∗∥Yλ,s ≤ cϖ

2k+1∑
ℓ=0

∥v∥(2k+1)−ℓ
Yλ,s

∥v∗∥ℓYλ,s +
k∑
ℓ=0

∥v∥k−ℓYλ,s∥v
∗∥ℓYλ,s

k+1∑
ℓ=0

∥u∥(k+1)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

+

k+1∑
ℓ=0

∥v∥(k+1)−ℓ
Yλ,s

∥v∗∥ℓYλ,s

k∑
ℓ=0

∥u∥k−ℓYλ,s∥u
∗∥ℓYλ,s

+

k−1∑
ℓ=0

∥v∥(k−1)−ℓ
Yλ,s

∥v∗∥ℓYλ,s

k+2∑
ℓ=0

∥u∥(k+2)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

 ∥u − u∗∥Yλ,s ,

and u, u∗, v, v∗ ∈ Yλ,s

In the next, we find that the map (T1,T2) is a contraction.

Proposition 2.3. Suppose that s ≥ 1/2. For a small (u0, v0), we have

∥u0∥Gλ,s(T) ≤
32k − 4

2 · 32k+1c
2k+1

2k
ϖ (2k + 1)

2k+1
2k

,
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∥v0∥Gλ,s(T) ≤
32k − 4

2 · 32k+1c
2k+1

2k
ϖ (2k + 1)

2k+1
2k

.

Choosing the ball
B(0, r) =

{
u, v ∈ Yλ,s : ∥(u, v)∥Yλ,s = ∥u∥Yλ,s + ∥v∥Yλ,s ≤ r

}
,

with
r =

1

3c
1
2k
ϖ (2k + 1)

1
2k

,

thus
(T1,T2) : B(0, r)→ B(0, r),

is a contraction.

Proof. By Proposition 2.2, we have

∥T1u∥Yλ,s ≤ cϖ(∥u∥2k+1
Yλ,s + ∥u∥

k
Yλ,s∥v∥

k+1
Yλ,s + ∥u∥

k+1
Yλ,s ∥v∥

k
Yλ,s + ∥u∥

k−1
Yλ,s ∥v∥

k+2
Yλ,s ) + cϖ∥u0∥Gλ,s(T),

∥T2v∥Yλ,s ≤ cϖ(∥v∥2k+1
Yλ,s + ∥v∥

k
Yλ,s∥u∥

k+1
Yλ,s + ∥v∥

k+1
Yλ,s ∥u∥

k
Yλ,s + ∥v∥

k−1
Yλ,s ∥u∥

k+2
Yλ,s ) + cϖ∥v0∥Gλ,s(T).

Adding the inequalities, we find that

∥(T1u,T2v)∥Yλ,s ≤ cϖ(∥(u, v)∥2k+1
Yλ,s
+ ∥(u, v)∥k

Yλ,s
∥(u, v)∥k+1

Yλ,s
+ ∥(u, v)∥k+1

Yλ,s
∥u∥k
Yλ,s
+ ∥(u, v)∥k−1

Yλ,s
∥(u, v)∥k+2

Yλ,s
)

+ cϖ
(
∥u0∥Gλ,s(T) + ∥v0∥Gλ,s(T)

)
≤ 4cϖ

 1

3c
1
2k
ϖ (2k + 1)

1
2k


2k+1

+ cϖ

 32k − 4

32k+1c
2k+1

k
ϖ (2k + 1)

2k+1
2k


=

cϖ · 32k

32k+1c
2k+1

2k
ϖ (2k + 1)

2k+1
2k

=
1

3c
1
2k
ϖ (2k + 1)

1
2k

= r.

Thus (T1,T2) maps B(0, r) into B(0, r) is a contraction, since

∥T1u − T1u∗∥Yλ,s ≤ cϖ

 2k∑
ℓ=0

∥u∥2k−ℓ
Yλ,s ∥u

∗∥ℓYλ,s +

k−1∑
ℓ=0

∥u∥(k−1)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

k+1∑
ℓ=0

∥v∥(k+1)−ℓ
Yλ,s

∥v∗∥ℓYλ,s

+

k∑
ℓ=0

∥u∥k−ℓYλ,s∥u
∗∥ℓYλ,s

k∑
ℓ=0

∥v∥k−ℓYλ,s∥v
∗∥ℓYλ,s

+

k−2∑
ℓ=0

∥u∥(k−2)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

k+2∑
ℓ=0

∥u∥(k+2)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

 ∥u − u∗∥Yλ,s , ∀u, u∗ ∈ Yλ,s

∥T2v − T2v∗∥Yλ,s ≤ cϖ

 2k∑
ℓ=0

∥v∥2k−ℓ
Yλ,s ∥v

∗∥ℓYλ,s +

k−1∑
ℓ=0

∥v∥(k−1)−ℓ
Yλ,s

∥v∗∥ℓYλ,s

k+1∑
ℓ=0

∥u∥(k+1)−ℓ
Yλ,s

∥u∗∥ℓYλ,s

+

k∑
ℓ=0

∥v∥k−ℓYλ,s∥v
∗∥ℓYλ,s

k∑
ℓ=0

∥u∥k−ℓYλ,s∥u
∗∥ℓYλ,s

+

k−2∑
ℓ=0

∥v∥(k−2)−ℓ
Yλ,s

∥v∗∥ℓYλ,s

k+2∑
ℓ=0

∥v∥(k+2)−ℓ
Yλ,s

∥v∗∥ℓYλ,s

 ∥v − v∗∥Yλ,s , ∀v, v∗ ∈ Yλ,s.
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Adding the inequalities, we find that

∥(T1u − T1u∗,T2v − T2v∗)∥Yλ,s ≤ cϖ4

 2k∑
ℓ=0

r2k−ℓrℓ
 ∥(u − u∗, v − v∗)∥Yλ,s

= cϖ4r2k(2k + 1)∥(u − u∗, v − v∗)∥Yλ,s

= cϖ4

 1

3c
1
2k
ϖ (2k + 1)

1
2k


2k

(2k + 1)∥(u − u∗, v − v∗)∥Yλ,s

=
4

32k ∥(u − u∗, v − v∗)∥Yλ,s .

□

2.2. Uniqueness and continuous dependence of the initial data

We prove the uniqueness in

C
(
[−1, 1],Gλ,s(T)

)
×C

(
[−1, 1],Gλ,s(T)

)
,

by the next standard argument.

Lemma 2.3. Let
(u, v), (u∗, v∗) ∈ C

(
[−1, 1],Gλ,S (T)

)
,

be solutions to (1.3) with
(u0, v0) = (u∗0, v

∗
0),

in
Gλ,s(T) ×Gλ,s(T),

and
s ≥ 1/2.

Then (u, v) = (u∗, v∗).

The continuity of the data-to-solution map is given in the following.

Lemma 2.4. Let (u, v) and (u∗, v∗) be solutions to (1.3) corresponding to (u0, v0) and (u∗0, v
∗
0)

respectively with the norms

∥u0∥Gλ,s(T) + ∥v0∥Gλ,s(T), ∥u∗0∥Gλ,s(T) + ∥v∗0∥Gλ,s(T),

small and s ≥ 1/2. Then

|(u − u∗, v − v∗)|c,λ,s ≲ cϖ
(
∥(u0 − u∗0)∥Gλ,s(T) + ∥(v0 − v∗0)∥Gλ,s(T)

)
.

The proof of Lemma 2.3 and Lemma 2.4 follows a standard argument.
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3. Uniform radius of analyticity

Let
(u0, v0) ∈ Gλ,s(T) ×Gλ,s(T),

then by the definition of Gλ,s(T) ×Gλ,s(T), we have for some L > 0 and n ∈ Z

|û0(n)| ≤ Le−λ|n|, (3.1)

|v̂0(n)| ≤ Le−λ|n|. (3.2)

By (3.1) and (3.1), we have

ϖ1(x) =
∞∑

n=0

û0(n)einx ∈ Cϑ(T),

ϖ2(x) =
∞∑

n=0

û0(n)einx ∈ Cϑ(T).

Furthermore,
ϖ̂1(n) = û0(n), ϖ̂2(n) = v̂0(n),∀n ∈ Z.

Since (u0, v0) ∈ L2(T) × L2(T), we conclude that (u0, v0) ∈ Cϑ(T) ×Cϑ(T).
The next analytic continuation result is stated, and its proof is similar to that in [18].

Lemma 3.1. Let
(u0, v0) ∈ Gλ,s(T) ×Gλ,s(T),

then (u0, v0) has an analytic extension in a symmetric strip around the real axis, and its width is
equal to λ.
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