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Abstract: In this article, a Cauchy problem for a coupled system of the generalized Korteweg-de Vries
equations (gKdV) is considered. In the periodic case, it is shown that the system is locally well-posed
in a large class of analytic functions and conditions for which weak solutions extend holomorphically
in a symmetric strip of the complex plane around the x-axis at large times. In addition, the uniform
analyticity radius of the solution does not change as time progresses. Also, information about the
regularity of the solution in the time variable is obtained.
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1. Introduction

Equation
ou + ao,u + ﬁiu + g(u)ou = 0,

includes and models important phenomena in the propagation of nonlinear waves applied in energy
and industry named the Korteweg-de Vries equation for g(u) = u and the modified Korteweg-de Vries
equation for g(u) = +u?, which describes the propagation of one-dimensional nonlinear waves in media
with and without dissipation. Similar issues were previously considered in articles [1-6]. Article [7]
considers the problem for the equation

Ou+ 0+ u+ gu)du + b(x)u =0, (1.1)

is considered. It is assumed that the function b is non-negative and lies in the space L*(0,L). The
function g is such that g(0) = 0 and satisfies a certain condition. It was shown that the problem (1.1)
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has a unique solution in the space
C([0,T1; L*(0, L)) N L*(0, T; H'(0, L)).

If it is additionally known that the support of the function b contains an open non-empty subset (0, L),
then the decay rate for such solutions is obtained. Earlier in the article [8], for problem (1.1), similar
results were obtained for p = 1, and stronger conditions on b are satisfied than in the article [7].

In [9] it was shown that in the case g(u) = u®, if uy € L?*(0,L) has a sufficiently small norm,
problem (1.1) has a solution in the space

C([0,T]; L*(0, L)) N L*(0,T; H'(0, L)), T > 0.

In [10], the questions of existence, uniqueness of solutions, and their decrease at large times for the
initial boundary value problem in the case of more general equations were considered; see [11-13].
For u = u(x,t) and v = v(x, 1), a coupled system is considered in the Hamiltonian form.

O+ Fu+ pd, (G, (u,v)) =0
O + 0 + o, (G,(u,v)) = 0,
where u and v are real-valued functions, G, and G, are the derivatives of a smooth function G with

respect to u and v, respectively, and u > 0, which we normalize to be +1.
Foru =1 and

(1.2)

Gu,v) = Au’ + BV’ + Cu’v + Du/?,
with A, B, C, and D being real constants, the system was considered in [14]. If
Gu,v) = u’v

system (1.2) is a special case of the system treated in [15].
We consider the IVP for a coupled system of gKdV equations.

O + Fu + pd (f(u,v)) =0
O+ v+ pud (gu,v) =0,t>0,xeT (1.3)

(u(xa O)’ V(x’ 0)) = (MO(X)a VO(X)) P
where, for k > 1, we take
fu,v) = au™* ' + bt + B2k dif e
(1.4)
g, v) = av®*! + byttt 4 B2y g el Ty,

Here a, b, ¢, and d are nonnegative real constants.
The initial data uo(x) and vy(x) belong to a class of 2x-periodic analytic functions G** that can be
extended holomorphically in a symmetric strip

Si={la+ib:|b|<a},1>0,
of the complex plane around the x-axis.

G™(T) = {w € LD WG, = D, nf*e M ibm)f < oo}.

nez

For more detail on this type of space, please see [16—-19].
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2. Locally well-posed

Our first goal is to study the local well-posedness of (1.3) in G**(T) x G**(T). One consequence of
this result is that the radius of the uniform analysis of the solution (u, v) during its local lifetime is the
same as the radius of the initial data, (ug, vo).

Theorem 2.1. Assume that s > 1/2, A > 0. Taking (uy, vo) small in
G*(T) x G*(T),
then (1.3) is locally well-posed in
C([-1.11,G™(D)) x C ([-1, 11, G*(T)).

2.1. EXxistence

By Fourier transform with respect to x in (1.3), and inverse Fourier transform reduces the
system (1.3) to be given as

u(x,t) = Wtuo(x) — f Wt — o)(wi(x, 7) + walx, 7) + ws(x, 7) + wa(x, 7))dT, 2.1)
0

v(x,t) = W(t)vo(x) — f Wt — )(ws(x, 7) + we(x, T) + w(x, 7) + wg(x, 7))dT. (2.2)
0

Where W(t) = ¢7'% and -
wy =adu™",

wy = bV,

k+2
Wy = — 0, V),
Wy :dax(l/lk_lvk+2),

ws = aaxv2k+l ,

we = bd,(Vukh),

wy = l%zdax(vk”uk),

ws = 0, (V7 k).
Localizing in ¢ by using a cut-off function @(7) € C7’(-2,2) where 0 < @w < 1 and @w(¢) = 1 for |f| < 1.
Multiplying (2.1) and (2.2) by @ to get

w(Hu = w(OW(H)uy(x) — @(t) f Wt — o)(w(x, 7) + walx, 7) + wi(x, 7) + wa(x, 7))dT,
0

w(t)y = w(t)W(t)vo(x) — w(t) f Wt — t)(ws(x, ) + we(x, T) + w(x, 7) + wg(x, 7))dT.
0
Then

a(Ou = (1) Z () 5 ()

nez
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l(.fn)t_l

+l’ZD'(l)Z i(nx+n') foo -

nez

W1(n, &) + Wa(n, &) + w3(n, &) + Wa(n, §))de,

w(t)y =w(1) Z eilnetn’n) Do(n)

nez
1({ n )t -1

l(nx+n t)
+ 1w (1) ; f e T
(Ws(n, &) + we(n, &) + Wr(n, &) + ws(n, £))dé.

Now, we limit our attention to the zero-mean data (see [17], page 238).

1
i1o(0) = = f up(x)dx = 0,
2 T

1
V0(0) = 5= f vo(x)dx = 0.
21 T
We introduce the RHS of (2.1) by Tyu and (2.2) by T>u,

T\u =o(t) Z 0 )

nez*
Z a0 Y, e [ ale-n)(e-n)”

j=1 ! nez*

W1(n, &) + Wa(n, &) + W3(n, &) + Wa(n, £))dé

3
+ iw (1) Z L ?)_<i3 " )eif’

it

nez*
W1(n, &) + Wa(n, &) + Wa(n, &) + W4(ﬂ §))d§
(1 -w) f n
l(nx+n t)
lw(t)nezz f .

W1 (n, &) + Wo(n, &) + W3(n, &) + Wa(n, £))dE,
T>v =w(t) Z ei(”x+"3t)\30(n)

nez*
Z (t)z i(nx+n t)f f w f n -1

Jj=1 ! nez*

(W5(n7 é:) + W6(n’ f) + W7(I’l, f) + WS(na é:))df

. inx (l—?D') g—l’l?’ iét
+lw(t)Ze L f—(n3 )eét

nez*

it
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(Ws(n, &) + we(n, &) + wy(n, &) + Ws(” &)dé
) cf n)

(1-
l'ZD'(t)Z t(nx+n t)f g n3

nez*

Ws(n, &) + We(n, &) + wo(n, &) + Ws(n, §))d,

where
Wi, &) = ad ™ = a(nitx i+ - - * f)(n, €)
2k+1
Wa(n, &) = b, VY = b(nit # it - )P # D # -+ % D), E)
k k+1
k+2 — k+2
wi(n, &) = X O (uF1Vk) ~ c(pit x i - - x )P * D x - - xV)(n, &)
k+1 k
Wa(n, &) = do (W V2) = d(nit x v % - (D * D % - % D), &)
k—1 k+2
Ws(n,&) = ad ™+ =~ a(pd = D % - - % D)(n, &)
2k+1
Wo(1, &) = bO(FUuk1) = b(nd # D% - % D)@ x it % - - % D), €)
k k+1
k+2 k+2
wr(n, &) k O, (P Tk = eV x V- x V) x Q% -+ % 0)(n, &)
k+1 k
We(n, &) = dO, (VK Tuk*2) =~ d(nd # D % - - D)@ % & * - - % D)(n, &),
k-1 k+2
and
= 7Z\(0).

We are now ready to solve the system (T u, T,v) = (u,v). We define the required spaces. This can be
considered a periodic version of the spaces in [20].
For A > 0, s > 0, let us define

Xp(TXR) = Xy, = {we LATXR) : W}, < oo,

where

iR, = > f (1+ |7 = ) InP*e* ™o, 7).
R

nez

As in [20], it is clear that the space X, (T X R) is the natural periodic extension of the space X, ;12.
In the periodic case, the constant b should be taken as b = 1/2 to show the multi-linear estimates in
X, which is consistent with the condition 4 = 0; please see [21]. Because if b = 1/2, we have no
continuous embedding X, (T X R) — C ([0, T], G“(T)) used in [20].
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Definition 2.1. For 1 > 0, s > 0, let

Ya,(TXR) =Yy, ={weLATxR): W}, < oo,
where !
HMMSHMmS(EDWSmmJnMnﬂMr)-
nez

Definition 2.2. For 1 > 0, s > 0, let

Vil TXR) =Y, = {(u,v) € LT X R) x L(TXR) : [l v}, < oo},

where
\y/l,s = Y/l,s X Y/l,s = X/l,s X X/l,s + Z/l,s X Z/l,57
with norm
I, Wy, = llully,, + [VIly,, = I, V)lx,, + 1)z,
1, Wlx,, = lullx,, +Vilx,,
- (Z f (1+ |z = ]) InPe ", T)Isz)
nez R
[Zf 1+ |T n’ Inlzs 2A'”'Iv(n T)|2dT]
nez
and
G, Wz, = llullz,, +IVIz,
2\3
(Z || 24 [ f i(n, T)|dT] ]
nez

[ZZ: i[> > [ f ID(n, T)|dT] ) .

The spaces Y, ; possess the following important property.
Lemma 2.1. We have
Y (TXR) = C ([—T, T], G“(T)) x C ([—T, T1, G“(T)), VT > 0.
Proof. Let T > 0 be given. Recalling that the norm of
(w.v) € C([-T.T1.G*(T)) x C([-T.T1,G*(T)),

is defined as

[(u, Ve, = sup [[u(:, Dllgrsery + sup [[v(-, Dllgascr)s
<T <T

1
2s 24
-, Dllgascry = (Z Infoe |~

we have

1 2\2
f e (n, T)dr )
nez T Jr
(Z e ( f ja(n, T)|d‘r) )
nez

< -y,

2
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and
2\
Iv(, Dllgasery = (Z |n|*S >t f e"H(n, T)dt ]
nez R
=2 (Z nf**e “'”'( [9(n, T)|dr) )
nez R
< ﬂHVHYM
Thus,

1
|(u, Ve, = sup llul:, Dllgusery + sup [V, Dllgrsery < —II(u Wy,
[T [{<T

Next, computing the Y/, ; norm of T u and T,v, we have

Lemma 2.2. [17] For s > 1/2, Ac, > 0 where

ITvully,, < car (IWillzy, + Iwallz,, + wsllz,, + Iwallz,, + lollca. ).

and
IT2vly,, < ca(Iwsllz,, + Wsllz,, + Iwallz,, + wsllz,, + Ivolloes)

forallu,v €Y, where

) 25 ;24 IWi(n, f)| d

hwillz,, = (;ij f1+|§ o |

[ et f Wi, )] dg j i=1,2,---8.
1+|§ n%| b o b

nezZ*

Proposition 2.1. For s > 1/2 and uy,u,, ..., ux € Yy and vy, va, ..., Ve € Yo i, we have

||W1||zm = llad(uy ~up - ... - u2k+1)||ZM S ”MIHYM ||M2||YM e ||M2k+1||yA,S s
wallz,, = b0 (uy - ua - oo - w)(vi - va e oo Vig )l
S lllly, Nually,, - - Huwlly, [villy, [vally, - lvisally,, s
k+2
wsllz,, = ‘ 3 ——cOc(uy Uy - oo Upe))(V V2 V)
Z/l,s
< lully,, ally,, - - lewelly,  Avilly, (vally,, -« - Idly,, s
wallz,, = NdO(uy - uz - oo wg )V - v2 o vz,

(2.3)

(2.4)

(2.5)

(2.6)

2.7)
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< llly,, Nually,, - Ne-illy, Avilly, 2lly, - - - Ves2lly,, (2.8)
wsllz,, = ladc(vi - va - .- var)llz,, S Inilly,, Ivally,, - - - vakeally,, s (2.9)
”W(J”ZM lad (v - vy - Vi) (uy - uy - : Mk+1)||zm
< Ailly,, vally, - - NVilly,, leally,, llwally,, - - - lugeally, (2.10)
k+2
wAllz, H—da (TR R VD (77N T 773
Z,Ls
< Ailly, vally, - vielly,, Hlually,  lually, - - lledly, (2.11)
lwsllz,, llcOx(vy - va - oo Ve )(un - u “ue2)llz,
S Avilly, Ivally,, - - Ieally,, Hlually, lleolly, - - - llugezlly, - (2.12)
Proof. The operator A given by
N, ) = M), Avn,&) = M
un,&) = eMin, &), Av(n,§) = eM0(n, ),
satisfies
lelly,, = [Aully,, forallu €Y,
IVlly,, = IAV|ly,, forallv e Y.
Inequality (2.5): For any u;,u; ... uxy1 € Yy it satisfies the relation
10 (ur - s - o )llz, = IAOxuy - g - - - g 1)), -
Then, to establish (2.5), it suffices to prove that
1A (uy - ua -+ - e ))llz, < N(Awy) (Aug) - - - (Awgres )l - (2.13)

By Proposition 1 of [13], we have
IA(D(uy - uy

Let us prove (2.13), we have

A (uy - 1z -

nez*

> P

nez*

nEZ*

> P

nez*

Electronic Research Archive

- ois1)llz, < 1A ly, A ly, -

Zl s f IAD (1 -
1+|§ n3|

Al (777 % 775 % - - -
3 f|e (@2

U 1))z,
1

ie|

- Uy 1)) (1, -§)|2

1

|A<ax<u1u’2?u2k+1)><n,§>| i )\
1+ |§ - n3|

s i) (0, 6]

1+|§—n3|

f |el|"'n (g * g -+« % ) (1, §)|
1+ |§ n3|

d¢

d¢

'||Au2k+1||YS-

D=

=
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We have
Z |n|25f |€/1|n|n (I//t\] * I//[\Z E IR 3 I/t2k+]) (l’l f)| dé‘:
e 7 R 1+ |§ - n3|

[rgzllnlzsfleﬂlnIZf ZfR

nez noy€Z 2k Noj1 EZ

f min(n—ny, & =& —n,é - &) ...
Rog+1

__ _ 2 -1 \z
X it (Mot = Moy Exket — Exlizir 1 (Mo, E20)AE1AE, . .. A (1 +)é - n3|) df)

[zl B0

n ez noy€Z 2k Moj+1€2Z
1
Alnog—1— — 2 3 -1 2
x e oy — ok, Exicr — E0)€" ™ iy (Mg, £2)dE1dE, . . . Ay (1 +le-n |) df)

[Zmﬁ*f@f O Aur(n = ny, & = &R =, &1 =€) ...
nez*

nez nok EZ Rox Nok+ 1€Z Rog

f me" i (n = ny, & - ENeM i (n —ny, & - &) .
Rok+1

1
— o 2 -1 2
X Aoy (nog—1 — ok, Eak-1 — Ear) Ao 1 (Mok, E21)dE1AE - . . dEnyer (1 +]é - n3|) df)

1

(ZmFVf am*fm*---*ﬁ;l)m,fnz(l+|§—n3l)‘ld§) .

nezx*

Similarly, we obtain

Z| s f |€/l|n|n(LT1 % Uy * -+ % Uypy) (1, §)| f
1+ |§ - n3|

nezx

o (1@ s R s s K)ol Y
mef ac| |
1+ ¢ -nd)|

nez*

Then (2.13) is met.
Inequality (2.6): For any u;,uy,...,ux € Y, and vy, vy, ...,y € Y, it satisfies the relation

10 ((uiuz - - - w)(vyvy - - 'Vk+1))||ZM = [|AO((uruy - - - w)(vivy - - - Vk+1)))||ZS .

Then, to show (2.5), it suffices to prove that

IAO((urus - - - w)(Viva - vig))Dlz, < I(Aup) (Auo) - - - (Aug) (Avy) (Ava) - (AvigDllz, - (2.14)

By Proposition 1 of [13], we have
IA@ (12 - - - i) (Viva == Vie DDz, S A lly, [[Aully, - - - IAuelly, 1A lly, [[AV2lly, - - - 1AVelly, -
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Let us prove (2.14), we have

A ((uyus -+ - w ) (Viva -+ Vie))llz,

g W P 5]5
. R 1+ |§ - n3|

nez
— -
2s A ((uyuty - - - ug)(Viva - - vie1))(m, €|
d

+ é'nl («[l; 1+|€:_n3| f)]
-\ [ T )T T e T
B nez* R 1+|§_n3|
+ Zlnlh(f R R R R AT S A

nez* R 1+ |§ — n3| .

Next, we analyze the first part of the last sum.

1
—_ o~ _ 2 \2
| |2Sf |e/1|n|n((u1 sty k- ox i) (V] % Vg % -k V) §)| i
g n
nez* R 1+ |é‘: — n3|

=(Z|n|”f|e4'”'2f...2f Y, [ win- g e -k - 8.
nez*

R nez Ry nok€Z Rox Nok+1€Z Rogs

_ _ REY:
X Vi(Mag-1 = Moy Eak-1 = Ex)View1 (Mo, Eax)dE1dE - . 61l§2k+1|2 (1 + )¢ - ’l3|) df)z

s\ ey (Y [N [ meme g - e T - magi - &)
neZ* R Ry R Rok+1

nez n2k€Z 2k n2k+|€Z
1
Alnoget =ngl = b 2 A
X e [nok—1 n2klvk(n2k—1 — nzk’ka—l _ ka)e |"2k|vk+1(n2k,§2k)d§1d§2 .. .dfzjﬁ_ll (1 + |§ —-n |) df)

S[;lnlzsflzjl;..nz‘f]& 2, L2k+laxm(”‘”l’f‘fl)@<nl—nz,§1—§2>...

R nez nok€Z 2k N1 EZ
X Avi(nok-1 = Nog, Exk—1 — Exi) AVip1 (Mg, E1)AE1AE . . . dEdpeyy

1

(fe-n))

dg:)

2
s(z |n|2Sf|(axKZ*K\w---*m*/\/@)m,aﬁ(l+|§—n3|)‘ldf) :
nez* R

Electronic Research Archive Volume 33, Issue 7, 4119-4134.
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Similarly, we obtain

Z | IZY (f |€/1|n|n (lji\l * 1/75 % oeee K Vkvk+l) (l’l §)|d§

7 1+ |§ - n3|

=

0y * Auy 5 5 Avx Kvicy) (n, )

Z |n|2s f
fr 1+|¢—nd|

Adding the above two inequalities gives (2.14). O

By Lemma 2.2 and Proposition 2.1, we have
Proposition 2.2. For s > 1/2,dc, > 0 such that

2%k+1 k+1 k+1 k+2
ITvully,, < colllullyh + My, VIV + 1ty VI, + el IVIEE) + ealluollgusm, — u € Yo,

2k+1 k+1 k+1 k+2
IT2vlly,, < carlIVIRE + VI, ot -+ VI el + IVl ) + colivollgon, v € Yo,
and
2k+1 k+1
2k+1)—€ (k+1)-¢ 4
IT1u - Ty ||yh<cm[2|| [ ||YM+Z||u||YM|| ||YMZ||v|| VI,
k+1
k+1 €
+Z||u||< " YMvanY“nv I,
k+2
k—1)— f (k+2)—C ¢
+Z||u||< lu” ||YMZ||u|| l *||YMJ||u—u*||YA,S,
2k+1 ksl
2k+1)—-¢ k+1)—€ ¢
Ty — Tout ||Y1S_cw[2||v||< iy ||Y43+Z||v||né||v ||Y“Z||u||< el
k+1

k+1)—¢
- Z VI ||YMZ el a1,

k+2
k=1)-¢ k+2)—C
+Z|Ivll( s ||YMZ||M||< " ||Y“]||u—u*||m,

and u,u*,v,v* € Y,
In the next, we find that the map (7', T,) is a contraction.

Proposition 2.3. Suppose that s > 1/2. For a small (uy, vy), we have

3% 4
sy <
llzollG2. ™ = o’

2- 32"“0 23 Qk+ 1)==

Electronic Research Archive Volume 33, Issue 7, 4119-4134.
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3% 4
Ivollgasery < o
2. 32k+1c;k 2k + 1)
Choosing the ball
B(O.7) = {u.v € Yoo @ v)lly,, = llully,, + My, < 7).
with
1
r=—0r
3ca(k+ 1)=
thus

(Ty,T,) : B(O,r) — B(O, r),

Is a contraction.

Proof. By Proposition 2.2, we have

2%k+1 k k+1 ket k+2
cor(llullyst + lully, WU+ iy Iy, + Ny, VIV + colliollorse,

IA

ITully,,

2%k+1 k k+1 k+1 k+2
ca(IVIF + Iy, ullyt! + IVl + IV ) + eollvollorse-

IA

IT2vlly,,

Adding the inequalities, we find that

(1w, Tov)lly,, < el I+ I I, 1 I + 1 Il + 1 I eIy

t Cp (||Mo||cﬂ’x(1r) + ”VO”G“(T))

2k+1
I ’ -4
<oy | —— + ¢y
3c¢EQ2k + )= Pkt (2 + 1) %
Co - 3% 1

= = ; =7.

2k+1 2k+1 a7 1
3%+ % 2k + DB 3cEQk+ 1)

Thus (T, T,) maps B(0, r) into B(0, r) is a contraction, since

k+1

2k
t k-1 f k+1)—C I3
||T1u—T1u*||yﬁ,XScw[§ el I3 le” lly“+§ lelly, ™" lle* ||YM§ MG D= I,
=0

* Z el a1, Z VI IV,

k+2

k=2)-¢ k+2)—C
+Z||u||< "l ||YMZ||u||<” I’ ||Y“]||u—u*||m, Vi u' € Y,

k+1
2k—t k—1)-¢ 4 k+1)-¢ 4
T2y = T2l < ¢o (Z VI Tl + Z [t T a7 1
=0 =0
* Z IVIE IV I, Z el N1,

k+2

k—2)—-¢ k+2)—C 4
+Z”V“( v ||YMZ|| Iyl *||yl,.v]||v—v*||y,{_s, Vo, vt € Y,

Electronic Research Archive Volume 33, Issue 7, 4119-4134.
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Adding the inequalities, we find that

2k

I(Tu = T, Ty = Tov)lly,, < ot [Z rz"‘frf] G =, v = v)lly,,
=0

= codr® 2k + Dl — ;v =v)ly,,

2k

1 * *

= cw4[1—l] Qk + Dl = ',y = v)lly,,
3ca(k+ 1)=

4
= ﬁll(u —u v =)y,

2.2. Uniqueness and continuous dependence of the initial data

We prove the uniqueness in
C([-1,11,6 (M) x € ([-1,11,G*(D)),

by the next standard argument.

Lemma 2.3. Let
(w.v), (', v") € C([-1,1,G*(T)),

be solutions to (1.3) with

(10, vo) = (1, vp),
in

G (T) x G*(T),

and
s>1/2.

Then (u,v) = (u*,v").

The continuity of the data-to-solution map is given in the following.

Lemma 2.4. Let (u,v) and (u*,v*) be solutions to (1.3) corresponding to (up,vo) and (ug,v;)
respectively with the norms

||u0||cfh»‘(1r) + ||Vo||GM(T), ”u(’;”G/"S(T) + ”VEk)lle“(T),

small and s > 1/2. Then

l(w—u",v— V*)lc,/l,s < Cw (||(M0 - MS)”GM(T) + |l(vo — VEK))”G/"S(T))~

The proof of Lemma 2.3 and Lemma 2.4 follows a standard argument.
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3. Uniform radius of analyticity

Let
(o, vo) € G**(T) X G**(T),

then by the definition of G**(T) x G**(T), we have for some L > 0 andn € Z

liio(n)| < Le™"", (3.1)
Wo(m)| < Le™. (3.2)
By (3.1) and (3.1), we have

(o)

@1(x) = ) dip(me™ € C'(T),
n=0

(o)

mm:Z%%W@@m.

n=0
Furthermore,
w1 (n) = up(n), @ (n) = Vo(n),¥n € Z.

Since (ug, vo) € L*(T) x L*(T), we conclude that (9, vo) € C*(T) x C*(T).
The next analytic continuation result is stated, and its proof is similar to that in [18].

Lemma 3.1. Let
(uo, vo) € GY(T) X G*(T),

then (uy,vo) has an analytic extension in a symmetric strip around the real axis, and its width is
equal to A.
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