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1. Introduction

In this work, we study the following Caputo-type fractional integral boundary value problem: −cDα
0+z(t) + δcDβ

0+z(t) = g(t, z(t)), 0 < t < 1,
z(0) = 0, z(1) =

∫ 1

0
z(t)dµ(t),

(1.1)

where cDα
0+,

cDβ
0+ are the Caputo-type fractional derivatives with α ∈ (1, 2], β ∈ (0, 1], 2α > β + 2, and

the functions g, µ satisfy the following conditions:
(C1) g ∈ C([0, 1] × R+,R+);
(C2) µ(t) is a non-negative function of bounded variation, and not a constant function on t ∈ [0, 1];

and
(C3) δ is a fixed positive constant with δ ∈ (0, δ∗), where δ∗ is a unique zero point of the function

h(t) =
α − 2
Γ(α − 1)

+

∞∑
k=1

tk

Γ((α − β)k + α − 2)
.

In recent years, fractional calculus has rapidly developed in engineering, physics, electronics,
chemistry, and other fields due to their profound physical background and applications. For example,
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in viscoelastic beam vibration control, the model for memory effects is as follows:

mcD2
0+u(t) + ncDα

0+u(t) + ku(t) = f (t), 1 < α < 2,

where cDα
0+ is the Capotu-type fractional derivative, which is used to describe frequency-dependent

damping characteristics. Under simply-supported boundary conditions, the vibration suppression effect
can be optimized by adjusting the parameter α in the fractional-order PID controller.

As an important research field in the study of fractional-order equations, the existence of solutions
for initial and boundary value problems has become popular among researchers, and a large number
of excellent results have been obtained by virtue of fixed-point theorems, the upper-lower solutions
technique, etc. A variety of results on this direction can be found in the literature; we refer to [1–28]
and the references cited therein. In [1], the authors studied the existence and multiplicity of positive
solutions for the following fractional-order integral boundary value problem:

(
φp

(
cDα

0+u(t)
))′
+ a(t) f (t, u(t)) = 0, t ∈ (0, 1),

cDα
0+u(0) = u′(0) = u′′(0) = 0, u(1) + u′(1) =

∫ η

0
u(t)dt.

They provided some necessary and sufficient conditions to obtain the existence and multiplicity results
via the Krasnoselskii, Schaefer, and Leggett-Williams fixed point theorems.

In [2], the authors investigated the following coupled system of nonlinear fractional integral
boundary value problems:

cDδ
0+µ(ℓ) = F1(ℓ, µ(λℓ), ν(λℓ)), ℓ ∈ [0, 1],

cDϱ
0+ν(ℓ) = F2(ℓ, µ(λℓ), ν(λℓ)), ℓ ∈ [0, 1],

µ(0) = r(µ), µ(1) = 1
Γ(δ)

∫ 1

0
(1 − η)δ−1φ(η, µ(η))dη,

ν(0) = h(ν), ν(1) = 1
Γ(ϱ)

∫ 1

0
(1 − η)ϱ−1ψ(η, ν(η))dη.

When Fi(i = 1, 2) and φ, ψ satisfy some Lipschitz conditions, they obtained the existence of nontrivial
solutions for their system via the topological degree theory. In [3], the authors studied the following
Caputo-type fractional four-point boundary value problems at resonance: cDα

0+u(t) = f
(
t, u(t), cDα−1

0+ u(t)
)
, t ∈ (0, 1),

u(0) = Bu(ξ), u(1) = Cu(η).

By using the continuation theorem due to Mawhin, they obtained their results when f satisfied the
Carathéodory conditions. In [4], the authors used the upper-lower solution method to study the
following fractional-order integral boundary value problem: −Dα

0+u(t) = f (t, u(t)), t ∈ (0, 1),
u(0) = 0, u(1) =

∫ 1

0
u(t)dA(t),

where Dα
0+ is the Riemann-Liouville fractional derivative. When the nonlinearity satisfied the reverse

Lipschitz condition, they obtained the existence of the extremal solutions, which can be uniformly
converged from some appropriate monotone sequences.
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Inspired by the works above, in this paper, we use the upper-lower solution method to study the
existence of positive solutions for (1.1) when the nonlinearity satisfies some monotonicity conditions.
Our innovation lies in the following aspects:

(i) Dual fractional derivatives: the differential equation in (1.1) contains two fractional derivatives,
and its equivalent integral equation is obtained by using the Laplace transforms;

(ii) Comparison theorem via integral boundary conditions: we derive a comparison theorem by
leveraging the integral boundary conditions; and

(iii) Existence of positive solutions: using the upper-lower solution method, we prove the existence
of positive solutions for both increasing and decreasing nonlinear terms. The monotonicity conditions
are easily satisfied.

2. Preliminaries

In this section, we first present some basic knowledge that will be used in the paper.
Definition 2.1 (see [29,30]). The fractional derivative of f in the Caputo sense is defined as follows:

cDα
0+ f (t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds, n = [α] + 1,

where [α] denotes the integer part of the number α.
Definition 2.2 (see [29, 30]). The Laplace transform of a function f (t) of a real variable t ∈ R+ is

defined by

F(s) = L[ f (t)] =
∫ +∞

0
f (t)e−stdt, s = γ + iω ∈ C, γ > 0,

and the inverse Laplace transform is defined by

f (t) = L−1[F(s)] =
1

2πi

∫ γ+i∞

γ−i∞
F(s)estds, i2 = −1.

Definition 2.3 (see [29, 30]). The Laplace convolution operator of two functions, ζ(t) and φ(t),
given on R+, is defined for x ∈ R+ by the following integral:

ζ ∗ φ = (ζ ∗ φ)(x) :=
∫ x

0
ζ(x − t)φ(t)dt.

Definition 2.4 (see [29,30]). The Mittag-Leffler function Eα,β(t) in two parameters is defined by the
following:

Eα,β(t) :=
∞∑

k=0

tk

Γ(αk + β)
, t ∈ C, α, β > 0.

Lemma 2.5. Let V ∈ C[0, 1]. Then, the boundary value problem −cDα
0+z(t) + δcDβ

0+z(t) = V(t), 0 < t < 1,
z(0) = 0, z(1) =

∫ 1

0
z(t)dµ(t)

(2.1)

has a solution

z(t) =
∫ 1

0
H(t, s)V(s)ds +

g2(t)
g2(1)

∫ 1

0
z(t)dµ(t),
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where

H(t, s) =
1

g2(1)

g1(1 − s)g2(t), 0 ≤ t ≤ s ≤ 1,
g1(1 − s)g2(t) − g1(t − s)g2(1), 0 ≤ s ≤ t ≤ 1,

g1(t) = tα−1Eα−β,α

(
δtα−β

)
, g2(t) = tEα−β,2

(
δtα−β

)
.

(2.2)

Proof. Making the Laplace transform on both sides of the first equation in (2.1), using [5, (3.2)],
we obtain the following:

−sαZ(s) + sα−1z(0) + sα−2z′(0) + δsβZ(s) − δsβ−1z(0) = Y(s),

where Z(s) = L[z(t)], Y(s) = L[V(t)]. Solving this equation, we obtain the following:

Z(s) = −
Y(s)

sα − δsβ
+ z(0)

sα−1

sα − δsβ
+ z′(0)

sα−2

sα − δsβ
− δz(0)

sβ−1

sα − δsβ
.

Making the inverse Laplace transform for this equation, we have the following:

z(t) = −V(t) ∗ L−1[
1

sα − δsβ
] + z(0)L−1[

sα−1

sα − δsβ
] + z′(0)L−1[

sα−2

sα − δsβ
] − δz(0)L−1[

sβ−1

sα − δsβ
].

Note that 1
sα−δsβ can be expressed by

1
sα − δsβ

=

∞∑
k=0

δks−k(α−β)−α =

∞∑
k=0

δk

Γ((α − β)k + α)
Γ((α − β)k + α)

sk(α−β)+α−1+1 .

Using L−1[Γ(σ+1)
sσ+1 ] = tσ(σ > −1), from Definition 2.4, we have the following:

L−1[
1

sα − δsβ
] =

∞∑
k=0

δktk(α−β)+α−1

Γ((α − β)k + α)
= tα−1Eα−β,α(δtα−β) = g1(t). (2.3)

Similarly, we have

L−1[
sα−1

sα − δsβ
] =

∞∑
k=0

δktk(α−β)

Γ((α − β)k + 1)
= Eα−β,1(δtα−β),

L−1[
sα−2

sα − δsβ
] =

∞∑
k=0

δktk(α−β)+1

Γ((α − β)k + 2)
= tEα−β,2(δtα−β) = g2(t), (2.4)

and

L−1[
sβ−1

sα − δsβ
] =

∞∑
k=0

δktk(α−β)+α−β

Γ((α − β)k + α − β + 1)
= tα−βEα−β,α−β+1(δtα−β).

Therefore, we have

z(t) = −V(t) ∗ tα−1Eα−β,α

(
δtα−β

)
+ z(0) · Eα−β,1

(
δtα−β

)
+ z′(0) · tEα−β,2

(
δtα−β

)
− δz(0) · tα−βEα−β,α−β+1

(
δtα−β

)
,

where

V(t) ∗ tα−1Eα−β,α

(
δtα−β

)
= V(t) ∗ g1(t) =

∫ t

0
g1(t − s)V(s)ds.
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Note that if z(0) = 0, then we have the following:

z(t) = −V(t) ∗ tα−1Eα−β,α

(
δtα−β

)
+ z′(0) · tEα−β,2

(
δtα−β

)
;

then, z(1) =
∫ 1

0
z(t)dµ(t) implies that

−

∫ 1

0
g1(1 − s)V(s)ds + z′(0)g2(1) =

∫ 1

0
z(t)dµ(t).

Consequently, we have

z′(0) =
1

g2(1)

∫ 1

0
z(t)dµ(t) +

1
g2(1)

∫ 1

0
g1(1 − s)V(s)ds,

and

z(t) = −
∫ t

0
g1(t − s)V(s)ds +

g2(t)
g2(1)

∫ 1

0
z(t)dµ(t) +

g2(t)
g2(1)

∫ 1

0
g1(1 − s)V(s)ds

=

∫ 1

0
H(t, s)V(s)ds +

g2(t)
g2(1)

∫ 1

0
z(t)dµ(t).

This completes the proof. □
Let E = C[0, 1] and ∥ · ∥ = maxt∈[0,1] | · |. Then, (E, ∥ · ∥) is a Banach space, and P := {z ∈ E : z(t) ≥

0, t ∈ [0, 1]} is a cone on E. By Lemma 2.5, we find that (1.1) is equivalent to the following integral
equation:

z(t) =
∫ 1

0
H(t, s)g(s, z(s))ds +

g2(t)
g2(1)

∫ 1

0
z(t)dµ(t) := (Θz)(t), z ∈ E, t ∈ [0, 1]. (2.5)

It is easy to find that there exists z∗ ∈ E\{0} such that Θz∗ = z∗ (i.e., z∗ is a solution for (1.1)).
Consider the function µ; it also satisfies the condition
(C4)

∫ 1

0
g2(t)
g2(1)dµ(t) ∈ [0, 1).

Then, there exists a fixed point z∗ of Θ (i.e., Θz∗ = z∗). Then, from (2.5), we have

(Θz∗)(t) = z∗(t) =
∫ 1

0
H(t, s)g(s, z∗(s))ds +

g2(t)
g2(1)

∫ 1

0
z∗(t)dµ(t), (2.6)

and ∫ 1

0
z∗(t)dµ(t) =

∫ 1

0

∫ 1

0
H(t, s)g(s, z∗(s))dsdµ(t) +

∫ 1

0

g2(t)
g2(1)

dµ(t)
∫ 1

0
z∗(t)dµ(t).

Then, (C4) implies that∫ 1

0
z∗(t)dµ(t) =

1

1 −
∫ 1

0
g2(t)
g2(1)dµ(t)

∫ 1

0

∫ 1

0
H(t, s)g(s, z∗(s))dsdµ(t).

Therefore, we have

z∗(t) =
∫ 1

0
H(t, s)g(s, z∗(s))ds +

g2(t)
g2(1)

1

1 −
∫ 1

0
g2(t)
g2(1)dµ(t)

∫ 1

0

∫ 1

0
H(t, s)g(s, z∗(s))dsdµ(t)

=

∫ 1

0
G(t, s)g(s, z∗(s))ds,

(2.7)
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where

G(t, s) = H(t, s) +
g2(t)

g2(1) −
∫ 1

0
g2(t)dµ(t)

∫ 1

0
H(t, s)dµ(t). (2.8)

Note that from (2.6) and (2.7), we can also define the operator Θ as follows:

(Θz)(t) =
∫ 1

0
G(t, s)g(s, z(s))ds, z ∈ E, t ∈ [0, 1]. (2.9)

Lemma 2.6 (see [23, Lemma 2]). The functions G,H have the following properties:
(i) G,H are continuous on [0, 1] × [0, 1];
(ii) G,H(t, s) ≥ 0, t, s ∈ [0, 1]; and
(iii) Λ1t(1 − s)α−1s ≤ G(t, s) ≤ Λ2t(1 − s)α−1, t, s ∈ [0, 1], where

Λ1 =
Λ3

g2(1) −
∫ 1

0
g2(t)dµ(t)

∫ 1

0
(1 − t)tdµ(t), Λ2 = g1(1) +

g1(1)g2(1)

g2(1) −
∫ 1

0
g2(t)dµ(t)

∫ 1

0
tdµ(t).

Proof. Note that α ∈ (1, 2], β ∈ (0, 1], and from (2.3) and (2.4), gi(i = 1, 2) are continuous on
t ∈ [0, 1]. This implies that H(t, s) is continuous on t, s ∈ [0, 1]. From (C2)–(C4), the definition of G
in (2.8) implies that it is continuous on t, s ∈ [0, 1].

From (2.4), we have

g′2(t) =
∞∑

k=0

[k(α − β) + 1]δktk(α−β)

Γ((α − β)k + 2)
=

∞∑
k=0

δktk(α−β)

Γ((α − β)k + 1)
, t ∈ (0, 1),

and

g′′2 (t) =
∞∑

k=0

k(α − β)δktk(α−β)−1

Γ((α − β)k + 1)
, t ∈ (0, 1).

This, together with (2.4), implies that g2, g′2 are non-decreasing on t ∈ [0, 1]. On the other hand, by
(2.3), we have the following:

g′1(t) =
∞∑

k=0

[k(α − β) + α − 1]δktk(α−β)+α−2

Γ((α − β)k + α)
=

∞∑
k=0

δktk(α−β)+α−2

Γ((α − β)k + α − 1)
, t ∈ (0, 1).

This implies that g1 is non-decreasing on t ∈ [0, 1]. Furthermore, note that α ∈ (1, 2], β ∈ (0, 1], 2α >
β + 2. We know that the function h in (C3) has the following properties:

h(0) =
α − 2
Γ(α − 1)

< 0, lim
t→+∞

h(t) = +∞, and h is strictly increasing on t ∈ [0, 1].

Therefore, there exists a unique positive number δ∗ such that

h(δ∗) = 0.
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This implies that

g′′1 (t) =
∞∑

k=0

[k(α − β) + α − 2]δktk(α−β)+α−3

Γ((α − β)k + α − 1)

= tα−3

 α − 2
Γ(α − 1)

+

∞∑
k=1

[k(α − β) + α − 2]δktk(α−β)

Γ((α − β)k + α − 1)


= tα−3

 α − 2
Γ(α − 1)

+

∞∑
k=1

δktk(α−β)

Γ((α − β)k + α − 2)


= tα−3h(δtα−β)
≤ tα−3h(δ∗)
= 0, t ∈ (0, 1),

and thus we obtain that g′1 are decreasing on t ∈ [0, 1].
Now, we prove the nonnegativity of H on t, s ∈ [0, 1]. When 0 ≤ t ≤ s ≤ 1, it is a non-negative

function. When 0 ≤ s ≤ t ≤ 1, we have

Htt(t, s) =
g1(1 − s)

g2(1)
g′′2 (t) − g′′1 (t − s) ≥ 0,

and thus
Ht(t, s) ≥ Ht(s, s) ≥ 0.

Consequently, we have the following:

H(t, s) ≥ H(s, s) =
g1(1 − s)

g2(1)
g2(s) ≥ 0.

From (C2)–(C4) and (2.8), we have the following:

G(t, s) ≥ 0, t, s ∈ [0, 1].

Note that from Lemma 2 of [23], we have the following:

Λ3(1 − t)t(1 − s)α−1s ≤ H(t, s) ≤ g1(1)t(1 − s)α−1, t, s ∈ [0, 1],

where Λ3 = min{1/(g2(1)Γ(α)), (α − 1)g1(1)}. Using t ≤ g2(t) ≤ tg2(1), t ∈ [0, 1], we have

G(t, s) ≤ g1(1)t(1 − s)α−1 +
tg2(1)

g2(1) −
∫ 1

0
g2(t)dµ(t)

∫ 1

0
g1(1)t(1 − s)α−1dµ(t)

= Λ2t(1 − s)α−1

and

G(t, s) ≥
t

g2(1) −
∫ 1

0
g2(t)dµ(t)

∫ 1

0
Λ3(1 − t)t(1 − s)α−1sdµ(t)

= Λ1t(1 − s)α−1s.

This completes the proof. □
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Using Lemma 2.6(i) and (ii) and (C1)–(C4), the continuity and non-negativity of G, g imply that
Θ : P→ P is a completely continuous operator.

Definition 2.7. We say that w ∈ C[0, 1] is an upper solution of (1.1) if it satisfies the following: −cDα
0+w(t) + δcDβ

0+w(t) ≥ g(t,w(t)), 0 < t < 1,
w(0) = 0, w(1) ≥

∫ 1

0
w(t)dµ(t).

Definition 2.8. We say that v ∈ C[0, 1] is a lower solution of (1.1) if it satisfies the following: −cDα
0+v(t) + δcDβ

0+v(t) ≤ g(t, v(t)), 0 < t < 1,
v(0) = 0, v(1) ≤

∫ 1

0
v(t)dµ(t).

Lemma 2.9 (Comparison principle). Suppose that (C2)–(C4) hold; if there exists z ∈ C[0, 1] such
that  −cDα

0+z(t) + δcDβ
0+z(t) ≥ 0, 0 < t < 1,

z(0) = 0, z(1) ≥
∫ 1

0
z(t)dµ(t),

then z(t) ≥ 0, t ∈ [0, 1].
Proof. Let M = z(1)−

∫ 1

0
z(t)dµ(t), V(t) = −cDα

0+z(t)+ δcDβ
0+z(t), t ∈ (0, 1), and M ≥ 0,V(t) ≥ 0, t ∈

(0, 1). Then, we can obtain the following boundary valve problem: −cDα
0+z(t) + δcDβ

0+z(t) = V(t), 0 < t < 1,
z(0) = 0, z(1) =

∫ 1

0
z(t)dµ(t) + M.

From the proof of Lemma 2.5, we have the following:

−

∫ 1

0
g1(1 − s)V(s)ds + z′(0)g2(1) =

∫ 1

0
z(t)dµ(t) + M.

Consequently, we obtain

z′(0) =
1

g2(1)

∫ 1

0
z(t)dµ(t) +

1
g2(1)

∫ 1

0
g1(1 − s)V(s)ds +

M
g2(1)

,

and from Lemma 2.6(ii), we find

z(t) = −
∫ t

0
g1(t − s)V(s)ds +

g2(t)
g2(1)

∫ 1

0
g1(1 − s)V(s)ds +

g2(t)
g2(1)

∫ 1

0
z(t)dµ(t) +

g2(t)
g2(1)

M

=

∫ 1

0
H(t, s)V(s)ds +

g2(t)
g2(1)

∫ 1

0
z(t)dµ(t) +

g2(t)
g2(1)

M

≥
g2(t)
g2(1)

∫ 1

0
z(t)dµ(t) +

g2(t)
g2(1)

M.

Multiplying by dµ(t) on both sides of the above and integrating over [0, 1], from (C4), we have∫ 1

0
z(t)dµ(t) ≥

∫ 1

0

g2(t)
g2(1)

dµ(t)
∫ 1

0
z(t)dµ(t) + M

∫ 1

0

g2(t)
g2(1)

dµ(t),
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and ∫ 1

0
z(t)dµ(t) ≥

M
∫ 1

0
g2(t)
g2(1)dµ(t)

1 −
∫ 1

0
g2(t)
g2(1)dµ(t)

.

Therefore, we have the following:

z(t) ≥
g2(t)
g2(1)

M
∫ 1

0
g2(t)
g2(1)dµ(t)

1 −
∫ 1

0
g2(t)
g2(1)dµ(t)

+
g2(t)
g2(1)

M.

Therefore, we obtain z(t) ≥ 0, t ∈ [0, 1] from the nonnegativity of M, g2. This completes the proof. □

3. Main results

Now, we give our main results and their proofs.
Theorem 3.1. Let (C1)–(C4) and the following conditions hold:
(C5) for any constant ρ > 0, g(t, ρt) . 0 and

0 <
∫ 1

0
(1 − s)α−1g(s, ρs)ds < +∞,

(C6) g(t, x) ≥ g(t, y) if x ≤ y for t ∈ [0, 1].
Then, (1.1) has a positive solution z∗, and there exist 0 < λ1 < 1 < λ2 such that λ1t ≤ z∗(t) ≤ λ2t, t ∈

[0, 1].
Proof. First, we define a set P := {z ∈ P : ∃0 < lz < Lz s.t. lzt ≤ z(t) ≤ Lzt, t ∈ [0, 1]}. Obviously,

t ∈ P and thus P , ∅. In what follows, we prove that

Θ(P) ⊂ P. (3.1)

For any z ∈ P, Lemma 2.6(iii), (C5), and (C6) imply that

(Θz)(t) ≤
∫ 1

0
Λ2t(1 − s)α−1g(s, lzs)ds < +∞,

and

(Θz)(t) ≥
∫ 1

0
Λ1t(1 − s)α−1sg(s, Lzs)ds.

Choose

l′z = min{1,
∫ 1

0
Λ1(1 − s)α−1sg(s, Lzs)ds}, L′z = max{1,

∫ 1

0
Λ2(1 − s)α−1g(s, lzs)ds};

then, we have
l′zt ≤ (Θz)(t) ≤ L′zt, t ∈ [0, 1].

This implies that Θ is well-defined, and (3.1) holds. Moreover, by (C6), Θz is decreasing in z and
satisfies the following:  −cDα

0+(Θz)(t) + δcDβ
0+(Θz)(t) = g(t, z(t)), 0 < t < 1,

(Θz)(0) = 0, (Θz)(1) =
∫ 1

0
(Θz)(t)dµ(t).

(3.2)
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Let e(t) = t, t ∈ [0, 1], and

me(t) = min{e(t), (Θe)(t)}, ne(t) = max{e(t), (Θe)(t)}.

If e(t) = (Θe)(t), then e is a fixed point of Θ, and this function e is also a positive solution for (1.1);
thus our theorem has been proved. If e(t) , (Θe)(t), and then from (3.1), we have me, ne ∈ P with
me(t) ≤ ne(t), t ∈ [0, 1].

Note that Θ is a decreasing operator, and

me(t) ≤ e(t), me(t) ≤ (Θe)(t), ne(t) ≥ e(t), ne(t) ≥ (Θe)(t).

Therefore, we have

ψ(t) := (Θme)(t) ≥ (Θe)(t) ≥ me(t), φ(t) := (Θne)(t) ≤ (Θe)(t) ≤ ne(t),

and
ψ(t) ≥ φ(t).

From (3.2), we have

−cDα
0+φ(t) + δcDβ

0+φ(t) − g(t, φ(t)) = −cDα
0+(Θne)(t) + δcDβ

0+(Θne)(t) − g(t, (Θne)(t))
= g(t, ne(t)) − g(t, (Θne)(t)) ≤ 0,

and

φ(t) = (Θne)(t) =
∫ 1

0
G(t, s)g(s, ne(s))ds,

which implies that

φ(0) = 0, φ(1) =
∫ 1

0
φ(t)dµ(t).

Using Definition 2.8, φ is a lower solution of (1.1).
For ψ(t) = (Θme)(t), we have

−cDα
0+ψ(t) + δcDβ

0+ψ(t) − g(t, ψ(t)) = −cDα
0+(Θme)(t) + δcDβ

0+(Θme)(t) − g(t, (Θme)(t))
= g(t,me(t)) − g(t, (Θme)(t)) ≥ 0,

and

ψ(t) = (Θme)(t) =
∫ 1

0
G(t, s)g(s,me(s))ds,

which indicates that

ψ(0) = 0, ψ(1) =
∫ 1

0
ψ(t)dµ(t).

Using Definition 2.7, ψ is an upper solution of (1.1).
Now, we consider the following boundary value problem: −cDα

0+z(t) + δcDβ
0+z(t) = g̃(t, z(t)), 0 < t < 1,

z(0) = 0, z(1) =
∫ 1

0
z(t)dµ(t),

(3.3)
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where

g̃(t, z(t)) =


g(t, φ(t)), z < φ,
g(t, z(t)), φ ≤ z ≤ ψ,

g(t, ψ(t)), z > ψ.

From Lemma 2.5, we obtain the following:

z(t) =
∫ 1

0
G(t, s)̃g(s, z(s))ds := (Πz)(t).

Note that from (C1)–(C5), the continuity and boundedness of G, g̃ imply that Π : P → P is a compact
operator. Then, by the Schauder fixed point theorem, we know that Π has a positive fixed point, i.e.,
(3.3) has a positive solution.

Let z∗ be a positive solution for (3.3). Then, from the definition of g̃, we only need to prove that

φ(t) ≤ z∗(t) ≤ ψ(t), t ∈ [0, 1], (3.4)

which indicates that z∗ is the positive solution for (1.1).
We proceed by contradiction. We divide the following cases:
Case 1. z∗ > ψ. Then, we have the following: −cDα

0+z
∗(t) + δcDβ

0+z
∗(t) = g(t, ψ(t)), 0 < t < 1,

z∗(0) = 0, z∗(1) =
∫ 1

0
z∗(t)dµ(t).

Note that ψ is an upper solution; using Definition 2.7, we have

− cDα
0+[ψ(t) − z∗(t)] + δcDβ

0+[ψ(t) − z∗(t)] ≥ g(t, ψ(t)) − g(t, ψ(t)) = 0,

and

ψ(0) − z∗(0) = 0, ψ(1) − z∗(1) ≥
∫ 1

0
[ψ(t) − z∗(t)]dµ(t).

Lemma 2.9 implies that ψ(t) − z∗(t) ≥ 0 (ψ(t) ≥ z∗(t), t ∈ [0, 1]). This has a contradiction.
Case 2. z∗ < φ. Then, we have the following: −cDα

0+z
∗(t) + δcDβ

0+z
∗(t) = g(t, φ(t)), 0 < t < 1,

z∗(0) = 0, z∗(1) =
∫ 1

0
z∗(t)dµ(t).

Note that φ is a lower solution; using Definition 2.8, we have

− cDα
0+[z

∗(t) − φ(t)] + δcDβ
0+[z

∗(t) − φ(t)] ≥ g(t, φ(t)) − g(t, φ(t)) = 0,

and

z∗(0) − φ(0) = 0, z∗(1) − φ(1) ≥
∫ 1

0
[z∗(t) − φ(t)]dµ(t).

Lemma 2.9 implies that z∗(t) − φ(t) ≥ 0 (z∗(t) ≥ φ(t), t ∈ [0, 1]). This also has a contradiction.
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As a result, (3.4) holds, as required, and (1.1) has a positive solution z∗. Note that φ, ψ ∈ P; from
(3.4), we have the following:

z∗ ∈ P.

Hence, there exist 0 < λ1 < 1 < λ2 such that λ1t ≤ z∗(t) ≤ λ2t, t ∈ [0, 1]. This completes the proof. □
Theorem 3.2. Let (C1)–(C4) and the following conditions hold:
(C7) w0, v0 ∈ E are the upper and lower solutions of (1.1), respectively, with v0(t) ≤ w0(t), t ∈ [0, 1];

and
(C8) g(t, x) ≥ g(t, y) if x ≥ y for t ∈ [0, 1].
Then, there exist sequences {vn} , {wn} ⊂ [v0,w0] such that vn → v∗, wn → w∗ as n → ∞ uniformly

in [v0,w0], and v∗,w∗ are positive solution of (1.1) in [v0,w0].
Proof. We define the sequences {wn}

∞
n=0 and {vn}

∞
n=0 as follows: −cDα

0+wn(t) + δcDβ
0+wn(t) = g(t,wn−1(t)), 0 < t < 1,

wn(0) = 0, wn(1) =
∫ 1

0
wn(t)dµ(t),

(3.5)

and  −cDα
0+vn(t) + δcDβ

0+vn(t) = g(t, vn−1(t)), 0 < t < 1,
vn(0) = 0, vn(1) =

∫ 1

0
vn(t)dµ(t).

(3.6)

Then, from Lemma 2.5, (3.5) and (3.6) are equivalent to the following integral equations:

wn(t) =
∫ 1

0
H(t, s)g(s,wn−1(s))ds +

g2(t)
g2(1)

∫ 1

0
wn(t)dµ(t), (3.7)

and

vn(t) =
∫ 1

0
H(t, s)g(s, vn−1(s))ds +

g2(t)
g2(1)

∫ 1

0
vn(t)dµ(t). (3.8)

By (C2)–(C4), (3.7) and (3.8) can also be expressed by

wn(t) =
∫ 1

0
G(t, s)g(s,wn−1(s))ds = (Θwn−1)(t), (3.9)

and

vn(t) =
∫ 1

0
G(t, s)g(s, vn−1(s))ds = (Θvn−1)(t). (3.10)

Note that w0 ≥ v0, then by (3.9) and (3.10), (C8) implies that

w1(t) − v1(t) =
∫ 1

0
G(t, s)[g(s,w0(s)) − g(s, v0(s))]ds ≥ 0, i.e.,w1 ≥ v1.

Note that wn(t) − vn(t) =
∫ 1

0
G(t, s)[g(s,wn−1(s)) − g(s, vn−1(s))]ds; using mathematical induction, it is

easy to obtain the following:
wn ≥ vn, n = 0, 1, 2, · · · . (3.11)
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Let zv(t) = v1(t) − v0(t), t ∈ [0, 1]. Then, note that v0 is a lower solution, then we have

− cDα
0+zv(t) + δcDβ

0+zv(t)

= [−cDα
0+v1(t) + δcDβ

0+v1(t)] − [−cDα
0+v0(t) + δcDβ

0+v0(t)]
≥ g(t, v0(t)) − g(t, v0(t)) = 0,

and

zv(0) = v1(0) − v0(0) = 0, zv(1) = v1(1) − v0(1) ≥
∫ 1

0
v1(t)dµ(t) −

∫ 1

0
v0(t)dµ(t) =

∫ 1

0
zv(t)dµ(t).

Lemma 2.9 implies that zv(t) ≥ 0 (v1(t) ≥ v0(t), t ∈ [0, 1]).
Let zw(t) = w0(t) − w1(t), t ∈ [0, 1]. Then, note that w0 is an upper solution, then we obtain

− cDα
0+zw(t) + δcDβ

0+zw(t)

= [−cDα
0+w0(t) + δcDβ

0+w0(t)] − [−cDα
0+w1(t) + δcDβ

0+w1(t)]
≥ g(t,w0(t)) − g(t,w0(t)) = 0,

and

zw(0) = w0(0) − w1(0) = 0, zw(1) = w0(1) − w1(1) ≥
∫ 1

0
w0(t)dµ(t) −

∫ 1

0
w1(t)dµ(t) =

∫ 1

0
zw(t)dµ(t).

Lemma 2.9 implies that zw(t) ≥ 0 (w0(t) ≥ w1(t), t ∈ [0, 1]).
As a result, we have the following:

v0 ≤ v1 ≤ w1 ≤ w0. (3.12)

From (3.5) and (C8), we have the following: −cDα
0+w1(t) + δcDβ

0+w1(t) = g(t,w0(t)) ≥ g(t,w1(t)), 0 < t < 1,
w1(0) = 0, w1(1) =

∫ 1

0
w1(t)dµ(t).

By Definition 2.7, w1 is an upper solution of (1.1). Furthermore, from (3.6) and (C8), we have the
following:  −cDα

0+v1(t) + δcDβ
0+v1(t) = g(t, v0(t)) ≤ g(t, v1(t)), 0 < t < 1,

v1(0) = 0, v1(1) =
∫ 1

0
v1(t)dµ(t).

By Definition 2.8, v1 is a lower solution of (1.1).
If w1, v1 are taken as the basic functions, then we can repeat the above-mentioned process, and the

following conclusion can be drawn:
v1 ≤ v2 ≤ w2 ≤ w1,

and w2, v2 are upper and lower solutions of (1.1), respectively. Consequently, by applying mathematical
induction, we can obtain a non-decreasing sequence of lower solutions {vn}

∞
n=0 and a non-increasing

sequence of upper solutions {wn}
∞
n=0, which satisfy the following:

v0 ≤ v1 ≤ · · · vn ≤ · · · ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ w0.
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It is easy for us to find that {vn}
∞
n=0 and {wn}

∞
n=0 are uniformly bounded in E, and the monotone bounded

theorem implies that there exist v∗,w∗ ∈ [v0,w0] such that

lim
n→∞

vn(t) = v∗(t), lim
n→∞

wn(t) = w∗(t), t ∈ [0, 1].

Note that Θ is a completely continuous operator; then,

v∗(t) = (Θv∗) (t), w∗(t) = (Θw∗) (t), t ∈ [0, 1],

i.e., v∗,w∗ are solutions for (1.1). This completes the proof. □

4. Examples

Now, we provide some examples to illustrate our main results. Let α = 3/2, β = 1/2, and µ(t) =
t, t ∈ [0, 1]. Then, by python, we calculate δ∗ = 0.292, and δ can be chosen 1/5 ∈ (0, δ∗). Moreover,∫ 1

0

g2(t)
g2(1)

dµ(t) ≤
∫ 1

0

tg2(1)
g2(1)

dt =
1
2
∈ [0, 1).

Hence, (C2)–(C4) hold.
Example 4.1. Let g(t, z) = e−zt, z ∈ R+, and t ∈ [0, 1]. Then, g is decreasing w.r.t. z uniformly in

t ∈ [0, 1]. Note that g(t, ρt) = e−ρt2 and∫ 1

0
(1 − s)0.5e−ρs2

ds ≤
∫ 1

0
(1 − s)0.5ds =

2
3
< +∞.

Therefore, g satisfies the conditions (C1) and (C5)-(C6). Consequently, the conclusion of Theorem 3.1
holds.

Example 4.2. Let g(t, z) = ζ(t)zκ, z ∈ R+, and t ∈ [0, 1], where κ ∈ (0, 1) is a given positive
constant, ζ(t) ≥ 0. Then, g is non-decreasing w.r.t. z uniformly in t ∈ [0, 1], and (C1) and (C8) hold.
In what follows, we establish the upper solution w0 and the lower solution v0. Let ρ(t) =

∫ 1

0
G(t, s)ds

and ξρ(t) =
∫ 1

0
G(t, s)g(s, ρ(s))ds, t ∈ [0, 1]. Then, from Lemma 2.5, ξρ satisfies the following: −cDα

0+ξρ(t) + δ
cDβ

0+ξρ(t) = g(t, ρ(t)), 0 < t < 1,
ξρ(0) = 0, ξρ(1) =

∫ 1

0
ξρ(t)dµ(t).

(4.1)

Using Lemma 2.6(iii), we obtain

ξρ(t) ≤
∫ 1

0
Λ2t(1 − s)α−1g(s, ρ(s))ds ≤

∫ 1

0
Λ2(1 − s)α−1g(s, ρ(s))ds∫ 1

0
Λ1(1 − s)α−1sds

∫ 1

0
G(t, s)ds := η2ρρ(t),

and

ξρ(t) ≥
∫ 1

0
Λ1t(1−s)α−1sg(s, ρ(s))ds ≥

∫ 1

0
Λ1(1 − s)α−1sg(s, ρ(s))ds∫ 1

0
Λ2(1 − s)α−1ds

∫ 1

0
G(t, s)ds := η1ρρ(t), t ∈ [0, 1],
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i.e.,
η1ρρ(t) ≤ ξρ(t) ≤ η2ρρ(t), t ∈ [0, 1]. (4.2)

Let v0(t) = ϑ1ξρ(t), w0(t) = ϑ2ξρ(t), t ∈ [0, 1], where

0 < ϑ1 < min
{

1
η2ρ

, ηκ/(1−κ)1ρ

}
, ϑ2 > max

{
1
η1ρ

, ηκ/(1−κ)2ρ

}
.

By (4.1), we have the following:

v0(0) = 0, v0(1) =
∫ 1

0
v0(t)dµ(t), w0(0) = 0, w0(1) =

∫ 1

0
w0(t)dµ(t).

Note that
g(t, θz) = ζ(t)θκzκ = θκg(t, z), for θ ∈ [0, 1]. (4.3)

Therefore, from (4.3) and (4.2), we find the following:

g (t, v0(t)) = g
(
t, ϑ1ξρ(t)

)
= g

(
t, ϑ1

ξρ(t)
ρ(t)

ρ(t)
)

=

[
ϑ1
ξρ(t)
ρ(t)

]κ
g(t, ρ(t)) ≥

(
ϑ1η1ρ

)κ
g(t, ρ(t)) ≥ ϑ1g(t, ρ(t)).

From (4.1), we have the following:

−cDα
0+v0(t) + δcDβ

0+v0(t) = ϑ1[−cDα
0+ξρ(t) + δ

cDβ
0+ξρ(t)] = ϑ1g(t, ρ(t)) ≤ g (t, v0(t)) .

Definition 2.8 implies that v0 is a lower solution for (1.1).
On the other hand, by direct computation, we have the following:

ϑ2g(t, ρ(t)) = ϑ2g
(
t,
ρ(t)

w0(t)
w0(t)

)
= ϑ2g

(
t,

ρ(t)
ϑ2ξρ(t)

w0(t)
)

= ϑ2

[
ρ(t)

ϑ2ξρ(t)

]κ
g (t,w0(t)) ≥ ϑ2

(
1

ϑ2η2ρ

)κ
g (t,w0(t))

≥ g (t,w0(t)) .

From (4.1), we have the following:

−cDα
0+w0(t) + δcDβ

0+w0(t) = ϑ2[−cDα
0+ξρ(t) + δ

cDβ
0+ξρ(t)] = ϑ2g(t, ρ(t)) ≥ g (t,w0(t)) .

Definition 2.7 implies that w0 is an upper solution for (1.1).
Therefore, (C7) is true, and the conclusion of Theorem 3.2 holds.

5. Conclusions

As is well-documented in the existing literature, the upper-lower solution method, when integrated
with the monotone iterative technique, stands as a potent and pivotal instrument to establish the
existence of solutions to nonlinear boundary value problems. In the present study, we leveraged this
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method to investigate the Caputo-type fractional Riemann-Stieltjes integral boundary value problem,
thereby deriving a series of existence theorems for positive solutions. Our research findings unfolded
in a twofold manner. First, under specific monotonicity conditions imposed on the nonlinearity, we
proved the existence of positive solutions. Second, by adopting the upper and lower solutions as the
initial iteration, we constructed monotone sequences that uniformly converged to the positive
solutions of the problem. It is important to note that the scope of our current discussion is deliberately
confined to the existence of positive solutions. A pertinent question for future exploration is whether
the proposed research methodology remains effective when the nonlinear term admits sign changes.
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