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Abstract: Various multi-objective optimization methods are widely applied in the transportation
field, enabling decision-makers to find solutions that balance trade-off objectives. Since comparing the
performance of multi-objective optimization methods is generally difficult, many performance metrics
are introduced to quantitatively evaluate the performance of multi-objective optimization methods.
However, the effectiveness of the performance metrics needs to be further investigated. Thus, we first
critically analysed a series of performance metrics, including number of solutions obtained (NOSO),
overall nondominated solutions number (ONSN), normalized maximum spread (NMS), error ratio
(ER), nearest ideal distance (NID), mean ideal distance (MID), spacing (SP), inverted generational
distance (IGD), and hypervolume-based ratio (HR), which were extensively adopted to assess the
performance of multi-objective optimization methods. We found that these performance metrics
cannot always accurately reflect the quality of solutions obtained and may be misleading. Thereafter,
two axioms were proposed to define the criteria for reliable performance metrics. Additionally,
whether these performance metrics satisfied the two axioms was rigorously proved. The performance
metrics that satisfied both axioms, i.e., NOSO, ONSN, NMS, ER, and HR, were considered reliable.
Furthermore, a real-world cargo transportation case was investigated, indicating the unreliability of
metrics MID and SP.
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1. Introduction

As a major source of greenhouse gas (GHG) emissions, the sustainable operation of transportation
has received increasing attention from researchers and practitioners [1,2]. Addressing sustainable
transportation problems often requires careful consideration of multiple objectives, such as reducing
operational costs, reducing environmental pollution, improving customer satisfaction with
transportation services, and enhancing resilience of transportation systems. Optimizing sustainable
operational decisions not only improves transportation efficiency, but also mitigates environmental
pollution problems, thereby promoting the prosperity and sustainability of the transportation industry.
However, since different objectives are often conflicting [3,4], how to balance the trade-off objectives
is a crucial problem both theoretically and practically. In earlier studies, only the economically
relevant objective (e.g., reducing operational costs) was usually taken as the sole objective of the
optimization model, while other objectives (e.g., reducing GHG emissions and enhancing customer
satisfaction with transportation services) were considered as constraints of the optimization model.
Such optimization models overemphasize the importance of economically relevant objectives but pay
little attention to other objectives [5]. To address this, many researchers have adopted multi-objective
optimization models to generate a series of compromise solutions, i.e., Pareto optimal solutions,
providing more scientific decision support for transportation systems planning and operations. The
Pareto optimal solutions are also called efficient, nondominated, or noninferior solutions [6,7]. The
set of objective values corresponding to all Pareto optimal solutions is the Pareto front, also called the
Pareto frontier [8, 9].

Numerous multi-objective optimization methods are designed to find Pareto optimal solutions.
Notably, assessing the performance of multi-objective optimization methods is complicated. For
single-objective optimization problems, the objective values could be compared to assess the
performance of each method. However, since multi-objective optimization problems aim to find
solutions that balance trade-off objectives, evaluating the performance of multi-objective optimization
methods by directly comparing the objective values of obtained solutions is generally hard [10],
except in special cases. For example, it is assumed that two methods, namely, method 1 and method 2,
can solve a multi-objective optimization problem. If all the solutions found by method 1 are
dominated by solutions found by method 2, it is easy to draw the conclusion that method 2
outperforms method 1. Another case is that for any solution found by method 1 that is not dominated
by solutions found by method 2, there must be a solution found by method 2 that has the same
objective values as the solution found by method 1 in all dimensions. Additionally, at least one
nondominated solution found by method 2 has objective values different from those of solutions
found by method 1. In this case, method 2 is definitely better than method 1. However, for most cases
where it is difficult to compare multi-objective optimization methods, appropriate performance
metrics are of great importance.

Various multi-objective optimization methods can be used to solve multi-objective optimization
problems in the transportation field.  Selecting appropriate methods for the transportation
multi-objective optimization problems is crucial, highlighting the practical significance of
performance metrics. The major contributions of this study are as follows. First, we introduce a series
of performance metrics that are commonly used to evaluate the performance of multi-objective
optimization methods. Whether a performance metric can truly reflect the quality of the obtained
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solutions determines its effectiveness. Hence, whether larger or smaller values of the performance
metrics necessarily imply better performance of the multi-objective optimization methods is critically
analyzed. Then, the attributes of reliable performance metrics are defined with two axioms, and
whether each performance metric introduced in this study aligns with the two axioms is rigorously
proved. On this basis, a real-world multi-objective vehicle routing problem is explored, indicating the
unreliability of several metrics.

The remainder of this study is outlined as follows. In Section 2, we provide a thorough review of
relevant studies. In Section 3, we elaborate on a series of performance metrics for multi-objective
optimization methods and critically analyze these performance metrics. In Section 4, we propose two
axioms to evaluate the reliability of the performance metrics and mathematically prove the
compliance of performance metrics with two axioms. In Section 5, we explore a real-world
multi-objective optimization problem in the transportation field. In Section 6, we summarize the study
and suggest directions for future studies.

2. Literature review

Since we evaluate the performance metrics of multi-objective optimization methods, the related
studies are reviewed from two key aspects: multi-objective optimization methods and metrics for
evaluating the performance of multi-objective optimization methods.

Solving multi-objective optimization problems is more challenging than solving single-objective
ones, since multi-objective optimization problems need to balance multiple conflicting
objectives [11]. Various multi-objective optimization methods have been proposed in studies, which
can be classified into three major categories: classical methods [12], meta-heuristic methods [13], and
artificial intelligence (Al) techniques [14]. The weighting method and the e-constraint method are
popular classical multi-objective optimization methods. Chen et al. [15] develop an effective group
train operation plan by enhancing the grouping scheme, stopping scheme, and running schedule. The
weighting method is applied to solve the scheduling problem, aiming to reduce transportation cost
and total cargo travel time. Elmi et al. [16] focus on the ship schedule recovery problem, aiming to
minimize the total late ship arrivals and total profit loss caused by disruptive events. An
e-constraint-based algorithm is designed to generate Pareto optimal solutions. The second category of
multi-objective optimization methods is meta-heuristic methods, which progressively approach the
theoretical Pareto optimal fronts of the multi-objective optimization problems [17]. Zhao et al. [18]
propose a nondominated sorted genetic algorithm-III-differential evolution (NSGA-III-DE)
algorithm to address the collaborative optimization of the urban built environment and public
transportation structure, improving both the services capacity and emission reduction potential of
public transportation. Additionally, Al techniques are also extensively applied in multi-objective
optimization. Jia et al. [19] focus on the speed optimization of battery-powered electric trucks while
considering the objectives of safety, efficiency, comfort, and battery degradation. To address the
complicated multi-objective optimization problem, a twin delayed deep deterministic policy
gradient-mixture of experts (TD3-MoE) reinforcement learning (RL) method is designed, which is
shown to achieve superior performance. Huang et al. [20] develop a human as Al mentor-based deep
RL (HAIM-DRL) framework to optimize traffic flow efficiency while avoiding potential accidents.
The experimental results validate the advantages of their methods over traditional methods, such as
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imitation learning (IL), safe RL, and conventional human-in-the-loop RL.

Performance metrics can quantify the performance of multi-objective optimization methods. The
existing metrics are designed to evaluate the quality of solutions generated by multi-objective
optimization methods from three perspectives: number of solutions, convergence of solutions, and
diversity of solutions [21]. Specifically, the number of solutions determines the number of available
choices. Hence, a multi-objective optimization method that can find more solutions is considered
better. The convergence of solutions indicates the closeness between the obtained solution set and the
theoretical Pareto optimal front. Multi-objective optimization methods whose solution sets are closer
to the theoretical Pareto optimal front tend to be preferred. The diversity of solutions, namely, the
distribution and spread of solutions, reflects the relative distance between the obtained solutions and
the coverage of the solution set [22]. A multi-objective optimization method performs better if
solutions are more evenly distributed and the solution set covers a broader range. In addition to
quantitatively assessing the performance of multi-objective optimization methods, performance
metrics are also applied to the design of metric-based multi-objective evolutionary algorithms [23-25]
and the setting of iteration stopping criteria for multi-objective optimization methods [26, 27].
Readers may refer to [28,29] for more detailed information on performance metrics of multi-objective
optimization methods.

Multi-objective optimization methods seek to balance multiple trade-off objectives simultaneously.
Although many performance metrics have been designed to assess the performance of multi-objective
optimization methods quantitatively, whether these performance metrics can draw true and valid
conclusions requires in-depth investigation. Only a few researchers claim that some performance
metrics may be misleading since they cannot always accurately reflect the quality of solutions
obtained [29, 30]. In addition, the criteria for reliable performance metrics are not defined. To address
these issues, we critically analyze a series of performance metrics. On this basis, we propose two
axioms to define the criteria for reliable performance metrics and provide mathematical proofs to
validate whether these performance metrics comply with the two axioms.

3. Overview of performance metrics

In this section, we consider a multi-objective optimization problem, where each objective is to be
minimized. Let G denote the number of objective dimensions of the multi-objective optimization

problem, defined as: (minycy O;(x),...,ming,yx Og(x)), where X is a non-empty compact set and
01(x),...,0¢g(x) are lower semi-continuous functions over X. If x € X, x is a feasible solution and
(01(x),...,0¢(x)) is a feasible objective vector. A feasible solution X is Pareto optimal if there does

not exist any solution x € X such that O,(x) < O,(%) for each g € {1,...,G} and O,(x) < O,4(X) for at
least one g [31]. A set K of methods indexed by k can generate solutions. Let S; denote the set of
solutions with nondominated objective vectors obtained by k method. To ensure the rigor of analysis,
it is assumed that each S contains at least two solutions, and the number of solutions in each S is
finite. By merging the obtained solution sets of all methods, a union S is generated, namely,
S =8, U...US . If multiple solutions with identical objective vectors are found by different
methods, only one is retained in S. Let x denote a solution in S or S. The maximum and minimum
values of the gth objective obtained by all methods in K are represented by O;** and Ogmi“,
respectively. Specifically, O™ = maxyes Og(x), O™ = minges O,(x). Without loss of generality, we
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assume O, # OIgnin for all g. Otherwise, objectives failing to satisfy this condition are excluded from
subsequent analysis. Some solutions in S ; may be dominated by other solutions in §S. e, is defined as
the binary indicator, which equals 1 if and only if solution x is dominated by any other solution in §,
and 0 otherwise.

Several metrics for evaluating the performance of multi-objective optimization methods, including
number of solutions obtained (NOSO), overall nondominated solutions number (ONSN), normalized
maximum spread (NMS), error ratio (ER), nearest ideal distance (NID), mean ideal distance (MID),
spacing (SP), inverted generational distance (IGD), and hypervolume-based ratio (HR), are introduced
as follows.

3.1. Number of solutions obtained

The value of NOSO(S) is the number of obtained solutions in S, namely, |[S;|. Metric NOSO
defined in this study is also referred to as overall nondominated vector generation in studies, such
as [32]. It is possible that two nondominated solutions have the same objective vector and then the
number of obtained nondominated solutions may be larger than that of nondominated objective vectors.
Here, if multiple solutions found by k£ method have identical objective vectors, only one of them is
retained in S;. Therefore, our definition of NOSO is identical to that of overall nondominated vector
generation in existing studies.

An ideal value of metric NOSO is supposed to be as large as possible because a small value of
metric NOSO would limit the available options for decision-makers. However, a method that
performs excellently on this metric may actually be worse in terms of overall performance compared
to other methods.

Example 1. For a bi-objective optimization problem, Figure 1 shows the objective values of the
obtained solutions by method 1 and method 2 (S = S| U S,). There are 6 obtained solutions in S|
and 3 obtained solutions in S,. Hence, NOSO(S|) = 6, NOSO(S,) = 3. Although the value of
NOSO(S ) is larger than that of NOSO(S »), the obtained solutions in S | are all dominated by those in
S,. Therefore, the conclusion that method 1 is superior to method 2 cannot be drawn. It is obvious
that method 2 outperforms method 1.

Oz Obtained solutions in S,
® T~ ) @ Solutions in S; dominated
These solutions are by any other solution in S
X dominated by solutions in S,.

Ok

Figure 1. An example illustrating that a larger value of NOSO(S ;) does not always signify
better performance.
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3.2. Overall nondominated solutions number

Metric ONSN is used to evaluate the quality of solutions found by a method compared to other
methods. For each k method, the number of solutions in S that are not dominated by any other
solutions in S is the value of metric ONSN [32], i.e., ONSN(S ). The value of ONSN(S;) is defined
as follows :

ONSN(S0) = ISl = ), ex. (1)
xeSy
A larger value of metric ONSN does not necessarily mean that the method performs better, as the
value of ONSN(S ;) cannot reflect the distribution range of obtained solutions in S.

Example 2. An optimization problem with two objectives is considered. As shown in Figure 2,
method 1 finds 8 solutions, one of which is dominated by solutions in S ,. S, contains 6 solutions, with
one being dominated by solutions in S . Additionally, a solution is in both S, and S,. Hence,
ONSN(S ) = 7, ONSN(S,) = 5. However, method 1 does not outperform method 2. Although the
value of ONSN(S ) is larger than that of ONSN(S,), the obtained solutions by method 2 are more
evenly distributed.

Obtained solutions in Sy

Oz
Obtained solutions in S,
This solution is dominated Obtained solution in both S,
by solutions in S;. and S,
/ @& Solution in S; dominated
by any other solution in §
® @ Solution in S, dominated

by any other solution in §

This solution is dominated
& ~ by solutions in S,.

Figure 2. An example illustrating that a larger value of ONSN(S), or a smaller value of
ER(S ;) does not necessarily indicate better performance.

3.3. Normalized maximum spread

NMS is a metric used to evaluate the coverage capability of a solution set across each objective
dimension, reflecting the diversity of the solution set. The value of metric NMS can be calculated
according to formula (2), which is in line with Amirian and Sahraeian [33]:

1 G
NMS(Sp) = | & Z

&=1

2)

[ maXyes, O,(x) — Minyes, O (x) |

max _ ()min
Og Og
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The value of NMS(S;) is expected to be close to 1, indicating a broad distribution of obtained
solutions across all objective dimensions. However, a method with a greater value of metric NMS does
not always outperform other methods with smaller values of metric NMS, as illustrated in Example 3.

Example 3. We consider an optimization problem with two objectives. Figure 3 shows that the
obtained solutions in S, cover a larger range in both objective dimensions, resulting in the value of
NMS(S») closer to 1. However, method 2 is not better than method 1, because S| contains more
obtained solutions and these solutions are more evenly distributed.

Obtained solutions in Sy
Obtained solution in S,

Obtained solution in both S;
and S,

O1x

Figure 3. An example showing that a value of NMS(S,) that is closer to 1 does not
necessarily guarantee better performance.

3.4. Error ratio

Metric ER is designed for evaluating the quality of solutions found by a method compared to that of
solutions obtained by other methods. Hence, the solutions obtained by other methods have a significant
impact on metric ER. The value of ER(S) is the average of e, for x € §; [33], which is defined as
follows:

erSk €x

ER(Sy) = S|
k

3)

Generally, smaller values of metric ER are preferred, indicating better performance of the obtained
solutions. However, a method with a smaller value of metric ER does not always perform better.

Example 4. As shown in Figure 2, ER(S ) = % ER(S>») = é. Although ER(S ) < ER(S ), the solutions
found by method 2 are more evenly distributed. Therefore, method 1 is not better than method 2.

3.5. Nearest ideal distance and mean ideal distance

Metrics NID and MID describe the proximity of the obtained solution set to the ideal point,
indicating the convergence of the obtained solution set. For some multi-objective optimization
problems, such as a multi-objective optimization problem that minimizes the fuel cost and travel time,
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the ideal point is defined as the zero vector in the G-dimensional space. However, the ideal points of
other multi-objective optimization problems may be difficult to define, such as a multi-objective
optimization problem that maximizes the profit and minimizes the late deliveries.

Let C, denote the Euclidean objective distance between solution x, x € Sy, and the ideal point.

That is, Cy = /Zngl 0§(x). The value of NID(S) is the minimum Euclidean objective distance of
solutions in S to the ideal point, which is defined as follows:

NID(S) = min C,. “4)
xeSy

The value of MID(S,) is the average Euclidean objective distance between all solutions in S, and
the ideal point [34], which is defined as follows:

erSk Cx

MID(Sy) = S,

%)
Smaller values of NID(S;) and MID(S,) are preferred. However, if the value of NID(S;) or
MID(S ;) is small, the kK method does not necessarily perform well.

Example 5. A bi-objective optimization problem is considered. As shown in Figure 4, both the
minimum Euclidean objective distance and average Euclidean objective distance of obtained
solutions in S| to the ideal point are smaller than those of solutions in S,. Hence,
NID(S 1) < NID(S,), MID(S|) < MID(S,). However, method 1 does not outperform method 2
because the number of solutions obtained by method 2 is greater than that in S |, and solutions in S,
demonstrate a broader distribution.

Obtained solutions in S

Obtained solutions in S,

This solution is dominated
by solutions in S;.

/
®

& Solution in S, dominated by
any other solution in §

O1k

Figure 4. An example illustrating that a smaller value of NID(S;) or MID(S;) does not
necessarily indicate better solutions.

3.6. Spacing

Metric SP measures the uniformity of the distribution of obtained solutions [35], demonstrating the
diversity performance. Let d; , represent the Manhattan objective distance between solution x, x € Sy,
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and its nearest solution in S ;, which is defined below:

G
dk,x = min {Z |0g(X) - Og(x/)l} Vx € Sy.
g=1

x'eS k,x' X

- = . xes, dix
Let d; denote the average of d; . for x € S. Hence, d; is defined as 2 I?k | !

According to Wang et al. [36], the value of SP(S) is defined as follows:

1 -
SP(S,) = \/M—_l D i = o>,

xeSk

(6)

(7

In general, smaller values of metric SP indicate that the obtained solutions are more uniformly
spaced. However, a method with a smaller value of this metric is not necessarily better than

other methods.

Example 6. Figure 5 shows the objective values of a bi-objective optimization problem by method 1
and method 2. The obtained solutions in S| are more uniformly spaced, and therefore, SP(S|) <
SP(S,). However, it cannot be concluded that method 1 outperforms method 2, because method 2 has

more obtained solutions with a broader coverage.

Oss ®

This solution is dominated
by solutions in S,.

Ol,k

Figure 5. An example illustrating that a smaller value of SP(S;) does not necessarily indicate

better performance.

3.7. Inverted generational distance

\ Obtained solutions in Sy

Obtained solutions in S,

& Solution in §; dominated by
any other solution in §

The Euclidean objective distance between solution x, x € S, and the nearest solution x in Sy is

denoted by L ,, which is defined as follows:

G
L= min > (0,0-0,x)) Vxes,

’ ’
X €8x #£x =1

®)
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Metric IGD is adjusted based on Mirjalili et al. [37], and the value of IGD(S) is defined as follows:

’\' ZxESk L]%,x

IGD(Sy) = —————. C))
‘ 1S5l
However, a larger or smaller value of IGD(S ;) does not necessarily indicate better performance of
k method. Therefore, this metric is difficult to accurately reflect the performance of solutions in S.

Example 7. Figure 6 shows different results of a bi-objective optimization problem by method 1 and
method 2. Both Figure 6(a) and Figure 6(b) show that S and S , contain the same number of solutions,
but the more clustered distribution of solutions in S| leads to IGD(S 1) < IGD(S ;). However, neither
of these two figures demonstrates that one method is definitively better than the other.

02 [ _ o
Obtained solutions in S, Obtained solutions in Sy
These solution are dominated ~ These solution are dominated
by solutions in S;. ® Solutions in $; dominated by solutions in S;. ® Solutions in S, dominated
/// / by any other solution in S v / by any other solution in §
Oy Ok

(a) An example illustrating that a smaller value of IGD(S;) (b) An example illustrating that a larger value of IGD(S)

does not necessarily indicate better performance. does not necessarily indicate better performance.

Figure 6. An example illustrating that a smaller or a larger value of IGD(S) does not
necessarily indicate better performance.

3.8. Hypervolume-based ratio

HR is also a metric for assessing the performance of obtained solutions. Let p represent a reference
objective vector in the G-dimensional space, with its objective value in the gth dimension equal to
Og™. Let r, represent the hyperrectangle (i.e., G-dimensional interval) defined by p and x. The
hypervolumes of S and S are defined as the hypervolumes of the union of r, for x € §; and the union
of ry for x € §, denoted by & and A, respectively. The metric is enhanced on the basis of Audet
et al. [29], and the value of HR(S ;) is defined as follows:

h
HR(S,) = Ek (10)
Metric HR reflects both convergence and diversity performance of the obtained solutions. In
general, a larger value of HR(S ) is preferred, but larger HR(S ;) does not always show that k£ method
performs better. A deficiency of this metric is that the solution x, x € S, with its gth objective value

O,(x) equal to O3™ has no contribution to both /; and h.
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Example 8. We consider a bi-objective optimization problem. In Figure 7, the orange point represents
the reference objective vector. hy is the hypervolume of the union of the yellow and green regions,
and hy is the hypervolume of the yellow region. Hence, h, is larger than hy, and HR(S ) > HR(S ).
However, method 1 does not outperform method 2 because solutions in S, have a broader distribution.

Obtained solutions in S;

Obtained solutions in S,

Obtained solution in both S,
and S,

Reference objective vector

Hypervolume of both S; and S,.

Hypervolume of S;.

O1x

Figure 7. An example illustrating that a larger value of HR(S ;) does not necessarily indicate
better performance.

As the number of objective dimensions increases, finding /; and 4 becomes time-consuming. To
address this, a method for approximately estimating the value of HR(S;) is designed. In a
hyperrectangle defined by p and the origin as vertices, a large number (e.g., 1 million) of uniformly
distributed points are randomly generated. The numbers of points that are dominated by at least a
solution in S; and S are denoted by n; and n, respectively. Then, the value of ** is an approximate
value of HR(S ;). Note that the approximation accuracy enhances as the number of points generated in
the hyperrectangle increases.

3.9. Summary

In this section, we analyze several performance metrics critically. It is worth noting that all the
metrics discussed cannot truly reflect the quality of solutions obtained. To be specific, larger or
smaller values of the performance metrics do not necessarily mean that the corresponding
multi-objective optimization methods perform better. In addition, as can be seen from the above
analysis, adopting a single performance metric to reflect all the properties of a solution set of a
multi-objective optimization problem is difficult, but we can analyze the obtained solutions in detail
from different perspectives through various performance metrics, thus evaluating the overall
performance of multi-objective optimization methods more comprehensively.

4. Criteria for reliable performance metrics
In this section, the attributes of reliable performance metrics are investigated. The quality of a
solution is unchanged when expressed in different units, or adjusted for benchmark values. In other

words, after the same scale or translation transformations, the quality of the solution sets generated by
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different multi-objective optimization methods remains unchanged. Therefore, the relative ranking of
the solution sets reflected by reliable performance metrics should also remain unchanged.

Two axioms are proposed to provide criteria for reliable performance metrics. First, the obtained
solutions take on different values depending on the measurement units adopted, but the quality of
these solutions should remain unaffected. For example, one ton of carbon dioxide (CO,) emissions
is equivalent to 1000 kilograms of CO, emissions. Based on this idea, Axiom 1 is proposed. Let c,
denote a positive coefficient in the gth dimension.

Axiom 1. (Scale-invariant metrics) Substituting the gth objective value for each solution x (i.e., O4(x))
with ¢,0,(x), where c, > 0, the comparison results regarding the performance of various methods
remain unchanged.

Second, adding the same constants to objective values of all solutions in a certain dimension does
not affect the performance of these solutions. For instance, for the objective of minimizing annual
variable cost, adding the same annual fixed cost to the original objective would not change the relative
ranking of all solutions in this dimension. Hence, Axiom 2 is proposed. Let b, and R represent a real
number in the gth dimension and the set of real numbers, respectively.

Axiom 2. (Translation-invariant metrics) Substituting the gth objective value for each solution x (i.e.,
O,(x)) with O,(x) + by, where b, € R, the comparison results regarding the performance of various
methods remain unchanged.

In order to investigate whether the performance metrics introduced in Section 3 comply with these
two axioms, the following theorems are proposed.

Theorem 1. Metric NOSO satisfies both Axiom 1 and Axiom 2.

Proof. Select any two solutions x and x’ from §. Since x is not dominated by x’, we assume O, (x) <
04, (X'), O, (x) > Og,(x"), 81,82 €1{1,2,...,G}, 81 # g. Since ¢, > 0 and ¢,, > 0, it can be deduced
that ¢, Oy, (X) < €04, (X"), Cg,04,(X) > c,,0,,(x"). Additionally, it can be inferred that O, (x) + b,, <
Og (X') + by, Og,(x) + by, > Og,(x") + by,, where b, ,b,, € R. After shifting objectives by linear
scaling or adding constants, the relative ordering of objective values of x and x” remains unchanged.
Hence, x is not dominated by x’. It can be concluded that shifting objectives by linear scaling or adding
constants does not affect the dominance relationships among solutions in S ;. Therefore, the number of
solutions in S is unchanged.

Theorem 2. Metrics ONSN and ER satisfy both Axiom 1 and Axiom 2.

Proof. Let x represent a solution in S; and x* represent a solution in S, x # x*. Suppose x is not
dominated by x*, O, (x) < O, (x%), O, (x) > O, (x%), 81,82 € {1,2,...,G}, g1 # &. It can be deduced
that ¢z, Oy, (X) < ¢4, 04, (x%), 4,04, (X) > 4,04, (x%), Og, (X)+Dy, < Og (X)) 4Dy, Og)(X)+bg, > O, (x*)+
b,, where ¢,,, cg, > 0,b,,,b,, € R. Suppose x is dominated by x*, O, (x) < O,, (x*), O, (x) < O,,(x").
It can be inferred that c,, O, (X) < ¢q, 04, (x%), €0, 04, (%) < €, 04, (x%), Og,(x) + by, < O, (x*) + by,
O, (x) + by, < Oy, (x*) + by,. The relative ordering of objective values of x and x* is unchanged. As a
result, the dominance relationship between x and any other solution x* in § remains unchanged. Recall
that Theorem 1 proves that |S ;| is unchanged after linear scaling or adding constants. Therefore, metrics
ONSN and ER remain unchanged after shifting objectives by linear scaling or adding constants.
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Theorem 3. Metric NMS satisfies both Axiom 1 and Axiom 2.

Proof. After linear transformation, the gth objective value for x is scaled from O, (x) to c,O,(x). Let
NMS'(S ;) denote the value of metric NMS after linear scaling. NMS’(S ;) can be calculated as follows:

[ max,.c 0,(x) — min,. 0,(x) T
NMS'(S ) = 5, Cg0g(%) 5, CgOg( )]

Ql—

|
Ql—
e | 1DMe | TDMe

| Maxyes €z0,4(X) — Minges €,O0,4(x)

\

— . 2
Cg * MaXyes, Ob(X) — g - MiNyeg, Og(x)]
| Co - MaXyes Og(X) — ¢y - Minyeg Og(x)

2

Ql—

X [ maxses, Op(%) — Minges, 0g<x>]2
\ £ O(rgnax _ O(rgnm
Hence, metric NMS remains unchanged after linear scaling and satisfies Axiom 1.

After adding constants, the gth objective value for x varies from O, (x) to O,4(x) +b,. Let NMS”(S)
denote the value of metric NMS after adding constants. NMS”(S ;) can be calculated as follows:

Il
—
r

NMS”(Sy) =

C)IH

2
{maxxegk 0(x) + b, | = minyes, [0,(x) + bg]}

MaXyes [Og(x) + by| = Minyes [O4(x) + by

\o

[ by + maxyes, Og(X) — by — Minyeg, Oy(x) 2
| by + MaxXyeg Og(x) — by — Minges Oy(x)

-
Ql—

Mo | 1Mo

_ . 2
MaXycs, Og(X) — Minyeg, Og(x)]
Oglax _ O(Igmn

|
s
Ql—
og
l

Therefore, metric NMS remains unchanged after adding constants and satisfies Axiom 2.

Theorem 4. Metrics NID and MID violate both Axiom 1 and Axiom 2.

Proof. We consider a bi-objective optimization problem: min x;, min x, subject to x; + x, > 10, x; >
0,x, > 0. Let S; = {(0,10)}, S» = {(5,5)}. Then, NID(S;) = MID(S;) = 10, NID(S,) = MID(S>,) =
54/2. Hence, NID(S ;) > NID(S,), MID(S ) > MID(S,). Let NID’(S;) and MID’(S;) denote the
values of metrics NID and MID after shifting objectives by linear scaling, respectively. If ¢; = 10 and
¢, = 1, NID'(S ;) = MID'(S ;) = 10 and NID'(S,) = MID’(S,) = 5 V101. Thus, NID’(S ;) < NID'(S>),
MID'(S,) < MID’(S»).

Let NID”(S ;) and MID” (S ;) denote the values of metrics NID and MID after shifting objectives by
adding constants, respectively. If by = 5 and b, = =5, NID”(§;) = MID”(S) =5 V2, NID”(S,) =
MID”(S,) = 10. Thus, NID”(S;) < NID"”(S,), MID”(S ;) < MID"”(S,). Therefore, Metrics NID and
MID violate both Axiom 1 and Axiom 2.

Theorem 5. Metrics SP and IGD violate Axiom 1 but satisfy Axiom 2.
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Proof. First, we consider a bi-objective optimization problem: min x;, min x, subject to (x;, x;) € X,
where X is a nonempty compact set. Let S| = {(0, 10) (2,6),(10,0)}, S, = {(0,10),(6,1), (10,0)}.
It can be calculated that SP(S,) = £33, SP(S,) = 128 1GD(S|) = ¥, and IGD(S,) = Y5, Let
SP’(S ) denote the value of metric SP after shifting objectlves by linear scahng and let IGD’(S k) denote
the value of metric IGD after shifting objectives by linear scaling. If ¢; = 10 and ¢, = 1, it can be
calculated that SP'(S;) = 2B, SP/(S,) = 28 1GD'(S)) = 2B and IGD'(S,) = Y88 Since
SP(S,) < SP(S,) but SP'(S; ) > SP'(S»,), metrlc SP violates Ax1om 1 Similarly, Since IGD(SI) <
IGD(S») but IGD'(S) > IGD’(S,), metric IGD violates Axiom 1.

Next, metrics SP and IGD are proved to satisfy Axiom 2. Let x and x’ denote two different
solutions in S. After shifting objectives by adding constants, the Manhattan objective distance
between solution X and its nearest solution (.e., dix) is
Miny g, o {251 104(0) + by — Op(x) = byl} = miny e, v o {251 10,(x) = O (I} Since dyy is
unchanged, d; and SP(S ) also remain unchanged after adding constants. Additionally, after adding
constants, the minimum Euclidean objective distance between solution x and any other solution x’

. . . , 2 .
(Le-’ Lk,x) 18 mlnx'eSk,x';tx { \/Zgzl (Og(x) + bg - Og(x ) - bg) } = mlnx'esk,x'ix

2
{\/Z(f:l (Og(x) - Og(x’)) } Since both L;, and |S4| are unchanged after shifting objectives by

adding constants, IGD(S;) also remains unchanged. Therefore, both metrics SP and IGD satisfy
Axiom 2.

Theorem 6. Metric HR satisfies both Axiom 1 and Axiom 2.

Proof. Let x denote a solution in S or S. Let /; and i’ represent the hypervolume of S and S after
linear scaling, respectively. The hypervolume of r, can be calculated as ngl(Ogm" —0,(x)). After
shifting objectives by linear scaling, the hypervolume of r, becomes 5:1 (0™ — Og(x)). Hence,
h, = hy H 1Con N = hH | ¢g- Therefore, metric HR remains unchanged after linear scaling. In
addltlon after shifting obJectlves by adding constants, the hypervolume of r, can be calculated as
]_[gzl(Og‘“x + by — O4(x) — by) = ]—[g:l(O{g“ax — O,(x)). Since the hypervolume of r, is unchanged, the
conclusion that /; and & remain unchanged after adding constants can be drawn. Thus, metric HR
remains unchanged after adding constants. Therefore, metric HR satisfies both Axiom 1 and Axiom 2.

Table 1 summarizes whether each performance metric satisfies the two axioms. Reliable
performance metrics are supposed to comply with both axioms. That is, a performance metric that
violates any of the axioms is not a reliable performance metric. It can be seen from Table 1 that five
performance metrics (i.e., NOSO, ONSN, NMS, ER, and HR) comply with both axioms, two
performance metrics (i.e., SP and IGD) violate one of them, and two performance metrics (i.e., NID
and MID) violate both of them. Thus, from the perspective of satisfying the axioms, it can be
concluded that the performance metrics NOSO, ONSN, NMS, ER, and HR are reliable.
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Table 1. Summary of the compliance of performance metrics with two axioms.

Performance metric Abbreviation ~ Mathematical expression Axiom 1  Axiom 2
Number of solutions obtained NOSO NOSO(S ;) = ISk vV v
Overall nondominated solutions ONSN ONSN(S ) = ISkl = Xyes, x vV v
number
: . |1 w6 [ maxes Oc)-minges, 0p) |
Normalized maximum spread NMS NMS(Sy) = /5 Zget g v v
8 8
Error ratio ER ER(S;) = leesskkl & V4 v
Nearest ideal distance NID NID(S %) = minyes, Cy X X
Mean ideal distance MID MID(S}) = les; :‘Cx X X
Spacing SP SP(SK) = [y * Bees, (s = do)? X v
\Zres, L3

Inverted generational distance IGD IGD(Sy) = % X v
Hypervolume-based ratio HR HR(S;) = % v v

5. Computational experiments

A real-world case of multi-objective optimization in the field of cargo transportation is investigated.
The basic e-constraint method and the weighting method are adopted to address the real-world case.
In this section, we first introduce the cargo transportation case in Section 5.1, and then analyze the
experimental results in Section 5.2. We carry out computational experiments on a PC (14 cores of
CPUs, 2.5 GHz, Memory 64 GB). Both methods are implemented in the commercial solver Gurobi
10.0.0 (Anaconda, Python).

5.1. Experimental setting

This case is dedicated to designing reasonable routes for a vehicle to reduce its travel time and
driving risks. We define a road network as G = (V, E), where V is the node set indexed by i or j, and
E C {(i, j)li, j € V} is the arc set indexed by (i, j). The vehicle departs from the starting point, denoted
by 0, and finally arrives at the destination point, denoted by n. Subject to traffic restrictions, a set £’
(E" & E) of arcs indexed by (i, j) is impassable. Let #;;, r;;, and ¢;; represent the travel time on arc
(i, j), the driving risk on arc (i, j), and the road toll for traveling on arc (i, j), respectively. The available
budget for traveling on all arcs is denoted by b. x;; is defined as a binary variable, which equals 1 if and
only if the vehicle traverses arc (i, j), and O otherwise. The mathematical model is formulated below:

[Ml] min Z t,-jxij, (11)
(i.)eE
min Z TijXij, (12)
(i.)EE
st ) x;=0, (13)
(6. )EE’
Z CijXij < b, (14)
(i.))€E
> xy=1, (15)
(0.)eE
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Z Xin = 1, (16)

(i,n)eE

Dxi= ), xi YjieV\{o,n), (17)
(.))EE ()eE

xi; €1{0,1) Y(, j) € E. (18)

Objectives (11) and (12) minimize the total travel time and driving risks, respectively. Constraint (13)
guarantees that the vehicle cannot traverse arcs with traffic restrictions. Constraint (14) ensures that
the total road tolls cannot exceed the budget. Constraints (15) and (16) ensure that the vehicle starts
from the starting point 0 and ends at the destination point n. Constraints (17) guarantee the flow
conservation. Constraint (18) defines the decision variable and restricts its range.

A road network with 60 nodes is randomly generated. In the road network, 2% of the arcs are
subject to traffic restrictions. The travel time, the driving risk, and the road toll for each arc are set to
random integers uniformly distributed within the range of 1 to 20 minutes, within the range of 1 to 50,
and within the range of 20 to 40 USD, respectively. The available budget for traveling on all arcs is set
to 200 USD.

5.2. Experimental results

The basic e-constraint method (with € set to 0.1) and the weighting method (with the weight of
the first objective ranging from 0, 0.01, ..., to 1) are used to solve the real-world vehicle routing
problem. To investigate the impact of the objective values after scale and translation transformations
on the relative ranking of the metric values, the following scale and translation transformations for
the first objective values of solutions (i.e., minimal travel time) obtained by solving the model [M1]
are performed. In the model [M1], the first objective value is measured in minutes, which could be
converted to seconds. Then, the first objective value of each non-dominated solution obtained through
both the basic e-constraint method and the weighting method is converted from minutes to seconds by
multiplying by 60. Moreover, considering the cargo loading time at the starting point 0 and the cargo
unloading time at the destination point n, a constant value of 10 minutes is added to the first objective
value of each non-dominated solution obtained through both methods.

The relative ranking of the metric values is explored to compare the performance of the basic
e-constraint method and the weighting method. The experimental results in Table 2 show that for
model [M1], the values of metrics NOSO, ONSN, MID, and HR of the basic e-constraint method are
greater than those of the weighting method, while the values of metrics SP and IGD of the basic
e-constraint method are less than those of the weighting method. The values of metrics NMS, ER, and
NID of both methods are equal. Additionally, in this case, the relative ranking of metric values
remains unchanged after the translation transformation for the first objective values of nondominated
solutions. Furthermore, after the scale transformation for the first objective values of nondominated
solutions, the relative ranking of the values of metrics MID and SP changes, while the relative ranking
of other metric values is unchanged. Hence, metrics MID and SP are verified as unreliable. It is worth
noting that in this case, the metrics whose relative ranking remain unchanged after scale and
translation transformations are not necessarily reliable, as demonstrated by the theorems in Section 4.
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Table 2. Comparison of the metric values.

[M1] [M1]-scale [M1]-translation
Performance Basic e-constraint ~ Weighting  Basic e-constraint ~ Weighting  Basic e-constraint ~ Weighting
metric method method method method method method
NOSO 11 8 11 8 11 8
ONSN 11 8 11 8 11 8
NMS 1.00 1.00 1.00 1.00 1.00 1.00
ER 0.00 0.00 0.00 0.00 0.00 0.00
NID 40.31 40.31 861.66 861.66 47.80 47.80
MID 87.56 83.39 1532.04 1699.90 92.33 89.08
Sp 15.33 16.82 179.05 176.42 15.33 16.82
IGD 6.16 8.76 77.86 110.39 6.16 8.76
HR 1.00 0.99 1.00 0.99 1.00 0.99

6. Conclusions

Real-world transportation problems often involve multiple conflicting objectives [38], such as
reducing operational costs, reducing GHG emissions, and enhancing customer satisfaction with
transportation services. In situations where various multi-objective optimization methods can solve
the same problem, decision-makers often face difficulties in determining which one is better [39].
Hence, performance metrics are adopted to quantitatively assess the performance of multi-objective
optimization methods [40]. Here, we focus on the evaluation of performance metrics, exploring
whether performance metrics can truly reflect the quality of the solutions obtained, as well as the
criteria for reliable performance metrics.

The major contributions of this study are twofold. First, we elaborate on a series of popular
performance metrics for multi-objective optimization methods (including NOSO, ONSN, NMS, ER,
NID, MID, SP, IGD, and HR) and critically explore whether larger or smaller values of the
performance metrics definitely indicate better performance of the multi-objective optimization
methods. None of the metrics elaborated in this study can truly reflect the quality of the obtained
solutions all the time. In other words, larger or smaller values of the performance metrics do not
necessarily indicate better performance of the multi-objective optimization methods. Hence, it is
better to adopt multiple metrics, rather than a single metric, to comprehensively assess the
performance of multi-objective optimization methods in practical transportation decision-making.
Second, we propose two axioms to provide the criteria for reliable metrics, enabling transportation
decision-makers to enhance the selection of metrics. Whether each performance metric satisfies the
two axioms is mathematically proved. The performance metrics NOSO, ONSN, NMS, ER, and HR
that satisfy both axioms are proved as reliable. Moreover, a real-world case is investigated,
demonstrating the unreliability of metrics MID and SP. It is worth noting that although the
performance metrics and axioms are elaborated based on transportation optimization problems with
multiple objectives, these performance metrics and axioms are theoretically applicable to
multi-objective optimization problems in other fields, such as the economics and mechanics fields.

Future studies could be devoted to designing more effective performance metrics, assessing the
performance of multi-objective optimization methods more appropriately. In addition, the two axioms
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proposed in this study could be implemented in more studies related to multi-objective optimization,
enabling to identify reliable performance metrics, thus guaranteeing the accuracy and validity of the
comparison results. Moreover, nonlinear transformation-invariant features of performance metrics may
be useful for some specific problems, which could be further explored.
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