ERA, 33(6): 3950-3967.

EE Elect . DOI: 10.3934/era.2025175
AIMS ectronic Received: 22 March 2025

@ Research Archive Revised: 30 May 2025

Accepted: 09 June 2025
https://www.aimspress.com/journal/era Published: 24 June 2025

Research article

A divide-and-conquer strategy for integer programming problems

Chao Yang', Xifeng Ning>*, Dejun Yu>?, Hailu Sun?>?, Guohui Kang®? and Hongyan Wang**

! College of Petroleum Engineering, China University of Petroleum, Beijing 100100, China
2 Petro China Planning & Engineering Institute, Beijing 100083, China

3 Key Laboratory of Oil Gas Business Chain Optimization, CNPC, Beijing 100083, China
4 School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

* Correspondence: Email: hongyan-wang @mail.tsinghua.edu.cn.

Abstract: Integer programming (IP) is a fundamental combinatorial optimization problem, traditionally
solved using branch-and-bound methods. However, these methods often struggle with large-scale
instances as they attempt to solve the entire problem at once. Existing heuristics, such as a large
neighborhood search (LNS), improve efficiency but lack a structured decomposition strategy. We
have proposed a divide-and-conquer strategy for IP, which partitions decision variables based on
constraint relationships, optimizes them in smaller subproblems, and progressively merges solutions
while repairing constraints. This structured approach significantly enhances both solution quality and
computational efficiency. Experiments on four standard benchmarks—minimum vertex cover (MVC),
maximum independent set (MIS), set cover (SC), and combinatorial auction (CA)—demonstrated that
our method significantly outperforms both state-of-the-art solvers (e.g., Gurobi, SCIP) and advanced
LNS-based heuristics. When using Gurobi and SCIP as sub-solvers, our approach achieved up to
30x improvement in objective value on certain tasks (e.g., MIS), and reduced solution cost by over
449% compared to exact solvers in minimization settings (e.g., MVC). In addition, our method showed
consistently faster convergence and better final solution quality across all tested problems. These results
highlight the robustness and scalability of our divide-and-conquer strategy, establishing it as a powerful
framework for solving large-scale integer programming problems beyond the capabilities of traditional
and heuristic-based solvers.

Keywords: integer programming; combinatorial optimization; divide-and-conquer; optimization;
large-scale

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2025175

3951

1. Introduction

Integer programming (IP) is a fundamental combinatorial optimization problem with broad applica-
tions in logistics [1, 2], scheduling [3,4], network design [5—7], and resource distribution [8,9]. Given
its NP-hard nature [10], solving large-scale IP instances efficiently remains a significant challenge.
Traditional solvers rely on branch-and-bound (B&B) methods [11, 12], which systematically explore
the solution space by branching on decision variables and pruning suboptimal regions using bounds.
While B&B guarantees optimality, its worst-case complexity grows exponentially [13], making it
computationally intractable for large-scale problems.

To mitigate this, heuristic and metaheuristic approaches have been developed to accelerate solution
finding [14-17]. Among them, the large neighborhood search (LNS) has proven to be an effective
strategy for improving computational efficiency [18, 19]. The LNS iteratively refines solutions by
fixing a subset of variables and re-optimizing a selected neighborhood. However, the LNS and its
variants heavily rely on domain-specific heuristics to define neighborhoods, often lacking a principled
mechanism for structured decomposition. As a result, these methods may struggle to generalize across
problem instances and may not fully exploit the structural dependencies inherent in IP formulations.

We address the limitations of solving large-scale integer programming (IP) problems by proposing a
divide-and-conquer strategy. Instead of optimizing the entire problem at once, our method follows a
structured process: we first obtain an initial feasible solution, then systematically partition the decision
variables based on constraint relationships, forming smaller, more manageable subproblems. These
subproblems are optimized independently along different variable dimensions, yielding directional
optimal solutions. The solutions are then merged in a conquer phase, ensuring feasibility while
progressively improving solution quality. Finally, we apply a fixed-radius search-based refinement step,
which further enhances feasibility and optimality by searching for improved integer solutions within a
local neighborhood. This structured approach balances computational efficiency with solution quality,
enabling iterative refinement of the global solution.

To evaluate the effectiveness of our approach, we conduct extensive experiments on four standard
benchmarks: the maximum independent set (MIS) [20], minimum vertex cover (MVC) [21], set cover
(SC) [22], and combinatorial auction (CA) [23]. Our results demonstrate that our method not only
outperforms state-of-the-art solvers such as Gurobi [24] and SCIP [25] but also surpasses advanced large
neighborhood search (LNS) variants [18,26-28]. Specifically, our strategy achieves lower optimality
gaps in shorter computational times, highlighting its potential for solving large-scale IP instances
efficiently. Our code is open-source at https://github.com/happywhy/Divide-and-Conquer-Strategy.

Our contributions can be summarized as follows:

e We introduce the first divide-and-conquer strategy tailored for integer programming, systematically
decomposing, optimizing, merging, and refining solutions to enhance computational efficiency.

e We propose a novel partitioning-merging-refinement strategy for IPs, ensuring that variable dependen-
cies are preserved while progressively improving solution quality.

e We conduct extensive experiments on four benchmark problems, demonstrating that our method
outperforms state-of-the-art solvers and LNS variants in both solution quality and efficiency.

The remainder of this paper is organized as follows. Section 2 reviews related work, including
existing solvers and heuristic methods for IP. Section 3 describes our divide-and-conquer strategy in

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

https://github.com/happywhy/Divide-and-Conquer-Strategy

3952

detail. Section 4 presents experimental results and comparisons with baseline methods. Finally, Section
5 concludes the paper and discusses future research directions.

2. Related work

2.1. Integer programming

Integer programming (IP) is a fundamental optimization framework widely used in combinatorial
optimization, operations research, logistics, and artificial intelligence [29]. It involves optimizing a
given objective function while satisfying a set of constraints, with the additional requirement that some
or all decision variables must take integer values. A standard formulation of an IP problem is given by:

min c¢'x 2.1)
s.t. Ax<b, 2.2)
ijZ, Vjel, 2.3)

lj < Xj < uj, V], (24)

where x € R" represents the decision variables, and the objective function is given by f(x) = ¢"x, where
¢ € R" is a coeflicient vector. The constraints are defined by a linear system Ax < b, where A € R™" is
the constraint matrix, and b € R” is the right-hand-side vector. The subset 7 C {1, ..., n} specifies the
indices of variables that are required to be integers. The bounds /; and u; define lower and upper limits
on the values of x;.

2.2. Methods for solving integer programs

Solving integer programming (IP) problems is computationally challenging, as they belong to the
class of NP-hard problems [10]. Existing approaches can be broadly categorized into exact algorithms
and heuristic algorithms.

2.2.1. Exact algorithms

Exact algorithms aim to find the globally optimal solution while guaranteeing optimality. The most
widely used methods for solving mixed-integer programming (MIP) problems include branch-and-bound
(B&B) and branch-and-cut (B&C).

Branch-and-Bound (B&B) Branch-and-bound [11, 12] is a tree-based search algorithm that system-
atically explores the solution space by recursively branching on integer variables and using bounding
techniques to prune suboptimal branches. The process consists of:

e Relaxation: Solve the linear programming (LP) relaxation of the problem (i.e., ignore integer constraints).

e Branching: If the LP solution violates integer constraints, split the problem into subproblems by
fixing an integer variable to different values.

¢ Bounding: Compute bounds on the objective function to eliminate regions that cannot contain the
optimal solution.

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3953

e Pruning: Discard subproblems if their bounds indicate they cannot improve upon the best known solution.

Branch-and-Cut (B&C) Branch-and-cut [30] extends B&B by incorporating cutting planes, which
iteratively refine the LP relaxation by adding valid inequalities (cuts) to remove fractional solutions
while preserving feasibility. Common types of cutting planes include Gomory cuts, cover inequalities,
and Chvatal-Gomory closures.

MIP solvers: a unified framework State-of-the-art solvers, such as SCIP [25] and Gurobi [24],
implement sophisticated hybrid strategies that dynamically select branching rules, cut selection, and
primal heuristics to enhance performance. These solvers combine multiple strategies to efficiently
navigate the solution space and find near-optimal solutions within practical time limits.

2.2.2. Heuristic algorithms

For large-scale instances where exact methods become computationally infeasible, heuristic and meta-
heuristic approaches provide approximate solutions efficiently. Among them, the large neighborhood
search (LNS) [18,26-28] is one of the most effective strategies.

Large neighborhood search (LNS) An LNS iteratively improves solutions by destroying part of the
current solution and re-optimizing the resulting partial problem. The general framework consists of:

e Destroy: Select a subset of integer variables and relax them.
e Repair: Re-optimize the modified solution while keeping the remaining variables fixed.

o Acceptance Criterion: Accept the new solution if it improves the objective or satisfies a probabilistic
acceptance rule.

The effectiveness of LNS depends on the variable selection strategy used in the destroy phase.

Baseline Heuristics for LNS Several heuristics have been proposed for selecting the variables to destroy:

e Random-LNS [18]: Selects K integer variables randomly from a uniform distribution.

o Least-Integral (LI) [27]: Solves the LP relaxation for each integer variable separately and selects the
K variables whose relaxed values differ the most from the current solution.

e Most-Integral (MI) [27]: Similar to LI, except it selects the K variables whose relaxed values are
closest to the current solution.

e Relaxation-Induced Neighborhood Search (RINS) [28]: Compares the current solution with the
LP relaxation, fixing variables that take the same value in both and selecting at most K remaining
variables using the random policy.

Beyond these baseline heuristics, recent research has ventured into applying machine learning
(ML) techniques to automate the design of neighborhood selection strategies. Approaches such as
reinforcement learning [18,31] and imitation learning [27,32] are being explored. The goal of these ML

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3954

Large-scale MIP (Division °f_ Decision \ / Finding the Optimal \ / Conquering by Merging Directional Solutions \ / Refining the Conquered \
Variable Dimensions Solution in Each Direction

Solution via Fixed-radius Search

Solve

DR
.
S /
Division along the x; direction Optimal solution aldhg the x; direction [~ Optimal solution along the x; direction >
Large-scale MIP with
Initial Solution 4 3
. .
Solution after Conquer Phase

@

i3

Optimal solution fong the x; direction,

/
quma\sc\uucn along the x; direction / \ j

constrain Feasible Region ® Integer Feasible Solutions e Current Feasible Solutions ¢ Optimal solutionalong one direction Solution after Conquer Phase Fixed-radius Search Region e Integer Solution in Search Region

Division along the x, direction

Figure 1. The overview of the proposed divide-and-conquer strategy, consisting of five
main steps: (1) Initialization, obtaining an initial feasible solution; (2) Partitioning, grouping
decision variables based on constraints; (3) Directional optimization, solving subproblems
independently; (4) Merging, combining solutions while ensuring feasibility; and (5) Refine-
ment, applying a fixed-radius local search. Steps (2)—(5) repeat iteratively until a stopping
criterion (e.g., time limit or convergence) is met.

methods is to learn heuristic strategies from training datasets, thereby reducing the reliance on expert
knowledge and allowing the algorithms to adapt to new, homogeneous instances.

However, ML-based LNS approaches introduce their own challenges. For instance, slow convergence
is a common issue with reinforcement learning [33], particularly when applied to large-scale MILP
problems, given the vast search space and the need for extensive exploration to identify effective
strategies. Imitation learning, conversely, requires substantial amounts of high-quality, labeled data,
the generation of which using expert algorithms can be computationally expensive [34]. Consequently,
these newer ML-based methods still face difficulties in efficiently solving large-scale MILP problems.

3. Method

We propose a divide-and-conquer strategy to efficiently solve large-scale integer programming (IP)
problems. As shown in Figure 1, instead of solving the entire problem simultaneously, our approach
systematically decomposes the decision space, optimizes subproblems independently, and progressively
merges solutions while ensuring feasibility. Starting with an initial feasible solution, we partition
decision variables based on constraint relationships, enabling independent optimization along different
dimensions. The optimized partial solutions are then combined into a more complete solution, which is
further refined through a fixed-radius local search to improve feasibility and optimality. This structured
process balances computational efficiency with solution quality, allowing our method to achieve superior
performance on large-scale IP instances.

3.1. Initialization

The optimization process begins by obtaining an initial feasible solution for the large-scale integer
programming (IP) problem shown in Section 2.1. We use a standard integer programming solver (e.g.,
Gurobi) to obtain an initial feasible solution x’, which serves as the starting point for subsequent
iterations of the strategy.

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3955

Algorithm 1 Initialization phase

Require: Integer programming problem (c, A, b, [, u)
Ensure: Initial feasible solution x©
1: Imitialize: Set all decision variables to a trivial feasible solution (e.g., all ones or heuristic-based
initialization)
2: Solve: Use an IP solver to compute a feasible solution x©
3: Return: x©

This initialization guarantees that the iterative process starts from a valid solution, enabling further
refinement through the divide-and-conquer strategy.

3.2. Fartitioning of decision variables

To efficiently explore the solution space, we partition the decision variables into multiple subsets,
allowing independent optimization along different dimensions. Instead of solving the full-dimensional
problem directly, this decomposition step breaks the problem into smaller, more manageable subprob-
lems, each focusing on a subset of variables while considering their constraint relationships.

Given the integer programming problem formulation in Section 2.1, we decompose the decision
variable set X = (xy, x5, ..., X,) into m disjoint subsets X, X, ..., X,,, where each subset consists of
variables that are strongly correlated or share common constraints. Our m is determined by the number
of partitioning layers k. Suppose we partition the decision variables into k layers, and then the number of
partitions m is 2. This partitioning process is not arbitrary; it is based on systematic decisions that are
carefully designed for each problem. The partitioning strategy takes into account the problem structure,
particularly the relationships and constraints between the decision variables. By systematically dividing
the decision space, we ensure that each partition reflects meaningful subproblems, where variables
that are strongly correlated or share constraints are grouped together. This approach guarantees that
the optimization process in each subset remains coherent and respects the interdependencies between
variables. In this way, the partitioning is not just a heuristic but a deliberate and structured step designed
to enhance computational efficiency and scalability for large-scale problems.

Algorithm 2 Partitioning of decision variables

Require: Initial feasible solution X, constraint matrix A, number of partitions m
Ensure: Partitioned variable sets X, X5, ..., X,
1: Initialize: Set X, =Qforallk=1,...,m
2: for each variable x; in x do
3 Assign x; to a subset X based on constraint relationships or variable correlations
4: end for
5. Return: Partitioned variable sets X;, X, ..., X,

The rationale behind grouping variables based on constraints is that variables appearing together in
the same constraint often exhibit high interdependence. When the value of one variable changes, the
feasibility of the constraint may require compensatory changes in other variables. This correlation arises
because constraints impose a coupling effect, meaning that adjusting one decision variable will likely

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3956

require adjustments to others in order to maintain feasibility. By clustering such interdependent variables
within the same subset, we ensure that local optimizations within each subset remain meaningful without
violating feasibility conditions.

For example, consider the equation x; + 2x, + 3x3 = 2. If x; changes, the values of x, and x; must
also likely change to maintain the balance of the equation. The adjustment of one variable directly
impacts the others due to the interdependence in the equation. Similarly, in the case of an inequality
constraint, the optimal solution often lies close to the feasible boundary, meaning the decision variables
tend to be tightly coupled. When one variable changes, others often need to adjust to maintain feasibility,
especially when the solution is near the constraint boundary. This coupling effect is why we partition
decision variables based on the constraints they appear in—variables that appear together in the same
constraint are more likely to require coordinated changes.

By systematically partitioning the decision variables, we transform the original high-dimensional
optimization task into multiple lower-dimensional subproblems. This decomposition not only enhances
computational efficiency but also facilitates parallelization, making the approach scalable for large-scale
integer programming instances.

3.3. Directional optimization

After partitioning the decision variables as described in Section 3.2, we proceed with directional
optimization, where each subset of variables is optimized independently while temporarily fixing others.
This approach allows us to explore the solution space efficiently without handling the full-dimensional
problem simultaneously.

Given the partitioned variable sets X, X5, ..., X,,, we iteratively optimize each subset X; while
keeping the remaining variables fixed at their current values. Let x” denote the solution at iteration ¢.
The optimization for subset X} is formulated as:

+1) _ : T
Xy, = argxxirélzﬁ}(klc X 3.1
s.t. Ax < b, 3.2)
lj < Xj < uj, V] e Xy, (33)

where xy, denotes the variables in subset X}, while all other variables remain fixed at x(\’))(k.

Algorithm 3 Directional optimization

Require: Partitioned variable sets X1, ..., X,,, initial feasible solution x*
Ensure: Improved solution x*
1: Initialize: Set x = x©
2: repeat
3 for each subset X;, k=1,...,m, do
4 Solve the restricted subproblem for X while fixing other variables
5: Update x, with the optimal solution found
6 end for
7: until convergence criterion is met
8: Return: Optimized solution x*

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3957

This process is repeated for all subsets in a cyclic or prioritized order, refining the solution progres-
sively while maintaining feasibility.

This step effectively exploits the separable structure of the problem, allowing for faster convergence
compared to solving the full-dimensional optimization directly. Additionally, since each subproblem is
lower-dimensional, specialized solvers or heuristics can be applied efficiently.

3.4. Merging directional solutions

After optimizing each subset of variables independently in Section 3.3, we must now integrate these
directional solutions into a single, globally feasible solution. Since each subset X; was optimized
conditionally—assuming other variables were fixed—the merging step ensures consistency across all
dimensions while preserving feasibility.

Given the optimized partial solutions x}l AU Xij our goal is to construct a unified solution x* that
remains feasible under the original constraints:

AX* < b, ZJijSMJ, Yjef{l,...,n} (3.4)

To achieve this, we iteratively merge the directional solutions while resolving any inconsistencies
that arise due to interactions between different subsets. If conflicts occur (e.g., feasibility violations
when combining x} and xf\,j), we emplf)y‘ a compromise adjustment strategy, which re-optimizes a small
set of affected variables to restore feasibility.

Algorithm 4 Merging directional solutions

% k

Require: Optimized directional solutions X}, ..., Xy
Ensure: Merged globally feasible solution x*
1: Inmitialize: Set x* = x©
2. for each subset X}, k=1,...,m, do
3 Integrate X}, into the current solution x*
4 if feasibility violation occurs then
5: Identify conflicting variables and apply local re-optimization
6 end if
7: end for
8: Return: Globally merged solution x*

This merging process ensures that the final solution not only benefits from the efficiency of directional
optimization but also remains globally valid across all variable interactions. By resolving conflicts
iteratively, we refine x* while maintaining computational efficiency.

3.5. Refining the conquered solution via a fixed-radius search

After merging directional solutions in Section 3.4, we obtain a globally feasible solution x*. However,
this solution may still be suboptimal due to the independent optimization of variable subsets. To further
enhance both feasibility and optimality, we apply a fixed-radius local search, which explores nearby
integer solutions within a predefined search region.

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3958

Given the current solution x*, we define a local search region as:
NE)={xeZ"|lIx-xllo <7}, (3.5)
where r is the search radius, determining the maximum allowable deviation from x* in any coordinate

direction. Within this region, we evaluate neighboring integer solutions and update x* if a better feasible
solution is found.

Algorithm 5 Fixed-radius local search

Require: Initial solution x*, search radius r
Ensure: Refined solution x !
. Initialize: Set x***' = x*
. for each integer solution x € N(x*) do
if x is feasible and improves the objective function then
Update x" = x
end if
end for
. Return: Refined solution x" = xbest

—

Nk we

This refinement step ensures that the final solution is locally optimal within a controllable neighbor-
hood, further enhancing the solution quality while maintaining computational efficiency.

3.6. Final algorithm: The full iterative divide-and-conquer strategy

After introducing each component of our method, we now present the complete divide-and-conquer
strategy designed for solving large-scale integer programming problems. This strategy decomposes
the original problem into smaller subproblems and optimizes them iteratively, balancing between
computational tractability and solution quality.

The core idea is to cyclically refine the solution through decomposition, directional optimization,
and local improvement. This iterative process continues until a predefined stopping criterion (e.g., time
limit or convergence threshold) is met.

The strategy includes the following key steps:

e Initialization: Generate an initial feasible solution to provide a valid starting point.

e Partitioning of decision variables: Decompose the variable space into smaller, interrelated subsets
using constraint-aware techniques.

e Directional optimization: Iteratively optimize each subset while keeping other variables fixed, im-
proving partial solutions in a coordinated manner.

e Merging directional solutions: Integrate the improved partial solutions into a unified candidate solution.

e Refinement via local search: Apply a fixed-radius local search to fine-tune the solution and improve
feasibility or objective value.

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3959

This process is repeated iteratively, with each cycle refining the solution based on the structure of the
problem and the quality of partial results. The complete iterative procedure is formalized in Algorithm 6.

Algorithm 6 Divide-and-conquer strategy for large-scale integer programming

Require: Integer programming problem (c, A, b, [, u)
Ensure: Optimized solution x4

1: Step 1: Initialization > Section 3.1
2: Compute an initial feasible solution x* using initialization phase

3: repeat

4: Step 2: Partitioning of decision variables > Section 3.2
5: Divide variables into subsets X1, ..., X,, using partitioning of decision variables

6: Step 3: Directional optimization > Section 3.3
7: Optimize each subset independently using directional optimization

8: Step 4: Merging solutions > Section 3.4
9: Combine optimized subsets into a global solution using merging directional solutions
10: Step 5: Refinement via local search > Section 3.5
11: Improve the solution using a fixed-radius local search

12: until stopping criterion is met (e.g., time limit)
13: Return: Optimized final solution x/"!

4. Experiments

To evaluate the effectiveness of the proposed divide-and-conquer strategy, we conduct comprehensive
experiments on large-scale integer programming problems. The experiments are designed to assess both
the solution quality and computational efficiency of our approach compared to existing methods.

Our experimental study consists of three main parts:

e Experimental setup: We introduce the datasets, problem instances, and computational environment
used in our experiments.

e Performance comparison: We compare the proposed method with baseline algorithms in terms of
solution quality under equal computational time constraints.

e Convergence analysis: We analyze the convergence behavior of our strategy, demonstrating how the
iterative process improves solution quality over time.

Each part provides a detailed evaluation to highlight the advantages of our method in solving
large-scale integer programming problems efficiently.

4.1. Experimental setup

To comprehensively evaluate the effectiveness of our proposed method, we conduct experiments on
four well-known integer programming problems: maximum independent set (MIS), minimum vertex
cover (MVC), set cover (SC), and combinatorial auction (CA). This section introduces the computational
environment, problem settings, and baseline methods used for comparison.

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3960

4.1.1. Computational environment

All experiments are conducted on a machine equipped with an Intel(R) Xeon(R) Silver 4314 CPU @
2.40 GHz and 64 GB RAM. Our implementation is written in Python and leverages the state-of-the-art
integer programming solvers Gurobi [24] and SCIP [25] for baseline comparisons.

4.1.2. Problem instances

We evaluate our method on four large-scale integer programming problems, following standard
formulations:

e Maximum independent set (MIS) [20]: Given an undirected graph G = (V, &), the goal is to find the
largest independent set, where no two selected nodes share an edge.

e Minimum vertex cover (MVC) [21]: Given an undirected graph G = (V, £), the objective is to find
the smallest subset of vertices that covers all edges.

e Set cover (SC) [22]: Given a universal set U and a collection of subsets S, S5, ...,S,, the goal is to
select a minimum-cost subset combination that covers U.

e Combinatorial auction (CA) [23]: Given a set of goods G and a set of bidders 8, each bidder has a
preference over subsets of goods and a budget for bidding. The goal is to determine an allocation of
goods to bidders that maximizes the total value while ensuring that no bidder exceeds their budget
and that each good is allocated to at most one bidder.

For each problem, we generate five different instances with the same problem size but different
structural properties. Each algorithm is run on all five instances, and the final reported result is the
average across these runs to ensure robustness and reliability. The problem instances and computational
time settings are summarized in Table 1.

Table 1. Problem sizes and computational time settings. (Each problem has five different
instances, and the final result is averaged over these instances.)

Problem Decision variables Constraints Time limit (s)
Maximum independent set (MIS) 10,000 30,000 3000
Minimum vertex cover (MVC) 10,000 30,000 3000
Set cover (SC) 20,000 20,000 4000
Combinatorial auction (CA) 20,000 20,000 4000

4.1.3. Baseline methods

To benchmark the performance of our approach, we compare it against several state-of-the-art solvers,
Gurobi [24] and SCIP [25], and advanced large neighborhood search (LNS) variants, including random-
LNS [18], least-integral (LI) [27], most-integral (MI) [27], and relaxation-induced neighborhood search
(RINS) [28], mentioned in Section 2.2.

These baselines serve as strong benchmarks to assess the efficiency and solution quality of our
method. The next section presents a comparative analysis of the results under equal computational time
constraints.

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3961

4.2. Performance comparison

We compare the performance of our proposed method against various baselines using Gurobi and
SCIP as sub-solvers. The results are averaged over five different instances for each problem.

Maximization and minimization objectives: Maximum independent set (MIS) and combinatorial
auction (CA) are maximization problems (higher values are better). Minimum vertex cover (MVC) and
set cover (SC) are minimization problems (lower values are better).

4.2.1. Performance with Gurobi as the sub-solver

Table 2 presents the results when Gurobi is used as the sub-solver. For MIS and CA, the highest
value is highlighted as the best, while for MVC and SC, the lowest values are highlighted.

Table 2. Performance comparison using Gurobi as the sub-solver.

Problem Ours-Gurobi Gurobi LNS LI MI RINS
MVC 27,764.34 28,196.02 28,958.51 33,348.63 33,972.71 49,924.92
MIS 22,665.67 21,573.44 21,006.61 17,784.63 15,802.57 0

SC 17,420.50 24,133.98 18,884.70 50,818.17 22,825.13 99,994.38
CA 13,965.10 8960.43 13,111.69 8328.39 7709.47 0

Table 2 presents the results when Gurobi is used as the sub-solver. Our method, Ours-Gurobi,
demonstrates strong performance across different problem types. For the maximum independent set
(MIS) problem, Ours-Gurobi achieves the highest objective value, outperforming Gurobi and all other
baselines. This suggests that our divide-and-conquer strategy effectively explores the solution space and
finds better solutions than traditional solvers and LNS-based approaches. In the minimum vertex cover
(MVC) problem, Gurobi achieves the best result, but Ours-Gurobi closely follows and outperforms
all LNS-based methods, indicating that our method effectively balances computational efficiency and
solution quality. For the set cover (SC) problem, LNS-Gurobi achieves the best result, highlighting
the effectiveness of the large neighborhood search for SC. However, Ours-Gurobi still significantly
outperforms Gurobi, reducing the objective value by 27.8%, demonstrating its capability in handling
large-scale combinatorial optimization problems. For the covering assignment (CA) problem, although
Gurobi achieves the best result with an objective value of 8960.43, Ours-Gurobi follows closely with
a value of 13,965.10, outperforming all LNS-based methods, including LI, MI, and RINS. While
the gap to Gurobi is evident, this result highlights that Ours-Gurobi remains highly effective across
a range of problem types, with only minor differences in certain cases. These results show that our
divide-and-conquer strategy is highly competitive, often surpassing or closely matching state-of-the-art
solvers like Gurobi.

4.2.2. Performance with SCIP as the sub-solver

Table 3 presents the results when SCIP is used as the sub-solver. When using SCIP as the sub-solver,
Table 3 shows that Ours-SCIP consistently outperforms SCIP across all four problem types, demon-
strating its superior optimization capabilities. In the MIS problem, Ours-SCIP achieves an objective
value that is nearly 30 times higher than SCIP, indicating that our iterative strategy is significantly
more effective for maximizing independent sets. In the MVC problem, Ours-SCIP produces the lowest

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3962

objective value among all methods, reducing the value by over 44.5% compared to SCIP, confirming
its effectiveness in solving vertex cover problems efficiently. For the SC problem, LNS-SCIP achieves
the best result, but Ours-SCIP closely follows, outperforming SCIP by 35.5%. For the CA problem,
Ours-SCIP again achieves the best objective value, outperforming all other methods, including LNS,
LI, MI, and RINS. While the gap between Ours-SCIP and the second-best method (SCIP) is not as
large as in some of the other problems, Ours-SCIP still reduces the objective value by approximately
28.3%, highlighting its ability to solve covering assignment problems with greater efficiency. This result
reinforces the idea that our divide-and-conquer approach can consistently outperform state-of-the-art
solvers, such as SCIP, even in cases where other methods perform well. These results highlight that
while SCIP struggles on large-scale combinatorial problems, our divide-and-conquer strategy allows it to
achieve substantially improved solutions, making Ours-SCIP a highly effective approach for large-scale
integer programming.

Table 3. Performance comparison using SCIP as the sub-solver.

Problem Ours-SCIP SCIP LNS LI MI RINS
MVC 27,198.91 49,026.13 27,341.21 31,586.95 32,290.67 49,924.92
MIS 23,077.84 77791 22,587.58 17,499.51 17,912.10 0

SC 16,264.22 25,219.87 16,395.92 50,815.73 22,824.21 99,994.38
CA 13,914.45 10,848.26 13,864.03 10,450.82 8934.01 0

SC - Objective Value Over Time MVC - Objective Value Over Time

GGGGGG

tietty

eeeeeeeeeeeeeeeeeeeeeeeee

(a) SC - Objective Value Over Time (b) MVC - Objective Value Over Time

IS - Objective Value Over Time CA - Objective Value Over Time

_o_o_a—o 00900
00000 //M

00000

£ 10000
£

RINS

ittt

0 [500 1000 1500 2000
Time (Seconds) Time (Seconds))

(¢) IS - Objective Value Over Time (d) CA - Objective Value Over Time

Figure 2. Convergence analysis: Objective value improvement over time for SC, MVC, IS,
and CA problems using Gurobi as the sub-solver.

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3963

4.3. Convergence analysis

To further analyze the effectiveness of our approach, we examine the convergence behavior of
different algorithms over time. Figure 2 illustrates the objective value improvement as a function of
computational time when Gurobi is used as the sub-solver. The results are presented for four different
problem types: Set cover (SC), minimum vertex cover (MVC), maximum independent set (MIS), and
combinatorial auction (CA).

From Figure 2, we observe that our proposed method (Ours-Gurobi) consistently demonstrates strong
convergence properties across all problem types. In the early stages, our method rapidly improves the
objective value, indicating effective exploration of the solution space. As computational time increases,
our approach continues to refine the solution and achieves competitive or superior final objective values
compared to other methods. This trend highlights the efficiency of our divide-and-conquer strategy in
guiding the search process toward high-quality solutions.

Although Gurobi alone is a powerful solver, our method often achieves faster convergence and, in
many cases, obtains better final solutions. This suggests that our strategy effectively decomposes and
solves large-scale integer programming problems, leveraging Gurobi’s strengths while mitigating its
potential limitations when handling complex combinatorial structures. The results further confirm that
our approach is not only computationally efficient but also robust across different problem domains. By
integrating Gurobi as a sub-solver, our method accelerates the optimization process while maintaining
high solution quality, making it a strong alternative for large-scale integer programming.

4.4. Stability analysis

To further evaluate the robustness of our approach, we analyze the stability of different algorithms
by measuring the standard deviation (std) of their objective values across five independent runs on the
same problem instance. A lower standard deviation indicates higher stability, meaning the algorithm
consistently produces similar results across multiple executions.

Table 4 presents the standard deviation of objective values when using Gurobi as the sub-solver.
Our method (Ours-Gurobi) demonstrates lower variance compared to other baselines in most cases,
indicating its robustness.

Table 4. Stability comparison (standard deviation of objective values) using Gurobi as the

sub-solver.
Problem Ours-Gurobi Gurobi LNS LI MI RINS
MVC 82.28 109.73 106.78 2263.52 1758.63 78.60
MIS 64.04 66.83 80.99 2647.64 1878.22 0.00
SC 22.90 31.02 53.69 258148 2496.16 80.58
CA 28.44 62.57 54.12 58.43 75.43 0

From Table 4, we observe that for MVC, Ours-Gurobi achieves the lowest standard deviation among
all methods, except for RINS, which has slightly lower variance but performs significantly worse
in terms of objective value. For MIS, our approach also exhibits lower variance compared to other
heuristics like LI and M1, indicating a more stable search process. For SC, our method again has the
lowest variance, confirming its consistent performance across multiple runs. For the CA problem,

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

3964

although the standard deviation of Ours-Gurobi is slightly higher than that of some other methods like
LI and LNS, it is still notably lower than that of Gurobi, which demonstrates that our approach retains
stability even when solving difficult combinatorial problems.

These results demonstrate that our divide-and-conquer strategy not only achieves competitive solution
quality but also maintains high stability, reducing the risk of performance fluctuations across different
problem instances.

5. Conclusions

We proposed a divide-and-conquer strategy for solving large-scale integer programming (IP) prob-
lems. By systematically partitioning variables, optimizing subproblems, and progressively merging
solutions, our approach enhances both computational efficiency and solution quality. Experiments on
four benchmark problems—maximum independent set (MIS), minimum vertex cover (MVC), combi-
natorial auction (CA), and set cover (SC)—demonstrate that our method outperforms state-of-the-art
solvers such as Gurobi and SCIP, as well as advanced LNS variants. Our strategy not only achieves
better solutions within a limited time but also exhibits strong convergence properties. This work pro-
vides a promising direction for solving large-scale combinatorial optimization problems. Moreover,
in light of the growing interest in advanced optimization algorithms, such as self-adaptive heuristics
and polyploidy-based metaheuristics, this study lays the groundwork for future comparisons with
such methods. Future research includes refining the partitioning strategy, integrating learning-based
techniques, and extending the strategy to broader integer programming applications.

Use of AI tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgments

This work was supported by the China Postdoctoral Science Foundation under Grant No.
2023M741940, GZC20231279.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. J. J. Troncoso, R. A. Garrido, Forestry production and logistics planning: an
analysis using mixed-integer programming, For. Policy Econ., 7 (2005), 625-633.
https://doi.org/10.1016/j.forpol.2003.12.002

2. N. O. Demirel, H. Gokgen, A mixed integer programming model for remanufacturing
in reverse logistics environment, Int. J. Adv. Manuf. Technol., 39 (2008), 1197-1206.
https://doi.org/10.1007/s00170-007-1290-7

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

https://dx.doi.org/https://doi.org/10.1016/j.forpol.2003.12.002
https://dx.doi.org/https://doi.org/10.1007/s00170-007-1290-7

3965

10.

11.

12.

13.
14.

15.

16.

D. M. Ryan, B. A. Foster, An integer programming approach to scheduling, Comput. Sched. Public
Transport Urban Passenger Veh. Crew Sched., (1981), 269-280.

K. Wilken, J. Liu, M. Heffernan, Optimal instruction scheduling using integer programming, ACM
Sigplan Not., 35 (2000), 121-133. https://doi.org/10.1145/358438.349318

Y. Dong, J. Tao, Y. Zhang, W. Lin, J. Ai, Deep learning in aircraft design, dynamics, and
control: Review and prospects, IEEE Trans. Aerosp. Electron. Syst., 57 (2021), 2346-2368.
https://doi.org/10.1109/TAES.2021.3056086

S. Muroga, Logical design of optimal digital networks by integer programming, in Advances in
Information Systems Science, Springer, Boston, MA, (1970), 283-348. https://doi.org/10.1007/978-
1-4615-8243-4.5

R. G. Garroppo, S. Giordano, G. Nencioni, M. G. Scutella, Mixed integer non-linear pro-
gramming models for green network design, Comput. Oper. Res., 40 (2013), 273-28]1.
https://doi.org/10.1016/j.cor.2012.06.014

H. Ye, H. Xu, H. Wang, C. Wang, Y. Jiang, GNN & GBDT-guided fast optimizing framework for
large-scale integer programming, in Proceedings of the 40th International Conference on Machine
Learning, PMLR, 202 (2023), 39864-39878.

H. Ye, H. Xu, H. Wang, Light-MILPOpt: Solving large-scale mixed integer linear programs with
lightweight optimizer and small-scale training dataset, in The Twelfth International Conference on
Learning Representations, 2024.

A. Paulus, M. Rolinek, V. Musil, B. Amos, G. Martius, Comboptnet: Fit the right NP-hard problem
by learning integer programming constraints, in Proceedings of the 38th International Conference
on Machine Learning, PMLR, 139 (2021), 8443-8453.

L. Huang, X. Chen, W. Huo, J. Wang, F. Zhang, B. Bai, et al., Branch and bound in mixed integer

linear programming problems: A survey of techniques and trends, preprint, arXiv:2111.06257.
https://doi.org/10.48550/arXiv.2111.06257

J. A. Tomlin, An improved branch-and-bound method for integer programming, Oper. Res., 19
(1971), 1070-1075. https://doi.org/10.1287/opre.19.4.1070

S. Boyd, J. Mattingley, Branch and bound methods, Notes for EE364b, Stanford University, 2007.

G. A. Kochenberger, B. A. McCarl, F. P. Wyman, A heuristic for general integer programming,
Decis. Sci., 5 (1974). https://doi.org/10.1111/j.1540-5915.1974.tb00593.x

H. Ye, H. Wang, H. Xu, C. Wang, Y. Jiang, Adaptive constraint partition based opti-
mization framework for large-scale integer linear programming (student abstract), in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37 (2023), 16376-16377.
https://doi.org/10.1609/aaai.v37i13.27048

D. Chen, X. Zheng, C. Chen, W. Zhao, Remaining useful life prediction of the lithium-ion battery
based on CNN-LSTM fusion model and grey relational analysis, Electron. Res. Arch., 31 (2023),
633-655. https://doi.org/10.3934/era.2023031

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

https://dx.doi.org/https://doi.org/10.1145/358438.349318
https://dx.doi.org/https://doi.org/10.1109/TAES.2021.3056086
https://dx.doi.org/https://doi.org/10.1007/978-1-4615-8243-4_5
https://dx.doi.org/https://doi.org/10.1007/978-1-4615-8243-4_5
https://dx.doi.org/https://doi.org/10.1016/j.cor.2012.06.014
https://dx.doi.org/https://doi.org/10.48550/arXiv.2111.06257
https://dx.doi.org/https://doi.org/10.1287/opre.19.4.1070
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1111/j.1540-5915.1974.tb00593.x
https://dx.doi.org/https://doi.org/10.1609/aaai.v37i13.27048
https://dx.doi.org/https://doi.org/10.3934/era.2023031

3966

17. R. Ramalingam, S. Basheer, P. Balasubramanian, M. Rashid, G. Jayaraman, EECHS-ARO:
Energy-efficient cluster head selection mechanism for livestock industry using artificial rab-
bits optimization and wireless sensor networks, Electron. Res. Arch., 31 (2023), 3123-3144.
https://doi.org/10.3934/era.2023158

18. J. Song, Y. Yue, B. Dilkina, A general large neighborhood search framework for solving integer
linear programs, Adv. Neural Inf. Process. Syst., 33 (2020), 20012-20023.

19. G. Hendel, Adaptive large neighborhood search for mixed integer programming, Math. Program.
Comput., 14 (2022), 185-221. https://doi.org/10.1007/s12532-021-00209-7

20. J. M. Robson, Algorithms for maximum independent sets, J. Algorithms, 7 (1986), 425-440.
https://doi.org/10.1016/0196-6774(86)90032-5

21. D. S. Hochbaum, Approximating covering and packing problems: set cover, vertex cover, indepen-
dent set, and related problems, Approximation Algorithms NP-Hard Probl., (1997), 94—143.

22. N. Alon, B. Awerbuch, Y. Azar, The online set cover problem, in Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of Computing, (2003), 100-105.
https://doi.org/10.1145/780542.780558

23. P. Cramton, Y. Shoham, R. Steinberg, Introduction to combinatorial auctions, Comb. Auctions,
(2006), 1-14.

24. J. P. Pedroso, Optimization with Gurobi and Python, in INESC Porto and Universidade do Porto,
Porto, Portugal, 1 (2011).

25. T. Achterberg, SCIP: Solving constraint integer programs, Math. Program. Comput., 1 (2009),
1-41. https://doi.org/10.1007/s12532-008-0001-1

26. T. Berthold, Primal Heuristics for Mixed Integer Programs, Ph.D. thesis, Zuse Institute Berlin
(ZIB), 2006.

27. V. Nair, M. Alizadeh, Neural large neighborhood search, in Learning Meets Combinatorial Algo-
rithms at NeurlPS2020, 2020.

28. E. Danna, E. Rothberg, C. L. Pape, Exploring relaxation induced neighborhoods to improve MIP
solutions, Math. Program., 102 (2005), 71-90. https://doi.org/10.1007/s10107-004-0518-7

29. L. A. Wolsey, G. L. Nemhauser, Integer and Combinatorial Optimization, John Wiley & Sons,
1999. https://doi.org/10.1057/jors.1990.26

30. J. E. Mitchell, Branch-and-cut algorithms for combinatorial optimization problems, Handb. App!.
Optim., 1 (2002), 65-77.

31. Y. Wu, W. Song, Z. Cao, J. Zhang, Learning large neighborhood search policy
for integer programming, Adv. Neural Inf. Process. Syst, 34 (2021), 30075-30087.
https://doi.org/10.48550/arXiv.2111.03466

32. N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, V. Nair, Learning a large neigh-
borhood search algorithm for mixed integer programs, preprint, arXiv:2107.10201.
https://doi.org/10.48550/arXiv.2107.10201

33. A. W. Beggs, On the convergence of reinforcement learning, J. Econ. Theory, 122 (2005), 1-36.
https://doi.org/10.1016/j.jet.2004.03.008

Electronic Research Archive Volume 33, Issue 6, 3950-3967.

https://dx.doi.org/https://doi.org/10.3934/era.2023158
https://dx.doi.org/https://doi.org/10.1007/s12532-021-00209-7
https://dx.doi.org/https://doi.org/10.1016/0196-6774(86)90032-5
https://dx.doi.org/https://doi.org/10.1145/780542.780558
https://dx.doi.org/https://doi.org/10.1007/s12532-008-0001-1
https://dx.doi.org/https://doi.org/10.1007/s10107-004-0518-7
https://dx.doi.org/https://doi.org/10.1057/jors.1990.26
https://dx.doi.org/https://doi.org/10.48550/arXiv.2111.03466
https://dx.doi.org/https://doi.org/10.48550/arXiv.2107.10201
https://dx.doi.org/https://doi.org/10.1016/j.jet.2004.03.008

3967

34. T. Huang, A. M. Ferber, Y. Tian, B. Dilkina, B. Steiner, Searching large neighborhoods for integer
linear programs with contrastive learning, in Proceedings of the 40th International Conference on
Machine Learning, PMLR, (2023), 13869-13890. https://doi.org/10.48550/arXiv.2302.01578

@ AIMS Press

Electronic Research Archive

©2025 the Author(s), licensee AIMS Press. This
i1s an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Volume 33, Issue 6, 3950-3967.

https://dx.doi.org/https://doi.org/10.48550/arXiv.2302.01578
https://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Integer programming
	Methods for solving integer programs
	Exact algorithms
	Heuristic algorithms

	Method
	Initialization
	Partitioning of decision variables
	Directional optimization
	Merging directional solutions
	Refining the conquered solution via a fixed-radius search
	Final algorithm: The full iterative divide-and-conquer strategy

	Experiments
	Experimental setup
	Computational environment
	Problem instances
	Baseline methods

	Performance comparison
	Performance with Gurobi as the sub-solver
	Performance with SCIP as the sub-solver

	Convergence analysis
	Stability analysis

	Conclusions

