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Abstract: This paper studied panel interval-valued data models with individual fixed effects, in which
the correlation within a group was considered and the group average method was used to eliminate the
fixed effects. Then, we applied generalized estimation equations (GEEs) to analyze panel interval-valued
data models and gave a computational algorithm to obtain the estimators. Some Monte Carlo simulations
and real data analysis showed that, in contrast with the least-squares dummy-variable (LSDV) method,
the proposed GEEs method has advantages in forecasting performance.
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1. Introduction

In the real world, there are a large number of interval-valued data. For example, in the stock
market, the K-line chart, as an important decision-making tool, includes the opening price, closing
price, maximum, and minimum of the day. In temperature prediction, the minimum and maximum
temperatures can be regarded as an interval. On the other hand, due to the complexity of the system, the
data obtained is an interval rather than a real point. For example, experts often predict the economic
growth rate of the next year in the form of an interval, such as 4–5%. As far as we know, interval-valued
data can provide a tool for dealing with large datasets, which were proposed by Diday [1]. It not only
contains richer information than point data but also has better interpretability. So, it is meaningful to
analyze interval-valued data. Billard and Diday [2] proposed the first algorithm to fit the interval-valued
linear regression, which fits the linear regression model to the midpoint of the interval values and obtains
the parameters by minimizing the midpoint error. Billard and Diday [3] proposed the min-max method,
which defined two models, each corresponding to a response bound. The lower bounds of the response
depend on the lower bounds of the regressive variables, and the upper bounds of the response depend
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on the upper bounds of the regressive variables. Lima Neto et al. [4] introduced the center and range
Method (CRM) and proposed two linear models: one for the midpoint and another for the range. Kong
and Gao [5] proposed a regularized interval MM estimate (RIMME) for interval-valued regression,
which can achieve a good balance between the prediction accuracy and mathematical coherence of the
predicted intervals. Xu and Qin [6] proposed a bivariate Bayesian regression model based on CRM
with known or unknown covariance matrices. Beyaztas et al. [7] introduced the functional forms of
some well-known regression models that take interval-valued data. Interval analysis technologies can
also be found in other literature [8–12]. To sum up, it is not difficult to find that the above research on
interval-valued data is mainly based on cross-sectional data.

Panel data or longitudinal data is obtained by multiple observations of individuals at different times.
Statistical models that combine cross-section and time series real value data are becoming more and
more popular in economic research, and panel data sets have certain advantages over traditional pure
cross-section or pure time series data sets. Galvao Jr. [13] studied a quantile regression dynamic
panel model with fixed effects. Aristodemou [14] studied semiparametric identification in linear index
discrete response panel data models with fixed effects. Hamiye Beyaztas and Bandyopadhyay [15]
proposed a new, weighted likelihood-based robust estimation procedure for linear panel data models
with fixed and random effects. Bai et al. [16] studied generalized least squares (GLS) estimation for
linear panel data models. Baltagi and Li [17] focused on prediction in spatial models based on panel
data. Elhorst [18] studied the specification and estimation of spatial panel data models. Zhang et al. [19]
studied a penalized quantile regression for spatial panel models with fixed effects. In particular, in
recent years, a few scholars have begun to study interval panel data models. For example, Ji et al. [20]
introduced fixed effects panel data regression models for interval-valued data, and presented three kinds
of panel interval-valued data regression models and the estimation of their parameters. Zhang et al. [21]
proposed a robust estimation method based on the iterative weighted least squares technique to reduce
the impact of outliers on models. Considering the correlation between the center and range or the
upper and lower bounds of intervals, Ji et al. [22] proposed the bivariate maximum likelihood (BML)
method for estimating unknown parameters of the model. Usually, the observation data of different
individuals are independent of each other, but there is correlation between the observation data of the
same individual at different times. As far as we know, current research on panel interval-valued data has
not considered the correlation within a group of the data.

Generalized estimation equations (GEEs) proposed by Liang and Zeger [23] are commonly used
to analyze the longitudinal data with correlation within individuals. Crowder [24] studied the (weak)
consistency and inconsistency of the solutions of general estimating equations. Balan and Schiopu-
Kratina [25] studied the consistency and asymptotic normality of the GEEs estimation, with the
covariate dimension fixed. Wang [26] studied the consistency and asymptotic normality of GEEs
estimates when the sample size of the covariate dimension tends to infinity. Wang and Carey [27]
showed that the discrepancy between the working correlation structure and the true correlation structure
and the estimation method of the correlation coefficient affect the asymptotic relative efficiency. Pan [28]
proposed a new model selection criterion that minimizes the expected predictive bias of estimating
equations. Wang [29] presented a systematic review on GEEs, covering foundational concepts as
well as several recent developments due to practical challenges in real applications. Seaman and
Copas [30] described doubly robust (DR) GEEs, and illustrated their use on simulated data. To sum up,
previous studies have only applied GEEs to point value data. Therefore, we intend to apply it to panel
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interval-valued data in this paper.
In this paper, unlike the independent hypothesis of other studies, we consider the correlation within

a group of the panel interval-valued data to obtain better parameter estimates. GEEs are commonly
used to analyze the longitudinal data with correlation within individuals. We intend to apply it to panel
interval-valued data in this paper. The results of Monte Carlo simulations reveal that our proposed
method outperforms the LSDV method based on independent assumptions in terms of estimation
accuracy and robustness. When the working correlation matrix is assumed correctly, the GEEs method
performs better than the LSDV method. When the working correlation matrix is assumed incorrectly,
the performance of the two methods is similar. In addition, the higher the degree of correlation within
the group, the better the performance of the GEEs method. The empirical results also demonstrate the
superiority of our proposed method.

The rest of this paper are organized as follows: Current regression models for fixed effects panel
interval-valued data and the LSDV method are provided in Section 2. The regression method based
on the generalized estimation equations is presented in Section 3. In Section 4, some Monte Carlo
simulations and real data analysis show that, in contrast with the least-squares dummy-variable (LSDV)
method, the proposed GEEs method has advantages in forecasting performance. Finally, Section 5 gives
the conclusion and discussion.

2. Fixed effects panel interval-valued data models

In this section, the LSDV method and three existing kinds of fixed effects panel interval-valued data
models are introduced: the min-max (Min-Max or MM) model, the center and range (CRM) model, the
center (CM) model. These three kinds models hold their own advantages and disadvantages.

For the panel interval-valued dataset Z = {(Xit, yit) | i = 1, 2, ...,N; t = 1, 2, ...,T }, let Xit =

(xit1, xit2, ..., xitp), where xitk = [xl
itk, x

u
itk], yit = [yl

it, y
u
it], x

c
itk =

xl
itk+xu

itk
2 , xr

itk =
xu

itk−xl
itk

2 , yc
it =

yl
it+yu

it
2 , y

r
it =

yu
it−yl

it
2 , k = 1, 2, ..., p. xl

itk(xu
itk, x

c
itk or xr

itk) are considered as explanatory variables and yl
it(y

u
it, y

c
it or yr

it) are

considered as response variables. In addition, let ul
i(u

u
i ) be the individual effect and uc

i =
uu

i +ul
i

2 , u
r
i =

uu
i −ul

i
2 .

2.1. The min-max model

The min-max model of fixed effects panel interval-valued data regression consists of two different
models. Two regression models are established for the upper and lower bounds of the response variable
by using the upper and lower bounds of the explanatory variables. The specific form is given as follows:

yl
it = ul

i +

p∑
j=1

βl
jx

l
it j + ϵ

l
it, (2.1)

yu
it = uu

i +

p∑
j=1

βu
j x

u
it j + ϵ

u
it, (2.2)

where the errors ϵ lit ∼ N(0, σ2), ϵuit ∼ N(0, σ2), i = 1, 2, ...,N; t = 1, 2...,T.
Based on the lower bounds of yit and xit j (i = 1, 2...,N; t = 1, 2, ...,T ; j = 1, 2, ..., p), the parameters
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ul
i and βl = (βl

1, β
l
2, ..., β

l
p)T are estimated by the least-squares dummy-variable (LSDV) method:

β̂l = (β̂l
1, β̂
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The estimates of βu and uu
i have the following similar conclusion:

β̂u = (β̂u
1, β̂

u
2, ..., β̂

u
p)T = (Au)−1Bu,

ûu
i = yu

i −
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where Au =
∑N

i=1
∑T

t=1(Xu
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For a new observation Xit = (xit1, xit2, ..., xitp)T , with xit j = [xl
it j, x

u
it j], the prediction of ŷit = [ŷl

it, ŷ
u
it] is

given by:

ŷl
it = ûl

i +

p∑
j=1

β̂l
jx

l
it j,

ŷu
it = ûu

i +

p∑
j=1

β̂u
j x

u
it j.

Sometimes the min-max model does not guarantee the mathematical coherence of the predicted
interval bounds, and then the response variables are defined as follows:

ŷit =
[
ŷl

it, ŷ
u
it

]
=


[

ŷl
it+ŷu

it
2 ,

ŷl
it+ŷu

it
2

]
if ŷl

it > ŷu
it;[

ŷl
it, ŷ

u
it

]
if ŷl

it ≤ ŷu
it.

2.2. The center and range model

The center and range model of fixed effects panel interval-valued data regression is as follows:

yc
it = uc

i +

p∑
j=1

βc
jx

c
it j + ϵ

c
it, (2.3)

yr
it = ur

i +

p∑
j=1

βr
jx

r
it j + ϵ

r
it, (2.4)

where the errors ϵcit ∼ N(0, σ2), ϵrit ∼ N(0, σ2), i = 1, 2, ...,N; t = 1, 2...,T. The estimates of βc and uc
i

given by the LSDV method are:

β̂c = (β̂c
1, β̂

c
2, ..., β̂

c
p)T = (Ac)−1Bc,

Electronic Research Archive Volume 33, Issue 6, 3733–3755.



3737

ûc
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Similarly, we can obtain the estimates of βr and ur
i :
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For a new observation Xit = (xit1, xit2, ..., xitp)T , with xit j = [xl
it j, x

u
it j], the predictions of ŷc

it and ŷr
it are

given by:

ŷc
it = ûc

i +

p∑
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β̂c
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c
it j,

ŷr
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Then, the predictions of ŷl
it and ŷu

it are as follows:
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[
ŷl

it, ŷ
u
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]
=
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c
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c
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it < 0.

2.3. The center model

Based on the center value of the panel interval-valued data, the liner regression model with fixed
individual effects is as follows:

yc
it = uc

i +

p∑
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βc
jx

c
it j + ϵ

c
it, (2.5)

where the errors ϵcit ∼ N(0, σ2), i = 1, 2, ...,N; t = 1, 2, ...,T .
As described earlier, the estimates of βc and uc

i are given by the LSDV method:

β̂c = (β̂c
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p)T = (Ac)−1Bc,
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For a new observation Xit = (xit1, xit2, ..., xitp)T , with xit j = [xl
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it] is

given by:
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β̂c
jx

l
it j,
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ŷu
it = ûc

i +

p∑
j=1

β̂c
jx

u
it j.

3. Fixed effects panel interval-valued data models based on the GEEs method

This section introduces generalized estimation equations(GEEs) for fixed effects panel interval-valued
regression models that consider the data correlation within individuals.

For panel interval-valued data set Z = {(Xit, yit) | i = 1, 2, ...,N; t = 1, 2, ...,T }, Xit = (xit1, xit2, ..., xitp)T

is assumed as p × 1 interval-valued explanatory variables with xit j = [xl
it j, x

u
it j], yit = [yl

it, y
u
it] as the

observed interval-valued dependent variables, i = 1, 2, ...,N; t = 1, 2, ...,T ; j = 1, 2, ..., p. ui is an unob-
served effect for individual i and is time invariant. Let Ya

i = (ya
i1, y

a
i2, ..., y

a
iT )T , Xa

i = (Xa
i1, X

a
i2, ..., X

a
iT )T ,

where a = l, u, c, or r. Let Ya = ((Ya
1 )T , (Ya

2 )T , ..., (Ya
N)T )T , Xa = ((Xa

1)T , (Xa
2)T , ..., (Xa

N)T )T , ua =

(ua
1, u

a
2, ..., u

a
N)T .

3.1. The GEEs method of the min-max model

The matrix form of the min-max model of fixed effects panel interval-valued data regression is as
follows:

Y l = Xlβl + (IN ⊗ τT )ul + ϵ l, (3.1)

Yu = Xuβu + (IN ⊗ τT )uu + ϵu. (3.2)

To save space, we only present the estimation method of the model (3.1). Considering the correlation
between the observations of the same individual at different times, and the independence between
the observations of different individuals, we suppose that ϵ l ∼ N(0,Σl), cov(ϵ lik, ϵ

l
jl) = 0(i , j), where

ϵ l = (ϵ l1, ϵ
l
2, ..., ϵ

l
N)T , ϵ li = (ϵ li1, ϵ

l
i2, ..., ϵ

l
iT ),

Σl =


Σl

1 0 · · · 0
0 Σl

2 · · · 0
...
...
. . .

...

0 0 · · · Σl
N

 , Σl
i =


var(ϵ li1) cov(ϵ li1, ϵ

l
i2) · · · cov(ϵ li1, ϵ

l
iT )

cov(ϵ li2, ϵ
l
i1) var(ϵ li2) · · · cov(ϵ li2, ϵ

l
iT )

...
...

. . .
...

cov(ϵ liT , ϵ
l
i1) cov(ϵ liT , ϵ

l
i2) · · · var(ϵ liT )

 ,
and similarly, ϵu ∼ N(0,Σu).

There is a problem for us to find the estimation of βl in the model (3.1) because of the fixed effects
ul. Specifically, simultaneously estimating ul and βl directly may incur “curse of dimensionality”
since ul is high dimensional when N becomes too large. First, similar to Section 2.1, we use the
projection techniques to eliminate fixed effects in the model (3.1). Specifically, let Q = INT − P,
P = IN ⊗ (JT/T ), JT = τTτ

′
T , where IN is an N × N identity matrix and τT is an N × 1 vector of ones.

Multiplying by Q on the left for model (3.1), we have

Ỹ l = X̃lβl + ϵ̃ l, (3.3)

where Ỹ l = QY l, X̃l = QXl, ϵ̃ l = Qϵ l, Q(IN ⊗ τT ) = 0, and ϵ̃ l ∼ N(0,QΣlQT ),Q =
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diag(Q1,Q2, ...,QN),Qi = IT − JT/T ,

QΣlQT =


Q1Σ

l
1QT

1 0 · · · 0
0 Q2Σ

l
2QT

2 · · · 0
...

...
. . .

...

0 0 · · · QNΣ
l
N QT

N

 .
Then, the generalized estimating equations (GEEs [23]) can be defined as follows:

N∑
i=1

(X̃l
i)

T (V l
i )
−1
(
Ỹ l

i − (X̃l
i)

Tβ
)
= 0, (3.4)

where Ỹ l
i = QiY l

i = (̃yl
i1, . . . , ỹ

l
iT )T , X̃l

i = QiXl
i , V l

i is the covariance matrix of Ỹ l
i . According to Liang and

Zeger ( [23]), we simplify the covariance of the ith subject Vi by taking V l
i = (Al

i)
1/2Ri(α)(Al

i)
1/2, where

Al
i = diag{var(Ỹ l

i1), . . . , var(Ỹ l
iT )}, and Ri(α) is a common working correlation with nuisance parameter

α. In general, V l
i is unknown, and we often use the empirical estimators V̂ l

i for the V l
i . Specifically,

V̂ l
i = (Al

i)
1/2(β̂l)Ri(α̂)(Al

i)
1/2(β̂l),

where α̂ can be obtained by following the method proposed by Liang and Zeger ( [23]) in Section 3.4.1.
Al

i(β̂l) is the empirical estimator of Ai based on the current estimator of βl.
Thus, we implement the iterative algorithm to solve Eq (3.4). Given the current estimate α̂, we use

the following iterative procedure for βl:

β̂l
(k+1)
= β̂l

(k)
+

 N∑
i=1

(X̃l
i)

T (V̂ l
i )
−1X̃l

i

−1  N∑
i=1

(X̃l
i)

T (V̂ l
i )
−1(Ỹ l

i − X̃l
i β̂

l
(k)

)

 , (3.5)

where V̂ l
i = (Al

i)
1/2(β̂l

(k)
)Ri(α̂)(Al

i)
1/2(β̂l

(k)
).

Then, the estimates of the fixed effects ul are given as follows:

ûl =
(
(IN ⊗ τT )T (IN ⊗ τT )

)−1
(IN ⊗ τT )T (Y

l
− X

l
β̂l), (3.6)

where Y
l
= PY l, X

l
= PXl.

Using similar methods, we can obtain the estimates of β̂u by iterating the following ralationship to
convergence:

β̂u(k+1)
= β̂u(k)

+

 N∑
i=1

(X̃u
i )T (V̂u

i )−1X̃u
i

−1  N∑
i=1

(X̃u
i )T (V̂u

i )−1(Ỹu
i − X̃u

i β̂
u(k)

)

 , (3.7)

where V̂u
i = (Au

i )1/2(β̂u(k)
)Ri(α̂)(Au

i )1/2(β̂u(k)
), and the estimates of ûu are given by

ûu =
(
(IN ⊗ τT )T (IN ⊗ τT )

)−1
(IN ⊗ τT )T (Y

u
− X

u
β̂u), (3.8)

where Y
u
= PYu, X

u
= PXu.

For a new observation X = [Xl, Xu], the prediction Ŷ = [Ŷ l, Ŷu] is given by

Ŷ l = Xlβ̂l + (IN ⊗ τT )ûl,

Ŷu = Xuβ̂u + (IN ⊗ τT )ûu.
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3.2. The GEEs method of the center and range model

The matrix form of the center and range model of fixed effects panel interval-valued data regression
is as follows:

Yc = Xcβc + (IN ⊗ τT )uc + ϵc, (3.9)

Yr = Xrβr + (IN ⊗ τT )ur + ϵr, (3.10)

where ϵc ∼ N(0,Σc), ϵr ∼ N(0,Σr),Σc = Σ
l+Σu

4 = Σr.
Similar to Section 3.1, we only present the estimation method of model (3.9). To eliminate the fixed

effects, let Ỹc = QYc, X̃c = QXc, ϵ̃c = Qϵc, and Q(IN ⊗ τT ) = 0. Multiplying (3.9) by Q on the left gives
the following intra-group regression model equation:

Ỹc = X̃cβc + ϵ̃c, (3.11)

where ϵ̃c ∼ N(0,QΣcQT ).
Then, we can obtain the estimates of β̂c by iterating the following ralationship to convergence:

β̂c(k+1)
= β̂c(k)

+

 N∑
i=1

(X̃c
i )T (V̂c

i )−1X̃c
i

−1  N∑
i=1

(X̃c
i )T (V̂c

i )−1(Ỹc
i − X̃c

i β̂
c(k)

)

 ,
where V̂c

i = (Ac
i )

1/2(β̂c(k)
)Ri(α̂)(Ac

i )
1/2(β̂c(k)

), and the estimates of ûc are given as follows:

ûc =
(
(IN ⊗ τT )T (IN ⊗ τT )

)−1
(IN ⊗ τT )T (Y

c
− X

c
β̂c),

where Y
c
= PYc, X

c
= PXc.

Similarly, estimates of βr can be obtained as follows:

β̂r(k+1)
= β̂r(k)

+

 N∑
i=1

(X̃r
i )T (V̂r

i )−1X̃r
i

−1  N∑
i=1

(X̃r
i )T (V̂r

i )−1(Ỹr
i − X̃r

i β̂
r(k)

)

 ,
where V̂r

i = (Ar
i )

1/2(β̂r(k)
)Ri(α̂)(Ar

i )
1/2(β̂r(k)

), and the estimates of ûr are given by

ûr =
(
(IN ⊗ τT )T (IN ⊗ τT )

)−1
(IN ⊗ τT )T (Y

r
− X

r
β̂r),

where Y
r
= PYr, X

r
= PXr.

For a new observation X = [Xl, Xu], the prediction Ŷ = [Ŷ l, Ŷu] is given as follows:

Ŷ l = Ŷc − Ŷr, Ŷu = Ŷc + Ŷr,

where
Ŷc = Xcβ̂c + (IN ⊗ τT )ûc,

Ŷr = Xrβ̂r + (IN ⊗ τT )ûr.
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3.3. The GEEs method of the center model

The matrix form of the center model of fixed effects panel interval-valued data regression is as
follows:

Yc = Xcβc + (IN ⊗ τT )uc + ϵc, (3.12)

where ϵc ∼ N(0,Σc),Σc = Σ
l+Σu

4 .
As described earlier, the estimates of βc and uc given by GEEs are as follows:

β̂c(k+1)
= β̂c(k)

+

 N∑
i=1

(X̃c
i )T (V̂c

i )−1X̃c
i

−1  N∑
i=1

(X̃c
i )T (V̂c

i )−1(Ỹc
i − X̃c

i β̂
c(k)

)

 ,
where V̂c

i = (Ac
i )

1/2(β̂c(k)
)Ri(α̂)(Ac

i )
1/2(β̂c(k)

), and the estimates of ûc are obtained as follows:

ûc =
(
(IN ⊗ τT )T (IN ⊗ τT )

)−1
(IN ⊗ τT )T (Y

c
− X

c
β̂c),

where Y
c
= PYc, X

c
= PXc.

For a new observation X = [Xl, Xu], the prediction Ŷ = [Ŷ l, Ŷu] is given by

Ŷ l = Xlβ̂c + (IN ⊗ τT )ûc,

Ŷu = Xuβ̂c + (IN ⊗ τT )ûc.

3.4. Computation algorithm

3.4.1. The working correlation matrix

The following introduces the structures of several commonly used working correlation matrices
[23, 31, 32]:

• Independence: For the independence working correlation matrix, it is assumed that all the response
variables are mutually independent. α = 0,Ri(α) = IT .

• Exchangeable: Suppose that the correlation between any two observed values of the same individual
are the same. The form of the correlation matrix is as follows:

Ri(α) =



1 α α · · · α

α 1 α · · · α

α α 1 · · · α
...
...
...
. . .

...

α α α · · · 1


,

where α is the unknown correlation coefficient,

α̂ =
(NT − P)

∑N
i=1
∑T

t,k ritrik

(T (T − 1) N − p)
∑N

i=1
∑T

t=1 r2
it

,

where rit = ỹit − X̃itβ.
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• AR(1): Suppose that the correlation depends on the time. The form of the correlation matrix is as
follows:

Ri(α) =



1 α α2 · · · αT−1

α 1 α · · · αT−2

α2 α 1 · · · αT−3

...
...

...
. . .

...

αT−1 αT−2 αT−3 · · · 1


,

where

α̂ =
(NT − p)

∑N
i=1
∑T−1

t=1 ritri,t+1

(T (T − 1) N − p)
∑N

i=1
∑T

t=1 r2
it

.

3.4.2. Algorithm

In this subsection, we present a feasible algorithm as follows. Consider the general form of the
model: Y = Xβ + (IN ⊗ τT )u + ϵ.

Step 1: Use the matrix Q to eliminate fixed effects u. Then the initial value β̂(0) is obtained from the
independent assumption.

Step 2: The estimates α̂(k) and A1/2
i (β̂(k)) are obtained based on the assumed structure of the correlation

matrix as in Section 3.4.1. Then V̂ (k)
i = A1/2

i (β̂(k))Ri(α̂)A1/2
i (β̂(k)) is obtained. Update β̂(k+1) =

β̂(k) +

(∑N
i=1(X̃i)T (V̂i

(k)
)−1X̃i

)−1 (∑N
i=1(X̃i)T (V̂i

(k)
)−1(Ỹi − X̃iβ̂

(k))
)
.

Step 3: Iterate Step 2 until convergence, and denote the final estimators as the GEEs estimators. Then
û =
(
(IN ⊗ τT )T (IN ⊗ τT )

)−1
(IN ⊗ τT )T (Y − Xβ̂).

Here we can also utilize the existing algorithm to obtain estimates of β, which can be obtained by
using the geepack function package in the statistical software R language.

4. Numerical illustrations

This section compares the proposed GEEs method with the LSDV method proposed by Ji et al. [20]
through computational experiments demonstration. In computational experiments, two types of panel
interval-valued datasets are considered. The first is a dataset of synthetic panel interval-valued data,
while the second is the air pollution dataset of the 26 cities in China’s Yangtze River Delta.

4.1. Monte Carlo simulations

Without loss of generality, we provide two configuration schemes for synthetic panel interval-valued
datasets: one from the min-max model and another derived from the CRM model. In the simulation
framework, 20 or 50 individuals are considered, and each individual consists of three attributes of
explanatory variables over 14 continuous periods, that is, N = 20 or 50 and T = 14. Let the first 10
periods of data be the train set, and the rest be the test set. Considering the actual problem scenarios, let
the correlation matrix be the first-order autoregressive (AR(1)) correlation setting R1(α) or exchangeable
correlation setting R2(α).
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R1(α) =



1 α α2 · · · αT−1

α 1 α · · · αT−2

α2 α 1 · · · αT−3

...
...

...
. . .

...

αT−1 αT−2 αT−3 · · · 1


,R2(α) =



1 α α · · · α

α 1 α · · · α

α α 1 · · · α
...
...
...
. . .

...

α α α · · · 1


.

4.1.1. Dataset configuration based on the CRM model

In this section, we consider the following panel interval-valued data-generating processes.

yc
it = uc

i +

3∑
j=1

βc
jx

c
it j + ϵ

c
it,

yr
it = ur

i +

3∑
j=1

βr
jx

r
it j + ϵ

r
it,

where βc = (βc
1, β

c
2, β

c
3) = (1, 3, 2), βr = (βr

1, β
r
2, β

r
3) = (1, 2, 1); xc

i jt ∼ U[5, 10], xr
i jt ∼ U[1, 3]; fixed

effects uc
i and ur

i ∼ U[0, 0.5]; ϵci = (ϵci1, ϵ
c
i2, ..., ϵ

c
iT ) ∼ N(0, σ2

cRi(α)), ϵri = (ϵri1, ϵ
r
i2, ..., ϵ

r
iT ) ∼ N(0, σ2

r Ri(α)),
where σ2

c = σ
2
r = 4, i = 1, 2; and let the correlation coefficient α = 0.9, 0.5, 0.3 to generate data with

different degrees of correlation.

4.1.2. Dataset configuration based on the min-max model

In this section, we consider the following panel interval-valued data-generating processes.

yl
it = ul

i +

3∑
j=1

βl
jx

l
it j + ϵ

l
it,

yu
it = uu

i +

3∑
j=1

βu
j x

u
it j + ϵ

u
it,

where βu = (βu
1, β

u
2, β

u
3) = (3, 2, 2), βl = (βl

1, β
l
2, β

l
3) = (2, 1, 1); xu

i jt ∼ U[5, 10], xl
i jt ∼ U[1, 3]; fixed effects

uu
i and ul

i ∼ U[0, 0.5]; ϵui = (ϵui1, ϵ
u
i2, ..., ϵ

u
iT ) ∼ N(0, σ2

uRi(α)), ϵ li = (ϵ li1, ϵ
l
i2, ..., ϵ

l
iT ) ∼ N(0, σ2

l Ri(α)), where
σ2

u = σ
2
l = 4, i = 1, 2; and let the correlation coefficient α = 0.9, 0.5, 0.3 to generate data with different

degrees of correlation.

4.1.3. Implementation and evaluation

Four criteria for assessing the performances of different models are shown as follows:
(1) Mean average absolute error (MAE), mean magnitude of relative error (MMER), and root mean
square error (RMSE) defined by Ji et al. [20] are:

MAE =
1

2NT

N∑
i=1

T∑
t=1

{∣∣∣ŷl
it − yl

it

∣∣∣ + ∣∣∣ŷu
it − yu

it

∣∣∣} ,
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MMER =
1

2NT

N∑
i=1

T∑
t=1

{∣∣∣∣∣∣ ŷl
it − yl

it

ŷl
it

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ŷu

it − yu
it

ŷu
it

∣∣∣∣∣∣
}
,

RMS E =
1
2


√√∑N

i=1
∑T

t=1

(
ŷl

it − yl
it

)2
NT

+

√√∑N
i=1
∑T

t=1

(
ŷu

it − yu
it

)2
NT

 .

(2) The rate of different intervals (RI) defined by Hu and He [33] is:

RI =
1

NT

N∑
i=1

T∑
t=1

w(yit ∩ ŷit)
w(yit ∪ ŷit)

,

where w(.) is the interval width.

Table 1. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and AR(1) correlation matrix, with the average and mean square error, where the
working correlation matrix is AR(1).

α Methods N β̂c
1 β̂c

2 β̂c
3 β̂r

1 β̂r
2 β̂r

3

0.3

LSDV
20 0.9992 3.0005 1.9987 1.0045 2.0109 1.0089

(0.0078) (0.0072) (0.0069) (0.0428) (0.0445) (0.0451)

50 1.0001 3.0034 1.9993 1.0060 2.0044 1.0030
(0.0027) (0.0027) (0.0026) (0.0161) (0.0163) (0.0187)

GEEs
20 0.9999 3.0001 1.9990 1.0025 2.0090 1.0115

(0.0068) (0.0064) (0.0062) (0.0381) (0.0410) (0.0406)

50 1.0000 3.0032 1.9991 1.0065 2.0045 1.0026
(0.0025) (0.0024) (0.0024) (0.0144) (0.0144) (0.0165)

0.5

LSDV
20 1.0016 3.0024 2.0032 1.0002 1.9993 0.9986

(0.0064) (0.0064) (0.0062) (0.0399) (0.0397) (0.0403)

50 1.0013 3.0006 2.0008 1.0090 1.9994 0.9969
(0.0025) (0.0026) (0.0025) (0.0145) (0.0152) (0.0157)

GEEs
20 1.0004 3.0023 2.0020 1.0021 2.0027 0.9960

(0.0046) (0.0046) (0.0044) (0.0276) (0.0285) (0.0291)

50 1.0018 3.0002 2.0010 1.0079 1.9984 0.9958
(0.0017) (0.0019) (0.0018) (0.0106) (0.0113) (0.0112)

0.9

LSDV
20 0.9989 3.0018 1.9990 0.9944 1.9984 1.0046

(0.0027) (0.0030) (0.0027) (0.0188) (0.0167) (0.0180)

50 0.9992 2.9987 2.0007 1.0024 1.9975 0.9991
(0.0011) (0.0011) (0.0011) (0.0070) (0.0074) (0.0074)

GEEs
20 1.0001 3.0001 1.9996 0.9972 1.9996 1.0059

(0.0009) (0.0009) (0.0009) (0.0057) (0.0056) (0.0051)

50 0.9996 2.9995 2.0002 1.0012 1.9986 0.9989
(0.0004) (0.0004) (0.0003) (0.0021) (0.0023) (0.0022)
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Table 2. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and AR(1) correlation matrix, with the average and mean square error, where
the working correlation matrix is AR(1).

α Methods N β̂u
1 β̂u

2 β̂u
3 β̂l

1 β̂l
2 β̂l

3

0.3

LSDV
20 3.0032 2.0012 1.9997 1.9962 0.9965 1.0160

(0.0074) (0.0075) (0.0069) (0.0465) (0.0428) (0.0394)

50 3.0004 2.0015 1.9975 1.9853 1.0019 1.0033
(0.0028) (0.0026) (0.0027) (0.0182) (0.0180) (0.0171)

GEEs
20 3.0032 2.0015 1.9998 1.9981 0.9958 1.0145

(0.0068) (0.0067) (0.0062) (0.0417) (0.0377) (0.0350)

50 3.0009 2.0016 1.9978 1.9874 1.0020 1.0026
(0.0025) (0.0023) (0.0024) (0.0162) (0.0160) (0.0152)

0.5

LSDV
20 3.0008 2.0004 1.9969 1.9988 0.9992 0.9957

(0.0067) (0.0065) (0.0066) (0.0421) (0.0433) (0.0420)

50 3.0004 2.0016 2.0017 1.9966 0.9982 0.9935
(0.0025) (0.0024) (0.0024) (0.0158) (0.0161) (0.0164)

GEEs
20 3.0012 1.9989 1.9979 2.0000 0.9978 0.9947

(0.0047) (0.0047) (0.0047) (0.0312) (0.0306) (0.0292)

50 3.0003 1.9999 2.0016 1.9993 0.9992 0.9922
(0.0018) (0.0018) (0.0017) (0.0114) (0.0109) (0.0115)

0.9

LSDV
20 2.9989 2.0018 1.9990 1.9944 0.9984 1.0046

(0.0027) (0.0030) (0.0027) (0.0188) (0.0167) (0.0180)

50 2.9999 1.9990 1.9998 2.0007 1.0014 1.0004
(0.0011) (0.0011) (0.0011) (0.0072) (0.0071) (0.0076)

GEEs
20 3.0001 2.0001 1.9996 1.9972 0.9996 1.0059

(0.0009) (0.0009) (0.0009) (0.0057) (0.0056) (0.0051)

50 3.0000 1.9993 1.9996 2.0025 1.0004 1.0003
(0.0003) (0.0003) (0.0004) (0.0023) (0.0022) (0.0022)

Table 3. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and AR(1) correlation matrix, with the average and standard deviation, where the
working correlation matrix is AR(1).

N α Methods
RMSE MAE MMER RI

CM MM CRM CM MM CRM CM MM CRM CM MM CRM

20

0.3
LSDV

3.4228 2.2270 2.1540 4.0842 2.5173 2.4348 0.1003 0.0587 0.0568 0.6621 0.7303 0.7405
(0.2662) (0.1408) (0.1364) (0.3657) (0.1661) (0.1607) (0.0101) (0.0041) (0.0040) (0.0241) (0.0177) (0.0170)

GEEs
3.4220 2.2259 2.1529 4.0830 2.5160 2.4334 0.1003 0.0587 0.0568 0.6622 0.7305 0.7407

(0.2605) (0.1407) (0.1362) (0.3580) (0.1658) (0.1604) (0.0099) (0.0041) (0.0039) (0.0238) (0.0177) (0.0170)

0.5
LSDV

3.4333 2.2389 2.1658 4.0981 2.5350 2.4517 0.1007 0.0591 0.0572 0.6617 0.7285 0.7390
(0.2783) (0.1501) (0.1483) (0.3855) (0.1796) (0.1755) (0.0106) (0.0045) (0.0044) (0.0266) (0.0190) (0.0183)

GEEs
3.4276 2.2366 2.1630 4.0902 2.5323 2.4487 0.1004 0.0590 0.0571 0.6620 0.7288 0.7393

(0.2617) (0.1503) (0.1483) (0.3622) (0.1798) (0.1755) (0.0099) (0.0045) (0.0044) (0.0258) (0.0190) (0.0183)

0.9
LSDV

3.2706 1.7869 1.6946 3.9601 2.0200 1.9133 0.0974 0.0472 0.0447 0.6715 0.7713 0.7850
(0.2928) (0.1582) (0.1587) (0.4088) (0.1882) (0.1899) (0.0109) (0.0046) (0.0046) (0.0328) (0.0231) (0.0223)

GEEs
3.2692 1.7837 1.6904 3.9589 2.0164 1.9084 0.0973 0.0471 0.0446 0.6715 0.7717 0.7855

(0.2791) (0.1580) (0.1585) (0.3900) (0.1881) (0.1896) (0.0103) (0.0046) (0.0046) (0.0323) (0.0230) (0.0223)

50

0.3
LSDV

3.4200 2.2120 2.1399 4.0807 2.4978 2.4161 0.1002 0.0582 0.0563 0.6621 0.7321 0.7423
(0.1621) (0.0886) (0.0870) (0.2242) (0.1051) (0.1024) (0.0062) (0.0026) (0.0025) (0.0153) (0.0112) (0.0107)

GEEs
3.4193 2.2116 2.1394 4.0798 2.4973 2.4156 0.1002 0.0582 0.0563 0.6621 0.7321 0.7423

(0.1584) (0.0886) (0.0868) (0.2188) (0.1051) (0.1023) (0.0060) (0.0026) (0.0025) (0.0151) (0.0112) (0.0107)

0.5
LSDV

3.4248 2.2355 2.1626 4.0833 2.5215 2.4398 0.1002 0.0588 0.0569 0.6621 0.7298 0.7401
(0.1768) (0.0980) (0.0968) (0.2440) (0.1156) (0.1139) (0.0067) (0.0028) (0.0028) (0.0173) (0.0122) (0.0118)

GEEs
3.4244 2.2343 2.1614 4.0826 2.5202 2.4383 0.1002 0.0588 0.0569 0.6621 0.7299 0.7402

(0.1698) (0.0978) (0.0965) (0.2337) (0.1154) (0.1137) (0.0064) (0.0028) (0.0028) (0.0170) (0.0122) (0.0118)

0.9
LSDV

3.2857 1.7905 1.6982 3.9696 2.0188 1.9134 0.0976 0.0472 0.0447 0.6702 0.7711 0.7845
(0.1867) (0.1035) (0.1045) (0.2578) (0.1217) (0.1237) (0.0068) (0.0030) (0.0030) (0.0205) (0.0144) (0.0143)

GEEs
3.2851 1.7893 1.6967 3.9688 2.0173 1.9116 0.0975 0.0471 0.0447 0.6703 0.7712 0.7847

(0.1767) (0.1033) (0.1045) (0.2428) (0.1215) (0.1236) (0.0064) (0.0030) (0.0030) (0.0200) (0.0144) (0.0143)
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Table 4. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and AR(1) correlation matrix, with the average and standard deviation, where
the working correlation matrix is AR(1).

N α Methods
RMSE MAE MMER RI

CM MM CRM CM MM CRM CM MM CRM CM MM CRM

20

0.3
LSDV

3.3163 1.5252 1.6014 4.1985 1.7246 1.8087 0.2120 0.1262 0.1475 0.8115 0.9248 0.9213
(0.4332) (0.0910) (0.0951) (0.6468) (0.1095) (0.1135) (0.0255) (0.0115) (0.0195) (0.0288) (0.0048) (0.0050)

GEEs
3.3134 1.5245 1.6009 4.1944 1.7238 1.8082 0.2118 0.1261 0.1475 0.8117 0.9248 0.9213

(0.4239) (0.0908) (0.0950) (0.6330) (0.1093) (0.1133) (0.0251) (0.0115) (0.0194) (0.0282) (0.0048) (0.0050)

0.5
LSDV

3.3147 1.5380 1.6117 4.1942 1.7413 1.8238 0.2119 0.1282 0.1549 0.8117 0.9241 0.9206
(0.4115) (0.1088) (0.1120) (0.6125) (0.1290) (0.1309) (0.0252) (0.0133) (0.0993) (0.0272) (0.0056) (0.0056)

GEEs
3.3116 1.5359 1.6101 4.1900 1.7390 1.8221 0.2118 0.1280 0.1528 0.8119 0.9242 0.9207

(0.3832) (0.1087) (0.1119) (0.5705) (0.1288) (0.1307) (0.0238) (0.0133) (0.0538) (0.0253) (0.0056) (0.0056)

0.9
LSDV

3.2148 1.1983 1.2943 4.1311 1.3541 1.4603 0.2096 0.1045 0.1635 0.8143 0.9402 0.9357
(0.3274) (0.1122) (0.1122) (0.4881) (0.1333) (0.1333) (0.0228) (0.0212) (0.3487) (0.0207) (0.0058) (0.0058)

GEEs
3.2102 1.1953 1.2921 4.1251 1.3506 1.4579 0.2094 0.1043 0.1633 0.8146 0.9403 0.9358

(0.2888) (0.1121) (0.1121) (0.4295) (0.1332) (0.1333) (0.0212) (0.0206) (0.3760) (0.0180) (0.0058) (0.0058)

50

0.3
LSDV

3.3000 1.5166 1.5935 4.1750 1.7129 1.7983 0.2111 0.1252 0.1468 0.8125 0.9252 0.9217
(0.2773) (0.0589) (0.0616) (0.4146) (0.0706) (0.0739) (0.0164) (0.0071) (0.0120) (0.0184) (0.0031) (0.0032)

GEEs
3.2982 1.5162 1.5932 4.1724 1.7125 1.7981 0.2110 0.1252 0.1468 0.8126 0.9252 0.9217

(0.2712) (0.0589) (0.0616) (0.4054) (0.0706) (0.0739) (0.0161) (0.0071) (0.0120) (0.0180) (0.0031) (0.0032)

0.5
LSDV

3.3180 1.5288 1.6052 4.2001 1.7258 1.8114 0.2116 0.1272 0.1683 0.8113 0.9246 0.9211
(0.2575) (0.0687) (0.0711) (0.3841) (0.0812) (0.0842) (0.0158) (0.0084) (0.4595) (0.0169) (0.0035) (0.0036)

GEEs
3.3161 1.5277 1.6044 4.1974 1.7246 1.8105 0.2115 0.1271 0.1525 0.8114 0.9247 0.9211

(0.2361) (0.0686) (0.0710) (0.3527) (0.0811) (0.0841) (0.0147) (0.0084) (0.0277) (0.0155) (0.0035) (0.0036)

0.9
LSDV

3.2425 1.2003 1.2956 4.1651 1.3531 1.4593 0.2111 0.1049 0.2063 0.8130 0.9402 0.9357
(0.2095) (0.0689) (0.0696) (0.3121) (0.0808) (0.0809) (0.0143) (0.0197) (1.5871) (0.0134) (0.0036) (0.0036)

GEEs
3.2377 1.1993 1.2948 4.1582 1.3519 1.4585 0.2108 0.1044 0.1552 0.8133 0.9403 0.9357

(0.1833) (0.0690) (0.0696) (0.2722) (0.0808) (0.0810) (0.0130) (0.0140) (0.1258) (0.0115) (0.0036) (0.0036)

Table 5. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and exchangeable correlation matrix, with the average and mean square error,
where the working correlation matrix is AR(1).

α Methods N β̂c
1 β̂c

2 β̂c
3 β̂r

1 β̂r
2 β̂r

3

0.3

LSDV
20 0.9976 2.9994 2.0028 0.9989 1.9941 0.9976

(0.0058) (0.0050) (0.0054) (0.0344) (0.0299) (0.0360)

50 1.0028 3.0011 1.9999 1.0058 2.0037 1.0013
(0.0023) (0.0022) (0.0021) (0.0127) (0.0137) (0.0133)

GEEs
20 0.9975 2.9991 2.0030 0.9983 1.9943 0.9968

(0.0058) (0.0052) (0.0055) (0.0354) (0.0305) (0.0365)

50 1.0029 3.0013 2.0000 1.0053 2.0039 1.0014
(0.0023) (0.0022) (0.0021) (0.0128) (0.0137) (0.0135)

0.5

LSDV
20 1.0030 2.9975 1.9990 1.0054 1.9942 1.0067

(0.0039) (0.0040) (0.0038) (0.0237) (0.0223) (0.0246)

50 1.0014 2.9979 2.0001 1.0030 2.0004 0.9961
(0.0015) (0.0013) (0.0015) (0.009) (0.0095) (0.0094)

GEEs
20 1.0033 2.9974 1.9991 1.0048 1.9932 1.0073

(0.0040) (0.0041) (0.0038) (0.0244) (0.0223) (0.0251)

50 1.0014 2.9980 1.9999 1.0027 2.0004 0.9963
(0.0015) (0.0014) (0.0015) (0.0091) (0.0095) (0.0095)

0.9

LSDV
20 1.0004 2.9998 2.0014 0.9979 1.9990 0.9999

(0.0007) (0.0008) (0.0007) (0.0045) (0.0045) (0.0049)

50 1.0004 2.9999 1.9997 1.0008 1.9964 1.0001
(0.0003) (0.0003) (0.0003) (0.0019) (0.0019) (0.0020)

GEEs
20 1.0004 2.9996 2.0014 0.9978 1.9988 0.9996

(0.0007) (0.0008) (0.0007) (0.0046) (0.0045) (0.0049)

50 1.0003 3.0000 1.9998 1.0008 1.9963 1.0001
(0.0003) (0.0003) (0.0003) (0.0019) (0.0019) (0.0020)
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Table 6. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and exchangeable correlation matrix, with the average and mean square error,
where the working correlation matrix is AR(1).

α Methods N β̂u
1 β̂u

2 β̂u
3 β̂l

1 β̂l
2 β̂l

3

0.3

LSDV
20 2.9976 1.9994 2.0028 1.9989 0.9941 0.9976

(0.0058) (0.0050) (0.0054) (0.0344) (0.0299) (0.0360)

50 3.0028 2.0011 1.9999 2.0058 1.0037 1.0013
(0.0023) (0.0022) (0.0021) (0.0127) (0.0137) (0.0133)

GEEs
20 2.9975 1.9991 2.0030 1.9983 0.9943 0.9968

(0.0058) (0.0052) (0.0055) (0.0354) (0.0305) (0.0365)

50 3.0029 2.0013 2.0000 2.0053 1.0039 1.0014
(0.0023) (0.0022) (0.0021) (0.0128) (0.0137) (0.0135)

0.5

LSDV
20 3.0014 2.0021 1.9991 1.9915 1.0069 0.9988

(0.0039) (0.0036) (0.0037) (0.0237) (0.0234) (0.0221)

50 3.0014 1.9979 2.0001 2.0030 1.0004 0.9961
(0.0015) (0.0013) (0.0015) (0.0090) (0.0095) (0.0094)

GEEs
20 3.0014 2.0021 1.9995 1.9922 1.0070 0.9992

(0.004) (0.0037) (0.0038) (0.0242) (0.0238) (0.0223)

50 3.0014 1.998 1.9999 2.0027 1.0004 0.9963
(0.0015) (0.0014) (0.0015) (0.0091) (0.0095) (0.0095)

0.9

LSDV
20 2.9997 1.9984 1.9998 1.9985 1.0015 1.0021

(0.0007) (0.0008) (0.0007) (0.0045) (0.0049) (0.0044)

50 3.0001 1.9992 2.0000 2.0008 1.0011 1.0015
(0.0003) (0.0003) (0.0003) (0.0018) (0.0019) (0.0020)

GEEs
20 2.9998 1.9983 1.9998 1.9990 1.0016 1.0019

(0.0007) (0.0008) (0.0007) (0.0046) (0.0049) (0.0044)

50 3.0001 1.9993 2.0000 2.0007 1.0010 1.0016
(0.0003) (0.0003) (0.0003) (0.0018) (0.0019) (0.0020)

Table 7. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and exchangeable correlation matrix, with the average and standard deviation,
where the working correlation matrix is AR(1).

N α Methods
RMSE MAE MMER RI

CM MM CRM CM MM CRM CM MM CRM CM MM CRM

20

0.3
LSDV

3.3003 1.8590 1.7703 3.9815 2.1006 1.9990 0.0979 0.0491 0.0467 0.6698 0.7662 0.7786
(0.2606) (0.1071) (0.1015) (0.3689) (0.1285) (0.1220) (0.0100) (0.0033) (0.0031) (0.0265) (0.0161) (0.0150)

GEEs
3.3002 1.8594 1.7708 3.9813 2.1010 1.9995 0.0979 0.0491 0.0467 0.6698 0.7662 0.7786

(0.2613) (0.1073) (0.1016) (0.3701) (0.1286) (0.1221) (0.0101) (0.0033) (0.0031) (0.0265) (0.0162) (0.0150)

0.5
LSDV

3.2303 1.5992 1.4939 3.9284 1.8089 1.6887 0.0964 0.0422 0.0394 0.6738 0.7920 0.8068
(0.2741) (0.0927) (0.0853) (0.3860) (0.1120) (0.1032) (0.0103) (0.0028) (0.0026) (0.0293) (0.0160) (0.0144)

GEEs
3.2296 1.5996 1.4944 3.9275 1.8094 1.6894 0.0963 0.0422 0.0394 0.6739 0.7920 0.8067

(0.2760) (0.0926) (0.0853) (0.3886) (0.1119) (0.1033) (0.0104) (0.0028) (0.0026) (0.0295) (0.0160) (0.0144)

0.9
LSDV

3.0836 0.8751 0.6681 3.8407 0.9933 0.7553 0.0943 0.0232 0.0177 0.6806 0.8738 0.9041
(0.3005) (0.0506) (0.0391) (0.4224) (0.0631) (0.0469) (0.0108) (0.0016) (0.0012) (0.0354) (0.0134) (0.0099)

GEEs
3.0839 0.8753 0.6682 3.8411 0.9935 0.7555 0.0943 0.0232 0.0177 0.6806 0.8738 0.9041

(0.3005) (0.0506) (0.0390) (0.4225) (0.0631) (0.0468) (0.0108) (0.0016 (0.0012) (0.0354) (0.0134) (0.0099)

50

0.3
LSDV

3.3036 1.8475 1.7593 3.9812 2.0856 1.9865 0.0977 0.0487 0.0464 0.6694 0.7672 0.7794
(0.1634) (0.0651) (0.0631) (0.2322) (0.0791) (0.0766) (0.0062) (0.0020) (0.0019) (0.0163) (0.0101) (0.0096)

GEEs
3.3028 1.8475 1.7594 3.9801 2.0856 1.9865 0.0977 0.0487 0.0464 0.6695 0.7672 0.7794

(0.1638) (0.0651) (0.0631) (0.2329) (0.0791) (0.0766) (0.0063) (0.0020) (0.0019) (0.0163) (0.0101) (0.0096)

0.5
LSDV

3.2364 1.5898 1.4867 3.9337 1.7966 1.6800 0.0965 0.0420 0.0392 0.6729 0.7928 0.8072
(0.1703) (0.0562) (0.0517) (0.2421) (0.0677) (0.0623) (0.0064) (0.0017) (0.0016) (0.0182) (0.0096) (0.0088)

GEEs
3.2363 1.5899 1.4868 3.9335 1.7967 1.6801 0.0965 0.0420 0.0392 0.6729 0.7928 0.8072

(0.1705) (0.0562) (0.0517) (0.2424) (0.0677) (0.0624) (0.0064) (0.0017) (0.0016) (0.0182) (0.0096) (0.0088)

0.9
LSDV

3.0932 0.8716 0.6654 3.8466 0.9873 0.7511 0.0947 0.0231 0.0176 0.6800 0.8747 0.9049
(0.1826) (0.0317) (0.0237) (0.2606) (0.0384) (0.0284) (0.0066) (0.0010) (0.0007) (0.0215) (0.0081) (0.0058)

GEEs
3.0932 0.8716 0.6654 3.8466 0.9874 0.7511 0.0947 0.0231 0.0176 0.6800 0.8747 0.9049

(0.1830) (0.0317) (0.0236) (0.2612) (0.0384) (0.0284) (0.0066) (0.0010) (0.0007) (0.0216) (0.0081) (0.0058)
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Table 8. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and exchangeable correlation matrix, with the average and standard deviation,
where the working correlation matrix is AR(1).

N α Methods
RMSE MAE MMER RI

CM MM CRM CM MM CRM CM MM CRM CM MM CRM

20

0.3
LSDV

3.2503 1.2518 1.3449 4.1679 1.4152 1.5191 0.2110 0.1047 0.1536 0.8128 0.9376 0.9332
(0.3808) (0.0718) (0.0775) (0.5679) (0.0866) (0.0934) (0.0233) (0.0093) (0.6604) (0.0250) (0.0039) (0.0042)

GEEs
3.2488 1.2521 1.3451 4.1655 1.4155 1.5194 0.2109 0.1048 0.1339 0.8129 0.9376 0.9332

(0.3873) (0.0718) (0.0776) (0.5774) (0.0867) (0.0935) (0.0237) (0.0093) (0.1223) (0.0254) (0.0039) (0.0043)

0.5
LSDV

3.1975 1.0590 1.1665 4.1315 1.1990 1.3174 0.2100 0.0899 0.1329 0.8144 0.9468 0.9417
(0.3736) (0.0587) (0.0666) (0.5604) (0.0711) (0.0789) (0.0239) (0.0085) (0.1922) (0.0245) (0.0032) (0.0036)

GEEs
3.1965 1.0592 1.1668 4.1298 1.1992 1.3176 0.2100 0.0899 0.1359 0.8145 0.9468 0.9417

(0.3752) (0.0588) (0.0667) (0.5628) (0.0711) (0.0789) (0.0239) (0.0084) (0.2484) (0.0246) (0.0032) (0.0036)

0.9
LSDV

3.1294 0.4733 0.6814 4.1257 0.5347 0.7585 0.2106 0.0432 0.1035 0.8147 0.9758 0.9658
(0.2887) (0.0263) (0.0400) (0.4282) (0.0319) (0.0468) (0.0206) (0.0403) (0.1589) (0.0179) (0.0015) (0.0022)

GEEs
3.1294 0.4734 0.6815 4.1257 0.5348 0.7586 0.2106 0.0436 0.4464 0.8147 0.9758 0.9658

(0.2905) (0.0263) (0.0401) (0.4308) (0.0319) (0.0468) (0.0207) (0.0525) (10.0362) (0.0180) (0.0015) (0.0022)

50

0.3
LSDV

3.2533 1.2431 1.3354 4.1718 1.4038 1.5071 0.2117 0.1040 0.1330 0.8127 0.9381 0.9338
(0.2455) (0.0455) (0.0482) (0.3687) (0.0550) (0.0581) (0.0151) (0.0061) (0.0511) (0.0162) (0.0025) (0.0026)

GEEs
3.2526 1.2432 1.3355 4.1708 1.4039 1.5071 0.2117 0.1040 0.1309 0.8127 0.9381 0.9338

(0.2478) (0.0455) (0.0482) (0.3720) (0.0550) (0.0581) (0.0152) (0.0061) (0.0257) (0.0164) (0.0025) (0.0026)

0.5
LSDV

3.2242 1.0513 1.1589 4.1695 1.1874 1.3074 0.2119 0.0894 0.1247 0.8129 0.9473 0.9422
(0.2226) (0.0365) (0.0410) (0.3352) (0.0444) (0.0494) (0.0140) (0.0064) (0.0629) (0.0148) (0.0021) (0.0023)

GEEs
3.2235 1.0513 1.1590 4.1684 1.1875 1.3075 0.2119 0.0894 0.1271 0.8129 0.9473 0.9422

(0.2237) (0.0366) (0.0411) (0.3366) (0.0444) (0.0494) (0.0141) (0.0062) (0.1286) (0.0148) (0.0021) (0.0023)

0.9
LSDV

3.1533 0.4700 0.6778 4.1561 0.5310 0.7543 0.2122 0.0502 0.1021 0.8136 0.9760 0.9660
(0.1739) (0.0165) (0.0238) (0.2577) (0.0202) (0.0275) (0.0123) (0.2603) (0.1045) (0.0108) (0.0010) (0.0013)

GEEs
3.1534 0.4700 0.6778 4.1562 0.5310 0.7543 0.2122 0.0424 0.1438 0.8136 0.9760 0.9660

(0.1744) (0.0165) (0.0238) (0.2587) (0.0202) (0.0276) (0.0123) (0.0173) (0.9041) (0.0109) (0.0010) (0.0013)
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Figure 1. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the CRM model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, α = 0.9.

Tables 1–4 show the fitting results when the working matrix is specified correctly, while Tables 5–8
show the fitting results when the working matrix is specified incorrectly. Figures 1–4 display the box
plots of four evaluation indices calculated from the GEEs method in different models with the dataset
generated based on the CRM model or the min-max model, when the working matrices are specified
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Figure 2. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the CRM model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, α = 0.3.
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Figure 3. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the min-max model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, α = 0.9.
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Figure 4. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the min-max model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, α = 0.3.

correctly. The results of the box plots are similar, when the working matrices are specified incorrectly.

• Tables 1 and 2 list the fitting results of β, and we have the following findings: (i) Regardless of the
data generated by which model, the GEEs method performs better than the LSDV method. (ii) As
α or N increases, the mean square error of GEEs estimation decreases. It means that the higher
the degree of the correlation within the group, the better the performance of the GEEs. This also
verifies the consistency of the estimate.
• Tables 3 and 4 show that (i) the GEEs method performs better than the LSDV method, regardless

of the degree of correlation within the group of the data and the sample size, according to the four
indicators. (ii) The CRM model performs best when data is generated based on centers and the
radius. Similarly, the min-max model performs best when data is generated based on minimum
and maximum values.
• From Tables 5–8, we can see that the fitting result of the GEEs method is close to that of the LSDV

method when the working correlation matrix is incorrectly specified.
• Figures 1 and 2 display the box plots of four evaluation indices calculated from the GEEs method in

different models with the dataset generated based on the CRM model, when the working matrices
are specified correctly with N = 20, α = 0.9, 0.3. We can see that the CRM model performs better
than the other models.
• Figures 3 and 4 display the box plots of four evaluation indices calculated from the GEEs method

in different models with the dataset generated based on the min-max model, when the working
matrices are specified correctly with N = 20, α = 0.9, 0.3. We can see that the min-max model
performs better than the other models.
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4.2. Real data analysis

As everyone knows, PM2.5 is the main pollutant affecting human health and atmospheric envi-
ronment quality. With the continuous development of social economy and the acceleration of the
industrialization process, the problem of air pollution is also increasing. Studies have shown that
O3, S O2,NO2,CO, PM10, five air pollutants, have a significant impact on PM2.5 concentrations. Explor-
ing the relationship between these air pollutants and PM2.5 can provide help for effective prevention
and control of air pollution. So, this section selects the 26 cities in China’s Yangtze River Delta as
the research object, and analyzes the interval-valued data of air pollution for them. The daily data
of six air quality indices of the Yangtze River Delta urban agglomeration during the 59 days from
January 1 to February 28, 2023, can be obtained from the China Air Quality Online Monitoring platform
(https://www.aqistudy.cn/historydata/). Through inspection, there are no outliers or missing values in
the data. Then we consider the maximum and minimum values of the daily data of each index as the
interval-valued dataset.

The observed data of PM2.5 are taken as response variables, and the other five indices are taken as
independent variables. The data from the first 54 days are used as the training set, and the remaining 5
days are used as the test set. Substituting the data into the models is shown in Sections 2 and 3. Finally,
we demonstrate the fitting performance of the GEEs method and the LSDV method when the working
correlation matrix is AR(1). The predictive performance of the two methods are listed in Table 9, and
the regression results of the GEEs method are shown in Table 10.

• Table 9 shows that both methods have good fitting effects on actual data in different models.
Moreover, we can see that the GEEs method had better fitting performance than the LSDV
method in different models. Taking into account the four performance indices, the min-max model
performs better than other models, which may be due to the type of experimental data, which is
also consistent with the conclusions in the Monte Carlo experiments.
• Table 10 shows that there is a positive correlation between PM10,NO2,CO, and PM2.5, while there

is a negative correlation between S O2,O3, and PM2.5. Especially, CO has the greatest impact on
PM2.5.

Table 9. Comparison of GEEs and LSDV methods in each model for dealing with the panel
interval-valued air pollutant dataset.

Models Methods RMSE MAE MMER RI

CM
LSDV 7.20 7.24 0.47 0.69
GEEs 7.09 7.14 0.27 0.69

Min-Max
LSDV 6.19 6.25 0.19 0.72
GEEs 5.87 6.00 0.19 0.73

CRM
LSDV 6.13 6.32 0.80 0.73
GEEs 6.06 6.25 0.71 0.74
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Table 10. The estimated regression coefficients β and their robust standard deviation estimated
by the GEEs method in different models, with their significance tests shown in parentheses
(‘***’-0.001,‘**’-0.01,‘*’-0.05,‘.’-0.1).

Models β̂ X1(PM10) X2(S O2) X3(NO2) X4(CO) X5(O3)

CM β̂c
0.5705*** -0.5830*** 0.0592** 22.7856*** -0.0693***
(0.0138) (0.1450) (0.0182) (2.5756) (0.0182)

CRM
β̂c

0.5705*** -0.5830*** 0.0592** 22.7856*** -0.0693***
(0.0138) (0.1450) (0.0182) (2.5756) (0.0182)

β̂r
0.6979*** -0.2790*** 0.0033 11.9899*** 0.0129
(0.0161) (0.0778) (0.0224) (2.0010) (0.0145)

Min-Max
β̂l

0.4252*** -0.0409 0.2601*** 31.0804*** -0.0228*
(0.0227) (0.3231) (0.0313) (3.5584) (0.0096)

β̂u
0.6516*** -0.4963*** 0.0295. 16.9246*** -0.0514***
(0.0116) (0.1088) (0.0173) (2.1394) (0.0130)

5. Conclusions and discussion

In this paper, we proposed an innovative approach which was to apply GEEs to fixed effects panel
interval-valued data models, in which the correlation within a group is considered. Monte Carlo
simulation experiments test the feasibility of this method and our proposed method was applied to
PM2.5 forecasting. Experiments show that the proposed method has a better performance than the
LSDV method proposed before.

However, the estimation method we proposed has some limitations. For example, the model can
be extended to the nonlinear regression model to capture complex nonlinear relationships between
variables. In addition, we did not take into account the correlation between the bounds of the panel
interval-valued data. For future studies, we will introduce variance modeling or joint modeling to obtain
better estimators.
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