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Abstract: This paper studied panel interval-valued data models with individual fixed effects, in which
the correlation within a group was considered and the group average method was used to eliminate the
fixed effects. Then, we applied generalized estimation equations (GEEs) to analyze panel interval-valued
data models and gave a computational algorithm to obtain the estimators. Some Monte Carlo simulations
and real data analysis showed that, in contrast with the least-squares dummy-variable (LSDV) method,
the proposed GEEs method has advantages in forecasting performance.
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1. Introduction

In the real world, there are a large number of interval-valued data. For example, in the stock
market, the K-line chart, as an important decision-making tool, includes the opening price, closing
price, maximum, and minimum of the day. In temperature prediction, the minimum and maximum
temperatures can be regarded as an interval. On the other hand, due to the complexity of the system, the
data obtained is an interval rather than a real point. For example, experts often predict the economic
growth rate of the next year in the form of an interval, such as 4-5%. As far as we know, interval-valued
data can provide a tool for dealing with large datasets, which were proposed by Diday [1]. It not only
contains richer information than point data but also has better interpretability. So, it is meaningful to
analyze interval-valued data. Billard and Diday [2] proposed the first algorithm to fit the interval-valued
linear regression, which fits the linear regression model to the midpoint of the interval values and obtains
the parameters by minimizing the midpoint error. Billard and Diday [3] proposed the min-max method,
which defined two models, each corresponding to a response bound. The lower bounds of the response
depend on the lower bounds of the regressive variables, and the upper bounds of the response depend
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on the upper bounds of the regressive variables. Lima Neto et al. [4] introduced the center and range
Method (CRM) and proposed two linear models: one for the midpoint and another for the range. Kong
and Gao [5] proposed a regularized interval MM estimate (RIMME) for interval-valued regression,
which can achieve a good balance between the prediction accuracy and mathematical coherence of the
predicted intervals. Xu and Qin [6] proposed a bivariate Bayesian regression model based on CRM
with known or unknown covariance matrices. Beyaztas et al. [7] introduced the functional forms of
some well-known regression models that take interval-valued data. Interval analysis technologies can
also be found in other literature [8§—12]. To sum up, it is not difficult to find that the above research on
interval-valued data is mainly based on cross-sectional data.

Panel data or longitudinal data is obtained by multiple observations of individuals at different times.
Statistical models that combine cross-section and time series real value data are becoming more and
more popular in economic research, and panel data sets have certain advantages over traditional pure
cross-section or pure time series data sets. Galvao Jr. [13] studied a quantile regression dynamic
panel model with fixed effects. Aristodemou [14] studied semiparametric identification in linear index
discrete response panel data models with fixed effects. Hamiye Beyaztas and Bandyopadhyay [15]
proposed a new, weighted likelihood-based robust estimation procedure for linear panel data models
with fixed and random effects. Bai et al. [16] studied generalized least squares (GLS) estimation for
linear panel data models. Baltagi and Li [17] focused on prediction in spatial models based on panel
data. Elhorst [18] studied the specification and estimation of spatial panel data models. Zhang et al. [19]
studied a penalized quantile regression for spatial panel models with fixed effects. In particular, in
recent years, a few scholars have begun to study interval panel data models. For example, Ji et al. [20]
introduced fixed effects panel data regression models for interval-valued data, and presented three kinds
of panel interval-valued data regression models and the estimation of their parameters. Zhang et al. [21]
proposed a robust estimation method based on the iterative weighted least squares technique to reduce
the impact of outliers on models. Considering the correlation between the center and range or the
upper and lower bounds of intervals, Ji et al. [22] proposed the bivariate maximum likelihood (BML)
method for estimating unknown parameters of the model. Usually, the observation data of different
individuals are independent of each other, but there is correlation between the observation data of the
same individual at different times. As far as we know, current research on panel interval-valued data has
not considered the correlation within a group of the data.

Generalized estimation equations (GEEs) proposed by Liang and Zeger [23] are commonly used
to analyze the longitudinal data with correlation within individuals. Crowder [24] studied the (weak)
consistency and inconsistency of the solutions of general estimating equations. Balan and Schiopu-
Kratina [25] studied the consistency and asymptotic normality of the GEEs estimation, with the
covariate dimension fixed. Wang [26] studied the consistency and asymptotic normality of GEEs
estimates when the sample size of the covariate dimension tends to infinity. Wang and Carey [27]
showed that the discrepancy between the working correlation structure and the true correlation structure
and the estimation method of the correlation coefficient affect the asymptotic relative efficiency. Pan [28]
proposed a new model selection criterion that minimizes the expected predictive bias of estimating
equations. Wang [29] presented a systematic review on GEEs, covering foundational concepts as
well as several recent developments due to practical challenges in real applications. Seaman and
Copas [30] described doubly robust (DR) GEEs, and illustrated their use on simulated data. To sum up,
previous studies have only applied GEEs to point value data. Therefore, we intend to apply it to panel
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interval-valued data in this paper.

In this paper, unlike the independent hypothesis of other studies, we consider the correlation within
a group of the panel interval-valued data to obtain better parameter estimates. GEEs are commonly
used to analyze the longitudinal data with correlation within individuals. We intend to apply it to panel
interval-valued data in this paper. The results of Monte Carlo simulations reveal that our proposed
method outperforms the LSDV method based on independent assumptions in terms of estimation
accuracy and robustness. When the working correlation matrix is assumed correctly, the GEEs method
performs better than the LSDV method. When the working correlation matrix is assumed incorrectly,
the performance of the two methods is similar. In addition, the higher the degree of correlation within
the group, the better the performance of the GEEs method. The empirical results also demonstrate the
superiority of our proposed method.

The rest of this paper are organized as follows: Current regression models for fixed effects panel
interval-valued data and the LSDV method are provided in Section 2. The regression method based
on the generalized estimation equations is presented in Section 3. In Section 4, some Monte Carlo
simulations and real data analysis show that, in contrast with the least-squares dummy-variable (LSDV)
method, the proposed GEEs method has advantages in forecasting performance. Finally, Section 5 gives
the conclusion and discussion.

2. Fixed effects panel interval-valued data models

In this section, the LSDV method and three existing kinds of fixed effects panel interval-valued data
models are introduced: the min-max (Min-Max or MM) model, the center and range (CRM) model, the
center (CM) model. These three kinds models hold their own advantages and disadvantages.

For the panel interval-valued dataset Z = {(Xj,yi)|i = 1,2,..,N;t = 1,2,...,T}, let X;; =

! u
— ) — ) u > — xik+xik r — l’\ 'xlk > — yl yl

(xltl’-xltz," xllp) where Xitk = [Xltk’xll‘k] Yie = [yl',,yl',] x;tk - ’2 : x,‘;k = = t’ylcz = = [’yn -

” i k=1,2,..,p. xl (x*,x, or x| ) are considered as explanatory variables and y! (y%, y¢ or y!) are

itk
u+ul !

con51dered as response variables. In addition, let uﬁ(u;’) be the individual effect and u{ = =+ u; = %

2.1. The min-max model

The min-max model of fixed effects panel interval-valued data regression consists of two different
models. Two regression models are established for the upper and lower bounds of the response variable
by using the upper and lower bounds of the explanatory variables. The specific form is given as follows:

Vi =uf+ Zﬁ,xm + el 2.1)

Vie = Ui + Zﬁjxltj + €, (2.2)

where the errors €, ~ N(0,07), €' ~ N(0,02),i=1,2,..,N;t=1,2..,T.
Based on the lower bounds of y; and x;; (i = 1,2..,N;t=1,2,...,T; j = 1,2, ..., p), the parameters
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. and B = (8], 85, ... 8,)" are estimated by the least-squares dummy-variable (LSDV) method:

B = BB .. BT = (AN)'B,

=y - Zﬂ] Xj j»
-

=i =l _
where A' = 3%, Z, (X=X -X)T, B = 3N, S (XX~ T X = (sl )X
=l —
T F 2 1 XY = 1 F i 1)’fz’ = T thl xitj'
The estimates of 8 and “, have the following similar conclusion:

B = (Bl BB = (A)'B,

N T i i N T i —
where A" = X3 (X; - X)X — X, )T B = YL XaXy - X)oh - yLXp =
T _ —u __ —M
it1? 112"' 'xttp) X - Tzl 1 I;’yl - TZI ly?t’ ij TZ[ l'xn]
For a new observation X;; = (x;1, Xin, ..., x,,p) , With x;;; = [x”j l”] the prediction of y;, = [y”,y”] is
given by:

(x*

p
NI Al I
Yip = U + Zﬁjxizja
1

p
AU AU DU U
Yi=u; + § Bixij-

Sometimes the min-max model does not guarantee the mathematical coherence of the predicted
interval bounds, and then the response variables are defined as follows:

of vou ol acu

YtV VitV iF ol S
o ol o] — 2 0 2 lfyit>yit’
Yir = YVirs Vir| = N

9941 if 9, <

2.2. The center and range model

The center and range model of fixed effects panel interval-valued data regression is as follows:

Vi, =u; + Z,Bjxm + €, 2.3)

y;} = I/t + Zﬁ]xllj + Gtt’ (24)

where the errors €, ~ N(0,07), €, ~ N(0,0%),i =1,2,..,N;t = 1,2...,T. The estimates of 5° and u¢
given by the LSDV method are:

B = B35, - BT = (A) B,
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whereA" =y, z{zl(x;—ii)(x;—xi)T,Bc =y 12, L(XE=X)05-5)T, XG = (x5, X6 a5 )X, =
T c =C __ T C
T Zz 1mez =7 Zt:lyipxi.j = %thl Aitje
Similarly, we can obtain the estimates of " and u; :

B = BBy ) = (A)'B,

=5y - Zﬁj‘f,,

where A” = YN, ST (X1 -X)(X[-X)T, B = ¥N, ST (X=X, =3 XE = (X, Xy s x )X =
r —r r —r T r
TZI IXzz’yl - TZI lylz’ ij thzlxitj‘
For a new observation X;; = (X1, Xig, -, Xirp)', With x;; = [x]
given by:

itj X il the predictions of ¢ and !, are

C
1

aAC A
Vi = U +

M=

ne ¢
lgjxitj’
j=1

~
Il

M-m

ar or
yit - + ﬁ]xllj

.
Il
—_

Then, the predictions of j)ft and 7 are as follows:

3] = S =93] 520

i = |9, 9, o L
C ] if 37, < 0.

2.3. The center model

Based on the center value of the panel interval-valued data, the liner regression model with fixed
individual effects is as follows:

Vo =i+ Zﬁ,xm + €, (2.5)

where the errors €, ~ N(0,02),i=1,2,..,N;t=1,2,...,T.
As described earlier, the estimates of 8 and u{ are given by the LSDV method:

B = (B.JB5. . B = (A B,

For a new observation X;, = (x;1, Xir2, .- x,,p) with x;;; = =[x
given by:

the prediction of y;, = yilis

itj’ ltj] lt’
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P

AUl AC NC U

Yip = U; + § BiXiy-
=1

3. Fixed effects panel interval-valued data models based on the GEEs method

This section introduces generalized estimation equations(GEESs) for fixed effects panel interval-valued
regression models that consider the data correlation within individuals.

For panel interval-valued data set Z = {( X, yir) |1 = 1,2, ..., Nst = 1,2, ..., T}, Xir = (Xir1, Xiay +ves x,-,p)T
is assumed as p X 1 interval-valued explanatory variables with x;;; = [xft P X j], Vir = [yft, vy as the
observed interval-valued dependent variables, i = 1,2, ..., N;t = 1,2,....T; j = 1,2, ..., p. u; is an unob-
served effect for individual i and is time invariant. Let Y{" = (y{,,¥%, ..., y;‘T)T,Xf = (X{], X%, ...,X;‘T)T,
where a = Lu,c, or r. Let Y* = ((YI“)T, (Y;)T, (Y;{,)T)T,X“ = ((Xf)T, (XS)T, (XI“V)T)T, ut =
(uf, us, ..., us)T.

3.1. The GEEs method of the min-max model

The matrix form of the min-max model of fixed effects panel interval-valued data regression is as
follows:

Y =XB +Uy@tru +€, 3.1)

Y'=X"6"+ (Iy @ tp)u" + €". 3.2)

To save space, we only present the estimation method of the model (3.1). Considering the correlation
between the observations of the same individual at different times, and the independence between
the observations of different individuals, we suppose that € ~ N(0, X)), cov(efk, 65'1) = 0(i # j), where

€ =(e,e,...e) e =(e,e,, ... e,

z 01 o0 var(lel.ll)l cov(el, ,161.12) - COV(6€1 , ele)
si_ 0 % - 0 i cov(e,, €;,) var(€,,) e cov(€,, €1)
- . . > - . . . s
o 0 ... % cov(el, €)) cov(e.,e) - var(é
N ir> €i1 i €2 iT

and similarly, € ~ N(0, ).

There is a problem for us to find the estimation of 8’ in the model (3.1) because of the fixed effects
u'. Specifically, simultaneously estimating ' and S’ directly may incur “curse of dimensionality”
since ' is high dimensional when N becomes too large. First, similar to Section 2.1, we use the
projection techniques to eliminate fixed effects in the model (3.1). Specifically, let Q = Iy — P,
P=1Iy®(Jr/T),Jr = 7777, where Iy is an N X N identity matrix and 77 is an N X 1 vector of ones.

Multiplying by Q on the left for model (3.1), we have
Y =XB +¢, (3.3)

where Y = Qv X = QX.& Q€, Oy ® 77) 0, and € ~ N(0,020"),0 =
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diag(Qy, Q2,...,0On), Qi = Iy — J7 /T,

oo 0 - 0
0r'0" = i IR
6 () QNE.?VQITJ

Then, the generalized estimating equations (GEEs [23]) can be defined as follows:
N
Z(?Aff)T(Vi’)‘1 (Y- xh"B) =0 (3.4)

where Y! = Q,Y' = 5,,..., )", X! = Q:X, V! is the covariance matrix of Y. According to Liang and
Zeger ( [23]) we simplify the covariance of the ith subject V; by taking V! = (A)'2R;(@)(A})"/?, where

= diag{var(Y; Yh),. var(Y )}, and R;(@) is a common working correlatlon with nuisance parameter
Q. In general, Vl? is unknown and we often use the empirical estimators Vf for the V!. Specifically,

Vi = (AD'P(BOR(@)(AD' (B,
where @ can be obtained by following the method proposed by Liang and Zeger ( [23]) in Section 3.4.1.
Aﬁ(,B’) is the empirical estimator of A; based on the current estimator of .
Thus, we implement the iterative algorithm to solve Eq (3.4). Given the current estimate &, we use

the following iterative procedure for '
-1

N
g = él“‘)+(2<if)T<V!>‘l)?f) [Z(Xﬁ (V¥ - X! 5] (3.5)
i=1

where Viz — (Aﬁ)l/z(ﬁA’(k))Ri(&)(Af)l/z(ﬁ’(k)
Then, the estimates of the fixed effects u' are given as follows:

i = (v ) Uy ® ) Uy (¥ ~XB), (3.6)

—I =i
where Y = PY!, X = PX.
Using similar methods, we can obtain the estimates of 3 by iterating the following ralationship to
convergence:
-1

N
ﬁ"”‘“):ﬁ”(k)+(z<’?”>T(‘7i”)_1Y?) [Z(X") (7 (7 = Xep®) | (3.7)
i=1

k)

where V = (A)!2(6)Ri(@)(A) 2(,BA“(k)), and the estimates of 7 are given by

-1 —u —UnA
i =(Uyer) Uvetr)) Uyer) (¥ —X B, (3.8)

where V' = PY*, X' = px",
For a new observation X = [X, X“], the prediction ¥ = [¥?, ¥*] is given by

?l = XZB[ + (IN ® TT)it[,
VU= X8 + (Iy @ Tr)i".
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3.2. The GEEs method of the center and range model
The matrix form of the center and range model of fixed effects panel interval-valued data regression

is as follows:

YO =XPB + Uy ®17)u + €, 3.9

Y = Xrﬁr+ (IN®TT)I/£r+Er, (310)
where € ~ N(0,%°), €’ ~ N(0,%7),%¢ = T = 37,

Similar to Section 3.1, we only present the estimation method of model (3.9). To eliminate the fixed
effects, let Y = QY°, X = QX € = Q¢°, and Q(Iy ® 77) = 0. Multiplying (3.9) by Q on the left gives
the following intra-group regression model equation:

YC = XBC+E, (3.11)

where € ~ N(0, Qx<Q").
Then, we can obtain the estimates of 3¢ by iterating the following ralationship to convergence:

-1

N N
5. (k+1) 5.0 ve (reN—1 ¢ ve ten—1,ve  vepe®
= p +[Z(X,-)T<Vi> ‘X,-) [Z(X,-)TW,-) e - X |
i=1 i=1

where V¢ = (A9 z(ﬁc(k))R,-(&)(Al‘.')” 2(ﬁAC(k)), and the estimates of 7 are given as follows:

i = (v Uy @) Uy®T) ¥ - X5,

where Y = PY<, X = PXxe.
Similarly, estimates of 8 can be obtained as follows:

-1

N N
p =g (Z(ZN(V{)—‘Z’) (Z(ZT)T(W X Ar(k))) |
i=1 i=1

where V7 = (A1) 2(ﬁA’(k))Ri(@)(Af )12(6™), and the estimates of 2" are given by

i = (o) Iyor) (Uvor) ¥ -XB),

where Y = PY’, X = PX’.
For a new observation X = [X/, X*], the prediction Y = [V, ¥]is given as follows:

?l — )"/c _ ?r, ?u — ?c + ?r’

where
Ve = XB + (Iy ® )i,

V' =XB + Uyt
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3.3. The GEEs method of the center model

The matrix form of the center model of fixed effects panel interval-valued data regression is as
follows:

Y =XB +Uy®Tr)u + €, (3.12)

where € ~ N(0,%°), 3¢ = 242,
As described earlier, the estimates of 5 and u¢ given by GEEs are as follows:
-1
"C(k"'l) "C(k) 3 vonT fren—1ve 3 vonT fren-1,ve ve "C(k)
p = B | XX | D KOV (Y - X)),
i=1 i=1

5.6

where V¢ = (A28 )Ri(&)(AS)Y 2(ﬂA"(k)), and the estimates of #¢ are obtained as follows:

-1 —c —Ca
i = (Ivet) Uyetr) Uyt (¥ -X ),
where Y' = PY<, X = PXxe.
For a new observation X = [X/, X*], the prediction Y=V, ¥ is given by
f}l = X[ﬁc +(Uy® TT)IZC,

Yu = X“B¢ + (Iy ® T)Uc.

3.4. Computation algorithm
3.4.1. The working correlation matrix

The following introduces the structures of several commonly used working correlation matrices
[23,31,32]:

¢ Independence: For the independence working correlation matrix, it is assumed that all the response
variables are mutually independent. @ = 0, R;(a@) = I7.

e Exchangeable: Suppose that the correlation between any two observed values of the same individual
are the same. The form of the correlation matrix is as follows:

1l ¢ o -+ «

a l a - «
R(@)=|@ a1 - «a |

a o a -+ 1

where « is the unknown correlation coeflicient,

(NT - P) S, Sl rara
(T(T-DN-p) 3N, S 72

a =

Wh@re rl[ = 3;-;'1‘ - Yitﬁ.
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e AR(1): Suppose that the correlation depends on the time. The form of the correlation matrix is as

follows:
1 a a’® a1t
a 1 a a2
a? a 1 a3
Ri(a) = >
o1 oT2 o3 1
where

(NT - p) ZL Z;T:_11 TitTp+1
(T(T-DN-p ¥, 3 2

a=

3.4.2. Algorithm

In this subsection, we present a feasible algorithm as follows. Consider the general form of the
model: ¥ = XB+ (Iy ® Tr)u + €.

Step 1: Use the matrix Q to eliminate fixed effects u. Then the initial value 3 is obtained from the
independent assumption.

Step 2: The estimates ¢* and A!’*(8%) are obtained based on the assumed structure of the correlation

matrix as in Section 3.4.1. Then V' = A!>(BM)R,(@)A}”*(BY) is obtained. Update p**V =

B+ (S @O R (S ET O~ X)),

Step 3: Iterate Step 2 until convergence, and denote the final estimators as the GEEs estimators. Then
] .
i=(Uver) Uvetr) Uvet) (¥ -XP).

Here we can also utilize the existing algorithm to obtain estimates of 8, which can be obtained by
using the geepack function package in the statistical software R language.

4. Numerical illustrations

This section compares the proposed GEEs method with the LSDV method proposed by Ji et al. [20]
through computational experiments demonstration. In computational experiments, two types of panel
interval-valued datasets are considered. The first is a dataset of synthetic panel interval-valued data,
while the second is the air pollution dataset of the 26 cities in China’s Yangtze River Delta.

4.1. Monte Carlo simulations

Without loss of generality, we provide two configuration schemes for synthetic panel interval-valued
datasets: one from the min-max model and another derived from the CRM model. In the simulation
framework, 20 or 50 individuals are considered, and each individual consists of three attributes of
explanatory variables over 14 continuous periods, that is, N = 20 or 50 and T = 14. Let the first 10
periods of data be the train set, and the rest be the test set. Considering the actual problem scenarios, let
the correlation matrix be the first-order autoregressive (AR(1)) correlation setting R, (@) or exchangeable
correlation setting R,(a).
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1 a a? al! 1 a «a @
@ 1 a a2 a 1 «a a
2 T-3
Ri(a)=| @ a 1 a Ry()=| @ a 1 a
al=t o2 o3 1 a a « 1

4.1.1. Dataset configuration based on the CRM model

In this section, we consider the following panel interval-valued data-generating processes.

3

c _ ¢ Cc . C c

Yi = Ui + § Bixi; + €
j=1

3
ro__ r 1 r
Yie = U Zﬁjxizj + €
J=1

where B¢ = (B81,55.85) = (1,3,2), B" = (81,8587 = (1,2, 1); xj;, ~ U[5,10], x;, ~ U[1,3]; fixed
effects u¢ and u} ~ U[0,0.5]; € = (€, €5, ..., €5) ~ N(0,02R(@)), € = (€],, €, ... €;) ~ N(0, 2R, (a)),

where 0'3 = 0'% =4,i = 1,2; and let the correlation coefficient @ = 0.9, 0.5, 0.3 to generate data with

different degrees of correlation.

4.1.2. Dataset configuration based on the min-max model

In this section, we consider the following panel interval-valued data-generating processes.

3
I 1
Yie = Ui + Zﬂjxizj * €
1

3
u __ u U U u
Yi =u; + E Bixij + €y
=

where 8 = (B4, 84,84 = (3,2,2),5' = (B,.85.8) = 2,1, 1); xt, ~ U5, 10], xfj, ~ U[1,3]; fixed effects
u! and uﬁ ~ U[0,0.5]; €' = (€], €5, ..., €) ~ N(O, O'thR,'(a’)), el.’ = (efl, 652, .y el.lT) ~ N(O, 0',2R,-(oz)), where
crﬁ = 0'12 =4,i = 1,2; and let the correlation coefficient @ = 0.9, 0.5, 0.3 to generate data with different
degrees of correlation.

4.1.3. Implementation and evaluation

Four criteria for assessing the performances of different models are shown as follows:
(1) Mean average absolute error (MAE), mean magnitude of relative error (MMER), and root mean
square error (RMSE) defined by Ji et al. [20] are:

1 N T
MAE = > > > {l9h =il +
=1 1

i t=

AU u
YVie = Vit

!
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DAY RN R B VAN AN ()
NT * NT

RMSE =

| =

(2) The rate of different intervals (RI) defined by Hu and He [33] is

T

_ 1 i Z Wi N 9ir)
NT w(yi; Uy lt)
where w(.) is the interval width.

Table 1. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and AR(1) correlation matrix, with the average and mean square error, where the
working correlation matrix is AR(1).

@ Methods N f° B B B B B
0.9992  3.0005  1.9987  1.0045  2.0109  1.0089

LSDV 20 (0.0078)  (0.0072)  (0.0069) (0.0428) (0.0445) (0.0451)
50 1.0001 3.0034 1.9993 1.0060 2.0044 1.0030
03 (0.0027)  (0.0027) (0.0026) (0.0161) (0.0163) (0.0187)
’ 20 0.9999 3.0001 1.9990 1.0025 2.0090 1.0115
GEEs (0.0068)  (0.0064) (0.0062) (0.0381) (0.0410) (0.0406)
50 1.0000 3.0032 1.9991 1.0065 2.0045 1.0026
(0.0025) (0.0024) (0.0024) (0.0144) (0.0144) (0.0165)
20 1.0016 3.0024 2.0032 1.0002 1.9993 0.9986
LSDV (0.0064)  (0.0064) (0.0062) (0.0399) (0.0397) (0.0403)
50 1.0013 3.0006 2.0008 1.0090 1.9994 0.9969
05 (0.0025)  (0.0026) (0.0025) (0.0145) (0.0152) (0.0157)
’ 20 1.0004 3.0023 2.0020 1.0021 2.0027 0.9960
GEEs (0.0046) (0.0046) (0.0044) (0.0276) (0.0285) (0.0291)
50 1.0018 3.0002 2.0010 1.0079 1.9984 0.9958
(0.0017)  (0.0019) (0.0018) (0.0106) (0.0113) (0.0112)
20 0.9989 3.0018 1.9990 0.9944 1.9984 1.0046
LSDV (0.0027)  (0.0030) (0.0027) (0.0188) (0.0167) (0.0180)
50 0.9992 2.9987 2.0007 1.0024 1.9975 0.9991
0.9 (0.0011) (0.0011) (0.0011) (0.0070) (0.0074) (0.0074)
’ 20 1.0001 3.0001 1.9996 0.9972 1.9996 1.0059
GEEs (0.0009)  (0.0009)  (0.0009) (0.0057) (0.0056) (0.0051)
50 0.9996 2.9995 2.0002 1.0012 1.9986 0.9989

(0.0004)  (0.0004) (0.0003) (0.0021) (0.0023) (0.0022)
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Table 2. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and AR(1) correlation matrix, with the average and mean square error, where
the working correlation matrix is AR(1).

@  Methods N By B B B B B
20 3.0032 2.0012 1.9997 1.9962 0.9965 1.0160
LSDV (0.0074)  (0.0075) (0.0069) (0.0465) (0.0428) (0.0394)

50 3.0004 2.0015 1.9975 1.9853 1.0019 1.0033
(0.0028)  (0.0026) (0.0027) (0.0182) (0.0180) (0.0171)

0.3 20 3.0032 2.0015 1.9998 1.9981 0.9958 1.0145
GEEs (0.0068)  (0.0067) (0.0062) (0.0417) (0.0377) (0.0350)
50 3.0009 2.0016 1.9978 1.9874 1.0020 1.0026
(0.0025) (0.0023) (0.0024) (0.0162) (0.0160) (0.0152)
20 3.0008 2.0004 1.9969 1.9988 0.9992 0.9957
LSDV (0.0067)  (0.0065) (0.0066) (0.0421) (0.0433) (0.0420)
50 3.0004 2.0016 2.0017 1.9966 0.9982 0.9935
05 (0.0025) (0.0024) (0.0024) (0.0158) (0.0161) (0.0164)
’ 20 3.0012 1.9989 1.9979 2.0000 0.9978 0.9947
GEEs (0.0047)  (0.0047) (0.0047) (0.0312) (0.0306) (0.0292)
50 3.0003 1.9999 2.0016 1.9993 0.9992 0.9922
(0.0018)  (0.0018) (0.0017) (0.0114) (0.0109) (0.0115)
20 2.9989 2.0018 1.9990 1.9944 0.9984 1.0046
LSDV (0.0027)  (0.0030) (0.0027) (0.0188) (0.0167) (0.0180)
50 2.9999 1.9990 1.9998 2.0007 1.0014 1.0004
0.9 (0.0011)  (0.0011) (0.0011) (0.0072) (0.0071) (0.0076)
’ 20 3.0001 2.0001 1.9996 1.9972 0.9996 1.0059
GEEs (0.0009)  (0.0009) (0.0009) (0.0057) (0.0056) (0.0051)

50 3.0000 1.9993 1.9996 2.0025 1.0004 1.0003
(0.0003)  (0.0003) (0.0004) (0.0023) (0.0022) (0.0022)

Table 3. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and AR(1) correlation matrix, with the average and standard deviation, where the
working correlation matrix is AR(1).

RMSE MAE MMER RI
N (42 Method:
oM MM CRM cM MM CRM cM MM CRM oM MM CRM
LSDY 3.4228 22270 2.1540 4.0842 25173 24348 0.1003 0.0587 0.0568 0.6621 0.7303 0.7405
03 (0.2662)  (0.1408)  (0.1364)  (0.3657)  (0.1661)  (0.1607)  (0.0101)  (0.0041)  (0.0040)  (0.0241)  (0.0177)  (0.0170)
3.4220 22259 2.1529 4.0830 2.5160 24334 0.1003 0.0587 0.0568 0.6622 0.7305 0.7407
GEEs 0.2605)  (0.1407)  (0.1362)  (0.3580)  (0.1658)  (0.1604)  (0.0099)  (0.0041)  (0.0039)  (0.0238)  (0.0177)  (0.0170)
LSDY 3.4333 22389 2.1658 4.0981 2.5350 24517 0.1007 0.0591 0.0572 0.6617 0.7285 0.7390
0 05 (0.2783)  (0.1501)  (0.1483)  (0.3855)  (0.1796)  (0.1755)  (0.0106)  (0.0045)  (0.0044)  (0.0266)  (0.0190)  (0.0183)
GEEs 3.4276 22366 2.1630 4.0902 25323 2.4487 0.1004 0.0590 0.0571 0.6620 0.7288 0.7393
0.2617)  (0.1503)  (0.1483)  (03622)  (0.1798)  (0.1755)  (0.0099)  (0.0045)  (0.0044)  (0.0258)  (0.0190)  (0.0183)
LSV 3.2706 1.7869 1.6946 3.9601 2.0200 19133 0.0974 0.0472 0.0447 0.6715 0.7713 0.7850
09 (0.2928)  (0.1582)  (0.1587)  (0.4088)  (0.1882)  (0.1899)  (0.0109)  (0.0046)  (0.0046)  (0.0328)  (0.0231)  (0.0223)
3.2692 1.7837 1.6904 3.9589 20164 1.9084 0.0973 0.0471 0.0446 0.6715 0.7717 0.7855
GEEs 0.2791)  (0.1580)  (0.1585)  (0.3900)  (0.1881)  (0.1896)  (0.0103)  (0.0046)  (0.0046)  (0.0323)  (0.0230)  (0.0223)
LSV 3.4200 22120 2.1399 4.0807 2.4978 24161 0.1002 0.0582 0.0563 0.6621 0.7321 0.7423
03 (0.1621)  (0.0886)  (0.0870)  (0.2242)  (0.1051)  (0.1024)  (0.0062)  (0.0026)  (0.0025)  (0.0153)  (0.0112)  (0.0107)
3.4193 22116 2.1394 4.0798 24973 24156 0.1002 0.0582 0.0563 0.6621 0.7321 0.7423
GEEs (0.1584)  (0.0886)  (0.0868)  (0.2188)  (0.1051)  (0.1023)  (0.0060)  (0.0026)  (0.0025)  (0.0151)  (0.0112)  (0.0107)
3.4248 22355 2.1626 4.0833 2.5215 2.4398 0.1002 0.0588 0.0569 0.6621 0.7298 0.7401
o os LSDY 0.1768)  (0.0980)  (0.0968)  (0.2440)  (0.1156)  (0.1139)  (0.0067)  (0.0028)  (0.0028)  (0.0173)  (0.0122)  (0.0118)
GEEs 3.4244 22343 2.1614 4.0826 2.5202 24383 0.1002 0.0588 0.0569 0.6621 0.7299 0.7402
(0.1698)  (0.0978)  (0.0965)  (02337)  (0.1154)  (0.1137)  (0.0064)  (0.0028)  (0.0028)  (0.0170)  (0.0122)  (0.0118)
3.2857 1.7905 1.6982 3.9696 20188 19134 0.0976 0.0472 0.0447 0.6702 0.7711 0.7845
09 Lsby 0.1867)  (0.1035)  (0.1045)  (02578)  (0.1217)  (0.1237)  (0.0068)  (0.0030)  (0.0030)  (0.0205)  (0.0144)  (0.0143)
GEEs 3.2851 1.7893 1.6967 3.9688 20173 19116 0.0975 0.0471 0.0447 0.6703 0.7712 0.7847

(0.1767) (0.1033) (0.1045) (0.2428) (0.1215) (0.1236) (0.0064) (0.0030) (0.0030) (0.0200) (0.0144) (0.0143)

Electronic Research Archive Volume 33, Issue 6, 3733-3755.



3746

Table 4. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and AR(1) correlation matrix, with the average and standard deviation, where

the working correlation matrix is AR(1).

N R . RMSE MAE MMER RI
oM MM CRM M MM CRM oM MM CRM oM MM CRM
33163 1.5252 1.6014 4.1985 1.7246 1.8087 0.2120 0.1262 0.1475 08115 0.9248 0.9213
03 LSDY (0.4332)  (0.0910)  (0.0951)  (0.6468)  (0.1095)  (0.1135)  (0.0255)  (0.0115)  (0.0195)  (0.0288)  (0.0048)  (0.0050)
GERs 33134 1.5245 1.6009 4.1944 1.7238 1.8082 02118 0.1261 0.1475 0.8117 0.9248 0.9213
(0.4239)  (0.0908)  (0.0950)  (0.6330)  (0.1093)  (0.1133)  (0.0251)  (0.0115)  (0.0194)  (0.0282)  (0.0048)  (0.0050)
LSDY 33147 1.5380 16117 4.1942 1.7413 1.8238 02119 0.1282 0.1549 0.8117 0.9241 0.9206
o os (0.4115)  (0.1088)  (0.1120)  (0.6125)  (0.1290)  (0.1309)  (0.0252)  (0.0133)  (0.0993)  (0.0272)  (0.0056)  (0.0056)
GERs 33116 1.5359 1.6101 4.1900 1.7390 1.8221 02118 0.1280 0.1528 0.8119 0.9242 0.9207
(0.3832)  (0.1087)  (0.1119)  (0.5705)  (0.1288)  (0.1307)  (0.0238)  (0.0133)  (0.0538)  (0.0253)  (0.0056)  (0.0056)
LSDY 32148 1.1983 1.2943 41311 1.3541 1.4603 0.2096 0.1045 0.1635 0.8143 0.9402 0.9357
0o (0.3274)  (0.1122)  (0.1122)  (0.4881)  (0.1333)  (0.1333)  (0.0228)  (0.0212)  (0.3487)  (0.0207)  (0.0058)  (0.0058)
) 32102 1.1953 1.2921 4.1251 1.3506 1.4579 0.2094 0.1043 0.1633 0.8146 0.9403 0.9358
GEEs 0.2888)  (0.1121)  (0.1121)  (04295)  (0.1332)  (0.1333)  (0.0212)  (0.0206)  (0.3760)  (0.0180)  (0.0058)  (0.0058)
LSDY 3.3000 15166 1.5935 4.1750 1.7129 1.7983 02111 0.1252 0.1468 0.8125 0.9252 0.9217
03 (0.2773)  (0.0589)  (0.0616)  (0.4146)  (0.0706)  (0.0739)  (0.0164)  (0.0071)  (0.0120)  (0.0184)  (0.0031)  (0.0032)
3.2082 15162 1.5932 4.1724 1.7125 1.7981 02110 0.1252 0.1468 0.8126 0.9252 0.9217
GEEs 0.2712)  (0.0589)  (0.0616)  (0.4054)  (0.0706)  (0.0739)  (0.0161)  (0.0071)  (0.0120)  (0.0180)  (0.0031)  (0.0032)
LSV 3.3180 1.5288 1.6052 4.2001 1.7258 1.8114 02116 0.1272 0.1683 0.8113 0.9246 0.9211
50 05 (0.2575)  (0.0687)  (0.0711)  (0.3841)  (0.0812)  (0.0842)  (0.0158)  (0.0084) (04595  (0.0169)  (0.0035)  (0.0036)
33161 15277 1.6044 4.1974 1.7246 1.8105 02115 0.1271 0.1525 0.8114 0.9247 0.9211
GEEs 0.2361)  (0.0686)  (0.0710)  (03527)  (0.0811)  (0.0841)  (0.0147)  (0.0084)  (0.0277)  (0.0155)  (0.0035  (0.0036)
LSDV 3.2425 1.2003 1.2956 4.1651 1.3531 1.4593 02111 0.1049 0.2063 0.8130 0.9402 0.9357
09 0.2095)  (0.0689)  (0.0696)  (0.3121)  (0.0808)  (0.0809)  (0.0143)  (0.0197)  (1.5871)  (0.0134)  (0.0036)  (0.0036)
32377 1.1993 1.2948 4.1582 1.3519 1.4585 02108 0.1044 0.1552 0.8133 0.9403 0.9357
GEEs (0.1833)  (0.0690)  (0.0696)  (02722)  (0.0808)  (0.0810)  (0.0130)  (0.0140)  (0.1258)  (0.0115)  (0.0036)  (0.0036)

Table 5. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and exchangeable correlation matrix, with the average and mean square error,
where the working correlation matrix is AR(1).

@  Methods N j B B B B, B
by 09976 29994 2.0028 09989 19941  0.9976
LSDV (0.0058)  (0.0050) (0.0054) (0.0344)  (0.0299)  (0.0360)
5o 10028 30011 19999 10058  2.0037  1.0013
03 (0.0023)  (0.0022) (0.0021) (0.0127) (0.0137) (0.0133)
' s 09975 29991 2.0030 09983  1.9943  0.9968
GEEs (0.0058)  (0.0052)  (0.0055) (0.0354)  (0.0305)  (0.0365)
5o 10029 30013 2.0000 10053  2.0039  1.0014
(0.0023)  (0.0022) (0.0021) (0.0128) (0.0137)  (0.0135)
5o 10030 29975 19990 10054  1.9942  1.0067
LSDV (0.0039)  (0.0040) (0.0038) (0.0237)  (0.0223)  (0.0246)
5o 10014 29979 2.0001 10030 20004  0.99!
05 (0.0015)  (0.0013)  (0.0015) (0.009)  (0.0095)  (0.0094)
' ho 10033 29974 19991 10048 19932  1.0073
GEEs (0.0040)  (0.0041)  (0.0038) (0.0244) (0.0223)  (0.0251)
5o 10014 29980 19999 10027  2.0004  0.9963
(0.0015)  (0.0014)  (0.0015)  (0.0091) ~ (0.0095)  (0.0095)
ho 10004 29998 2.0014 09979 19990  0.9999
LSDV (0.0007)  (0.0008)  (0.0007) (0.0045)  (0.0045)  (0.0049)
5o 10004 29999 19997 10008 19964  1.0001
0.9 (0.0003)  (0.0003)  (0.0003) (0.0019)  (0.0019)  (0.0020)
' ho 10004 29996  2.0014 09978 19988  0.9996
GEEs (0.0007)  (0.0008)  (0.0007) (0.0046) (0.0045)  (0.0049)
5o 10003 30000  1.9998 10008 19963  1.0001
(0.0003)  (0.0003) (0.0003) (0.0019) (0.0019)  (0.0020)
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Table 6. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and exchangeable correlation matrix, with the average and mean square error,
where the working correlation matrix is AR(1).

@  Methods N B B B B B
ho 29976 19994 2.0028 19989 09941  0.9976
LSDV (0.0058)  (0.0050) (0.0054) (0.0344)  (0.0299)  (0.0360)
s 30028 20011 19999 20058  1.0037  1.0013
03 (0.0023)  (0.0022) (0.0021) (0.0127) (0.0137) (0.0133)
' ho 29975 19991 - 2.0030 19983 09943  0.9968
GEEs (0.0058)  (0.0052) (0.0055) (0.0354) (0.0305)  (0.0365)
s 30029 20013 2.0000 20053  1.0039  1.0014
(0.0023)  (0.0022) (0.0021) (0.0128) (0.0137) (0.0135)
s 30014 20021 19991 19915 1.0069  0.9988
LSDV (0.0039)  (0.0036) (0.0037) (0.0237) (0.0234)  (0.0221)
5o 30014 19979 2.0001 20030 10004  0.996!
05 (0.0015)  (0.0013)  (0.0015)  (0.0090) ~ (0.0095)  (0.0094)
' b 30014 20021 19995 19922 10070  0.9992
GEEs (0.004)  (0.0037) (0.0038) (0.0242) (0.0238)  (0.0223)
s 30014 1998 1.9999  2.0027  1.0004  0.9963
(0.0015)  (0.0014)  (0.0015)  (0.0091) ~ (0.0095) ~ (0.0095)
ho 29997 19984 19998 19985  1.0015  1.0021
LSDV (0.0007)  (0.0008)  (0.0007) (0.0045) (0.0049)  (0.0044)
s 30001 19992 2.0000 20008 10011  1.0015
09 (0.0003)  (0.0003)  (0.0003) (0.0018)  (0.0019)  (0.0020)
' ho 29998 19983 19998 19990  1.0016  1.0019
GEEs (0.0007)  (0.0008)  (0.0007) (0.0046) (0.0049)  (0.0044)

50 3.0001 1.9993 2.0000 2.0007 1.0010 1.0016
(0.0003)  (0.0003) (0.0003) (0.0018) (0.0019) (0.0020)

Table 7. Comparison for the GEEs and LSDV methods based on the dataset generated by the
CRM model and exchangeable correlation matrix, with the average and standard deviation,
where the working correlation matrix is AR(1).

RMSE MAE MMER RI
N (42 Method:
oM MM CRM cM MM CRM cM MM CRM oM MM CRM
LSDY 33003 1.8590 1.7703 3.9815 2.1006 1.9990 0.0979 0.0491 0.0467 0.6698 0.7662 0.7786
03 0.2606)  (0.1071)  (0.1015)  (0.3689)  (0.1285)  (0.1220)  (0.0100)  (0.0033)  (0.0031)  (0.0265)  (0.0161)  (0.0150)
GEEs 3.3002 1.859%4 1.7708 3.9813 2.1010 1.9995 0.0979 0.0491 0.0467 0.6698 0.7662 0.7786
0.2613)  (0.1073)  (0.1016)  (0.3701)  (0.1286)  (0.1221)  (0.0101)  (0.0033)  (0.0031)  (0.0265)  (0.0162)  (0.0150)
LSDY 3.2303 1.5992 1.4939 3.9284 1.8089 1.6887 0.0964 0.0422 0.0394 0.6738 0.7920 0.8068
0 05 (0.2741)  (0.0927)  (0.0853)  (0.3860)  (0.1120)  (0.1032)  (0.0103)  (0.0028)  (0.0026)  (0.0293)  (0.0160)  (0.0144)
GEEs 3.2296 1.5996 1.4944 3.9275 1.8094 1.6894 0.0963 0.0422 0.0394 0.6739 0.7920 0.8067
0.2760)  (0.0926)  (0.0853)  (0.3886)  (0.1119)  (0.1033)  (0.0104)  (0.0028)  (0.0026)  (0.0295)  (0.0160)  (0.0144)
LSV 3.0836 0.8751 0.6681 3.8407 0.9933 0.7553 0.0943 0.0232 0.0177 0.6806 0.8738 0.9041
09 (0.3005)  (0.0506)  (0.0391)  (0.4224)  (0.0631)  (0.0469)  (0.0108)  (0.0016)  (0.0012)  (0.0354)  (0.0134)  (0.0099)
3.0839 0.8753 0.6682 3.8411 0.9935 0.7555 0.0943 0.0232 0.0177 0.6806 0.8738 0.9041
GEEs (0.3005)  (0.0506)  (0.0390)  (0.4225)  (0.0631)  (0.0468)  (0.0108) 0.0016  (0.0012)  (0.0354)  (0.0134)  (0.0099)
LSDV 3.3036 1.8475 1.7593 3.9812 2.0856 1.9865 0.0977 0.0487 0.0464 0.6694 0.7672 0.779%
03 (0.1634)  (0.0651)  (0.0631)  (02322)  (0.0791)  (0.0766)  (0.0062)  (0.0020)  (0.0019)  (0.0163)  (0.0101)  (0.0096)
3.3028 1.8475 1.7594 3.9801 2.0856 1.9865 0.0977 0.0487 0.0464 0.6695 0.7672 0.779%4
GEEs (0.1638)  (0.0651)  (0.0631)  (02329)  (0.0791)  (0.0766)  (0.0063)  (0.0020)  (0.0019)  (0.0163)  (0.0101)  (0.0096)
LSDV 3.2364 1.5898 1.4867 3.9337 1.7966 1.6800 0.0965 0.0420 0.0392 0.6729 0.7928 0.8072
o os 0.1703)  (0.0562)  (0.0517)  (0.2421)  (0.0677)  (0.0623)  (0.0064)  (0.0017)  (0.0016)  (0.0182)  (0.0096)  (0.0088)
GEEs 3.2363 1.5899 1.4868 3.9335 1.7967 1.6801 0.0965 0.0420 0.0392 0.6729 0.7928 0.8072
(0.1705)  (0.0562)  (0.0517)  (0.2424)  (0.0677)  (0.0624)  (0.0064)  (0.0017)  (0.0016)  (0.0182)  (0.0096)  (0.0088)
LSDY 3.0932 0.8716 0.6654 3.8466 0.9873 0.7511 0.0947 0.0231 0.0176 0.6800 0.8747 0.9049
09 0.1826)  (0.0317)  (0.0237)  (0.2606)  (0.0384)  (0.0284)  (0.0066)  (0.0010)  (0.0007)  (0.0215)  (0.0081)  (0.0058)
GEEs 3.0932 0.8716 0.6654 3.8466 0.9874 0.7511 0.0947 0.0231 0.0176 0.6800 0.8747 0.9049

(0.1830) (0.0317) (0.0236) (0.2612) (0.0384) (0.0284) (0.0066) (0.0010) (0.0007) (0.0216) (0.0081) (0.0058)
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Table 8. Comparison for the GEEs and LSDV methods based on the dataset generated by the
min-max model and exchangeable correlation matrix, with the average and standard deviation,
where the working correlation matrix is AR(1).

RMSE MAE MMER RI
N o Method
oM MM CRM cM MM CRM oM MM CRM oM MM CRM
3.2503 1.2518 1.3449 4.1679 14152 1.5191 02110 0.1047 0.1536 0.8128 0.9376 0.9332
03 LSDV (0.3808)  (0.0718)  (0.0775)  (0.5679)  (0.0866)  (0.0934)  (0.0233)  (0.0093) (0.6604)  (0.0250)  (0.0039)  (0.0042)
GEEs 3.2488 12521 1.3451 4.1655 1.4155 1.5194 0.2109 0.1048 0.1339 0.8129 0.9376 0.9332
(0.3873)  (0.0718)  (0.0776)  (0.5774)  (0.0867)  (0.0935)  (0.0237)  (0.0093) (0.1223)  (0.0254)  (0.0039)  (0.0043)
LSDV 3.1975 1.0590 1.1665 4.1315 1.1990 1.3174 0.2100 0.0899 0.1329 0.8144 0.9468 0.9417
0 os (0.3736)  (0.0587)  (0.0666)  (0.5604)  (0.0711)  (0.0789)  (0.0239)  (0.0085) (0.1922)  (0.0245)  (0.0032)  (0.0036)
GEEs 3.1965 1.0592 1.1668 4.1298 1.1992 13176 0.2100 0.0899 0.1359 0.8145 0.9468 0.9417
(0.3752)  (0.0588)  (0.0667)  (0.5628)  (0.0711)  (0.0789)  (0.0239)  (0.0084) (0.2484)  (0.0246)  (0.0032)  (0.0036)
3.1294 04733 0.6814 4.1257 0.5347 0.7585 0.2106 0.0432 0.1035 0.8147 0.9758 0.9658
09 Lspv (0.2887)  (0.0263)  (0.0400)  (0.4282)  (0.0319)  (0.0468)  (0.0206)  (0.0403) (0.1589)  (0.0179)  (0.0015)  (0.0022)
GEEs 3.1294 04734 0.6815 4.1257 0.5348 0.7586 0.2106 0.0436 0.4464 0.8147 0.9758 0.9658
(0.2905)  (0.0263)  (0.0401)  (0.4308)  (0.0319)  (0.0468)  (0.0207)  (0.0525)  (10.0362)  (0.0180)  (0.0015)  (0.0022)
LSDV 32533 1.2431 1.3354 41718 1.4038 1.5071 02117 0.1040 0.1330 0.8127 0.9381 0.9338
03 (0.2455)  (0.0455)  (0.0482)  (0.3687)  (0.0550)  (0.0581)  (0.0151)  (0.0061) (0.0511)  (0.0162)  (0.0025)  (0.0026)
32526 1.2432 1.3355 4.1708 1.4039 1.5071 0.2117 0.1040 0.1309 0.8127 0.9381 0.9338
GEEs (0.2478)  (0.0455)  (0.0482)  (0.3720)  (0.0550)  (0.0581)  (0.0152)  (0.0061) 0.0257)  (0.0164)  (0.0025)  (0.0026)
LSDV 32042 1.0513 1.1589 4.1695 1.1874 1.3074 02119 0.0894 0.1247 0.8129 0.9473 0.9422
0 05 (0.2226)  (0.0365  (0.0410)  (0.3352)  (0.0444)  (0.0494)  (0.0140)  (0.0064) (0.0629)  (0.0148)  (0.0021)  (0.0023)
GEEs 32235 1.0513 1.1590 4.1684 1.1875 1.3075 02119 0.0894 0.1271 0.8129 0.9473 0.9422
(0.2237)  (0.0366)  (0.0411)  (0.3366)  (0.0444)  (0.0494)  (0.0141)  (0.0062) (0.1286)  (0.0148)  (0.0021)  (0.0023)
LSDV 3.1533 0.4700 0.6778 4.1561 0.5310 0.7543 02122 0.0502 0.1021 0.8136 0.9760 0.9660
09 (0.1739)  (0.0165  (0.0238)  (02577)  (0.0202)  (0.0275)  (0.0123)  (0.2603) (0.1045)  (0.0108)  (0.0010)  (0.0013)
GEEs 3.1534 0.4700 0.6778 4.1562 0.5310 0.7543 02122 0.0424 0.1438 0.8136 0.9760 0.9660

(0.1744)  (0.0165  (0.0238)  (02587)  (0.0202)  (0.0276)  (0.0123)  (0.0173) (0.9041)  (0.0109)  (0.0010)  (0.0013)
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Figure 1. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the CRM model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, @ = 0.9.

Tables 1-4 show the fitting results when the working matrix is specified correctly, while Tables 5-8
show the fitting results when the working matrix is specified incorrectly. Figures 1-4 display the box
plots of four evaluation indices calculated from the GEEs method in different models with the dataset
generated based on the CRM model or the min-max model, when the working matrices are specified
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Figure 2. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the CRM model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, @ = 0.3.
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Figure 3. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the min-max model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, @ = 0.9.
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Figure 4. The box plots of four evaluation indices from the GEEs and LSDV methods with
the dataset generated by the min-max model and AR(1) correlation matrix, and the working
correlation matrix specified correctly with N = 20, o = 0.3.

correctly. The results of the box plots are similar, when the working matrices are specified incorrectly.

e Tables 1 and 2 list the fitting results of 3, and we have the following findings: (i) Regardless of the
data generated by which model, the GEEs method performs better than the LSDV method. (ii) As
a or N increases, the mean square error of GEEs estimation decreases. It means that the higher
the degree of the correlation within the group, the better the performance of the GEEs. This also
verifies the consistency of the estimate.

e Tables 3 and 4 show that (1) the GEEs method performs better than the LSDV method, regardless
of the degree of correlation within the group of the data and the sample size, according to the four
indicators. (ii) The CRM model performs best when data is generated based on centers and the
radius. Similarly, the min-max model performs best when data is generated based on minimum
and maximum values.

e From Tables 5-8, we can see that the fitting result of the GEEs method is close to that of the LSDV
method when the working correlation matrix is incorrectly specified.

e Figures 1 and 2 display the box plots of four evaluation indices calculated from the GEEs method in
different models with the dataset generated based on the CRM model, when the working matrices
are specified correctly with N = 20, @ = 0.9, 0.3. We can see that the CRM model performs better
than the other models.

e Figures 3 and 4 display the box plots of four evaluation indices calculated from the GEEs method
in different models with the dataset generated based on the min-max model, when the working
matrices are specified correctly with N = 20, @ = 0.9,0.3. We can see that the min-max model
performs better than the other models.
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4.2. Real data analysis

As everyone knows, PM,s is the main pollutant affecting human health and atmospheric envi-
ronment quality. With the continuous development of social economy and the acceleration of the
industrialization process, the problem of air pollution is also increasing. Studies have shown that
03,50,,NO,,CO, PM,, five air pollutants, have a significant impact on PM, s concentrations. Explor-
ing the relationship between these air pollutants and PM, s can provide help for effective prevention
and control of air pollution. So, this section selects the 26 cities in China’s Yangtze River Delta as
the research object, and analyzes the interval-valued data of air pollution for them. The daily data
of six air quality indices of the Yangtze River Delta urban agglomeration during the 59 days from
January 1 to February 28, 2023, can be obtained from the China Air Quality Online Monitoring platform
(https://www.aqistudy.cn/historydata/). Through inspection, there are no outliers or missing values in
the data. Then we consider the maximum and minimum values of the daily data of each index as the
interval-valued dataset.

The observed data of PM, 5 are taken as response variables, and the other five indices are taken as
independent variables. The data from the first 54 days are used as the training set, and the remaining 5
days are used as the test set. Substituting the data into the models is shown in Sections 2 and 3. Finally,
we demonstrate the fitting performance of the GEEs method and the LSDV method when the working
correlation matrix is AR(1). The predictive performance of the two methods are listed in Table 9, and
the regression results of the GEEs method are shown in Table 10.

e Table 9 shows that both methods have good fitting effects on actual data in different models.
Moreover, we can see that the GEEs method had better fitting performance than the LSDV
method in different models. Taking into account the four performance indices, the min-max model
performs better than other models, which may be due to the type of experimental data, which is
also consistent with the conclusions in the Monte Carlo experiments.

e Table 10 shows that there is a positive correlation between PM,y, NO,, CO, and PM, s, while there
is a negative correlation between S O,, Oz, and PM, 5. Especially, CO has the greatest impact on
PM;s.

Table 9. Comparison of GEEs and LSDV methods in each model for dealing with the panel
interval-valued air pollutant dataset.

Models Methods RMSE MAE MMER RI
LSDV 7.20 724 047 0.69

M GEEs 7.09 7.14  0.27 0.69
Min-Max LSDV 6.19 6.25 0.19 0.72

GEEs 5.87 6.00 0.19 0.73
CRM LSDV 6.13 6.32 0.80 0.73

GEEs 6.06 6.25 0.71 0.74
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Table 10. The estimated regression coefficients 8 and their robust standard deviation estimated
by the GEEs method in different models, with their significance tests shown in parentheses
(“*¥*%-0.001,*%*°-0.01,°%°-0.05,°.’-0.1).

Models g X;(PMo) X2(807) X3(NO») X4(CO) X5(03)
M ,8 0.5705%**  -0.5830***  (.0592** 22.7856%*** _().0693%**
“ (0.0138) (0.1450) (0.0182) (2.5756) (0.0182)

~ 0.5705%**  .(0.5830%**  (0.0592%* 22.7856%** -(0.0693***

CRM Be (0.0138) (0.1450) (0.0182) (2.5756) (0.0182)
A 0.6979%** _(2790*** 0.0033 11.9899*** 0.0129

Br (0.0161) (0.0778) (0.0224) (2.0010) (0.0145)

A 0.4252%** -0.0409 0.2601*** 31,0804 *** -0.0228*

Min-Max Pi (0.0227) (0.3231) (0.0313) (3.5584) (0.0096)
A~ 0.6516*%** _(0.4963*** 0.0295. 16.9246*** -0.0514***

Pu (0.0116) (0.1088) (0.0173) (2.1394) (0.0130)

5. Conclusions and discussion

In this paper, we proposed an innovative approach which was to apply GEEs to fixed effects panel
interval-valued data models, in which the correlation within a group is considered. Monte Carlo
simulation experiments test the feasibility of this method and our proposed method was applied to
PM?2.5 forecasting. Experiments show that the proposed method has a better performance than the
LSDV method proposed before.

However, the estimation method we proposed has some limitations. For example, the model can
be extended to the nonlinear regression model to capture complex nonlinear relationships between
variables. In addition, we did not take into account the correlation between the bounds of the panel
interval-valued data. For future studies, we will introduce variance modeling or joint modeling to obtain
better estimators.
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