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Abstract: Synthetic aperture radar (SAR) is an advanced microwave sensor widely used in ocean
monitoring because of its resilience to light and weather conditions. However, SAR ship detection
tends to have relatively low accuracy due to the prevalence of complex backgrounds and small targets
in the detection process. To address these issues, we proposed ECF-YOLO, an improved ship detection
algorithm based on YOLOVS. The algorithm enhanced the feature extraction ability of the model
and reduced the number of parameters and computational cost by developing a novel C2f-EMSCP
module, which replaced the original C2f module in the backbone network. Additionally, we proposed
the CGFM module in the neck network, which was designed to improve the detection accuracy of
small ship targets by selecting features after combining shallow and deep feature maps. Furthermore,
the Inner-SIoU loss function was introduced to replace the CloU, providing a more precise overlap
calculation between the target and anchor boxes, thus further improving detection accuracy. The
experimental results for the SAR ship detection dataset showed that compared to YOLOv8n, ECF-
YOLO improved AP;s by 2.8% and APsp.95 by 0.9%. Compared to other mainstream algorithms
like YOLOV9t, YOLOV10n , and YOLOI11n, ECF-YOLO achieved improvements of 3.4%, 4.6% ,
and 4.9% for AP;s, and 3.4%,1.9%, 3.0% for APs.95, respectively, demonstrating its effectiveness for
detecting small targets.
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1. Introduction

Ship detection is crucial in maritime traffic management, border patrol, and safety monitoring.
Synthetic aperture radar (SAR) technology, capable of all-weather observation, provides high-quality
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images unaffected by adverse conditions like clouds, rain, or fog [1]. Traditional SAR ship detection,
primarily utilizing constant false alarm rate (CFAR), generally involves land-sea segmentation, CFAR
detection, and target discrimination [2—4]. Despite their strengths in leveraging strong scattering
echoes for enhanced detection performance without prior information about unknown targets, these
methods are sensitive to complex backgrounds and lack adaptability. This leads to decreased
effectiveness as background complexity increases [5]. In contrast to CFAR-based ship detection
methods, deep learning-based target detection approaches have garnered significant attention in the
field of SAR image target detection due to their robust target feature extraction capabilities and
superior detection performance. Common deep learning-based target detection algorithms include
two-stage detectors and single-stage detectors. Two-stage detectors, such as fast region-based
convolutional neural network (Faster R-CNN) [6], Mask R-CNN [7], and cascade R-CNN [8], excel
in ship detection but often come with high computational costs. In comparison, single-stage detectors
are widely recognized for their efficient detection speed, with classic examples including the YOLO
series [9], single shot multiBox detector (SSD) [10], and RetinaNet [11].

To address insufficient detection accuracy in complex SAR scenarios, scholars have developed
innovative deep learning solutions with distinct technical emphases. Bhattacharjee et al. [12]
introduced S-Net, a lightweight architecture that enhances ship localization precision in SAR imagery
while maintaining low computational overhead. Departing from conventional approaches,
De Sousa et al. [13] designed a CNN framework operating directly on raw SAR echoes,
circumventing traditional image formation processes to achieve near-real-time detection capabilities.
For multi-resolution SAR analysis, Humayun et al. [14] developed YOLO-OSD through strategic
anchor box customization and backbone network optimization, balancing detection accuracy with
computational efficiency. Tang et al. [15] designed the DBW-YOLO model, an improved version of
YOLOv7-tiny that integrates deformable convolutional networks (DCNet), BiFormer attention
mechanisms, and Wise-IoU loss functions. For SAR-specific challenges, ELLK-Net [16] was
proposed to address clutter interference, background variations, multi-scale target discrepancies, and
noise contamination through novel architectural designs. Zhao et al. [17] achieved robust ship
detection through feature alignment-based adversarial learning. In their subsequent work [18], they
optimized discriminative accuracy for unknown classes in open-set domain adaptation (OSDA) tasks
by employing dynamic threshold adjustment strategies.

2. Algorithm description
We present ECF-YOLO, an enhanced ship detection framework for SAR imagery developed
through systematic modifications to the YOLOv8 [19] architecture. As shown in Figure 1, this

architecture consists of three key components: 1) A feature extraction backbone, 2) A multi-scale
feature fusion neck, and 3) A task-specific detection head.
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Figure 1. Architecture of the ECF-YOLO network for SAR ship detection.

2.1. C2f-EMSCP Module

We introduce the C2f-EMSCP module, developed by replacing the original Bottleneck in C2f with
ReBottleneck,the key difference between Bottleneck and ReBottleneck lay in substituting the
second 3 X 3 convolution with EMSConvP. EMSConvP combined multi-scale depthwise separable
convolutions and a window multi-head self-attention mechanism (EW-MHSA), enabling the module
to capture positional dependencies and enhance global perception. By leveraging multiple sizes of
depthwise separable convolutions, it reduced redundancy and effectively extracted multi-scale
features, thereby improving both feature extraction and detection accuracy. The specific structure of
EMSConvP is illustrated in Figure 2, and the processing steps were outlined as follows:
Preprocessing of the input feature map: The EMSConvP module began by normalizing the input
feature map X. It then applied the EW-MHSA, where queries (Q) and keys (K) were generated using
a single 1 X 1 convolution with shared inputs, thus optimizing computational efficiency. Values (V)
were processed through grouped convolutions with 1 X 1 kernels, followed by a ReLLU activation to
enhance the nonlinear features, producing the feature map X;. Feature map grouping and Convolution
Processing: The resulting feature map X; was divided into four channel groups. Each group
underwent depthwise separable convolutions (DW-Conv) with different kernel sizes: 1 X 1, 3 X 3,
5 x5, and 7 X 7. These outputs were concatenated, and feature fusion was performed using a 1 X 1
convolution to generate the feature map X,. Skip connection: Finally, the original input feature map X
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was combined with the processed map X, through element-wise addition, resulting in the final output
feature map X3. The implementation of EMSConvP was summarized by the following formula:

F = EW-MHSA(Norm(X), Act) 2.1
Xou = Conv(Concat(DWConvi 357(F))) + Skip(X) 2.2)

By replacing the second 3 X 3 convolution in the Bottleneck module of the C2f block with the
newly designed EMSConvP, we developed the C2f-EMSCP module. In the YOLOvVS architecture, the
C2f module aims to reduce model size while maintaining rich gradient flow. As shown in Figure 1,
the C2f module consisted of two 1 X 1 convolutions and a Bottleneck module with residual
connections, which included two 3 X 3 convolutions. This structure effectively enhanced feature
extraction but may introduce redundancy in the feature maps, thereby limiting the network’s
expressiveness [20]. To address these issues, we introduced the EMSConvP module, which integrated
multi-scale depthwise separable convolutions with a window-based multi-head self-attention
mechanism. This combination captured multi-scale feature representations while reducing
redundancy, thereby improving model efficiency. Incorporating EMSConvP into the C2f structure
resulted in a more compact model with enhanced overall performance. The network architecture of
the C2f-EMSCP module is illustrated in Figure 2. Although researchers such as MobileViT [21] and
EfficientFormer [22] also employed methods combining depthwise separable convolutions with
self-attention mechanisms, the EMSConvP module innovatively integrated parallel multi-scale
depthwise separable convolutions (ranging from 1 X 1 to 7 X 7 kernels) with efficient window-based
multi-head self-attention. Its multi-branch design enabled simultaneous capture of ship details (e.g.,
edges and textures) and holistic contours, while filtering key features through attention mechanisms.
This significantly enhanced adaptability to complex backgrounds, multi-scale targets, and noise
interference. In contrast, MobileViT and EfficientFormer primarily relied on global self-attention or
single-scale convolutions. Although these methods excelled at semantic correlation, they tended to
overlook local details while incurring high computational costs.
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Figure 2. EMSConvP network structure with multi-scale depthwise convolutions and
efficient window-based multi-head self-attention mechanism.

2.2. Content-guided fusion module

To enhance the detection capability of small target ships and improve overall ship detection
accuracy, we proposed the content-guided fusion module (CGFM) in the neck network. The CGFM
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effectively highlighted key features by performing weighted integration and reorganization of the
input features, thereby improving the model’s precision in detecting small ships. The network
structure of CGFM is illustrated in Figure 3, and its processing was detailed in the following steps: 1)
Preprocessing of input and output: The module received two input feature maps, X; and X, denoted
as inputl and input2, respectively. First, inputl was processed as 1 X 1 convolutions to adjust its
channel dimensions to match those of input2, resulting in the output feature map X3;. The feature
maps X, and X3 were concatenated concatenated along the channel dimension, producing the output
feature map X,. 2) Feature selection and weighting: The feature map X, was processed through global
average pooling and global max pooling layers, and the resulting values were summed to produce
feature map Xs. Next, X5 was passed through a Sigmoid activation function to generate weight values
for each channel. These weights were applied to the feature maps X3 and X, via element-wise
multiplication, enabling adaptive weighting based on feature importance, resulting in the output
feature maps X and X;. 3) Feature reorganization and output: Element-wise addition was performed
between the feature maps Xg and X;, as well as between X7 and X3. This facilitates complementary
enhancement of features. Finally, the two resulting feature maps were concatenated to produce the
final output feature map Xg.
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Figure 3. CGFM architecture with dual-branch fusion and channel attention.

2.3. Loss function

In YOLOWVS, the loss function comprised classification and regression losses. The classification loss
1s computed using binary cross-entropy, while the regression loss included distribution focal loss (DFL)
and bounding box regression loss. The total regression loss was defined as follows:

JSioss = A1/pEL + A2 fBBRL (2.3)
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DFL refined the standard focal loss by incorporating discrete classification results into
continuous outcomes:

Sor(S i, S i) = = (i1 —y) log(s) + (v — yi) log(S i+1)) (2.4)

where §; and §;,; are continuous labels surrounding y, and y = .7, P(y;)y;, with P applied via softmax.
The bounding box regression loss is critical for object detection. In this work, the CIoU loss was
replaced by the Inner-SIoU loss [23], which emphasized internal region overlap between the target and
anchor boxes, thereby improving detection performance for ships with varying shapes and scales. The
Inner-SIoU loss was defined as follows:

Linner-siou = Lsiou + IoU — IOUinner (25)

Inner-SIoU enhanced the standard IoU loss by prioritizing overlap in internal regions of target and
anchor boxes. Unlike standard IoU (measured via outer box intersection, blue area in Figure 4),
Inner-SIoU computed IoU™" using intersections between scaled-down inner boxes (orange area),
enabling finer boundary alignment. This improved detection accuracy for complex-shaped and
multi-scale objects.
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Figure 4. Inner-IoU: Bounding box scaling and overlap metric visualization.

The intersection and union areas inter and union are computed as:

biir; = x¥' + Iw¥'ratio, bf:h} =y + Sh¥ratio (2.62)
buy = x. %wratio, bup =y £ %hratio (2.6b)

Electronic Research Archive Volume 33, Issue 5, 3394-3409.



3400

inter = |min(b', b,) — max(b{', by)| - [min(b§', by) - max(b{', b)) 2.7)
union = (WS'h8' + wh) - ratio® — inter (2.8)
. Int
Jouimer = 11T (2.9)
union
The ratio typically ranged from 0.5 to 1.5. The SIoU loss is expressed as:

(A+Q)
LSIOU =1-IoU+

(2.10)

where A represents the distance loss, and Q is the shape loss. The function also incorporated an
angle loss A, which we describe in detail below.

Angle Loss A: The angle loss measured the alignment between the center points of the target and
anchor boxes. It is defined as:

| min(d = el 1y¥ = yel)
\/ (= x P+ 08 =y )P +e

Here, € is a small constant to prevent division by zero. The angle loss A encouraged the anchor box
to align closer to the nearest coordinate axis. When A = 1, the angle was 45°, while A = 0 indicated
alignment along the X-axis or Y-axis.

Distance Loss A: After incorporating the angle loss, the distance loss is redefined as:

[ | — e—(z—A)(bx;fﬁr )2) .\ (l _ e—(z—A)(by;fﬁ' )2]] o

Shape Loss Q: The shape loss describes the size discrepancy between the target and anchor boxes:

_ 1 w—we] |\ h—he] \\
Q= 5 [(1 —exp (m)) + (1 —exp (W)) ] (2.13)

Parameter 6 determined the weight of the shape loss, typically ranging from 2 to 6. In this study,
0 = 4 was used.

A = sin|2sin”

2.11)

A=1
2

3. Experimental results and analysis

3.1. Evaluation metrics and experimental environment

To evaluate the performance of the ECF-YOLO algorithm for ship detection in SAR imagery, we
employed standard detection metrics from the COCO dataset. These metrics, computed based on true
positives (TP), false positives (FP), and false negatives (FN), included precision (P), recall (R), and
average precision (AP), calculated as follows:

TP

P=— 3.1)
TP+ FP
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TP
R=—" (3.2)
TP+ FN
1
AP = f PRAR (3.3)
0

In the experiments, YOLOv8 was employed as the baseline model. The training was conducted with
a batch size of 16 and for 300 epochs. The software and hardware environments used in this study are
listed in Table 1.

Table 1. Experimental software and hardware environment.

Item Parameter

Operating System Ubuntu 22.04

Programming Language Python 3.8.18

CpPU 11th Gen Intel Core 17-11700 @ 2.50 GHz
GPU NVIDIA GeForce RTX 3060

Algorithm Framework PyTorch 1.13.1

The dataset used in this study is the publicly available SAR ship detection dataset (SSDD) [24],
which was used to train and evaluate the model. The SSDD, specifically designed for SAR ship
detection, contains images captured from various scenarios such as nearshore, offshore, inland, and
port areas. The dataset was divided into training, validation, and test sets with a ratio of 7:1:2.
Detailed parameters of the SSDD are presented in Table 2.

Table 2. Detailed parameters of SSDD.

Item Parameter

Sensor RadarSat-2, TerraSAR-X, Sentinel-1
Resolution 1 m-15m

Polarization HH, VV, VH, HV

Location Yantai, China; Visakhapatnam, India
Number of Images 1160

Number of Ships 2456

The SSDD contains 1,160 SAR images and 2,456 ship targets. According to [25], these data yield
an average of approximately 2.12 ships per image, with detailed statistics summarized in Table 3.

Table 3. Correspondence between number of ships (NoS) and number of images (Nol).

NoS 1 2 3 4 5 6 7 8 9 10 11 12 13
Nol 725 183 89 47 45 16 15 8 4 11 5 3 3

Notes: NoS represents the number of ships per image, and Nol represents the number of images.
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3.2. Ablation experiments

To systematically evaluate the effectiveness of the proposed architectural improvements,
comprehensive ablation studies were conducted for the SSDD. Using YOLOvS8n as the baseline
model, we incrementally integrated three key modules to analyze their individual contributions to
detection performance. For the evaluation framework, we employed four critical metrics: Mean
average precision (mAP) for detection accuracy, parameter count for model complexity, floating-point
operations (FLOPs) for computational efficiency, and frames per second (FPS) for inference
speed.Quantitative results comparing different module configurations are summarized in Table 4.

Table 4. Ablation study configurations.

Experiment C2f-EMSCP CGFM Inner-SIoU Combination Type
1 - - - Baseline

2 v - - Single-module

3 - v - Single-module

4 - - v Single-module

5 v v - Dual-module

6 - v v Dual-module

7 v - v Dual-module

8 v v v Full-model

Experiment 1 referred to the use of the original YOLOv8n model (baseline configuration with all
proposed modules disabled); Experiment 2 referred to the YOLOv8 model with the addition of the
C2f-EMSCP module (single-module enhancement); Experiment 3 referred to the YOLOvV8 model
with the addition of the CGFM module (single-module enhancement); Experiment 4 referred to the
YOLOv8 model with the replacement of the original loss function by the Inner-SIoU loss
(single-module enhancement); Experiment 5 referred to the YOLOv8 model with dual-module
integration combining C2f-EMSCP and CGFM; Experiment 6 implemented a dual-module
configuration combining CGFM with Inner-SIoU loss; Experiment 7 demonstrated another
dual-module combination integrating C2f-EMSCP with Inner-SIoU loss; Experiment 8 represented
the full-model implementation incorporating all three proposed components (C2f-EMSCP module,
CGFM module, and Inner-SIoU loss function).

As shown in Tables 4 and 5, the proposed modules collaboratively enhanced the YOLOvVS baseline
model (Experiment 1). The C2f-EMSCP module designed in Experiment 2 reduced model parameters
from 3.01M to 2.88M (4.3% reduction) and compressed FLOPs from 8.1G to 7.8G (3.7% reduction),
while simultaneously improving AP;5s by 2.0% and large-target ship AP by 5.9%. These results
validated its efficient lightweight feature extraction and enhanced multi-scale ship detection
capability. When combined with the CGFM module in Experiment 5, this configuration
achieved 1.1% AP improvement for small-target ships and 7.5% AP gain for large-target ships,
demonstrating synergistic enhancement of multi-scale detection performance.The CGFM module in
Experiment 3 strengthened small-target detection with 0.5% AP and 0.6% APs, improvements. Its
integration with the Inner-SIoU loss in Experiment 6 further elevated small-target AP by 1% and
APsp.95 by 5%. Experiment 4 revealed that substituting CloU with Inner-SIoU loss significantly
enhanced large-target AP by 7.5% while increasing FPS by 2.5%. The combination with C2f-EMSCP
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in Experiment 7 pushed large-target ship AP to 75.4%. ultimately, ECF-YOLO in Experiment 8
achieved optimal balance: APs5y of 98.2%, AP7;5 of 90.3%, and APsy.9s of 73.9%, representing
respective improvements of 0.7%, 2.8%, and 0.9% over the baseline. Small-target and large-target
APs increased by 1.1% and 6.3%, respectively, with inference speed reaching 128.6 FPS. This
demonstrated the synergistic integration of three specialized components: C2f-EMSCP enabled
lightweight feature representation and enhanced multi-scale extraction, CGFM facilitated
context-aware small-target discrimination, and Inner-SIoU accomplished geometry-adaptive
large-target regression, systematically addressing critical challenges in SAR ship detection.

Table S. Ablation study results.

Experiment APs APqs APsp95 APg APy APy, Parameters (M) FLOPs (G) FPS

1 971.5% 81.5% 73.0% 69.1% 81.1% 64.6% 3.01 8.1 208.4
2 974% 89.5% 73.0% 69.0% 80.4% 70.5% 2.88 7.8 135.7
3 98.1% 883% 733% 69.6% 80.0% 63.7% 3.06 8.1 195.2
4 97.1% 88.8% 73.1% 69.8% 79.1% 72.1% 3.01 8.1 210.9
5 974% 89.6% 73.7% 702% 80.0% 72.1% 2.93 7.8 128.5
6 973% 883% T13.5% T70.1% 80.4% 63.3% 3.06 8.1 1922
7 98.0% 90.3% 733% 694% T19.8% 154% 2.88 7.8 135.9
8 982% 903% T13.9% T702% 804% T709% 2.93 7.8 128.6

To validate the detection performance of the improved ECF-YOLO model, we presented
comparative curves illustrating the variations in APsy, and APsp.95 metrics between YOLOvVS and
ECF-YOLO during the training process, as shown in Figure 5. In the APs, curve analysis, both
models exhibited comparable performance as training epochs progressed, with minimal discrepancies
observed between ECF-YOLO and the baseline YOLOvV8 model under the lower IoU threshold
(IoU = 0.5). However, under more stringent evaluation criteria across the extended IoU threshold
range (0.5 to 0.95), as demonstrated in the APsy.95 curve, ECF-YOLO achieved marginally superior
values in later training phases compared to YOLOvS. This observation suggested ECF-YOLO’s
enhanced capability in multi-scale object detection tasks. These findings collectively indicated that
ECF-YOLO maintained parity with YOLOVS in detection accuracy and stability while exhibiting
superior performance characteristics during critical training stages.

As shown in Figure 6, the comparison of test images demonstrated the detection performance.
Group a illustrated ship detection results in a complex port environment. From the comparison,
ECF-YOLO accurately detected ships, whereas YOLOVS8 exhibited false positives. Group b presented
ship detection under complex backgrounds. ECF-YOLO showed greater robustness, accurately
detecting ship positions even in the presence of significant background noise, while YOLOvVS
produced false positives in certain areas. Group c displayed the detection results for small target
ships. Both ECF-YOLO and YOLOVS8 could identify ship targets, but ECF-YOLO achieved a higher
overall confidence threshold.
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3.3. Comparative analysis of loU-Based loss functions

To evaluate the impact of the Inner-SIoU loss function on ship detection, we conducted
comparative experiments on the YOLOvV8 network structure using the loss functions PloU [26],
DIoU [27], CIoU [28], GIoU [29], SIoU [30], MPDIoU [31], ShapeloU [32], and Inner-SIoU [23].
The experimental results are shown in Table 6.Table 6 demonstrates that Inner-SIoU outperformed
other IoU-based loss functions on the SSDD. It provided significant improvements, especially for
small and large target ships. The enhanced overlap alignment between predicted and ground truth
boxes achieved by Inner-SIoU contributed to more precise localization, even for varying ship sizes
and shapes.

Table 6. Comparative effects of different IoU on ship detection.

IoU AP50 AP75 AP50:95 APS APM APL

GloU 97.1% 88.0% 72.2% 68.7% 78.8% 70.6%
DIoU 97.2% 87.1% 72.2% 68.5% 79.4% 62.5%
CloU 97.5% 87.5% 73.0% 69.1% 81.1% 62.4%
SloU 98.1% 89.0% 72.9% 68.5% 80.8% 69.6%
ShapeloU 97.3% 87.2% 72.0% 67.9% 79.5% 75.5%
MPDIoU 97.9% 88.1% 72.9% 69.7% 79.5% 68.3%
PloU 97.1% 87.0% 72.2% 68.8% 78.8% 72.7%
Inner-SloU 97.1% 88.8% 73.1% 69.8% 79.1% 72.1%

3.4. Comparative experiments

To validate the superiority of the proposed ECF-YOLO model, a comparative study was conducted
against state-of-the-art object detection methods, including Faster R-CNN [6], Mask R-CNN [7],
YOLOv7 [33], TOOD [34], YOLOv10 [35], YOLOX [36], YOLOv9 [37], YOLOI11 [19],
YOLOv12 [38] and RT-DETR [39]. The results are summarized in Table 7.

Table 7. Comparison between algorithms.

Model AP AP7s APsy.95 Parameters(M) FLOPs(G)
Faster-RCNN 96.6% 90.6% 73.3% 60.34 250
Mask-RCNN 97.4% 89.0% 71.8% 62.96 302
TOOD 97.1% 89.0% 73.8% 32.02 174
YOLOv10n 97.2% 85.7% 72.0% 2.69 8.2
YOLOX-tiny 98.0% 87.8% 70.8% 5.03 7.57
YOLOvVIt 97.9% 86.9% 70.5% 2.62 10.7
YOLOv8n 97.5% 87.5% 73.0% 3.01 8.1
YOLOV7-tiny 96.8% 81.2% 66.9% 6.01 13.0
YOLOI11n 97.4% 85.4% 70.9% 2.58 6.3
RTDETR-1 97.2% 91.9% 75.6% 28.45 100.6
YOLOv12n 97.4% 85.1% 69.3% 2.56 6.3
ECF-YOLO 98.2 % 90.3 % 73.9% 2.93 7.8
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Table 7 demonstrates that ECF-YOLO achieved superior performance across multiple metrics.
While maintaining a lightweight architecture, it obtained the highest APsy of 98.2% among all
compared models and the second-best AP;5 of 90.3%, surpassed only by RTDETR at 91.9%. The
proposed model achieved a competitive APsg.95 of 73.9%, outperforming most YOLO variants while
maintaining significantly lower computational complexity. Notably, ECF-YOLO attained these results
with only 2.93M parameters and 7.8G FLOPs-demonstrating 22.8 times higher efficiency compared to
Mask R-CNN with 62.96M parameters and 12.8 times higher computational efficiency than RTDETR
at 100.6G FLOPs. This exceptional balance between detection accuracy and operational efficiency
positioned ECF-YOLO as particularly suitable for deployment in resource-constrained environments.

4. Conclusions

In this study, we address the challenges of detecting ships in SAR imagery with complex
backgrounds and small targets by proposing the ECF-YOLO model. The model incorporates several
key improvements: The integration of the C2f-EMSCP module, which enhances multi-scale feature
extraction and reduces model parameters; the incorporation of the CGFM module, which improves
the detection of small target ships through effective feature selection; and the adoption of the
Inner-SIoU loss function, which provides smoother gradients and more accurate bounding box
localization. Experimental results on the SSDD dataset achieves a favorable balance between
detection accuracy and computational efficiency. In the future, we will focus on enhancing
generalization capability, lightweight design, and detection precision for more diverse applications.
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