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Abstract: In this paper, we explored the existence and uniqueness of solutions for a boundary value
problem involving (p,q) -difference equations with integral conditions. By employing well-
established fixed-point theorems, we established new and significant results in this area. To further
illustrate the applicability of our findings, we presented three concrete examples that demonstrate the
validity of the theoretical results.

Keywords: (p, q)-difference equations; boundary value problems; integral conditions; existence
results; fixed point theorems

1. Introduction

Fractional calculus has gained considerable attention in recent years due to its ability to model
complex phenomena with memory and hereditary properties. While classical calculus focuses on
integer-order derivatives and integrals, fractional calculus extends these concepts to non-integer orders,
offering a broader framework for analyzing real-world problems in various fields, such as physics,
biology, and engineering (see, e.g., [1-4]).

Quantum calculus, often referred to as g-calculus, has emerged as an essential mathematical
framework with numerous applications in various scientific fields, particularly in physics. It provides
tools for studying phenomena in quantum mechanics, special functions, and other areas of theoretical
and applied physics (see, e.g., [5-8]). Over time, advancements in quantum calculus have led to the
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development of postquantum calculus, a more generalized framework that extends the concepts of g-
calculus. While quantum calculus is primarily concerned with g-numbers that rely on a single base g,
postquantum calculus introduces p and g-numbers, incorporating two independent parameters p and g.

This generalization has significantly expanded the scope and applicability of the calculus, offering
a more flexible and robust mathematical structure for modeling complex systems. The (p, q)-calculus
has drawn considerable interest from both mathematicians and physicists, who have explored its
potential in a variety of research domains. These studies have addressed topics ranging from
generalized special functions to discrete dynamic systems, quantum theory, and number theory. For
detailed discussions and applications, readers are referred to works such as [9-14].

One of the prominent areas where (p, q)-calculus has found significant application is the study
of (p, q)-difference equations. These equations, which generalize classical difference equations, play
a vital role in analyzing discrete dynamic systems and exploring their underlying mathematical
properties. The flexibility introduced by the independent parameters p and g enables a deeper
understanding of such systems, facilitating new theoretical insights and practical applications across
diverse fields.

Boundary value problems (BVPs) involving fractional (p, q)-difference equations form a crucial
branch of this research, as they address the existence of solutions satisfying both fractional difference
equations and prescribed boundary conditions. Such problems frequently arise in discrete systems
where boundary constraints or endpoint behaviors play a significant role (see, e.g., [15-18]).

In [15], Gengtiirk obtained some existence results of solutions for the following boundary
value problem

D2u(t) + f(t,u(®)) =0, 0<t<1

1 1
u(0) =f u(t)dy4t, u(1) =f tu(t) dy,t,
0 0

for g-difference equation with integral conditions.

In [16], Qin and Sun investigated the existence of positive solutions for the following boundary
value problem of a class of fractional (p, q)-difference equation involving the Riemann—Liouville
fractional derivative

DE.u(®) + f(p%t,u(@*)) =0, 0<t<1

u(0) =u(1) = 0.

Motivated by these works, this paper proposes a new framework that combines (p, q)-difference
equations involving the Caputo fractional derivative with nonlocal boundary conditions. We
investigate the existence and uniqueness of solutions for a fractional (p, q)-difference boundary value
problem given by the following:
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‘DEu®) + f(tu®)) =0, o<t<1
u(0) =u'(0) =u"(0) = - =ul3(0) = 0,
U2 (0) = [1u(®)dp,qt, (1.1

u(D) = [ tu(®) dpgt,

where n—1<a <n with n>3, °Dj, denotes the Caputo-type fractional (p,q) -derivative
operator, while D, , denotes the first-order (p, q)-difference operator, and f:[0,1] X R > R is a
continuous function. By employing fixed-point theorems and related analytical tools, we establish
sufficient conditions under which solutions exist and are unique. This work contributes to the
theoretical foundation of fractional (p,q)-difference equations and provides a basis for further
exploration of their applications in discrete mathematical modeling.

The rest of our paper is organized as follows: In this section, we present necessary definitions,
properties, and lemmas. In Section 2, we will give some sufficient lemmas and theorems, which are
used in the main results. In Section 3, some results on the existence and uniqueness of positive
solutions are obtained. Also, some examples illustrating the obtained results are presented. Our results
generalize many known results in the literature of BVPs.

Now, we will give some fundamental theorems, lemmas, and definitions of the (p, g)-calculus,
which can be found in [11,19]. Let [a,b] € R be an interval with a < b, and 0 < g <p <1 be
constants with p +q # 1,

k k
p* —gq
[klpq = , kEN,
p.q p _ q
“pi— g
)kl ok = 11,0 - [1] =| | kEN,
(k]! = p.q p.q p.q L ['p—q
1, k=0.

The (p, q)-analogue of the power function (a — b)gg with n € Ny = {0,1,2, ...} is given by

(a b)(o) (a— (n) n(ap —bg*), a,b€ER

The (p, g)-gamma and (p, q)-beta functions are defined by

)(x 1) (1 - g)(x_l)

»—q |2
- a_ x € R\{0,-1,-2,..},
Fp'q(x) =1 (p—q)*! (1 _ﬂ)x—1 \{ }
p
[x —1],4!, x €N,

and
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! () q ()
B, (x, ):=j 1 (1 — g0 Vd, ¢ = p20 DK+ L XASULY]
g\ Y . pq p Lax+y)

respectively.
Definition 1.1. [11] Let 0 < q < p < 1. Then, the (p, q)-derivative of the function f is defined as

f(pt) = f(qt)

Poal ) =6 o

, t#0,

and D, f(0) = ltl_%l Dy, qf (t), provided that f is differentiable at 0.

Definition 1.2. [11] Let 0<q <p <1, f be an arbitrary function, and t be a real number. The
(p, q)-integral of f is defined as

fo F©pgs = 0 = Dt Tmos f (-7t (1.2)

provided that the series of the right-hand side in (1.2) converges.
Definition 1.3.[11] For a >0, 0 < q <p < 1 and f definedon I, = { ST ke NoJu {0}
the fractional (p,q)-integral of f is defined by

af © = —a— [ €= a0 1 (2

pq(a)

) p.q5

Lemma 1.1. The (p, q)-fractional integral operator Iy, is monotone, thatis, if f,(t) < f>(t) forall
t, then Ly .f1(t) < I5,f>(t) forall t.

Definition 1.4. [19] For a >0, 0<q<p <1, and f:1}, > R, the fractional (p,q)-difference
operator of Caputo type of order a is defined by

t
“DFof (0 = 3D}af (0 =~ J| &= a9 Dlaf (o) doas

p( 2 I—;),q(N_a)
andCDg,qf(t) = f(t), where N—1<a <N, N €N.

Theorem 1.1. [19] Letting « € (N —1,N), NeEN,0<q<p<1,and f: Ig'q - R leads to

—)tN-«a ® k k+1\ V—a-1) k
CD,‘,’qu(t) = N(—pa 2 E ?<+1 (1 B (g) ) qf( k?—N a >
p p
p( 2 )Fp,q(N — ) k=0 p.q

Theorem 1.2.[19] Let « € (N—-1,N),NEN,0<qg<p <1, and f:Iglq — R. Then
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N-1

I54°Dgaf () = £(8) -
pa “pq ;p(g)[k]p,q!

k

[D5af (0]

Lemma 1.2. (Leibniz Formula) [19] Let f: I}, X Iy, = R, then

t qt
Dyq <f0 f(, S)dp,q5> = fo tDpqf (t,5) dpqs + f(pt, 0).

Also, we obtain the following formula
d ftf t,s)d = fta‘ (t's)d + f(¢t,t)
de \ J, (t,5)dp,q5 0 ot P’ T

2. Preliminaries

This section deals with relevant prerequisites that are essential for investigations into this study.
We also establish some significant results that will be needed to prove our main results.

Lemma 2.1. For any g € C([0,1], R), the boundary value problem

‘Diu)+g(t)=0, 0<t<1
u(0) =u'(0) =u"(0) = - =u™3(0) =0,
u=2(0) = [Lu(t)dy 4, 2.1)

u(l) = [ tu(t) dygt

is equivalent to the following integral equation

u(t) = p(“); Jy H(t,5) g (525) dpas, 22)

2 Fp,q(a)
where

H(t,qs) = G(t,qs)
th—2 —¢n-1 1
+ m{(l — B, (n+ 1,1))J; G(t,qs)dy t

1
+B,q(n,1) fo t G(t,qs)dpq t}

+

" (( Bpg(n—11) = Bpe(n, D [
A {<1 - (n —2)! >f0 t G(t,qs)dp,qt

B,q(,1) =B, ,(n+1,1) (!
(n—2)! 0

G(t, qs)dp,qt}
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such that
! B,,(n—11)—-B,,(n,1)
p.q ’ p.q\'"
1- (Tl — 2)| _Bp,q (n' 1)
A= '
B,,(n+1,1)—-B,,(n,1)
p.q ) p.q\'>
=2 B,,(n+1,1)
and
N G HED 411 -9, 0<s<t,
»yS) =

(1 - 5)Y, t<s<1.

Proof. Since

“Dpqu(t) = —g(0),
I5.q“Dpqu(t) = —Ipqg(t)
then we get

ut) = —I3,9#) +co + et + ot + 4 ¢y t"!
f(t gs)sV <

Since the boundary condition u(0) = 0, we have ¢, = 0. Using Leibniz formula, we have

)d qS o+t +cpt? + oty t"
pq(a)

ey _ (a—2) S
w2 ) ) f (=1t = 1) 9 (57) das
1 t
- (t— qt)(“ b — )+ 1+ 20t + -+ (n— Dy t"72,
p(Z)Fp,q(CX) <p 1)

and since the boundary condition u'(0) = 0, we get ¢; = 0.
Similarly, since

u”(t) —

ot ((-D@-20- 49Xy 09 (=) dpas
p(z)]})’q(a)']; <p ) p.q

1 t
(@ = Dt - ) P g (—
p(z)];o’q(a) <p 1)

1

-
p(z)];o’q(a)
+2¢c, + -+ (n—1)(n— 2)cp_1t" 73,

_ 1 ot
|- 0@ - e () + (- e g ()
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and the boundary condition u'"'(0) = 0, we obtain u''(0) = 2¢, = 0. Then, we have ¢, = 0.

If we continue like this, by using other boundary conditions u'”’(0) = -+ = u™3(0) = 0, we get
c3 = - = ¢,_3 = 0. By using the other boundary condition, we get

u(n—z)(o) =n-2)c,_, = folu(t)dp,qt’

and so

Substituting ¢, _,, we get

1 N S 1
u(t) = p(g) | (t—as)pq "9 <pa—1) pqS * <(n - 2)!j;

Since

a- 1 !
u(l) = _(—m)f (1- qs)( 1) (p 5_1> dpqs + (mfo u(s)dp'qs> S

= f01 su(s)dy,s

1

u(s)dp,qs> t" 2 + ¢, "L

then, from the last boundary condition, we have

[a-a9g (2

1 1 1
= d )d ——f d,.s.
Crn—1 fosu(s) pqs+ 0,45 CED) u(s) pqS

L q(a) 0
Consequently
_ 1 ' @1 (S 1 ! .
u(t) = —mj (t— CIS) <poc—1) dp,qs + (mfo U(S)dp,fIS)t 2

s 1 1 -
)dp‘qS - m—fo u(s)dp,qs t

1
- _ (a-1)
+<J;su(s)dpqs+ () q(a)j (1-qs)pq <p
n-1

s t 1 s
f(t qS)(a b ( (a)—f( qs)(a Y (pa—1)dp.q5
P2/ L, q(a) 70
tTl—Z tn—l

HICEDICED]

) dp’qs +
Ly q(a) 0

1 1
j u(s)d,qs + t"‘lf su(s)dygs.
0 0

Whence
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1 1 S
t)=——| G(t, — n p
u( ) p(z)rp’q(a)f ( CIS) g (p 1) pqs l ( — 2)| lf U(S) pq

1 1
+t"71 [T s u(s)dp,gs, (2.3)
where
oo - | 7€ HED 11 -9, 0<s<t,
' (1 - 5)Y, t<s<l1.

Integrating (2.3) over [0,1], we obtain

folu(t) dpqt = “ qu(a) f.f
. ( ] | u(s)dp,qs> ] g

11
1 (n—11) - B,,(n,1)

G(t, qs)g d sd t+[ P4 Boa ]( u(s)d,, s)
qu(a)ofof re (n=2) .

)d sdy,,t+ <j(;1u(s)dp_qs> [(%) dyq

+ B, (1, l)fo su(s)dygs.

Thus, we have

[1 B B,,(n—11) - B, ,(n,1)
(n—2)!

j u(s)d,qs — By q(n, 1)] su(s)d,qs
=mf f G(t, qs)g( )d qSdpqt. (2.4)

Multiplying (2.3) by t and integrating over [0,1], we get

[ Cu©dy ot - m [ ( [ oo () d ) b+ | 1 Kt(n_‘z;> [ 1u(s)dms] 4
+J: <t" jols u(s)dp,qs> dp gt

ol 1) =B, (n+L1)] !
)!Oth(t qs)g ) dpgSdyqt + [ pa (n_pzt)zln ]J; u(s)dy s

1
rpq(“

+ B, (n + 1,1)J- su(s)d,gs.
0

Hence

Electronic Research Archive Volume 33, Issue 5, 3225-3245.
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B,,(n+11) - B,,(n,1) 1
p.q\1 — Byq lf u(s)dy s + [ —B,,(n+ 1,1)]f0 su(s)dy,gs

1

mf f tG(t C[S)g( )d qupq (25)

Applying the Cramer rule to (2.4) and (2.5), saying

l1 B By,(n—11) — B, ,(n,1) !

A= (n—2)! ~Bpq(n 1)
B,,(n+1,1)—-B,,(n,1) ’
p.q ’ p.q
=2 By,(n+1,1)
and assuming A# 0, then we have
) 11
) ( ffG(t qs)g( = 1)d qSdpqt =B, q,(n, 1)
1| p\2/L, ()
f u(s)dy qs = A P g 3
0

1

s
jftG(t qs)g D 1)dpqsdpq 1-B,;(n+1,1)
pq(a)O

A 11
:m{!!(;(t;qs)g<p; 1>dpq5dpqt qu(n+11)ffG(t qs)g(ps )dpqupqt

11
S
+Byq(n,1) f f tG(e, qﬂg(F) dpgS dp'qt}
00

and

B,q(n—1,1) = B, ,(n,1) 1

fl :
su(s)d, s =—
0 p.q A

0
11
B +11)-B 1 1
p,a (1 ) = Bpqg(n, 1) jth(t qs)g )d <d
(Tl—Z)' p.q Pq
qu(a)o 0
= ffta(tqs)g( )d sd _Bpan = L1~ Byy(m )fftG(th)g( )d sd
(a) a-1 p.q pq (Tl—Z)' a-1 r.q l’q
Apt2 q(“) 00

_Bp'q(n-l-(lnl_) ol p.a fo(;(t qS)g( a— 1>dpq5dpq }

As a result,
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1 1
u) =——| Gtqs)g d, .S
p(z)['p'q(a)f (p ) P
tn—Z _ tn—1 1 11
(n—2)! ]AP(Z)I},,q(a) (1 — Bpq(n+ 1'1)) Of Of G(t,qs) g )d aSdpqt
11
00
11
tn_l ( Bp,q (n: 1) - Bp,q (TL - 1,1))
t—m |1+ t G(t, qs)g d,,sd
Ap(z)rp’q(a) { (n—2)! ofof ) p.aS dpql
11
B,,(n,1) — B, ,(n + 1,1) s
- (n —ZSI! Of Of G(t,qs) g <plx——1) dpqS dp,qt}
1 1
=—m— | H{tqs)g d, 45,
p(z)['p,q(a)f <P ) P4
where

n-2 n-1

1 1
H(t,qs) = G(t,qs) + tA(n——Z)'{(l —B,,(n+ 1,1))] G(t,qs)dpqt + B, q(n, l)f tG(t, qs)dp,qt}

g1 B,,(n—11) - B, ,(n,1) B,,(n,1) = B, ,(n+ 1,1)
+ A {(1— L (n—Z)'pq )f t G(t,qs)dyqt + L (n—ng' G(t qs)dpq}

O
Lemma 2.2. The Green functions G(t,s) and H(t,s) satisfy the following inequalities:

1) |G(t,s)| <2(1—5)@D, forallt,s €[0,1]

2) |H(t,s)| <24, forallt,s€[0,1]

where

A= (1+m{|1 Byq(n+1,1)| B, q(1,1) + |B,q(n,1)| B, q(2,1)} +|A|{|1‘

By q(n—1,1)-By q(n,1) Bpq(M,1)—Bp q(n+1,1)
(n-2)! |Bp'q(2’1) + | (n-2)! }) (2.6)

Proof. From G(t,s) givenin Lemma 2.1, we get

1G(t,s)] < (t —s)@D 4+t 11 —5)@D <2(1 —5)@ D, vt,s€[0,1].

Also, we obtain

n-2 n 1 1
|H(t,s)| < |G(t,s)] +u{|1 ,,q(n+11)|f 1G(¢t,$) dypqt + |B q(n,1)|f t|c;(t,s)|dp,qt}
|A] ( 0
tnt B,,(n—1,1) -
+ ] {1— (n—2)' th(t $)ldy 4t

Electronic Research Archive Volume 33, Issue 5, 3225-3245.
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(n,1) = B,,(n+1,1)
o1 o,

<2(1-s)V
1 1
{|1 — B, (n+ 1,1)| zf (1—9)*tdy t+ |Byy(n D] 2(1 - s)“_lf t dp,qt}
0 0

HICED)]
1 B,,(n—11) —B,,(n, 1)| et 1
+m{ =2 |2(1—5) j(-)tdp‘qt

B,q,(m,1) = B, ,(n+1,1) wer [
— 2(1—s) fo d, ¢

1-—

2
< 2(1_5)(‘1_1) <1+m{|1 pq(n+11)| q(]- 1D+ |qu(n 1)|qu(2 1)}
1 (] Byg(n—11)—B,,(n1 B, .(n1)—B 11
_l_m{‘l_ P.Q(n (nzz)!nq(n )Bp‘q(2,1)+ p,q(n )(n_z;‘;'(n+ )Bp’q(l'l)}>

=2(1—s)@ b4,

such that

1= (14 g (1= B+ 1D} By (LD + |80 1] 502}

N i{‘l _Byg (n—11) - B,,(n,1) B,,(n,1) = B, ,(n + 1,1) }
|A] (n=2) (n—2)! :

B,q(2,1) +

So, we get |H(t,s)| < 24(1 —s)@ D < 24, forallt,s € [0,1].
m
Next, we give some well-known fixed-point theorems that will be the main tools for our results.
For more details on fixed point theory, we refer the readers to [20-23].
Theorem 2.1. (Krasnoselskii’s fixed-point theorem) [24] Let K be a bounded, closed, convex, and
nonempty subset of a Banach space X. Let T, and T, be two operators such that
a) Tiyu+T,v € KX whenever u,v € K.
b) T, is compact and continuous.
c¢) T, isa contraction mapping.
Then, there exists a z € K such that z = Tyz + T,z.
Theorem 2.2. (Banach fixed-point theorem) [25] Let X be a Banach space, and let T:X = X be a
contraction operator, i.e., there exists a constant A € [0,1) such that ||[Tu — Tv|| < A ||lu —v|| for
any u,v € X. Then there exists a unique z € X such that Tz = z.
Definition 2.1. [26] Let X be a Banach space, and let T:X — X be a mapping. T is called a
nonlinear contraction if there exists a continuous non-decreasing function :R* - R*, which
W(0) =0 and Y(x) < x forall x > 0 has the following property:

ITu = Tvll < P(lu—vlD), Vu,veX

Theorem 2.3. (Boyd and Wong fixed-point theorem) [27] Assume that Xis a Banach space, and let
T:X = X be a nonlinear contraction. Then, T has a unique fixed point in X.

We will denote by X = C([0,1], R) the Banach space of all continuous functions from [0,1] to
R endowed with the norm defined by ||u|| = sup{|u(t)|: t € [0,1]}.

We regard T:C([0,1], R) - C([0,1],R) as being defined by an operator as

Electronic Research Archive Volume 33, Issue 5, 3225-3245.
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Tu(t) = f H(t,qs) f< (#)) dpgS. (2.7)

p( )]"p q(a

3. Existence and uniqueness of solutions

In this section, we will deal with our main results. The first result is based on Krasnoselskii’s
fixed-point theorem.
Theorem 3.1 Let f:[0,1] X R = R be a continuous function satisfying the following assumptions:
(H) Iftw)—-ftv)<Lu-v|, Vvte[01] and u,vER,
(Hy) |ft,w)| <u(), v(t,u) €[0,1] xR and p € L'([0,1],RY).
If ML <1, where

_ 2B,,(1,a)

2
B Gl Bt 11 D
p.q

1 <‘1_Bp,q(n—11) B, ,(n, 1)‘

A (- 2)!

B,,(n,1) =B, ,(n +1,1)
(n—2)!

then the problem (1.1) has at least one solution on [0,1].
Proof. Defining trer%oa)l(]lu(t)l :=p* and fixing a constant R > u*M, consider Bz = {u€

C([0,1], R): |lu|l < R}. Let us define the operators T; and T, on the ball Bz as follows

Tyu(t) =

f G(t, qs)f< U (p;—1)> dpqS

P( )rp q(a

tn—Z _ tn_l 1 1 ,1 s s
Tyu(t) = ( o >A O {(1 — B, (n+ 1,1))f0 fo G(t,qs) f (F,u (FD dpqt dygs
ot s s
+B,,(n, 1) fo J; tG(t,qs)f <p“‘1 ,U (FD dpqt dp‘qs}
g1 ( B,,(n—1,1) — B, ,(n, 1)> ( s )
t—= 1- t G(t, —, — td,
Ap(z)['p‘q(a)[ (n —2)! j f (t.qs) f U » 1) pat ApqS

=
RO )

S
( a1 dpqS(-
For u,v € By, we have

1
ITyu(t) + T ()| sa—j 16,0901 1 (5 dpos

p(z)]“p’q(a)

Electronic Research Archive Volume 33, Issue 5, 3225-3245.
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(e : >)|A|p()1p.q(a){“_Bv'q(”*1’1)%1['6@"’5)'“(%M"qtd”'qs

1 1 s
+|Bp,q(n'1)|f f |G(t’qs)|”<ﬁ>dp,qtdp,q5}

By,(n—1,1) —
" ® - IG(th)Iu — ) dp gt dpgs
|A p(Z)Fp_q(a) {‘ (n— 2)' ( 1) rat %pq
B,,(n,1) - B, s
p.q T (pa——l) dpqt dp,qs}
2
<—= 2B,,(1,)u* + 7 {|1-B,s(n+1,D| + |Byy(n, D} 2 B, (1, ) lell
P(Z)Fp.q(a) |Al(n — 2)!p(2)1“p_q(a)
L 2B i { | Bra@m—1LD —Bye(n, 1)’ B,,(n, 1)_Bp’q(n+1,1)’}
|A p(g)l"p,q(a) (n—2)! (n—2)!
*ZBp,q(l,o:)
- a + 1-B,q(n+1,1)| +|Byq(n, 1)
g p<2)%(a){ TG R LX)

1 By,,(n—1,1) =B, 4(n,1)
+m<‘1‘ -2 ’

B,,(n,1) =B, ,(n+1,1)
(n-2)!
=u*M <R.

This implies that Tyu + T,v € Bj.

|Tuq () — Toup ()]

tn—Z_tn—l 1 1 ~1 s s
- ( (n—2)! )Ap(Z)I;_q(a){(l_Bp'q(n-l_l'l))ﬁ fo G(t,qs)f<F,u1 (pa_1)>dpqtdpqs
1,1
+B, 4(n, l)f f tG(t,qs) f(p‘f U ( ; 1)>d pqs}
0 J0
¢t ( B,,(n—1,1) — B, ,(n, 1)) ( s )
t— | 1- t G(t,qs) — Uy
Ap(z)qw(a){ (n—2)! f f 9s) f u (p ) dpqS
B,,(n,1) =B, ,(n+1,1) (* ! s s
= (n—pZ‘;! fojo G(t,qs)f(pa_l, pa- 1) dpqtdpqS}
tn—Z _ tn—l 1 s
_< (n—2)! )AP(Z)Fp,q(a){(l_ Byq(n+1,1) f f G, qs)f( — W2 (pa 1)) dyqS
+B,,(n, 1)-[ f tG(t, qs)f( — 2 = ) pqS}
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1 B,s(n—11)—B,,(n, D\ (' (* s s
+a—[(1— =2 )fo J; tG(tqs) f F'uz (F) dpqt dpgs

A p(Z)]}Lq(a)
B,,(n,1) = B, ;(n + 1,1) 1,1 S <
e

n-2 _ ¢n-1 1,1
e (18004 10) [ 609 [ (5200 (25 1 (5002 o s

L q(@)

+B,q(n, 1) J: fol t G(t,qs) [f (#;TH ([_%)) -f (#,uz (#))] dpqt dp’qs}
N 51—1 {(1 _Byg (n —(17;13 ;)?p.q (n, 1)> fol J: t G(t,qs) [f <#,u1 (%)) —f (z%,uz (#))] dpqt dpgs

Ap(z)l;hq(a)
B,,(n,1) =B, ,(n+1,1) (* ? s s s s
4+ 2P4 = _1’2‘)7! fo J; G(t,qs) [f (F'ul (F)) - f(F,uz (F)ﬂ dpqt dp,qs}

2

< — 1 B,,(n—11) =B, ,(n, 1)|
11 p(2), 4 (@) (n = 2)1

IAIp(Z)Fp’q(a) <| (n—2)! |

[|1-B,q(n+1,D)|+B,,(n, D]+

Byq(n,1) =B, ,(n+1,1) 1t s s s s
+ n—2)! >}J(-] j(; |G(t, gs)| f F,ul (F) -f F,uz (F) dp’qt dp’qS
2 1 B -1,1)—-B ,1
< @) [|1-Byq(n+1,D)|+ B, (n,1)] + @ <|1 g 0 3 ol ba(® )I
|A| p\2 Fp,q(a')(n - 2)! |A| p\2 Fp,q(a) .
B,,(n,1) =B, ,(n+1,1) 1t am
+ |24 o _pzf)]! )}fo J;) 21— qs)g,‘q Dy, lug — up| dpqt dygs
2 B -1,1)—-B ,1
< @) [|1-B,,(n+1,D|+B,,(n, D]+ @ <|1 _Bpam 0 3 ol ba(n )I
1Al p\2) L, 4 (@) (n — 2)! |Al p\2/ T, (@) '

Byq(n,1) = B, ;(n + 1,1)
(n-=2)!

S ML lug — |,

>}L||u1 — Uyl 2 Bp,q(l. a)

and so
|T,uy — Touyl| < ML |luy — uyll.

Since ML < 1, then T, is a contraction mapping.
At present, we will show that T; is compact and continuous. The continuity of f together with
the assumption (H,) yields that the operator T; is continuous and uniformly bounded on Bj.

Setting sup  |f(t, W] = fnax < , also for ty,t, € [0,1] with t; <t, and u € By, we
(Lwel0,1]xBx

obtain that
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|Tyu(tz) — Tyu(ty)]

1 1
= Ol)— j (G(tz, qs) - G(tl’ qS)) f < (j—l ’
P(Z [pq(a) 170 ’

s
(pa'—l) dpqS

IA

—a\ |G(t2' CIS) G(tl' CIS)l fmax S.
pl2) pq(oof "

It is clear that when t, — t;, the right-hand side of the above inequality tends to be zero, because of
the continuity of G(t,s). Thus, T; is relatively compact on Bg. Hence, by the Arzela—Ascoli
theorem, T; is compacton Bj.

Since all the assumptions of Theorem 2.1 are satisfied, we deduce that the problem (1.1) has at
least one solution on [0,1]. This completes the proof.

m

Example 3.1. Consider the following boundary value problem for fractional (p,q) -difference
equation of the form:

( 5 F (;) sinu(t)
CDflu(t) + 103 a+e2) 0, t€(01)
7 (3.1)

u(0) =0, w(0)= [ ul®dyyt, ul)=[f tult)dyyt.

: 1(7) sin u(t) It i

, n =3, and the function f(t,u(t)) = 103 (1+t2)

1)

103

. 5
Setting constants a = > P= %, q=

[V e

r

N[

easy to see that |f(t,u) — f(t,v)| <

|u — v|, then the condition (H;) is satisfied with L =

ri 1(7 r 1 1 A
213 32 We can find easily that [f(t,u)| < 03 (1+t2) = u(t); then, this shows that the function f

satisfies condition (H,). Indeed, by calculating M, we obtain M = 227—8(43)2 Hence, ML < 1.
11

23
Consequently, by Theorem 3.1, we conclude that problem (3.1) has a unique solution on [0,1].
The second result is based on the Banach fixed-point theorem.
Theorem 3.2. Suppose that f:[0,1] X R - R is a continuous function satisfying (Hy); also, the

following assumption holds:

) P q@ > 2418,,1,),

where L isa Lipschitz constantin (H,), and A is given by (2.6). Then the problem (1.1) has a unique
solution.
Proof. We convert problem (1.1) to a fixed-point problem u = Tu, where T:C([0,1],R) —

C([0,1],R) is given by (2.8). Suppose that M := sup |f(t,0)| and a constant R satisfies
tefo0,1]

2AMB, (1, @)

> .
pG)r () - 24LB, (1, @)
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First, we will show that TB; € Bz, where By = {u € C([0,1], R): ||u|]| < R}. For any u € By, we
have

Tu(e)l = m [ e f(z%u(ps)) s
sm | 200 - g9 s <p51u(%)>

a2 - 1 en0) )
T [ | e ) G| o) e
b 4 e )

(a-1)
f (1 - q5) VLR + Mid s

d

p.qS

d

p.qS

( q<a)

pq(“)

+ M}dpqs
pq(a)

pq(a)
< M.f (1 — qs)(a 1)d w p,q(lr a) <R
( r, [y q(a) 70 (2) Ipq(@)

Therefore, ||Tu|| < R and TBy < Bg.
Second, we will show that T is contraction. For any u,v € C([0,1], R), we have

|Tu(t) — Tv(t)|

1 ! s s 1 1 s s
a H t, - — d - H t, —, — d
p(z)]"p‘q(a)-[() ( qs)f<pa 1 u(pa 1)) p.qS p(Z)Fp,q(a)fO ( qS)f<pa 1 v(p“ 1)) 0,45
1 le(t , -f s ( s ) f s ( s ) d
Sup (—ey— »qSs T U\—=1) | — — V7= S
te[og] p(g)lﬂ’ (a)”0 1 i p%1 p%1 pa-1 pa-1 p.q
S S S S
e H _—, _ )
te[0,1] ( F ((x)f | (t qs)l f<pa—1 u(pa—1)> f<pa—1 v(pa—l)

sup
S S
a—1) -v <pa—1)

IA

IA

IA

sup

— |
te[0,1] p(g) rp,q (a,) 0

dpqS

1
L1H(t qs)] |u(
P
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Lllu —v||

_mtemlf |H(t, qs)ldpqs

Lllu —v||

S—— 2A 1- qs)(a D dpqS
p(z)['p'q(a)

2AL 2ALB 1,
=—||u—v||f (1-g9% "V dy, Mllu—vll.
( ) I q (@) p(z)]"p’q(a)
Thus, we get
1, «a
1w — 1ol < ZABpa L@y
() ,q(a)

From the condition (H3), T is a contraction. By the Banach fixed-point theorem, the boundary value
problem (1.1) has a unique solution.

m
Example 3.2. Consider the following boundary value problem for the fractional (p, q)-difference
equation of the form:

[ o r116) 22 _ 0 01
O+ e 0 T 0D 52)

u(0) =0, w(0)=[uldyt, u()= [ tult)dy,t.

F11(7) 2
: 35 _1 _1 — _ u”(t)+2|u(t)|
Setting constants a = S P=5,q=3, n= 3, and the function f(t u(t)) 102 O

we find that the value of A given by (2.6) is approximately 1127. By some calculations, we have
lf(t,w) — f(t,v)| <= H1( )Iu v|, then the condition (H;) is satisfied with L = il"ll (Z)
50 55 \2

With the same L, we can easily see that the condition (H;)

5
<1><§> - <5> S 11'27F (7) B <1 5)
2/ 35\2)7 25 '35\2) 733\ 72
is also satisfied. Consequently, by Theorem 3.2, we conclude that the boundary value problem (3.2)
has a unique solution on [0,1].
The third result is derived from Boyd and Wong fixed-point theorem.

Theorem 3.3 Suppose that
(H,) There exists a continuous function h:[0,1] > R* with the property that

lu —v|

£t = F& )| <A o=
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for Vt € [0,1] and u,v = 0, where

J= f(l )y (=

pq(“)

> dp,qs.

Then the boundary value problem (1.1) has a unique solution.
Proof. Consider the operator T: C([0,1],R) - C([0,1], R) by

1 1 s s
Tu(t)za— H(t,qs)f(T,u T)d’s,
p(Z)Fp.q(a)fO P (p 1) .

where H(t,s) is defined by Lemma 2.1.
Let us set a continuous non-decreasing function ¥: R* - R* by

_Jx
ll)(X)—m, Vx>0

with ¥(0) =0 and Y(x) <x, Vx> 0. Using (H,), we have
_f H(t, qs)f( (p(f_l))dms ——f H(t, qs)f( (pcf_l))dp,qs

[Tu(t) - Tv(®)| = @ @
p2 pq((l) p\2 pq(a)
S
v (F>
dpqS

d

1 1
< f |H(t, q5)|

= S
P21, () o "

[EENE
[+ (o) v (=)
) v(p“sl>

smf |H(tqs)|h(“) RN
llu — vl

1 1
<—m—| 24—V h
p(Z)Fp,q(a)']‘; ( > ]+ ||u—v||

1
1

SO
ITu — Tv|| < P (llu—vl).

Hence, we see that T is a nonlinear contraction. Therefore, by Definition 2.1 and Theorem 2.3, the
operator T has a unique fixed point in C([0,1], R), which is a unique solution to the boundary value
problem (1.1).

m
Example 3.3. Consider the following boundary value problem for the fractional (p, q)-difference
equation of the form:
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[ul

A+|u|

5
DZu(t) + i1 (E) t2 tan‘l( ) =0, te(0,1)
73 23 12 (3.3)

u(0 =0, w0 =[uldyyt, wu(l)= [ tult)dyg,t.

; _5 -1 1 . _ - — -1 (I
Setting constants @ =~, p =-, ¢ =3, n =3, and the function f(tu®) = h(t) tan (A+Iu|)’

where h(t) =11 (%) t? and 1 > 19, we obtain

2’3

3 2

; 24 fl(l 1 )@r <11> s\ 4 188

= —=S 11l—=) | —= 118 = lo,0,
<§) o 3711 33\2/ \,-3) 73

2 2

where A = 11,27 as in Example 3.2. Since

E;

lf(t,w) = f(tv)| =13 (E) t? tan_lﬁ— an~! vl
’ T2 2+ |ul 1+ vl

11 [ul v

< (—) t? -

25\ 2 A+ ul A+ v

<r (11) .2 |lu — v

- %% 2 A+ |u—v|

<r (11) 2 |lu — v|

= 23\2) " 188+ [u—v|

the condition (H,) holds. Thus, by Theorem 3.3, the boundary value problem (3.3) has a unique
solution on [0,1].

4. Conclusions

In this study, we investigated the existence and uniqueness of solutions for a boundary value
problem involving (p, q)-difference equations with integral conditions. By leveraging well-known
fixed-point theorems, we derived new theoretical results that contribute to the ongoing research in this
field. Our findings provide a strong foundation for analyzing such equations, which have wide-ranging
applications in mathematical modeling and applied sciences. In the limit as p — 1, our results reduce
to results for the fractional g- difference integral boundary value problem.

To validate our theoretical framework, we presented three illustrative examples that demonstrate
the applicability and effectiveness of our results. These examples confirm that the imposed conditions
ensure the existence and uniqueness of solutions, reinforcing the reliability of our approach.

Future research can extend this work in several directions. One potential avenue is the study of
(p, q)-difference equations with more general boundary conditions or nonlinear integral constraints.
Additionally, exploring numerical methods for approximating solutions could provide further insights
into the practical implementation of these theoretical results. Moreover, investigating the stability and
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behavior of solutions under perturbations would be a valuable extension to this study.

In conclusion, our work contributes to the understanding of BVPs for (p, q)-difference equations
and highlights the effectiveness of fixed-point techniques in establishing solution existence and
uniqueness. These results open new possibilities for further advancements in the field and their
applications in various scientific and engineering disciplines.
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