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Abstract: In this study, we focused on developing a new viscous contact force model by incorporating 
a novel viscous fluid damping factor derived from the principles of incompressible Newtonian fluid 
dynamics. This new viscous fluid damping factor was formulated based on the Navier-Stokes 
equations, providing a robust framework for accurately modeling energy dissipation during impacts. 
Building on this foundation, a new coefficient of restitution (CoR) model was proposed by integrating 
the Hertz contact law with the newly developed viscous fluid damping factor. To validate the 
correctness of the proposed viscous fluid damping factor, a series of experimental data was collected 
to examine the relationship between the CoR and the impact velocity. The results confirmed the 
validity of the proposed CoR model and demonstrated that using fluid-based concepts to describe 
energy dissipation during impacts between solid bodies is feasible and effective. To highlight the 
advantages of the new viscous contact model, a comparative analysis was conducted against existing 
viscous contact models. This comparison demonstrated that the new model achieves the highest 
accuracy in calculating impact behavior, outperforming conventional models. The superior 
performance of the new model underscores its potential as a powerful tool for studying dynamic 
interactions in particle systems. The new viscous contact model was further applied to analyze impact 
behavior in two scenarios: A bouncing ball and a vertical granular chain. In both cases, the results 
obtained from the model were validated against experimental data, showcasing its ability to capture 
complex collision dynamics with remarkable precision. In conclusion, our findings establish the new 
viscous contact force model as an effective and reliable approach for analyzing impact behavior in 
particle systems. This investigation paves the way for novel approaches to studying energy dissipation 
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during impacts in particle systems by utilizing fluid damping factors instead of the internal damping 
of particles. The proposed contact force model is applicable to a wide range of dynamic systems 
involving contact interactions. It is particularly effective for simulating contact events in both flexible 
and rigid multibody systems. Moreover, the model demonstrates strong performance in granular 
systems, where frequent collisions, adhesion, and nonlinear contact behaviors are prevalent. 

Keywords: viscous fluid damping; Navier-Stokes equations; new contact model; CoR model; 
particle system 
 

1. Introduction 

The granular system consisting of large aggregates of discrete particles plays a pivotal role in 
both industrial applications (such as the pharmaceutical industry [1], chemical industry [2], metal 
powder technology [3], and agricultural production [4]) and natural processes (such as soil Mechanics, 
sediment Transport, geological phenomena, and sand wind [5]). These materials exhibit complex 
behaviors due to the intricate interactions between individual particles and their collective dynamics [6,7]. 
Moreover, granular materials can exist in solid [8,9], liquid [10], and gaseous states [11], giving rise 
to unique mechanical properties and intriguing physical phenomena. The frequent occurrence of phase 
transitions and their associated characteristics significantly influence processing quality and the 
economic viability of granular operations [12]. 

Given their critical role, accurately predicting the motion of granular flows is essential for 
designing more efficient unit operations [13], thereby enhancing throughput and improving product 
quality [14]. A key challenge in this context lies in understanding the dynamic motion of particles, which 
is primarily governed by inter-particle collisions [15,16]. Two major approaches have emerged for 
studying these interactions: Experimental investigations [17,18] and numerical simulations [10,19–21]. 
Among numerical techniques, one common route treats particle flows as a continuum, applying 
principles of continuum mechanics in a Eulerian framework [15]. Alternatively, the Discrete Element 
Method (DEM), originally proposed by Cundall and Strack [22], offers a Lagrangian perspective by 
modeling particles as individual discrete entities. At present, DEM initially is one of the most 
frequently used simulation techniques in physics and engineering. In DEM simulations, two dominant 
contact force models are commonly used. (i) The hard-sphere model, proposed by Alder and 
Wainwright [23], treats collisions as quasi-instantaneous events. It focuses on calculating post-impact 
velocities using large time steps, based on momentum conservation during impact. (ii) The soft-sphere 
model [24], in contrast, resolves the full contact process by accounting for contact force, particle 
overlap (penetration), and post-impact velocity. This approach requires very small-time steps to 
accurately capture the short-duration impact events between particles. The soft-sphere model typically 
includes both linear and nonlinear contact force models, often based on Hertzian contact theory. The 
linear or nonlinear nature of these models is largely determined by the damping factor, especially when 
the damping term depends on the relative contact deformation. Several nonlinear contact models, such 
as the Kuwabara and Kono model [25], Tsuji et al. model [26], and Jankowski model [27], have been 
proposed to derive more accurate viscous fluid damping factors for energy dissipation during impact. 
However, these models fall short because their damping formulations do not rigorously account for 
energy conservation. To address this, some researchers introduced empirical damping values directly 
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into the models, such as Schwager and Pöschel [28], Lee and Herrmann [29], and Ristow [30]. Yet, 
these empirical damping factors fail to precisely estimate energy dissipation, as their values are 
difficult to determine accurately. As a result, the debate over whether a linear or nonlinear damping 
approach is more appropriate remains unresolved in the DEM research community [11]. 

Generally, nonlinear viscous fluid damping factors, used to represent energy dissipation during 
impact, are often derived by approximating linear or nonlinear one-degree-of-freedom vibration 
systems. These factors are closely related to the material properties of the colliding bodies and the 
coefficient of restitution (CoR). Beyond this common approach, various other methods have been 
developed to describe energy dissipation, as a wide range of damping devices have been introduced, 
such as metal dampers, friction dampers, lead dampers, viscoelastic dampers, and fluid viscous 
dampers [31,32]. Marshall [33] presented a simple expression for fluid damping due to squeeze-film 
dynamics, which arise from changes in contact region radius during collisions. His simulations showed 
that the damping force is highly sensitive to the minimum distance between particle surfaces. Ray and 
Kempe [11] proposed an efficient approximation for modeling soft-sphere collisions within the 
Discrete Element Method (DEM) framework in viscous fluids. Their method provides sufficient 
accuracy while simplifying the governing equations, enabling the calculation of collision time and 
CoR with fewer parameters and reduced computational cost. Utsumi [34] studied the damping ratio in 
low-gravity sloshing, considering energy loss due to contact angle hysteresis, using a semi-analytical 
method for arbitrary axisymmetric tanks. Shi and Polycarpou [35] developed a straightforward 
experimental method using contact resonance to measure the contact stiffness and damping of Hertzian 
and rough flat surfaces. This technique relies on analyzing resonance behavior at the contact interface. 
Fu et al. [36] examined tangential contact stiffness and damping at solid-liquid interfaces under mixed 
lubrication, showing that their theoretical model closely matched experimental data in both trend and 
magnitude. Zhang et al. [37] introduced a winding rope fluid viscous damper, which enhances damping 
through frictional amplification. Their theoretical and experimental results showed strong agreement. 
Zhang and Turner [38] proposed a linear fluid damping model using beam-type resonators as viscosity 
and pressure sensors. This model leverages fluid damping effects to monitor changes in environmental 
viscosity and pressure. 

It is worth noting that the viscous fluid damping factor in the contact force model leads to a 
nonphysical attraction force at the end of the recovery phase. The nonphysical attractive force arises 
from the fact that the damping force exceeds the elastic force at the end of the recovery phase [20]. 
Alizadeh et al. [39] introduced an innovative nonlinear contact force model incorporating a dashpot 
filled with non-Newtonian fluid. This model significantly improves the prediction of the coefficient of 
restitution (CoR) and effectively reduces the unphysical attraction force observed at the end of a 
collision. The non-Newtonian fluid enables dynamic adjustment of damping during impact, resulting 
in a more realistic simulation of collision behavior. Ye and Zeng [40] proposed a normal contact force 
model with a nonlinear, size-dependent dashpot. Their results showed that this approach effectively 
mitigates the unphysical tension forces during the recovery phase, enhancing the accuracy of collision 
dynamics simulations. Poursina and Nikravesh [41] developed an optimization method for calculating 
an equivalent damping coefficient in a spring-damper system composed of a linear damper and a spring 
with Hertzian contact force. By assuming particle separation occurs when the contact force reaches 
zero, their model eliminates the nonphysical attraction force during restitution, improving simulation 
fidelity. Similarly, Schwager and Pöschel [42] identified that attraction forces stem from the 
assumption of immediate particle shape recovery upon separation. They introduced revised boundary 
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conditions, delaying shape recovery until after contact is lost, which removed the unrealistic forces. Ji 
and Shen [43] also analyzed contact models and confirmed that attraction forces emerge at the end of 
the recovery phase, affecting granular flow dynamics. Collectively, these studies highlight the adverse 
impact of attraction forces on post-impact velocity and CoR, often leading to overestimation of particle 
motion. To address this, we propose an improved viscous fluid damping factor that accurately captures 
energy dissipation during impact. Additionally, a balance parameter is introduced to eliminate the 
influence of unphysical attraction forces on post-impact velocity and CoR, thereby enhancing the 
predictive accuracy of particle flow simulations. 

Although the prevailing references tried to establish the damping factors by the dimensionless 
equation of motion of the colliding particles, the proposed viscous fluid damping factors in the 
equation of motion of the system suffered from dimensional deficiency [11,39,40]. Unfortunately, 
they ignored the dimension of the damping coefficient so that the improved damping force in the 
equation of motion lost its physical meaning. Furthermore, the motion status of the particle in the 
granular system is not evaluated precisely in spite of the nonphysical attraction force that has been 
concerned [4,39,40,42,44]. In addition to this, the viscous fluid damping factors are, in general, 
developed by solving vibration systems. However, these viscous fluid damping factors are incapable 
of describing the energy dissipation during impact between the particles. Therefore, some scholars 
made use of the empirical values [29,30,45] to represent the damping coefficient. Nevertheless, the 
prevailing investigations proved that the previous damping coefficients developed by the two 
approaches above are incapable of accurately describing the energy dissipation [11]. 

In allusion to the limitations above, a new viscous fluid damping factor is developed from 
incompressible Newtonian fluid based on the Navier-Stokes equations. The dynamic viscosity of the 
fluid is treated as the bulk viscosity of the solid to represent the energy dissipation during solid impact. 
On this basis, a new viscous contact force model is proposed based on the spring-dashpot model. 
Subsequently, a new CoR model is developed using this new viscous contact force model, which is 
validated by experimental data to prove the correctness of the new viscous fluid damping factor. A 
comparison among existing viscous contact models and the new viscous contact model is implemented 
to illustrate its advantages. Finally, the new viscous contact force model is successfully applied to 
calculate impact behavior in the particle systems, which is validated by experimental data as well. This 
investigation is about the ability to account for complex collision behaviors, which opens the door to 
broader applications in modeling and analyzing granular systems under various impact conditions.  

The structure of this investigation can be organized as follows: In Section 2, a physical spring-
dashpot model is established. A new viscous fluid damping factor and a new viscous contact force 
model are formulated based on the Navier-Stokes equations in Section 3. A new CoR model and its 
validation are implemented in Section 4. A comparison analysis among the new model and existing 
viscous models is in Section 5. The application of the new contact force model is validated in the 
bouncing ball and vertical granular chain in Section 6. The major conclusions are summarized in 
Section 7. 

2. Physical spring-dashpot model incorporating fluid’s viscosity 

Contact behavior is an inevitable phenomenon in the colliding particle system. It is worthwhile 
to mention that the contact behavior dissipates the kinetic energy of the particles in the granular system. 
Precisely evaluating the dissipation energy during impact is crucial to the motion status of the particles 
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after impact and the prediction of the maximum contact force, which is an important index for judging 
whether the mechanical structure is damaged by the impact behavior. Moreover, the accurate 
estimation of impact behavior between the colliding particles facilitates the structure optimization of 
the mechanical system and improves the production output of the granular system. Accordingly, how 
to precisely calculate energy loss plays a decisive role in the motion prediction of the colliding particles 
after impact. 

It is well known that the damp factor contributes to dissipating energy during impact. In this 
section, we propose a new fluid damping factor developed from an incompressible Newtonian fluid. 
Namely, the fluid damping factor is treated as a fluid dashpot in the spring-dashpot model in Figure 1. 
The mass of the contact bodies is m1 and m2, the contact stiffness coefficient is K, and the damping 
coefficient is D. The contact behavior is described by the spring-dashpot model that is expressed as 

F K D                                       (1) 

where δ is the contact deformation;   is the relative impact velocity; α, β, and γ are the power 

exponents depending on the nature properties of the contact behavior. Parameter α determines whether 
the contact behavior is linear or nonlinear. Parameter β is closely related to the impact velocity during 
contact, while γ is the power exponent of the deformation in the damping force, which is determined 
by the dimensional characteristics of the damping force. 

 

Figure 1. Contact behavior between two particles. 

3. Incompressible Newtonian fluid dashpot and the new viscous contact model 

The damping factor is crucial in the dissipation of energy in oscillatory systems, such as 
mechanical, electrical, and structural systems [32]. There are two kinds of damping factors including 
the hysteresis damping factor and viscous fluid damping factor. Substantially, the damping factor 
implies the rate at which energy is lost from the system caused by non-conservation forces, such as 
friction, electromagnetic forces, air resistance, thermal forces, fluid viscosity, etc. In general, the 
damping factor in the contact force model was developed based on energy conservation or proposed 
by solving a vibration system. In this section, the non-conservation force is treated as the viscous force 
from the fluid. Accordingly, a new damping factor caused by the incompressible Newtonian fluid is 
developed based on the Navier-Stokes equations. Subsequently, we also propose a new contact force 
model by means of the fluid dashpot in conjunction with the Hertz contact law. 

When a small sphere moves through an incompressible Newtonian viscous fluid, the Navier-
Stokes equations reduce to the Stokes equation for the low Reynold number flow 
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                                     (2) 

where u is the fluid velocity field; p is the pressure field; and µ is the dynamic viscosity of the fluid 
(its unit is Pa.s). u  is the gradient of the velocity field. 

To derive the viscous force, there are two boundary conditions: (i) No-slip condition at the 
sphere’s surface, that is, the fluid velocity at the surface of the sphere is equal to the velocity of the 
sphere. (ii) At infinity, the fluid is undisturbed. When the radius of the fluid velocity field r approaches 
infinity, the fluid velocity u approaches zero. Therefore, the Stokes equation in Eq (2) for a sphere 
moving through a viscous fluid can be solved by means of the boundary conditions. The velocity field 
around the sphere can be described in polar coordinates (r, θ) regarding the low Reynold number flow 
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u e e                (3) 

where θ is the polar angle; r is the polar radius; R is the radius of the sphere; er is the unit vector in the 
radial direction; eθ is the unit vector in the polar direction.  

The pressure field p (r, θ) associated with the fluid is written as  

  2

3
, cos

2

UR
p r

r

                                (4) 

where U is the velocity of the sphere relative to the fluid. 
The stress tensor σ over the sphere’s surface is given by  

  I u u
T

p                                   (5) 

where I is the identity tensor.  
The drag force on the sphere is evaluated by integrating the stress tensor, which is described as 

   I u u n
T

d S
F p dS                              (6) 

where 2 sindS R d   is the differential surface element on the sphere.  
where n is the outward normal to the surface of the sphere, the drag force is solved as [46] 

6dF RU                                     (7) 

where µ is dynamic viscosity of the fluid (Pa·s or kg/(m·s)). 
when the Reynold number Re is greater than 1 and less than 800, a correction factor of the drag force 
can be written as 

  0.6871 0.15Re Re                                (8) 
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where Reynold number is expressed as 
f

R
Re

v





 , R is the radius of the sphere, and fv




   is the 

kinematic viscosity of the fluid (m²/s). 
According to the physical model in Figure 1, U represents the velocity of the sphere relative to 

the fluid, which can serve as the relative impact velocity   in the contact behavior. Likewise, the 
radius of sphere R acts as the relative contact deformation   because the drag force emanating from 
the so-called fluid just occurs in the impact behavior. In other words, the drag force is not available 
when the contact behavior does not happen. Moreover, the viscosity of fluid µ is the contact material’s 
bulk viscosity because there is no natural fluid during impact between the colliding particles. 
Consequently, Eq (7) can be rewritten as  

 6dF Re                                 (9) 

The fluid dashpot model is expressed as  

 6D Re                                 (10) 

When the fluid dashpot is derived by the Navier-Stokes equations, a new nonlinear viscous contact 
force model can be formulated based on the Hertz contact law 

 
3 3

2 2 6F K D F K Re                             (11) 

where m is the mass of the contact system  1 2 1 2m m m m m  ; K   is the Hertz contact force, and 

K is the Hertz contact stiffness coefficient, which is written as  
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                         (12) 

where Ri and Rj are the radii of curvature of the contact bodies, Ei and Ej are Young’s modulus of the 

contact bodies, and i and j are the Poisson ratios of the contact material. 

4. A new CoR model based on the viscous contact model 

Since the coefficient of restitution (CoR) model is closely related to the damping term in the 
contact force model, we derive a new CoR model based on the new viscous contact force model and 
energy conservation during impact. To validate the correctness of the new CoR model, we collect a 
series of experimental data to prove the new CoR model. More importantly, the reasonability of the 
CoR model provides solid evidence for the new viscous fluid dashpot model and the new viscous 
contact force model. Therefore, we first derive a new CoR model, which is then validated by 
experimental data from the metal and nonmetal impact events. On this basis, the new viscous contact 
force model is also validated by the reference solution and new CoR model. 
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4.1. Development of a new CoR model 

The damping term in the contact force model serves to dissipate kinetic energy during impact. 
Similarly, in the new viscous contact force model, the fluid dashpot plays the role of dissipating energy. 
In contrast, the elastic force term functions to store energy, facilitating the separation of the contact 
bodies after the impact. Regarding energy conservation during the compression phase, we aim to derive 
a new CoR model based on the new viscous contact force model.  

First, the dissipation energy can be estimated by directly integrating the new damping force term 
in Eq (11) 

max

0
E D d


                                   (13) 

where max is the maximum contact deformation.  

The impact velocities before and after the collision can be written as  
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where 0 is the initial impact velocity; c is the impact velocity at the compression phase; r is the 
impact velocity at the recovery phase; and f  is the impact velocity after impact. Based on the 
definition of Newton’s CoR, the relationship between the impact velocities before and after the 
collision can be expressed as 

0

fe
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

 

                                    (15) 

where e is the coefficient of restitution. 
Therefore, the total energy loss during impact, including both compression and recovery phases, 

can be written as  
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The total dissipation energy can be calculated as  
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Moreover, the energy loss before and after the collision can be expressed as based on the energy 
conservation [47] 

     2 2
0

1
1

2
E T T m e                                (18) 

where  T  is the kinetic energy before impact, and  T  is the kinetic energy after impact. 
The fluid dashpot model D is derived from the Navier-Stokes equations, which can be used to 

precisely represent the energy dissipation during impact. Nevertheless, it is emphasized that the 
proposed fluid dashpot model is used to describe the energy dissipation for the collision behavior 
between the solid bodies. The dynamic viscosity of the fluid can be treated as the internal damping of 
the solid contact body, which is equivalent to the CoR for the collision behavior of the colliding 
particles. Accordingly, combining Eqs (17) and (18), the maximum contact deformation can be 
expressed as  
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Further, the equation about energy conservation during the compression phase is expressed as  
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According to Eq (16), the dissipation energy at the compression phase is given by  
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Combining Eqs (20) and (21),  
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In order to obtain the analytical solution of the CoR, an assumption ( 2.5 2
max max  ) is introduced 

into Eq (22). The maximum contact deformation can be solved as  
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where ψ is a length parameter [20], which aims to obtain an analytical solution for the CoR model. 
Combining Eqs (19) and (23), the new CoR model can be obtained as  
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4.2. Validation of the CoR and viscous fluid dashpot models 

To validate the new CoR and new viscous fluid dashpot model, we collect two kinds of 
experimental data from literature about metal and nonmetal impact events. Here, we aim to prove the 
correctness of the new CoR model and illustrate the generality of the new viscous fluid dashpot model 
at the same time. On this basis, we prove the reasonability of the new viscous contact force model 
according to the reference solutions obtained from the definition of Newton’s CoR model. The 
simulation parameters related to metal material are derived from two separate sets of experimental 
tests, as shown in Table 1.  

Table 1. Contact parameters for the metal materials. 

Experiments Material R (mm) ρ (kg/m3) E (GPa) ν μ (Pa.s) 

Jackson et al.[48] 
Aluminum 
oxide 

2.5 4000 370 0.22 1.5E5 

Steel ∞ —— 200 0.29 —— 

 

Figure 2. Comparison between the experimental data from Jackson et al. and the new CoR model. 

In Figure 2, the new CoR model is almost the same as the fitting curve generated by the 
experimental data, which adequately proves the reasonability of the new CoR model. Further, the new 
viscous dashpot model is also validated by this comparison analysis. This conclusion illustrates the 
new viscous dashpot model is capable of describing energy dissipation during impact. More 
importantly, the conclusion drawn from this comparative analysis indirectly demonstrates that the new 
viscous contact model can accurately describe the collision process between particles, particularly the 
post-impact velocity. It is worth noting that the post-impact velocity can be determined in advance 
according to the definition of Newton’s CoR model when the initial impact velocity and CoR are known.  
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Table 2. The error between the reference solution and post-impact velocity based on 
Jackson et al. experiments. 
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0.1 0.9679 0.0968 0.0967 0.0418% 
0.5 0.9181 0.4591 0.4590 0.0028% 
1.0 0.8800 0.8800 0.8799 0.0159% 
1.5 0.8510 1.2765 1.2760 0.0360% 
2.0 0.8270 1.6540 1.6529 0.0689% 
2.5 0.8062 2.0155 2.0135 0.0997% 
3.0 0.7877 2.3631 2.3601 0.1274% 
4.0 0.7559 3.0236 3.0173 0.2094% 
5.0 0.7289 3.6445 3.6336 0.2988% 
6.0 0.7054 4.2324 4.2153 0.4031% 

 

Figure 3. Dynamic responses of the new viscous contact model using Jackson et al. 
experimental parameters. 

Table 2 provides a series of the initial impact velocity. Furthermore, the CoR value can be 
calculated based on the new CoR model. Therefore, the reference solution of the post-impact velocity 
can be confirmed, too. They can serve as reference solutions to validate the accuracy of the new viscous 
contact force model. The post-impact velocity in Table 2 is calculated based on the new viscous contact 
force model. The error percentage between the post-impact velocity and post-impact velocity does not 
exceed 1% under different initial impact velocities, which proves that the new viscous contact force 
model possesses high accuracy when evaluating the impact behavior. The relationships between the 
contact force and contact deformation are displayed in Figure 3(a) when the initial impact velocity is 
equal to 1, 2, 3, and 4 m/s, respectively. The relationships between the impact velocity and contact 
deformation in the case of different initial impact velocities are displayed in Figure 3(b). The dynamic 
responses in Figure 3 obtained from the new viscous contact force model showcase a reasonable impact 
process. The greater the impact velocity is, the greater the contact force generated. Likewise, the larger 
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the impact velocity is, the larger the contact deformation produced. The post-impact velocities in 
Figure 3(b) can be found in Table 2 when the initial impact velocity is discrepant, which demonstrates 
that the new viscous contact force model possesses higher accuracy in simulating collision behavior. 
Table 3 provides material properties of the nonmetal, and Horabik et al. measured the relationship 
between the CoR and impact velocity in Figure 4. 

Table 3. Contact parameters for the nonmetal materials. 

Experiments Material R (mm) ρ (kg/m3) E (GPa) ν μ (Pa.s) 

Horabik et al. [49] 
Rapeseed 0.96 1020 0.065 0.24 3.1E2 
Marble ∞ —— 71 0.3 —— 

 

Figure 4. Comparison between the experimental data from Horabik et al. and the new CoR model. 

Table 4. The error between the reference solution and post-impact velocity based on 
Horabik et al. experiments. 
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0.1 0.9576 0.0958 0.0950 0.8372%
0.4 0.8899 0.3560 0.3560 0.0022%
0.6 0.8628 0.5177 0.5177 0.0050%
0.8 0.8403 0.6722 0.6722 0.0042%
1.0 0.8206 0.8206 0.8206 0.0030%
1.2 0.8031 0.9637 0.9637 0.0017%
1.4 0.7873 1.1022 1.1021 0.0073%
1.6 0.7728 1.2365 1.2363 0.0162%
1.8 0.7595 1.3671 1.3666 0.0402%
2.0 0.7470 1.4940 1.4933 0.0502%
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Figure 5. Dynamic responses of the new viscous contact model using Horabik et al.’s 
experimental parameters. 

The new CoR model agrees with the fitting curve obtained by the experimental data, even if the 
contact material changes from metal in Figure 2 to nonmetal in Figure 4. This conclusion confirms 
that the new fluid dashpot model is effective in representing energy dissipation during impacts 
involving non-metal materials. Likewise, Table 4 provides the reference solutions to validate the 
accuracy of the new contact force model. The error percentage between the reference solution and 
post-impact velocity under the dissimilar impact velocities is less than 1%. The dynamic responses 
obtained from the new contact force model can be seen in Figure 5. Since the contact material is 
nonmetal, the contact deformation in Figure 3 is significantly larger than that in Figure 5, even though 
the impact velocity in Table 4 is smaller than that in Table 2. These simulation conclusions justify that 
the new viscous contact force model is reasonable in simulating the non-metal impact behavior. 

In this section, we present two types of contact materials to validate the new CoR model using 
experimental data. The effectiveness of the new viscous fluid dashpot model is also demonstrated 
through experimental validation of the CoR model, confirming its capability to describe energy 
dissipation during impact. More importantly, the high accuracy and robustness of the new viscous 
contact force model are validated using experimental CoR data in conjunction with reference solutions. 
The model is shown to effectively estimate impact behavior for both metallic and nonmetallic materials. 
It is worth emphasizing that the new viscous contact force model does not explicitly incorporate the 
CoR parameter into the fluid dashpot. However, this does not hinder the fluid dashpot’s ability to 
describe energy dissipation during the collision process.  

Notably, the dynamic viscosity coefficient μ of the fluid can serve as an equivalent to the CoR 
within the fluid dashpot, regulating the magnitude of energy dissipation during impact. This 
highlights the advantages of using μ to describe energy dissipation and supports the validity of the 
investigation’s approach employing an incompressible Newtonian fluid to model energy dissipation 
in particle collisions. From a fluid dynamics perspective, energy dissipation during collisions between 
solids can also be effectively described, opening new avenues for extending this concept. The bulk 
viscosity of the solid is equivalent to the dynamic viscosity coefficient μ of the fluid. Specifically, any 
physical quantity capable of representing energy dissipation and exhibiting damping characteristics 
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can be incorporated into contact force models to accurately simulate energy dissipation in particle 
collision processes. 

5. Comparison of the new model with existing viscous models 

Once the reasonability of the new contact model has been validated, its advantages should be 
highlighted by comparing the existing viscous contact force models, including the Kuwabara and Kono 
(KK) model [25], Tsuji et al. (TS) model [26], Jankowski (JA) model [27], and Lichtensteiger (LI) 
model [50]. The mathematical formulations of each model can be seen in Table 5. 

Table 5. The existing viscous contact force models. 

Viscous models Mathematical formulations 

KK model [25] 
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TS model [26] 
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(Kh is the Hertz contact stiffness coefficient; χts is the viscous fluid damping factor; e is 

the CoR; M is the equivalent mass of the contact bodies) 

JA model [27] 
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(Kh is the Hertz contact stiffness coefficient; χja is the viscous fluid damping factor; e is 

the CoR; M is the equivalent mass of the contact bodies) 

LI model [50] 

3 4/5 1/5
2

3/52 2
0

5 ln
,

ln
h

h li li

e K M
F K

e
   


  




  

(Kh is Hertz contact stiffness coefficient; χli is the viscous damping factor; e is the CoR; 

M is the equivalent mans of the contact bodies) 

A systematic comparison analysis between the new contact model and the existing contact model 
is implemented in this section, which aims to showcase the excellent dynamic performance in 
calculating the impact behavior of the colliding particles. The simulation parameters are displayed in 
Table 1. The initial impact velocity is equal to 0.5 m/s, the CoR is calculated as 0.9181 according to 
the new CoR model in Eq (24). The reference solution of the post impact velocity is equal to 0.4591 
m/s in Table 2 based on the definition of Newton’s CoR, which is used to rate which viscous contact 
model is the most accurate one. The post impact velocities obtained from the five dissimilar kinds of 
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the viscous contact model are displayed in Table 6. The error between the post impact velocity and the 
reference solution can be seen in Table 6 for each viscous contact model. 

Table 6. Error analysis between viscous contact force models and reference solution. 

Contact models 0  (m/s) e f  (m/s) 0
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New model 0.5 0.9181 0.459037 0.0028% 
TS model 0.5 0.9181 0.459064 0.0030% 
JA model 0.5 0.9181 0.418624 8.8064% 
KK model 0.5 0.9181 0.301940 34.2250% 
LI model 0.5 0.9181 0.307863 32.9348% 

 

Figure 6. Comparison among the existing viscous contact model and new viscous contact model. 

The newly developed viscous contact model demonstrates superior accuracy compared to all 
viscous contact models, and it is almost the same as the TS model, which is widely regarded as the 
most precise among the existing viscous contact models [19]. In terms of the contact force, the new 
model closely aligns with the JA and TS models, as illustrated in Figure 6(a), highlighting its 
consistency with previously established approaches. On the other hand, the KK and LI models exhibit 
significant energy dissipation discrepancies and dissipate more energy observed in Figure 6(a). This 
excessive energy dissipation results in post-impact velocities, presented in Figure 6(b), that deviate 
substantially from the reference solution. Thereby, they fail to provide accurate predictions. In contrast, 
the new viscous contact model not only accurately captures the maximum contact force but also can 
accurately calculate the post-impact velocity. This conclusion demonstrates that the new viscous 
contact model outperforms all existing viscous contact models in accurately estimating the maximum 
contact force and establishes it as a more reliable and precise approach in contact dynamics modeling. 

6. Application of the new viscous contact model in colliding particle systems 

The data and model in Section 4 belong to the theoretical analysis of the new contact force model. 
In this section, we attempt to apply the new contact model for evaluating the particle systems, including 
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the bouncing ball and vertical granular chain. We aim to prove the practicability of the new contact 
force model by comparing its simulation results to the experimental data. 

6.1. Bouncing ball 

A classical bouncing ball example is shown in Figure 7. The experiments involve tracking the 
trajectory of a solid sphere as it falls with an initial impact velocity of 0.54 m/s onto a solid wall. The 
ball has a radius of 3 mm. Its initial height above the ground is 0.04 m. No apparent rotation is observed 
in these devices during the release of the sphere. The spheres are held in place by suction at the tip 
of a small tube where a reduced pressure is generated by a micropump. The detailed experimental 
setup can be referred to in the literature [51]. When the contact behavior in the bouncing ball example 
is modeled as an elastic collision, energy dissipation is considered only due to the transmission of 
seismic waves. To evaluate the proposed contact model’s practicability in handling collision behavior 
in particle systems, the material of the ball is Teflon, its Young’s modulus is 0.4 GPa, Poisson’s ratio 
is 0.46, and the density is 2150 kg/m3. The bulk viscosity of stainless steel is 3.4 × 103 Pa.s; however, 
when the number of collisions exceeds 5, it becomes 5.0 × 103 Pa.s to dissipate more kinetic energy of 
the ball. The plate is made of glass, its Young’s modulus is 60 GPa, Poisson’s ratio is 0.24, its density 
is 2500 kg/m3, and its thickness is 12 mm. 

 

Figure 7. Bouncing ball. 

Remarkably, the displacement of the ball shown in Figure 8(a), as calculated using the new 
contact force model, aligns closely with the experimental data. This consistency demonstrates the 
model’s ability to accurately estimate the impact behavior between the ball and the ground. Such 
agreement validates the reliability and accuracy of the new contact force model in capturing the key 
dynamics of collision events. More importantly, this finding supports the feasibility of employing the 
fluid concept to describe energy dissipation during solid impact events.  

The bulk viscosity of a solid can effectively be interpreted as equivalent to the dynamic viscosity 
of a fluid, reinforcing the idea that fluid-based concepts can be successfully extended to the modeling 
of solid impacts. This innovative perspective opens new possibilities for understanding and simulating 
energy dissipation in complex collision scenarios. Furthermore, as shown in Figure 8(b), the velocity 
of the ball post-impact also matches well with the experimental data. This highlights the capability of 
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the new viscous contact force model to not only accurately capture the displacement characteristics 
during the impact process but also precisely determine the post-impact velocity. By accurately 
describing both the displacement and velocity dynamics, the model demonstrates its robustness and 
comprehensive applicability in representing the physical phenomena of impact behavior. 

  

Figure 8. Dynamic responses of the bouncing ball. 

6.2. Vertical granular chain 

The experimental setup in Figure 9 illustrates a one-dimensional vertical granular chain [52]. The 
chain is composed of 21 identical stainless-steel particles, excluding the magnetic steel ball. Both 
chains are positioned on a red brass plate equipped with a piezoelectric sensor to measure the force 
exerted on the base. Additionally, two piezoelectric sensors are embedded in particles 13 and 17 
(counting from the top of the chain, not including the striker). Nonlinear solitary waves are initiated 
by the impact of alumina (Al2O3) cylindrical strikers on the topmost particle of the chain. The detailed 
structure of this system can be found in references [53,54]. The magnetic steel ball used in the setup 
has a radius of 2.5 mm and a mass of 0.5115 g, while the grain has a radius of 2.38 mm. The material 
properties are summarized in Table 7. The particle mass is 0.47 g, and the magnetic force is set to 0. 
The striker velocity is 0.44 m/s. This experiment investigates the propagation of solitary waves under 
different contact conditions. The simulation runs for a total time of 400 μs with a time step of 0.03 μs. 
The bulk viscosity of stainless steel is 1.25 × 105 Pa.s. The integration is performed using MATLAB’s 
builtin Ode45 solver. 

Table 7. Material parameters. 

Material  Young’s modulus  Poisson’s ratio  Yield stress  
Stainless steel 316 193 GPa 0.300 940 MPa 
Red brass 115 GPa 0.307 250 MPa 
Al2O3 aluminum  416 GPa 0.231 500 Mpa  
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Figure 9. The experimental setup of the vertical granular chain [52]. 

To observe the solitary waves shown in Figure 10, the contact force values for the 13th particle 
and the base were shifted along the Y-axis by 25 N and -30 N, respectively. In the first curve, the 
contact force acting on the 13th particle propagates as a solitary wave along the vertical granular chain. 
Similarly, the curve for the 17th particle exhibits a comparable propagation pattern. However, the peak 
values in the 17th particle’s curve are spaced closer together, reflecting the increased frequency of 
contact interactions as the particles approach the base of the chain. When the solitary wave reaches the 
base, it is reflected back, generating a rebound wave illustrated in the third curve of Figure 10. This 
reflected wave underscores the base’s function in redirecting the energy of the incoming solitary wave. 

 

Figure 10. Soliton wave propagation in the vertical granular chain. 
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Remarkably, the solitary wave propagation calculated using the new viscous contact force model 
aligns closely with the experimental data, regardless of the specific particle analyzed. This agreement 
demonstrates the model’s robustness and accuracy in capturing the dynamics of granular chain 
collisions. Furthermore, the new viscous contact force model successfully evaluates not only the 
impact behavior of individual colliding particles but also the complex multi-compression and multi-
collision phenomena that occur within the vertical granular chain. This capability is particularly 
important for analyzing dynamic systems where multiple interactions occur in rapid succession, as in 
granular chains. The findings underscore the validity and precision of the proposed viscous contact 
force model. By accurately simulating both the propagation and reflection of solitary waves, the model 
provides a reliable tool for studying granular dynamics. This work exemplifies how fluid-inspired 
contact models can be effectively applied to solid particle interactions, offering new insights into 
energy transfer and dissipation in granular materials. 

7. Conclusions 

We introduce a novel viscous fluid damping factor derived from the behavior of incompressible 
Newtonian fluids based on the Navier-Stokes equations. The dynamic viscosity of the fluid, as 
incorporated into the new viscous fluid damping factor, represents the energy dissipation occurring 
during particle impacts. This is analogous to the bulk viscosity of solid bodies during collisions. Once 
the viscous fluid damping factor is established, a new viscous contact force model is formulated, 
grounded in the Hertz contact law. Subsequently, a novel coefficient of restitution (CoR) model is 
developed by applying energy conservation principles during the compression phase of impact. The 
validity of the CoR model is rigorously tested against experimental data for metallic and nonmetallic 
materials, affirming the reliability and correctness of the proposed viscous fluid damping factor. 
Furthermore, the reference solution for the post-impact velocity is determined using the new CoR 
model and Newton’s definition of the CoR. This validation demonstrates that the new viscous contact 
force model effectively predicts the post-impact motion under varying initial velocities, confirming its 
robustness and accuracy. 

To highlight the advantages of the proposed viscous contact force model over existing models, a 
systematic comparative analysis is conducted. The CoR values are computed using the new CoR model, 
and an error analysis is performed to compare these results with the reference solution. The comparison 
underscores that the new viscous contact model outperforms existing models in accuracy, as it 
consistently provides results closest to the reference solution. The practical applicability of the new 
viscous contact model is illustrated through two examples: A bouncing ball scenario and a vertical 
granular chain. In the case of the bouncing ball, the model successfully reproduces the dynamic 
response of the ball impacting a rigid plate, showing excellent agreement with experimental data. For 
the vertical granular chain, the model demonstrates its capability to handle complex phenomena such 
as multi-collision and multi-compression dynamics, accurately replicating the propagation of solitary 
waves within the chain.  

In summary, this research highlights the reliability and effectiveness of the new viscous contact 
force model in analyzing impact behaviors. By bridging fluid-based analogies with solid collision 
dynamics, the study provides a robust framework for exploring complex impact systems. The proposed 
model not only enhances our understanding of energy dissipation and contact mechanics but also paves 
the way for future advancements in impact modeling across many applications. 
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