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Abstract: In this paper, we focus on the steady-state bifurcation problem of the nonlinear Burgers
equation within a bounded domain, considering both homogeneous Dirichlet boundary conditions and
homogeneous Neumann boundary conditions with a mean value constraint. Unlike previous studies,
we develop an enhanced turbulence model by incorporating nonlinear higher-order terms (such as
u2 and u3) and linear source terms λu into the one-dimensional Burgers equation. Our steady-state
bifurcation analysis establishes for the first time how the coupled forward energy cascade and inverse
energy transfer mechanisms collectively govern the dynamics of initial flow instability. By combining
the spectral theorem for a linear compact operator with the normalized Lyapunov–Schmidt reduction
method and the implicit function theorem, we derive the complete criterion for the critical bifurcation
condition, the explicit form of the bifurcation solution, and its regularity.
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1. Introduction

Consider the nonlinear Burgers equation:∂u
∂t = γ

∂2u
∂x2 + λu − au∂u

∂x + bu2 + cu3, (x, t) ∈ (0, π) × (0,∞),
u(x, 0) = ψ(x), x ∈ (0, π).

(1.1)

Here, (0, π) is a continuous bounded domain in R, and u(x, t) represents the fluid velocity at position
x and time t. The term λu denotes the linear source term, where λ > 0 is a system parameter. The
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term γ ∂
2u
∂x2 represents the momentum diffusion effect caused by fluid viscosity, with γ > 0 being the

viscosity coefficient satisfying 0 < γ < 1. Furthermore, bu2 and cu3 describe the nonlinear effects that
dominate the fluid dynamics, where b > 0 and c > 0 indicate that the nonlinear force increases with
the flow velocity u. The nonlinear convective term au∂u

∂x characterizes the self-convection effect of the
fluid velocity field, with a > 0 representing the mechanism of energy transfer from large-scale vortices
to small-scale vortices. Notably, when a = 1 and λ = b = c = 0, the equation reduces to the form
introduced initially by Bateman in his paper [1], as shown below.∂u

∂t = γ
∂2u
∂x2 − u∂u

∂x , (x, t) ∈ (0, π) × (0,∞),
u(x, 0) = ψ(x), x ∈ (0, π).

(1.2)

Burgers [2] expanded on the mathematical modeling of turbulence using Eq (1.2), making a significant
contribution to fluid mechanics. This equation, subsequently named the Burgers equation, is widely
recognized as one of the most prominent models incorporating nonlinear propagation and diffusion
effects when γ → 0, Eq (1.2) simplifies to the inviscid Burgers equation. Conversely, when u→ 0, the
viscous Burgers equation (1.2) can be converted to the linear heat equation.

The Burgers equation is characterized by its nonlinear convection and diffusion terms. As a one-
dimensional simplified model of the Navier–Stokes equations, it provides an essential theoretical tool
for studying complex phenomena such as turbulence and shock waves. Widely applied in fluid me-
chanics [3], nonlinear acoustics [4] and gas dynamics [5]. Furthermore, its exact solutions and simple
form make it a crucial benchmark for developing and validating numerical methods, particularly in
turbulence and shock wave simulations under high Reynolds number conditions.

Given that the exact solution of the Burgers equation is known, it can serve as a benchmark so-
lution in numerical simulations of fluid dynamics, enabling the evaluation and comparison of numer-
ical methods. Numerous studies have employed the Burgers equation for comparative analysis and
improvement of numerical methods. These include classical approaches such as the Galerkin finite
element method [6], cubic Hermite finite element method [7], standard finite element method [8], fi-
nite difference method [9], and finite volume method [10], along with more recent advancements. For
instance, Kaur et al. [11] developed a compact finite difference scheme for the 1D nonlinear Burg-
ers equation, achieving first-order temporal and fourth-order spatial accuracy, validated theoretically
and numerically. Further advancing the field of numerical solutions, Zhang and Yu [12] developed a
novel MQ quasi-interpolation meshless method, demonstrating superior accuracy to finite difference
methods in solving Burgers’ equation shock problems at high Reynolds numbers through theoretical
convergence proofs and numerical validation. Similarly, Shi and Yang [13] first propose a temporal
two-grid difference method for the nonlinear viscous Burgers equation. The Crank–Nicolson-based
scheme proves more efficient than standard finite difference methods while maintaining rigorous L2

and L∞ stability.
Beyond these advancements in numerical methodologies, fundamental theoretical understanding

of the Burgers equation’s dynamical behavior has also been significantly advanced. For example,
Ortiz et al. [14] integrated boundary layer theory with PINNS for viscous Burgers solutions, proving
their capability to resolve both shock formation and viscous effects. Mouktonglang et al. [15] proved
periodic solution uniqueness for the Rosenau–RLW–Burgers equation, showing viscous effects control
convergence and oscillation dynamics. Li et al. [16] investigated the dynamic transition behavior of
the generalized Burgers equation under one-dimensional periodic boundary conditions, demonstrating
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that the bifurcation type is determined by parameter b while elucidating the influence of length scale
l, dispersion parameter δ, and viscosity coefficient υ on transition characteristics. These findings also
offer insights into turbulence control mechanisms.

Nevertheless, several critical questions remain unresolved. To our knowledge, the steady-state bi-
furcation behavior of nonlinear Burgers equations has not been thoroughly investigated—a research
gap with significant implications for elucidating the laminar-to-turbulent transition. To better capture
such flow characteristics, and inspired by Li’s work [16], we introduce both nonlinear higher-order
terms and linear source terms λu into the primitive Burgers equation.

In mathematical physics, bifurcation refers to the fascinating phenomenon of an abrupt transition
in the steady state of a dynamic system, triggered by changes in the system’s parameters. Specifically,
steady-state bifurcation arises from the study of the stability of nonlinear evolution equations. When
the system parameters λ reach critical values, the system loses its original stability, leading to the
emergence of new fixed points, limit cycles, and other dynamic behaviors. This theory is widely
applied in fields such as chemistry, biology, ecology, and engineering, serving as an essential tool for
analyzing changes in system stability.

Recent advances in bifurcation research of nonlinear evolution equations demonstrate the universal-
ity of bifurcation theory. For instance, Zhang et al. [17] illustrated the existence of a double eigenvalue
bifurcation for nonlinear equations with singularities that are fully degenerate of the second order and
nondegenerate of the third order, employing the normalized Lyapunov–Schmidt reduction method.
Similarly, Wei [18] employed the same methods to investigate a nonlinear parabolic system under non-
linear boundary conditions exhibiting steady-state bifurcation behavior. Guo [19] conducted a study
on the steady-state bifurcation of Langford’s PDE system emanating from both simple and double
eigenvalues. By integrating central manifold theory, Guo further analyzed the direction of the Hopf
bifurcation within the PDE system. Pan [20] applied dynamic transition theory to the problem of con-
vection in couple-stress fluid-saturated porous media. The study yielded significant results, including
the approximate bifurcation solution, the number of global attractors, and the finding that these attrac-
tors encompass four steady-state convection solutions. Wang [21] investigated the chemotaxis-fluid
coupled model, while Chen et al. [22, 23] further analyzed the existence and regularity of weak and
classical solutions.

Previous studies have focused on the steady-state bifurcation behavior in two-dimensional dynam-
ical systems, while recent work has extended these investigations to one-dimensional settings. Ma
et al. [24] employed topological degree theory and bifurcation theory to analyze the Robin problem
for the mean curvature equation in a one-dimensional Minkowski space. They provided a calculation
of the bifurcation curvature, which not only aids in understanding the existence of solutions for spe-
cific types of Minkowski-curvature equations in higher dimensions but also elucidates the properties
of these solutions. Extending these analytical approaches to 1D reaction-diffusion systems. Taylan et
al. [25] investigated one-dimensional non-self-adjoint reaction-diffusion equations, revealing a unique
Hopf bifurcation under zero-mean boundary conditions, and further characterized the primary transi-
tion behavior in the Burgers equation.

In this paper, we investigate the bifurcation problem of one-dimensional homogeneous boundary
value problems related to the Burgers equation. We develop a simplified model to simulate turbulent
behavior, which also provides a foundation for understanding high-dimensional turbulence properties.
Fan and Feng [26, 27] integrate linear stability analysis with nonlinear dynamical systems approaches,
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employing eigenvalue analysis and reduction techniques to elucidate parameter threshold-induced dy-
namic transition mechanisms and external field coupling effects. Building upon these investigations
of dynamic transitions, parallel theoretical advances have been made in steady-state bifurcation re-
search. The seminal works by Li et al. [28–30] established a bifurcation-theoretic framework em-
ploying Lyapunov–Schmidt reduction and eigenvalue analysis to characterize steady-state bifurcation
phenomena in diffusion systems. Inspired by these findings, we examine the influence of nonlinear,
higher-order viscous effects in turbulence on the emergence of steady-state bifurcation phenomena.
Using the bifurcation and transition theory developed by Ma and Wang [31,32], we analyze the steady-
state bifurcation of the nonlinear Burgers equation under various homogeneous boundary conditions.

Considering the System (1.1) with Dirichlet boundary conditions as follows:


∂u
∂t = γ

∂2u
∂x2 + λu − au∂u

∂x + bu2 + cu3, (x, t) ∈ (0, π) × (0,∞),
u(0) = 0, u(π) = 0,
u(x, 0) = ψ(x), x ∈ (0, π).

(1.3)

The Dirichlet boundary condition enforces zero fluid velocity at the boundary, corresponding physi-
cally to the no-slip condition between fluid and solid walls where complete momentum exchange oc-
curs. Significantly, the steady-state bifurcation in System (1.3) captures the essential dynamics of the
initial instability stage in wall-bounded turbulence [33], providing critical insights into the formation
mechanisms of turbulent boundary layers.

Researching the System (1.1) with mean value constraint Neumman boundary conditions as follows


∂u
∂t = γ

∂2u
∂x2 + λu − au∂u

∂x + bu2 + cu3, (x, t) ∈ (0, π) × (0,∞),
∂u
∂x |x=0= 0, ∂u

∂x |x=π= 0,∫ π
0

udx = 0, t ∈ (0,∞),
u(x, 0) = ψ(x), x ∈ (0, π),

(1.4)

The Neumann boundary condition with mean constraint specifies a zero gradient for the velocity field
u at the boundary, while the mean constraint enforces a zero spatial average of u. In turbulent flow
simulations, these mean-constrained Neumann conditions rigorously satisfy the mass conservation law
for shear flows. By constraining the total system momentum, they effectively suppress numerical oscil-
lations at high Reynolds numbers and significantly enhance solution stability. Importantly, the steady-
state bifurcation in System (1.4) directly captures the shear flow instability [34], with this simplified
model providing crucial theoretical insight into the onset of flow instabilities.

The rest of the paper is organized as follows: Section 2 formulates the abstract operator equation for
Eq (2.1) using bifurcation theory. Section 3 rigorously derives the explicit bifurcation solutions for the
Burgers equation under two types of homogeneous boundary conditions and establishes their regularity.
Building on these results, Section 4 reveals the universality of critical parameters, the stabilizing effect
of dissipation terms, and the influence of higher-order nonlinear terms on laminar-turbulent transition
under different boundary conditions, with numerical simulations demonstrating both subcritical and
supercritical bifurcation scenarios.
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2. Preliminary

In this paper, we focus on the existence of a bifurcation solution of (1.1), which satisfies the follow-
ing equation

γ
d2u
dx2 + λu − au

du
dx
+ bu2 + cu3 = 0, x ∈ (0, π). (2.1)

(2.1) with Dirichlet boundary and Neumann boundary conditions with mean value constraint, respec-
tively, are as follows: γ d2u

dx2 + λu − au du
dx + bu2 + cu3 = 0, x ∈ (0, π),

u(0) = u(π) = 0,
(2.2)


γ d2u

dx2 + λu − au du
dx + bu2 + cu3 = 0, x ∈ (0, π),

∂u
∂x |x=0=

∂u
∂x |x=π= 0,∫ π

0
udx = 0, in t ∈ (0,∞).

(2.3)

First, we denote by L2(0, π) the Lebesgue space of square productible functions defined in (0, π); let
H be the Hilbert space H = L2(0, π). We define H1 under the Dirichlet boundary and the Neumann
boundary conditions with mean value constraint, respectively, as follows:

H1 = {u ∈ H2[0, π] | u(0) = u(π) = 0},

H1 = {u ∈ H2[0, π] |
∫ π

0
u(x)dx = 0,

du
dx
|x=0=

du
dx
|x=π= 0}.

Then, we define the linear operators Lλ = −A + Bλ and the nonlinear operator G : H1 → H by

−Au = γ
d2u
dx2 , Bλu = λu,

G(u) = −au
du
dx
+ bu2 + cu3.

It is easy to see that Lλ is a completely continuous field.
We thus obtain the equivalent operator equation of the Burgers equation (2.1) as follows:

Lλu +G(u) = 0. (2.4)

Definition 2.1. [31] Suppose (0, λ), λ ∈ R1 is a trivial solution of Eq (2.4). If there exists λ0 ∈ R1 such
that when λ < λ0 or λ > λ0, Eq (2.4) has a nontrivial solution (uλ, λ) , (0, λ) and lim

λ→λ0
(uλ, λ) =

(0, λ0), lim
λ→λ0
∥uλ∥H1 = 0 , then it is said that the Eq (2.4) undergoes a bifurcation solution at (0, λ0).

Definition 2.2. [31] Let H and H1 be Hilbert spaces, and H1 ⊂ H being dense and compactly embed-
ded. A linear operator Lλ : H1 → H is called a completely continuous field if

Lλ = −A + Bλ : H1 → H,

A : H1 → H is a linear isomorphism with eigenvalues having positive real parts,
Bλ : H1 → H is a linear compact operator.
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Definition 2.3. [31] Let uλ ∈ H1 be a bifurcation solution of Eq (2.4) at λ = λ0. The bifurcation
solution is called regular, or nondegenerate, if the differential operator of Lλ +G(·, λ) at uλ

Lλ + DuG(uλ, λ) : H1 → H,

is a linear isomorphism for all 0 < |λ − λ0| < ε, where ε is sufficiently small.

Lemma 2.1. [31] Let L : H1 → H be a linear completely continuous field. Then the following
conclusions hold:

(i) if {λk | k ≥ 1} ⊂ C are the eigenvalues (counting multiplicity) of L, then we can choose

eigenvectors {ek} ⊂ H1 of L and eigenvectors {e∗k} ⊂ H∗1 of L∗ such that〈
ei, e∗j
〉

H

{
= 0 i , j,
, 0 i = j;

(ii) if ρ = λk = · · · = λn−k(n ≥ 1) is an eigenvalue of L with algebraic multiplicity m = n + 1 and

geometric multiplicity r = 1, then for any nonzero constant σ , 0, we can choose eigenvec-
tors {ek, . . . , ek+n} of L and eigenvectors {e∗k, . . . , e

∗
k+n} of L∗ such that we have

Lek = ρek,

Lek+1 = ρek+1 + σek,

. . .

Lek+n = ρek+n + σek+n−1,
L∗e∗k+n = ρe∗k+n,

L∗e∗k+n−1 = ρe∗k+n−1 + σe∗k+n,

. . .

L∗e∗k = ρe∗k + σe∗k+1;

(iii) H can be decomposed into the following direct sum of spaces

H = Ē1 ⊕ Ē2, E1 = span {ek | k ≥ 1} , E2 = {υ ∈ H1 | ⟨υ, ek⟩H = 0,∀k ≥ 1} ,

when Ē1 and Ē2 are the closures of E1 and E2 in H, respectively.

(iv) E1 and E2 are invariant subspaces of L

L : Ei → Ēi, i = 1, 2,

Moreover, ℓ = L |E2 has an inverse ℓ−1 = Ē2 → E2 ⊂ Ē2, such that

lim
n→∞

∥∥∥ℓ−n
∥∥∥ 1

n

H
= 0,∀u ∈ Ē2.

(v) For any u ∈ H, there exists a generalized Fourier expansion as follows

u =
∑

k

xkek + υ, υ ∈ Ē2, xk =
〈
u, e∗k,

〉
H∗ .
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In particular, if L : H1 → H has a complete spectrum, there exists a complete Fourier expansion as
follows:

u =
∞∑
k

xkek, xk =
〈
u, e∗k
〉

H .

Lemma 2.2. [31] Let xλ be the bifurcation equation of Eq (2.4), where

L1
λx + P1G(x + ϕ(x, λ), λ) = 0, (2.5)

has a bifurcation solution at λ = λ0. The bifurcation solution uλ = x + ϕ(x, λ) of Eq (2.3) is regular if
and only if xλ is regular with respect to Eq (2.5).

3. Bifurcation of the Burgers equation

We are ready to state the main result and the proof process in this section. For the System (2.2), we
have the following bifurcation theorem.

Theorem 3.1. System (2.2) bifurcates a bifurcation solution from (u, λ) = (0, γ) under the Dirichlet
boundary conditions, and the expression of the bifurcation solution is given by

ū = −
3π
8b

(λ − γ) sin x + o(|λ − γ|2).

Proof. We compute the eigenvalues and eigenvectors of Lλ.
Let ρk (k = 1, 2 . . . ) and ek (k = 1, 2 . . . ) be the eigenvalues and eigenvectors of the following eigen-

value problem 
−

d2ek
dx2 = ρkek, x ∈ (0, π),

ek(0) = ek(π) = 0,∫ π
0

e2
kdx = 1.

(3.1)

We obtain the specific form of the eigenvalues ρk(k = 1, 2 . . . ) and the corresponding eigenvec-
tors ek (k = 1, 2 . . . ) of Eq (3.1)

ρk = k2, ek =

√
2
π

sin kx.

Hence, the eigenvalues and the corresponding eigenvectors of the operator Lλ in Eq (2.4) are

{βk = λ − γρk | k = 1, 2 . . . }, {ek =

√
2
π

sin kx | k = 1, 2 . . . }.

According to Lemma (2.1), it can be obtained that the eigenvectors {ek | k = 1, 2 . . . } of Lλ form
an orthogonal basis for H1. Therefore, it is easy to obtain that the first eigenvalue of Lλ and the
corresponding eigenvector are

β1(λ) = λ − γ, β j(γ) , 0, j ≥ 2, e1 =

√
2
π

sin x.
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By the spectral theorem for the linear completely continuous fields (Lemma 2.1), we can decompose
the space H1 and H in a neighborhood of λ = γ as follows:

H1 = E1 ⊕ E2, H = E1 ⊕ Ē2,

where
E1 = span {e1} , E2 = span {e2, e3, . . . } ,

Then, the linear operator Lλ can be decomposed in a neighborhood of λ = γ as

Lλ = L1
λ ⊕ L2

λ, L1
λ : E1 → E1, L2

λ : E2 → Ē2.

Here, E1denotes the finite-dimensional kernel space of operatorLλ, whileE2represents its correspond-
ing infinite-dimensional complementary subspace (with its closure denoted by Ē2). Under this de-
composition, the restricted operatorL1

λacting on E1 constitutes a finite-dimensional linear operator that
reduces to the zero operator at the critical parameter λ0, whereas the restricted operator L2

λ acting on
E2 forms a bounded linear operator that preserves its invertibility at λ0.

We have u = u1 + u2 with u ∈ H1, where u1 ∈ E1 and u2 ∈ E2. Now assume

u1 = x1e1, u2 =

∞∑
j=2

y je j, x1, y j ∈ R.

When the linear operator Lλ possesses a nontrivial kernel E1 at the critical parameter λ0, the direct
solution becomes problematic due to the operator’s non-invertibility. To address this, we employ the
Lyapunov–Schmidt reduction method, decomposing Eq (2.2) into two subproblems on the kernel space
E1 and its complementary subspace E2. The equation on E2 is first solved using the implicit function
theorem, thereby reducing the original problem to a finite-dimensional equation on E1. This method
essentially transforms an infinite-dimensional problem into a finite-dimensional one through dimen-
sional reduction.

By applying the normalized Lyapunov–Schmidt reduction method, we obtain the bifurcation solu-
tion for Eq (2.2). Substituting u1 and u2 into Eq (2.1), we have

β1(λ)x1 − a⟨(x1e1 +

∞∑
j=2

y je j)(x1
de1

dx
+

∞∑
j=2

y j
de j

dx
), e1⟩

+b⟨(x1e1 +

∞∑
j=2

y je j)2, e1⟩ + c⟨(x1e1 +

∞∑
j=2

y je j)3, e1⟩ = 0, (3.2)

and

β j(λ)y j − a⟨(x1e1 +

∞∑
j=2

y je j)(x1
de1

dx
+

∞∑
j=2

y j
de j

dx
), e j⟩

+b⟨(x1e1 +

∞∑
j=2

y je j)2, e j⟩ + c⟨(x1e1 +

∞∑
j=2

y je j)3, e j⟩ = 0, j ≥ 2. (3.3)
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Let us get the approximate expression for the reduction Eq (3.3) as

β j(λ)y j − a⟨x2
1e1

de1

dx
, e j⟩ + b⟨x2

1e2
1, e j⟩ + ◦(x2

1) = 0, j ≥ 2, (3.4)

Note that

⟨e1
de1

dx
, e2⟩ =

√
1

2π
, ⟨e1

de1

dx
, e j⟩ = 0, j ≥ 3,

⟨e2
1, e1⟩ =

8
√

2
3π
√
π
, ⟨e2

1, e j⟩ = 0, j ≥ 2.

Now, with Eq (3.3), we can calculate

y2 =
ax2

1β
−1(λ)
√

2π
, y j = ◦(x2

1), j ≥ 3,

substituting y j( j = 2, 3, . . . ) into Eq (3.2) yields

β1(λ)x1 + bx2
1⟨(e

2
1, e1⟩ + ◦(x2

1) = 0,

namely,

β1(λ)x1 +
8
√

2b
3π
√
π

x2
1 + ◦(x2

1) = 0, (3.5)

the approximate equation corresponding to Eq (3.5) is

β1(λ)x1 +
8
√

2b
3π
√
π

x2
1 = 0, (3.6)

therefore, Eq (3.6) has a bifurcation solution in a neighborhood of (x, λ)=(0, γ), which indicates that
Eq (3.6) undergoes a bifurcation at (x, λ)=(0, γ), and the expression for the bifurcation solution branch
is as follows:

x1 = −
3π
√
πβ1(λ)

8
√

2b
,

now, we give the expression for the bifurcation solution of Eq (2.2)

ū = −
3π
8b

(λ − γ) sin x + ◦(|λ − γ|2).

□

Remark 3.1. Theorem 3.1 establishes that under Dirichlet boundary conditions, the Burgers equa-
tion exhibits a steady-state bifurcation at the critical parameter λ0 = γ, yielding a bifurcated solution
that provides a one-dimensional simplified representation of the steady streak velocity profile in wall-
bounded turbulence. For λ < γ, the negative real part of the eigenvalue guarantees system stability,
whereas when λ > γ, the laminar base state becomes unstable and transitions to a new steady flow
configuration characterized by the sin x modal structure.
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Building upon the existence and analytical expressions of bifurcation solutions for System (2.2)
established in Theorem 3.1, we further investigate their regularity properties. The regularity analysis
of the bifurcation solution ū is of fundamental importance as it directly governs the spatiotemporal
evolutionary dynamics of system solutions and numerical computation accuracy. We further study the
regularity of the bifurcation solution ū of Eq (2.2), which gives the following conclusion.

Theorem 3.2. Let x1 be a bifurcation solution of Eq (3.6) at λ = γ. So the bifurcation solution ū of Eq
(3.3) is regular if and only if x1 is regular with respect to Eq (3.5).

Proof. First, considering the regularity of the bifurcation solution of Eq (3.6), we consider the deriva-
tive of Eq (3.6) with respect to x1, as follows:

β1(λ) +
16
√

2b
3π
√
π

x1.

This shows that the bifurcation solution of Eq (3.6) is regular. Lemma 2.2 further establishes that the
bifurcation solution ū of Eq (2.4) is also regular. The bifurcation solution ū of Eq (2.2) is regular. □

Then, we consider the Neumann boundary condition with mean value constraints. For system (2.3)
we have the following bifurcation theorem.

Theorem 3.3. System (2.3) bifurcates a bifurcation solution from (u, λ) = (0, γ) under the Neumann
boundary condition with the mean value constraint, and the expression of the bifurcation solution is as
follows:

ū = −
3π
4a

(λ − γ) cos x + o(|λ − γ|2).

Proof. By solving Lλ = −A + Bλ for all eigenvalues and eigenvectors, following the proof of Theorem
3.1, we can obtain the eigenvalues and eigenvectors of Eq (2.4) as follows:

{βk(λ) = λ − γk2 | k = 1, 2 . . . }, {ek =

√
2
π

cos kx | k = 1, 2 . . . }.

Through Lemma 2.1, we obtain that the eigenvectors {ek | k = 1, 2 . . . } of Lλ form an orthogonal basis
for H1. Hence, it can be easily obtained that

β1(λ) = λ − γ, β j(γ) , 0, j ≥ 2,

the corresponding eigenvectors are

e1 =

√
2
π

cos x.

Using the spectral theorem (Lemma 2.1), we can decompose the space H1 and the operator Lλ in a
neighborhood of λ = γ as follows:

H1 = E1 ⊕ E2, H = E1 ⊕ Ē2,

where
E1 = span{e1}, E2 = span{e2, e3, . . . },
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the linear operator Lλ can be decomposed near λ = γ as

Lλ = L1
λ ⊕ L2

λ, L1
λ : E1 → E1, L2

λ : E2 → Ē2,

Now, we let u ∈ H1, and u = u1 + u2, and assume that

u1 = x1e1, u2 =

∞∑
j=2

y je j, x j, y j ∈ R,

where u1 ∈ E1 and u2 ∈ E2.
We use the Lyapunov-Schmidt reduction method to obtain a bifurcated solution to Eq (2.4). First

we substitute u1 and u2 into Eq (1.4) to obtain

β1(λ)x1 − a⟨(x1e1 +

∞∑
j=2

y je j)(x1
de1

dx
+

∞∑
j=2

y j
de j

dx
), e1⟩

+b⟨(x1e1 +

∞∑
j=2

y je j)2, e1⟩ + c⟨(x1e1 +

∞∑
j=2

y je j)3, e1⟩ = 0, (3.7)

and

β j(λ)y j − a⟨(x1e1 +

∞∑
j=2

y je j)(x1
de1

dx
+

∞∑
j=2

y j
de j

dx
), e j⟩

+b⟨(x1e1 +

∞∑
j=2

y je j)2, e j⟩ + c⟨(x1e1 +

∞∑
j=2

y je j)3, e j⟩ = 0, j ≥ 2 (3.8)

the approximate equation for Eq (3.8) is

β j(λ)y j + a
2
√

2
π
√
π

x1y j + b⟨x2
1e2

1, e j⟩ + o(x2
1) = 0, j ≥ 2,

Note that

⟨e2
1, e2⟩ =

1
√

2π
, ⟨e2

1, e j⟩ = 0, j ≥ 3,

hence, we solve for

y2 = −
bx2

1
√

2π[
√

2πβ2λ + a( 2
π
)

3
2 x1]

, y j = o(x2
1), j ≥ 3,

substitute y j( j = 2, 3, . . . ) into Eq (3.7), noting that

⟨e1
de1

dx
, e1⟩ = −

4
√

2
3π
√
π
, ⟨e2

1, e1⟩ = 0,
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we have

β1(λ)x1 − ax2
1⟨e1

de1

dx
, e1⟩ + o(x2

1) = 0,

that is

β1(λ)x1 +
4
√

2a
3π
√
π

x2
1 + o(x2

1) = 0, (3.9)

the approximate equation corresponding to Eq (3.9) is

β1(λ)x1 +
4
√

2a
3π
√
π

x2
1 = 0. (3.10)

Then, Eq (3.9) has a bifurcation solution in the neighborhood of (x, λ)=(0, γ). This indicates that Eq
(3.9) undergoes a bifurcation at (x, λ)=(0, γ), and the expression for the bifurcation solution branch is
as follows

x1 = −
3π
√
πβ1(λ)

4
√

2a
,

thus, we obtain the expression for the bifurcation solution of Eq (2.3)

ū = −
3π
4a

(λ − γ) cos x + o(|λ − γ|2).

Based on the above analysis, we have successfully proven Theorem 3.3. □

Remark 3.2. Theorem 3.3 establishes that the system undergoes bifurcation at the first eigenvalue,
which consequently determines the stability threshold. The mean-constrained boundary condition
plays a pivotal role in the Lyapunov–Schmidt reduction, enabling the exact determination of the bi-
furcation solution’s analytical form. This solution captures the dynamical transition of confined shear
flow from steady-state destabilization to finite-amplitude coherent mode formation.

Regarding the regularity of the bifurcation solution ū of Eq (2.3), we have the following conclusions.

Theorem 3.4. Let x1 be a bifurcation solution of Eq (3.9) at λ = γ. The bifurcation solution ū of Eq
(2.4) is regular if and only if x1 is regular with respect to Eq (3.10).

Proof. First, let us consider the regularity of the bifurcation solution of Eq (3.6). Then, we consider
the derivative of Eq (3.6) with respect to x1, which is as follows:

β1(λ) +
8
√

2a
3π
√
π

x1.

Substituting the bifurcation solution of Eq (3.6) into the above expression yields −(λ − γ). If a suffi-
ciently small decentered neighborhood −(λ − γ) , 0 of λ = γ holds, this shows that the bifurcation
solution of Eq (3.6) is regular. According to Lemma 2.2, we prove that the bifurcation solution ū of Eq
(2.4) is regular. Hence, the bifurcation solution ū of Eq (2.3) is regular. □

Electronic Research Archive Volume 33, Issue 5, 2972–2988.



2984

4. Conclusions

Based on the spectral theorem analysis of the linear fully continuous field, this paper uses the nor-
malized Lyapunov–Schmidt reduction method to rigorously derive the expressions of the bifurcation
solutions of the one-dimensional nonlinear Burgers equation under Dirichlet boundary conditions and
Neumann boundary conditions with mean-value constraints and demonstrates the regularity of the bi-
furcation solutions. We find that the bifurcation points of Systems (2.2) and (2.3) are (0, γ), and the
bifurcation solutions both maintain regularity. This also shows that when the system undergoes bifurca-
tion, the critical parameter λ0 has universality independent of boundary conditions, and the dissipation
term plays a stabilizing role under both boundary conditions.

However, the expressions of the bifurcation solutions corresponding to the two types of boundaries
are entirely different. From the structure of the bifurcation solutions, the sin x modal solution gener-
ated by the Dirichlet boundary reflects the characteristics of wall-constrained flow, with its amplitude
showing an inverse proportionality to the coefficient b of the nonlinear square term clear manifestation
of the energy dissipation role played by the u2 term. The cos x modal solution generated by the Neu-
mann boundary with mean-value constraint describes the characteristics of confined shear flow, where
the amplitude is regulated by the coefficient a of the convection term, revealing the energy transport
process dominated by non-convection terms. In turbulent motion, the spatial modal differences of the
bifurcation solutions indicate different transition paths: the Dirichlet boundary case corresponds to
the formation of wall-turbulence streak structures [35], whereas the Neumann case corresponds to the
evolution process of coherent structures in confined shear flow [36].

To better visualize the dependence of the bifurcation solution ū on the system parameter λ, we set
the viscous coefficient γ = 0.5, nonlinear convection coefficient a = 1, and higher-order nonlinear
coefficients b = c = 1. Based on the conclusions of Theorems 3.1 and 3.2, we employ MATLAB to
generate three-dimensional plots illustrating the bifurcation behavior of solutions ū for Systems (2.2)
and (2.3) at the critical parameter λ0, demonstrating both subcritical and supercritical bifurcation sce-
narios.

(a) (b)

Figure 1. Dirichlet boundary condition: (a) subcritical λ < γ; (b) supercritical λ > γ.

Figure 1 presents a three-dimensional visualization of the System (2.2) dynamical transition: When
λ < γ, viscous dissipation dominates, resulting in a smooth parabolic velocity profile characteristic of
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stable laminar flow; when λ > γ, the system develops sin x modulated streak structures with alternating
high- and low-speed bands between near-wall regions and channel center, where nonlinear effects
induce velocity profile distortion, accurately reproducing wall-turbulence features.

(a) (b)

Figure 2. Neumann boundary condition: (a) subcritical λ < γ; (b) supercritical λ > γ.

Figure 2 presents the three-dimensional visualization of the dynamical transition in System (2.3):
when λ < γ, the velocity field maintains a uniform distribution; when λ > γ, the system develops an
antisymmetric structure dominated by the cos x mode, generating streamwise vortex pairs and coherent
shear-layer structures.

Under both boundary conditions, the solutions develop pronounced multi-scale features, which are
characteristic hallmarks of turbulence onset. This process shares identical physical mechanisms with
the transition phenomenon observed in classical fluid mechanics beyond critical Reynolds numbers.
Notably, at γ = 0.5, the corresponding critical equivalent Reynolds number Re = 2 corresponds to the
transition threshold range established in one-dimensional dynamical systems [37].

It should be noted that the one-dimensional Burgers equation is inherently limited to modeling fun-
damental characteristics of one-dimensional turbulent bifurcation behavior. Nevertheless, these find-
ings establish a theoretical foundation for investigating bifurcation mechanisms in high-dimensional
turbulent systems.
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