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Abstract: Fractional-order financial systems hold significant importance in practical situations. In this
work, a novel fractional-order financial system considering the non-constant elasticity of demand was
presented, and the system’s complex dynamics were studied. The results demonstrated that the system
can exhibit diverse chaotic dynamics and periodic oscillations, which are influenced by different frac-
tional orders and system parameters. Then, to stabilize the proposed chaotic system with uncertainties
and achieve predefined-time synchronization of master-slave systems, an effective sliding mode con-
trol strategy utilizing the RBF neural network was put forward. In real financial markets, uncertainties
and perturbations occur suddenly, and excessive control input can lead to resource inefficiency. There-
fore, unlike other papers that rely on conservative estimations using upper bounds, this paper used
RBF neural network approximation to design a more flexible and robust controller while reducing the
control input. Simulation findings reveal that this approach requires less control input than traditional
methods without the RBF neural network and converges more rapidly than finite-time, fixed-time, and
other predefined-time sliding mode control strategies with the RBF neural network, which validates the
feasibility of this approach. Finally, the proposed chaotic system and control method were successfully
applied to secure encryption, demonstrating their practical value.

Keywords: fractional-order financial system; sliding mode control; predefined-time synchronization;
RBF neural network; secure encryption

1. Introduction

Fractional calculus, or non-integer calculus, has existed for more than 300 years [1]. Compared to
integer-order derivatives, fractional derivatives have memory effect [2], meaning the fractional-order
(FO) models rely on both the present and prior states. Riemann-Liouville (RL) and Caputo fractional
derivatives serve to describe complex and nonlinear phenomena that integer-order derivatives fail to
capture accurately. In other words, FO systems are more suitable for practical applications. At present,
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fractional calculus has been widely employed in multiple research fields, including control theory [3],
biomedicine [4], finance [5], and other fields [6].

Chaos theory concentrates on the analysis of nonlinear models that are particularly susceptible to
slight disturbances in the initial stage [7]. Since the pioneering work pointed out the possibility of
chaotic dynamics in economic models [8], bifurcation and control problems in chaotic financial sys-
tems have been comprehensively studied and implemented. Ma and Chen [9] analyzed the bifurcation
phenomenon and the general properties of the nonlinear financial model when c − b − abc ≤ 0. In
a subsequent work [10], they studied the case when c − b − abc ≥ 0. In 2009, Gao and Ma [11]
put forward a delayed-time financial chaos system and explored its qualitative features like Hopf bi-
furcation. Tacha et al. [12] suggested a fresh chaotic model and gave its circuit simulation. The x2

term of the second differential equation has been replaced with x4 [13], and it was further transformed
into a higher-order term x2 + x4 [14]. Because the elasticity of market demand is affected by many
factors in real life, a financial system with non-constant elasticity of demand was put forward [15].
In 2021, Subartini et al. [16] studied a novel finance system and discovered symmetry, equilibrium
points, as well as multistability of the model. Based on financial principles, Wei et al. [17] suggested a
new financial risk contagion dynamic model. Yan et al. [18] proposed a new method for modeling the
chaotic dynamics of financial data, and the money market case was simulated. In 2025, Johansyah et
al. [19] introduced the nonlinear term of the absolute value function to establish a new chaotic system,
and analyzed the enhanced chaotic behavior of the new model from many aspects. Considering the
gross domestic product (GDP) growth rate, unemployment rate, and vacancy availability rate, a new
6D model with three time lags was established [20]. These papers constructed new systems by altering
nonlinear terms or incorporating additional economic variables. Variables in finance, including the
GDP, production data, and stock prices, can exhibit enduring memories, meaning that past economic
activity influences current and future trends. Therefore, research on fractional financial systems has
become increasingly extensive. Xu et al. [21] considered the delay to be the bifurcation parameter and
gave a sufficient condition for Hopf bifurcation to occur in an innovative FO model. Yao et al. [22]
explored the dynamic behavior of the FO Rocard model. Cui and Liu [23] used mathematical models
to computationally model the financial system. In 2023, Li et al. [24] established an advanced 4D
FO financial model and analyzed its finite-time synchronization. In 2024, Diabi et al. [25] studied
bifurcation, chaos, and control of FO discrete financial systems. Xu et al. [26] constructed an FO
financial risk system (FFRS), studied its dynamic behavior and function projection synchronization,
and interpreted the dynamic results. However, in real financial markets, the elasticity of demand is not
constant, and many of the above studies only studied the case of constant demand elasticity. Based on
this consideration, we developed a new chaotic system, and then extended it to an FO system, which is
more consistent with the real financial market and describes more complex financial behaviors.

Since Pecora and Carroll [27] proved the implementability of synchronizing chaotic models, it has
become a key focus in chaos control research. In financial markets, small initial disturbances can lead
to large fluctuations. This nonlinear behavior is often more prominent in systems with uncertain and
perturbed terms. Controlling the synchronization of chaotic models helps to better understand and pre-
dict the nonlinear response of the market. There are many chaos control methods, such as sliding mode
control (SMC) [28], adaptive control [29], and linear control [30]. The SMC method focuses on con-
structing the sliding surface and controller, guiding this system state along the predetermined ”sliding
mode” trajectory, making it a reliable and robust control method. Wang et al. [31] explored the finite-
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time terminal SMC of a four-dimensional FO financial chaotic system with a neural network. A new
control law was established and an adaptive integral SMC was used to realize synchronization [32].
The authors focused more on FO financial chaotic systems and adaptive finite-time SMC [33]. In
chaos control, the study of stability time, in addition to control methods, is also a crucial part. A
shorter stability time leads to faster synchronization. Stability time can be divided into different types,
with asymptotic-time control being the first method [34], capable of maintaining the system’s stabil-
ity. However, its convergence rate is slow and its precision is constrained. Subsequently, finite-time
control was proposed [35], which has a faster convergence speed but is sensitive to the starting values.
This shortcoming was addressed by fixed-time control [36]. However, the creation of a fixed-time
controller is complex. To address the aforementioned issue, pioneering predefined-time synchroniza-
tion techniques have gained attention. It allows users to set the system’s convergence time according
to their specific requirements, offering high flexibility and predictability. A Lyapunov function that
depends only on the user-specified time was designed [37]. A new Lyapunov function in polynomial
form was introduced [38], which facilitates controller design. In 2022, a function with an additional
term was designed [39]. Xue and Liu [40] changed the exponential. Previous research proved that
predefined-time control can simplify theoretical analysis and calculation. Therefore, exploring and
applying sliding mode control techniques by combining the strengths of SMC and predefined-time
control is a worthwhile topic of study. An innovative sliding surface was presented to guarantee the
convergence of synchronization errors within a specified time [41]. A time-synchronized predefined-
time SMC was implemented in [42]. Furthermore, Jia et al. [43] proposed a more general Lyapunov
function, introducing an exponential term to accelerate the convergence rate of the system.

In recent years, machine learning has been widely used in the modeling and control of complex dy-
namic systems. For example, Wang and Li [44] used dynamic system deep learning (DSDL) to achieve
interpretable predictions for chaotic systems. In situations where the spatial environment is uncertain,
Jahanshahi and Zhu [45] applied machine learning and robotic grasping to improve accuracy and adapt-
ability. In 2025, Zahedifar et al. [46] proposed the large language model controller (LLM-Controller),
which can analyze unknown perturbations, unmodeled dynamics, and changing reference signals, and
can adapt to new conditions without manual adjustments. These studies showed that machine learn-
ing can effectively deal with uncertainty in dynamic environments, which is one of the challenges of
financial market regulation. Uncertainties and perturbations in chaotic systems can vary significantly
over time. Traditional methods usually assumed that the uncertainty was confined to a fixed upper
bound [47], which is not suitable for describing complex and dynamic uncertainties. But the adaptive
characteristics of the RBF neural network (RBFNN) enable it to dynamically adjust its approximation
ability, effectively responding to the fast-changing uncertainties in chaotic models. Hence, it is crucial
to explore the predefined-time SMC approach with the RBFNN. The predefined-time stability the-
ory and the approximation performance of the RBFNN were used to address the tracking problem of
uncertain nonlinear models [48]. Liu et al. [49] adaptively estimated unknown perturbations to refine
control accuracy. A neural controller was developed in [50]. Currently, there is limited related research
on synchronization of chaotic systems. Since the controller employing the RBFNN can adjust the ap-
proximation for uncertainties and avoid unnecessary compensation, it can therefore regulate market
disturbances in real-time in the financial market, thus reducing the cost of regulation and excessive
policy intervention. Based on this, we consider designing a controller with the RBFNN to achieve
synchronization in financial chaotic models, which better aligns with the practical demands.
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Motivated by the previous discussion, this manuscript develops a novel FO financial model and an
innovative predefined-time SMC strategy utilizing the RBFNN. This manuscript makes the following
primary contributions:

1) Based on the current integer-order financial systems, a new three-dimensional FO chaotic model
is established, and its dynamic behaviors are analyzed.

2) Based on the RBFNN, an innovative predefined-time SMC method is established to synchronize
two FO chaotic models within a specified time.

3) To improves the efficiency of secure communication, the chaotic characteristics of the presented
system are applied to image and voice encryption and the suggested control approach is successfully
implemented in signal encryption.

The upcoming sections are structured in the subsequent way: Section 2 gives the basic definitions,
stability theorems, and the framework of the RBFNN necessary for this paper. In Section 3, a novel FO
financial chaotic model with non-constant demand elasticity is presented, and the nonlinear dynamic
behaviors of the suggested model are explored. An innovative predefined-time control strategy based
on the RBFNN is put forward to synchronize systems within a predefined time. Numerical analyses in
Section 4 aim to validate the usefulness of the introduced controller. Section 5 applies the proposed
system and the synchronization method to secure encryption. This paper finishes with a summary and
final thoughts in Section 6.

2. Preliminaries

2.1. Definitions of fractional calculus

Given that the Caputo fractional derivative requires only starting conditions consistent with integer-
order equations, it is more applicable to real-life situations. Therefore, this paper employs the Caputo
definition for its analyses. The following definitions are adopted from reference [1].

Definition 2.1. Euler’s gamma function, a key component of fractional calculus, is expressed as

Γ(s) =
∫ ∞

0
ts−1e−tdt (2.1)

Definition 2.2. f (t)′s ρth-order RL integral is identified as

RL
t0 D−ρt f (t) =

1
Γ(ρ)

∫ t

t0

f (τ)
(t − τ)1−ρdτ (2.2)

where 0 < ρ < 1, and t0 refers to the starting time.

Definition 2.3. f (t)′s ρth-order Caputo derivative is described by

C
t0 Dρt f (t) =


1

Γ(q−ρ)

∫ t

t0
f (q)(τ)

(t−τ)ρ−q+1 dτ, q − 1 < ρ < q,

dq f (t)
dtq , ρ = q,

(2.3)

where q − 1 < ρ < q, q ∈ N, and Γ(.) and t0 are the same as above. Moreover, when 0 < ρ < 1,

C
t0 Dρt f (t) =

1
Γ(1 − ρ)

∫ t

t0
(t − τ)−ρ f ′(τ)dτ (2.4)
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2.2. Stability theorem of FO systems

Lemma 2.1. [51]. Considering the subsequent r-dimensional fractional-order model

dρxi

dtρ
= fi (x1, x2, . . . , xr) , i = 1, 2, . . . , r, (2.5)

where 0 < ρ < 1, if all eigenvalues λ of the Jacobian matrix at the system’s equilibrium points meet

|arg(λ)| > ρπ/2, (2.6)

these points are locally asymptotic stability.

Property 2.1. [52]. If f (t) ∈ C1[t0,∞) and 0 < ρ < 1, then

Dρ(Iρ f (t)) = f (t) (2.7)

Property 2.2. [53]. If f (t) ∈ C1[0, A] and 0 < ρ1 + ρ2 < 1, we have

Dρ1(Dρ2 f (t)) = Dρ2(Dρ1 f (t)) = Dρ1+ρ2 f (t) (2.8)

2.3. RBF neural network

Studies have confirmed that the RBFNN can approximate nonlinear functions with any required
precision [54]. As shown in Figure 1, the RBFNN consists of a simple three-layer feedforward structure
featuring one hidden layer. Every unit in this layer contains a radial basis function:

h j (X) = exp

−
∥∥∥X − c j

∥∥∥
2b2

j

 , j = 1, 2, · · · ,m, (2.9)

where X denotes the input vector, and c j and b j denote the center vector and the width of the j-th unit
in the hidden layer, respectively. The node’s linear output value is:

yi =

m∑
j=1

wi jh j =WT
i H , i = 1, 2, · · · , n, (2.10)

where Wi means the weight vector. The training algorithm of the RBFNN is divided into two stages:
parameter determination of the hidden layer and parameter determination of the output layer. Hidden
layer parameters include the center and width. Centers are usually selected automatically in the input
data, and determination methods include K-means clustering and orthogonal least squares. The width
determines the extent of the extension of the basis function and is usually determined by the center
distance method or the fixed width method. The parameters of the output layer are weights, and the
determination methods include the least square method and gradient descent method. The selection of
different algorithms depends on the characteristics of the data, and needs to be flexibly adapted to the
actual condtions to achieve the best training effect. In this work, we use the RBFNN to estimate uncer-
tain and disturbed terms. We follow the same principle, updating the weights using gradient descent
but manually adjusting the values of the center and width, reducing the computational complexity.

Electronic Research Archive Volume 33, Issue 5, 2762–2799.



2767

h1

h2

hm-1

hm

Σ 

x1

xn

W1 

W2

.

.
Wn-1

Wn

.

.

.

.

Input 

y

layer
Hidden 
layer

Output 
layer

Figure 1. Topology of the RBFNN [24].

2.4. Predefined-time convergence and synchronization

We analyze the following temporal system:

ẋ(t) = f (t, x(t)), (2.11)

where x indicates the state variable, and f is a nonlinear function with f (t, 0) = 0.

Definition 2.4. [39]. If the model (2.11) is fixed-time stable and the settling-time function T (x0)
satisfies T (x0) ≤ Tc, it is said to be globally predefined-time stable, where Tc is a bounded positive
constant representing the specified time.

Lemma 2.2. [47]. For ni, ϑ ∈ R+, the subsequent inequalities are{ (∑m
i=1|ni|

)ϑ
≤

∑m
i=1 |ni|

ϑ , 0 < ϑ ≤ 1
m1−ϑ (∑m

i=1 |ni|
)ϑ
≤

∑m
i=1 |ni|

ϑ , 1 ≤ ϑ < +∞
(2.12)

Lemma 2.3. For a positive constant Tc > 0, if an unbounded Lyapunov function V(x) exists and meets

V̇ ⩽ −
π(1 + α)
αTcl2

(
l1V

1
1+α + l2V + l3V

1+2α
1+α

)
(2.13)

then the origin of (2.11) is globally predefined-time stable, where 0 < α < 1, l2 = 2
√

l1l3, and Tc is a
predefined time. We can call (2.13) a novel predefined-time Lyapunov sufficient condition.

Proof. The function T (x0) adheres to

T (x0) ≤
∫ 0

V0

dV

−
π(1+α)
αTcl2

(
l1V

1
1+α + l2V + l3V

1+2α
1+α

)
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=
αTcl2

π(1 + α)

∫ V0

0

dV

l1V
1

1+α

(
1 + l2

l1
V

α
1+α + l3

l1
V

2α
1+α

)
=
αTcl2

π(1 + α)
1 + α
α

∫ V0

0

dV
α

1+α

l1

(
1 +

√
l3
l1

V
α

1+α

)2

=
αTcl2

π(1 + α)
1 + α
α

1
√

l1l3

∫ V0

0

d
√

l3
l1

V
α

1+α

(
1 +

√
l3
l1

V
α

1+α

)2

≤
2Tc

π

∫ V0

0

d
√

l3
l1

V
α

1+α

1 + l3
l1

V
2α

1+α

=
2Tc

π

arctan
√ l3

l1
V

α
1+α

 |V0
0


≤

2Tc

π

π

2
≤Tc

(2.14)

Remark 2.1. Lemma 2.3 complies with Definition 2.4, and the convergence time, which remains unaf-
fected by the initial values, can be specified by the users.

3. Main results

3.1. A newly designed FO financial model

3.1.1. System description

Based on reference [9], the non-constant elasticity of demand c + dxy/z was considered [15]:
ẋ = z + (y − a)x

ẏ = 1 − by − x2

ż = −x − cz − dxy

(3.1)

and a novel financial chaotic model incorporating two quadratic and one sextic nonlinear terms was
presented [16]: 

ẋ = z + (y − a)x

ẏ = 1 − by − bx2 − cx6

ż = −x − z

(3.2)

Electronic Research Archive Volume 33, Issue 5, 2762–2799.



2769

Since the non-constant elasticity of demand is more suitable for the financial market, we develop a
novel financial system by considering it based on (3.2):

ẋ = z + (y − a)x

ẏ = 1 − by − bx2 − cx6

ż = −x − dz − exy

(3.3)

where state variables symbolize the interest rate, investment demand, and price index, a denotes the
saving amount, which influences the market interest rate’s responsiveness to investment demand—a
larger value indicates a higher savings rate, leading to smoother fluctuations in the interest rate. b is
the cost per investment, reflecting the inhibitory effect of investment costs on demand—a higher value
makes financing more difficult, thus limiting investment demand. c represents the coefficient of higher-
order nonlinear effect, which measures the market’s sensitivity to extreme financial volatility, such as
a crisis—a higher value indicates a more volatile market. d is the natural decay rate of z, determining
how quickly the market adjusts to price changes—a higher value means a faster market response to
shifts in supply and demand. and e signifies the nonlinear amplification factor, measuring the extent to
which interest rates and investment demand influence price changes—a larger value means the market
demand is more sensitive to price fluctuations. Compared to model (3.2), model (3.3) modifies the
demand elasticity from 1 to d+exy/z. The demand elasticity gauges how the quantity demanded reacts
to price fluctuations, when the elasticity equals 1. Demand is perfectly proportional to price changes.
However, this assumes an overly idealized system that ignores the dynamic evolution, feedback mech-
anisms, and nonlinear shocks. In real markets, demand elasticity is dynamically adjusted by the market
environment. As the interest rate rises, the available funds of enterprises and individuals become more
constrained, making demand more sensitive to changes in prices. Similarly, in environments with high
investment demand, resource scarcity increases and demand becomes more sensitive to price fluctua-
tions. When prices rise, many consumers may shift to substitutes or reduce overall demand, weakening
the impact of price changes on purchasing power. In model (3.3), we can adjust the parameters d and
e to suit different markets. To test the rationality, we choose the six-month interbank offered rate, the
total investment and the average consumer price percentage change rate from 1980 to 2011 in Japan, to
express the three state variables. The data are sourced from EconStats. Let d = 0.9, e = 0.06, and we
use the above data to calculate the mean square error (MSE) of fixed and dynamic demand elasticity
price index change. The former is 0.0028, while the letter is 0.0027. We also use the Diebold-Mariano
(DM) test to compare the error differences. The results show a DM statistic of 3.5829 and a p-value
of 0.0012, which is significantly less than 0.05, indicating that the dynamic model more effectively
captures economic dynamics.

In the following analysis, we set the parameter values as (a, b, c, d, e) = (4.4, 0.1, 0.2, 0.9, 0.06),
where these values are chosen based on economic theories and market characteristics. a = 4.4 repre-
sents a high savings rate, corresponding to economies with significant capital accumulation. b = 0.1
reflects relatively easy financing conditions, resembling markets with accommodative monetary poli-
cies. c = 0.2 accounts for nonlinear effects in investment demand, reflecting the impact of extreme
events on the market. d = 0.9 corresponds to the rapid price adjustments of modern financial mar-
kets, while e = 0.06 ensures a moderate elasticity impact. We then demonstrate the superiority of this
system from the perspective of chaotic complexity.
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The system (3.1) is chaotic when (a, b, c, d) = (1, 0.1, 1, 0.1). When the starting state X(0) =
(0.4, 0.2, 0.5) and T = 1E5, the Lyapunov exponents (LEs) are computed as L1 = 0.16277, L2 = 0, and
L3 = −0.43970, and the Kaplan-Yorke (KY) dimension is calculated as follows:

DKY = 2 +
L1 + L2

| L3 |
= 2.3702 (3.4)

The system (3.2) is chaotic when (a, b, c) = (7.6, 0.1, 0.2). When the starting state X(0) = (0.4, 0.2, 0.5)
and T = 1E5, the LEs are obtained as L1 = 0.12299, L2 = 0, and L3 = −0.39478, and the KY
dimension is calculated as follows:

DKY = 2 +
L1 + L2

| L3 |
= 2.3115 (3.5)

Similarly, when (a, b, c, d, e) = (4.4, 0.1, 0.2, 0.9, 0.06), the starting state X(0) = (0.4, 0.2, 0.5) and
T = 1E5, the LEs of the new financial system (3.3) are calculated as L1 = 0.16702, L2 = 0, and
L3 = −0.32872. Also, the KY dimension is calculated as follows:

DKY = 2 +
L1 + L2

| L3 |
= 2.5081 (3.6)

Table 1 presents a comparison of the three financial models mentioned above.

Table 1. Comparison of the three financial chaotic models.

Chaotic systems Maximal Lyapunov Exponent (MLE) KY Dimension
Yang financial system (3.1) L1 = 0.16277 DKY = 2.3702
Subartini financial system (3.2) L1 = 0.12299 DKY = 2.3115
New financial system (3.3) L1 = 0.16702 DKY = 2.5081

Remark 3.1. From Table 1, it is evident that the novel financial chaotic model (3.3) characterized by
the largest Lyapunov exponent, exhibits greater chaotic complexity compared to the other two chaotic
systems.

Because of the strong historical dependence of financial variables, the financial markets often ex-
hibit long memory effects. In order to better capture this feature, we extend the integer-order financial
chaotic model to an FO financial chaotic system:

Dρx = z + (y − a)x

Dρy = 1 − by − bx2 − cx6

Dρz = −x − dz − exy

(3.7)

where ρ is the fractional order. The following sections of this paper will center on this model (3.7).

3.1.2. Dynamic behaviors

Since the stability of an equilibrium point is influenced by both the order and system parameters,
it is essential to explore how their variations affect the system. In this part, the predictor-corrector
method [55] is employed to solve FO differential equations.
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1) The influence of order ρ
For the sake of analysis, we fix a = 4.4, b = 0.1, c = 0.2, d = 0.9, e = 0.06, along with the starting

values X(0) = (0.4, 0.2, 0.5). When ρ alters, the bifurcation diagram and the Lyapunov exponent
spectrum (LEs) are shown in Figure 2.

The bifurcation diagram shows how the system’s solutions evolve as a parameter varies. When
the solutions gather around a point or within a small range, the system is stable, if the solutions form
clusters, the model exhibits periodic behavior. Conversely, an irregular and random distribution of so-
lutions indicate chaotic behavior. MLE is used to measure whether the system’s trajectory will rapidly
separate over time. When MLE < 0, the model is stable, when MLE = 0, the model is in a boundary
period or a critical stable state, and when MLE > 0, the model is chaotic. From Figure 2, we observe
that the two diagrams align, equilibrium points remain stable when ρ ∈ [0.7, 0.78], the model behaves
periodically when ρ ∈ [0.82, 0.95], while chaotic behavior occurs for ρ ∈ [0.78, 0.82] and ρ ∈ [0.95, 1].
Figure 3 depicts the time series and phase diagrams for ρ = 0.8 and ρ = 0.98, respectively, showing that
their chaotic characteristics are distinct. In Figure 3(a), although the oscillations of x appear regular,
small variations emerge over time. Figure 3(c) reveals substantial changes in the oscillation frequency
and fluctuation magnitude. In Figure 3(b), the system’s trajectory is complex yet retains some degree
of regularity, while in Figure 3(d), the trajectory becomes more dispersed and widely spread, display-
ing complete disorder. These observations suggest that the system exhibits stronger chaos at ρ = 0.98.
There are several other ways to characterize chaos, such as the 0-1 test and the Poincaré map. The
0-1 test helps determine whether the model operates in a chaotic regime. If the system’s trajectories
in the p − s plane are bounded, the model is quasiperiodic, and if the trajectories are Brownian-like,
the model exhibits chaos. In Figure 4(a), the irregular pattern suggests that the model is chaotic. The
Poincaré map is defined by the motion of trace lines in the phase space. If the points on the cross-
section are isolated, the system is stable, if there are only a few discrete points, the system is periodic,
and if points are densely distributed, the model is chaotic. In Figure 4(b), the dense, irregular, and
partially random distribution of points suggests that the system exhibits chaotic dynamics. The simu-
lation results show that the FO system can exhibit richer dynamic behaviors and describe the complex
evolution of financial markets more accurately.

2) The influence of parameter a
We fix b = 0.1, c = 0.2, d = 0.9, e = 0.06, and ρ = 0.98. When a alters from 4 to 6, the bifurcation

diagram and the LEs are shown in Figure 5. The system (3.7) shows chaotic behavior when a ∈ [4, 5.4],
and behaves periodically when a ∈ [5.4, 6]. Saving counts play a crucial role in chaotic and cyclical
financial systems: when a is low, capital liquidity increases, but stability decreases, making the market
more sensitive to external shocks and prone to enter a chaotic state, which leads to the instability of
economic growth and may lead to financial crisis. As a increases, the market interest rate becomes
more stable, promoting stable capital accumulation and the system stabilizes. Choosing an appropriate
value for a can better manage risks and maintain sustainable economic growth.

3) The influence of parameter b
We fix a = 4.4, c = 0.2, d = 0.9, e = 0.06, and ρ = 0.98. When b alters from 0 to 0.18, the

bifurcation diagram and the LEs are shown in Figure 6. It is observed that the model (3.7) is in a
periodic state when b ∈ [0, 0.08], enters chaos when b ∈ [0.08, 0.12], and finally tends to a periodic
state when b ∈ [0.12, 0.18]. Investment costs affect chaotic and cyclical financial systems. When b is
low, financing is easy and investment fluctuations are minimal. As b increases, capital flow becomes
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(a) Bifurcation diagram relative to ρ
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Figure 2. Bifurcation and LE diagrams of model 3.7 at (a, b, c, d, e) = (4.4, 0.1, 0.2, 0.9, 0.06)
and ρ ∈ [0.7, 1].

unbalanced, and investment behavior becomes more uncertain, leading to unpredictable market behav-
ior and increasing the risk of a financial crisis. Once b exceeds a certain threshold, investment becomes
constrained, and the market tends to stabilize. Businesses are better able to allocate resources, reduc-
ing financial turbulence. Choosing an appropriate value for b is crucial to maintaining a stable and
dynamic financial environment.

4) The influence of parameter c

We fix a = 4.4, b = 0.1, d = 0.9, e = 0.06, and ρ = 0.98. When c alters from 0 to 1, the bifurcation
diagram and the LEs are shown in Figure 7. It is clear that the model (3.7) exhibits a positive largest
Lyapunov exponent and shows chaotic dynamics within all ranges. The coefficient of higher-order
nonlinear effects affect chaotic systems, which indicates that the market is subject to extreme financial
volatility. To mitigate such volatility, financial regulation can be strengthened to reduce high leverage
and speculation.

5) The influence of parameter d

We fix a = 4.4, b = 0.1, c = 0.2, e = 0.06, and ρ = 0.98. When d alters from 0 to 1, the bifurcation
diagram and the LEs are shown in Figure 8. The system (3.7) is chaotic when d ∈ [0, 0.14] and
d ∈ [0.79, 1], and behaves periodically when d ∈ [0.14, 0.79]. Demand elasticity affects price stability
and market dynamics. Parameter d represents the rate at which the market adapts to price changes.
When d is too small, the delayed response may cause large price fluctuations. When d is too large,
excessive fluctuations may lead to chaos, leading to speculative bubbles and financial crises. In a
cyclical financial system, firms can more structurally adjust their pricing strategies to make predictable
investment plans. Therefore, choosing an appropriate value for d is crucial for maintaining market
responsiveness and controlling market stability.

6) The influence of parameter e

We fix a = 4.4, b = 0.1, c = 0.2, d = 0.9, and ρ = 0.98. When e alters from 0 to 0.2, the bifurcation
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(a) Time history diagram when ρ = 0.8 (b) Phase diagram when ρ = 0.8

0 50 100 150 200 250 300

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

(c) Time history diagram when ρ = 0.98 (d) Phase diagram when ρ = 0.98

Figure 3. Time history and phase diagrams of model 3.7.

(a) 0-1 test diagram when ρ = 0.8 (b) Poincaré diagram when ρ = 0.98

Figure 4. 0-1 test and Poincaré diagram of model 3.7.

Electronic Research Archive Volume 33, Issue 5, 2762–2799.



2774

(a) Bifurcation diagram relative to a
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Figure 5. Bifurcation and LE diagrams of model (3.7) at (b, c, d, e) = (0.1, 0.2, 0.9, 0.06) and
a ∈ [4, 6].
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Figure 6. Bifurcation and LE diagrams of model (3.7) at (a, c, d, e) = (4.4, 0.2, 0.9, 0.06) and
b ∈ [0, 0.18].

diagram and the LEs are shown in Figure 9. The model (3.7) is in a periodic state when e ∈ [0, 0.03]
and e ∈ [0.1, 0.2], and is chaotic when e ∈ [0.03, 0.1]. Parameter e represents the market’s sensitivity
to interest rates and investment demand. If e is too small, price fluctuates are minimal, and if e is too
large, the price fluctuations are significant but regular. In a chaotic financial system, high sensitivity
amplifies the unpredictability of markets, which can lead to speculative bubbles or market crashes.
In a cyclical financial system, moderate sensitivity allows for a smooth transition between economic
cycles. Therefore, selecting an appropriate value for e can stabilize markets by allowing them to react
in a controlled way.

These simulation results show that the system’s dynamic behavior is influenced by variations in both
the order and parameters. By understanding how these parameters affect the market volatility, financial
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institutions can better optimize their decisions, and regulators can formulate appropriate regulatory
strategies to maintain market stability and prevent potential financial crises.

(a) Bifurcation diagram relative to c
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(b) LE diagram relative to c

Figure 7. Bifurcation and LE diagrams of model (3.7) at (a, b, d, e) = (4.4, 0.1, 0.9, 0.06) and
c ∈ [0, 1].

(a) Bifurcation diagram relative to d
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Figure 8. Bifurcation and LE diagrams of model (3.7) at (a, b, c, e) = (4.4, 0.1, 0.2, 0.06) and
d ∈ [0, 1].

3.2. Predefined-time synchronization method for chaotic models

In the following part, we first develop a new sliding surface guided by the new unbounded Lyapunov
function (2.13). Then, a controller containing the estimator of uncertainties and external disturbances
is introduced. Finally, this proposed method ensures that the error model converge and the master-slave
systems achieve synchronization within a predefined time.

We analyze the subsequent r-dimensional nonlinear FO master and slave models, as described by
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(a) Bifurcation diagram relative to e
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Figure 9. Bifurcation and LE diagrams of model (3.7) at (a, b, c, d) = (4.4, 0.1, 0.2, 0.9) and
e ∈ [0, 0.2].

Eqs (3.8) and (3.9).

Dρt xi = fi(x, t), i = 1, 2, . . . , r (3.8)

Dρt yi = gi(y, t) + Di(y, t) + ui(t), i = 1, 2, . . . , r (3.9)

where ρ symbolizes the fractional order, x = (x1, x2, . . . , xr)T , and y = (y1, y2, . . . , yr)T are state
variables, and fi(x, t) and gi(y, t) are nonlinear differentiable functions. In addition, Di(y, t) =
∆gi(y, t) + di(t), ∆gi(y, t) are the uncertainties, di(t) are the external interferences, ui(t) are the con-
trol inputs to be determined, and i = 1, 2, . . . , r.

We describe the synchronization error as ei = xi − yi, so the error model is given by:

Dρt ei = fi(x, t) − gi(y, t) − Di(y, t) − ui(t), i = 1, 2, . . . , r (3.10)

We will then develop a predefined-time SMC approach with an RBFNN aimed at maintaining the
stability of (3.10) within a specified time.

3.2.1. Sliding surface

To stabilize the error model (3.10), we design the following sliding surface:

si = Dρ−1ei + Dρ−2
(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

)
(3.11)

where ρ ∈ (0,1), η1 ∈ (0,1), d4 > 0, d1 =
π(1+η1)
2η1T1

, d2 =
π(1+η1)

2η1T1r
−η1
1+η1

, d3 =
π(1+η1)
η1T1

. When the system (3.10)

enters the sliding mode, it meets si = 0 and ṡi = 0. So we have:

Dρei = −Dρ−1
(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

)
(3.12)
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Theorem 3.1. When the sliding surface (3.11) is applied, the error system (3.10) stabilizes and con-
verges to zero within a predefined time T1.

Proof. Choose the Lyapunov function as follows:

V1 =

r∑
i=1

|ei(t)| (3.13)

The derivative of V1(t) is

V̇1 =

r∑
i=1

sign (ei) ėi

=

r∑
i=1

sign (ei)
(
D1−ρ (Dρei)

)
=

r∑
i=1

sign (ei)
(
D1−ρ

(
−Dρ−1

(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

)))
=

r∑
i=1

sign (ei)
(
−d1sign (ei) |ei|

1
1+η1 − d2sign (ei) |ei|

1+2η1
1+η1 − d3ei − d4sign (ei)

)
≤

r∑
i=1

sign (ei)
(
−d1sign (ei) |ei|

1
1+η1 − d2sign (ei) |ei|

1+2η1
1+η1 − d3ei

)
= −d1

r∑
i=1

|ei|
1

1+η1 − d2

r∑
i=1

|ei|
1+2η1
1+η1 − d3

r∑
i=1

|ei|

≤ −d1

 r∑
i=1

|ei|


1

1+η1

− d2r1−( 1+2η1
1+η1

)

 r∑
i=1

|ei|


1+2η1
1+η1

− d3

 r∑
i=1

|ei|


= −d1V

1
1+η1

1 − d2r
−η1
1+η1 V

1+2η1
1+η1

1 − d3V1

= −
π(1 + η1)

2η1T1
V

1
1+η1

1 −
π(1 + η1)

2η1T1r
−η1
1+η1

r
−η1

1+η1 V
1+2η1
1+η1

1 −
π(1 + η1)
η1T1

V1

= −
π(1 + η1)

2η1T1

(
V

1
1+η1

1 + 2V1 + V
1+2η1
1+η1

1

)
(3.14)

This fulfills Lemma 2.3. Thus, the state trajectories will approach zero in the predefined time T1.

3.2.2. Controller design with the RBFNN

To achieve predefined-time synchronization, we create a controller as follows:

ui = fi − gi − D̂i + Dρ−1
(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

)
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+ d5sign (si) |si|
1

1+η2 + d6sign (si) |si|
1+2η2
1+η2 + d7si + d8sign (si) (3.15)

where ρ ∈ (0,1), η1 ∈ (0,1), η2 ∈ (0,1), d4, d8 > 0, d1 =
π(1+η1)
2η1T1

, d2 =
π(1+η1)

2η1T1r
−η1
1+η1

, d3 =
π(1+η1)
η1T1

, d5 =
π(1+η2)
2η2T2

,

d6 =
π(1+η2)

2η2T2r
−η2

1+η2

, d7 =
π(1+η2)
η2T2

. In addition, D̂i(y, t) represents the approximation of Di(y, t), we let

W̃i = Ŵi −W∗

i
, where W∗

i
denotes the ideal weight, Ŵi is its approximation, and W̃i means the error

between Ŵi and W∗

i
. The adaptive law is defined as follows:

Ŵi = −τisign (si) H, i = 1, 2, . . . , r (3.16)

where τi are positive constants.

Theorem 3.2. Consider the controller (3.15) and the adaptive law (3.16). The error model (3.10) will
converge to the sliding surface (3.11).

Proof. Choose the Lyapunov function as follows:

V2 =

r∑
i=1

|si(t)| +
r∑

i=1

1
2τi

W̃
T
i W̃i (3.17)

The derivative of V2(t) is

V̇2 =

r∑
i=1

sign (si) ṡi +

r∑
i=1

1
τi

W̃
T
i

˙̃Wi

=

r∑
i=1

sign (si)
(
Dρei + Dρ−1

(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

))
+

r∑
i=1

1
τi

W̃
T
i

˙̂Wi

=

r∑
i=1

sign (si)
(

fi − gi − Di − ui + Dρ−1
(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

))
+

r∑
i=1

1
τi

W̃
T
i

˙̂Wi

=

r∑
i=1

sign (si)
(
−Di + D̂i − d5sign (si) |si|

1
1+η2 − d6sign (si) |si|

1+2η2
1+η2 − d7si − d8sign (si)

)
+

r∑
i=1

1
τi

W̃
T
i

˙̂Wi

=

r∑
i=1

sign (si)
(
W̃

T
i H − ε − d5sign (si) |si|

1
1+η2 − d6sign (si) |si|

1+2η2
1+η2 − d7si − d8sign (si)

)
+

r∑
i=1

1
τi

W̃
T
i (−τisign (si) H)
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=

r∑
i=1

sign (si)
(
−ε − d5sign (si) |si|

1
1+η2 − d6sign (si) |si|

1+2η2
1+η2 − d7si − d8sign (si)

)
+

r∑
i=1

sign (si) W̃
T
i H−

r∑
i=1

sign (si) W̃
T
i H

=

r∑
i=1

sign (si)
(
−ε − d5sign (si) |si|

1
1+η2 − d6sign (si) |si|

1+2η2
1+η2 − d7si − d8sign (si)

)
≤

r∑
i=1

sign (si)
(
−d5sign (si) |si|

1
1+η2 − d6sign (si) |si|

1+2η2
1+η2 − d7si

)
=

r∑
i=1

(
−d5 |si|

1
1+η2 − d6 |si|

1+2η2
1+η2 − d7 |si|

)
(3.18)

where ε is the network approximation error. Under this offered controller and adaptive law, the mas-
ter (3.8) and slave system (3.9) will achieve synchronization.

Theorem 3.3. Consider the controller (3.15) and the adaptive law (3.16). The error model (3.10) will
converge to the sliding surface (3.11) within a predefined time T2.

Proof. Choose the Lyapunov function as follows:

V3 =

r∑
i=1

|si(t)| (3.19)

The derivative of V3(t) is

V̇3 =

r∑
i=1

sign (si) ṡi

=

r∑
i=1

sign (si)
(
Dρei + Dρ−1

(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

))
=

r∑
i=1

sign (si)
(

fi − gi − Di − ui + Dρ−1
(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

))
=

r∑
i=1

sign (si)
(
−Di + D̂i − d5sign (si) |si|

1
1+η2 − d6sign (si) |si|

1+2η2
1+η2 − d7si − d8sign (si)

)
≤

r∑
i=1

sign (si)
(
−d5sign (si) |si|

1
1+η2 − d6sign (si) |si|

1+2η2
1+η2 − d7si

)
= −d5

r∑
i=1

|si|
1

1+η2 − d6

r∑
i=1

|si|
1+2η2
1+η2 − d7

r∑
i=1

|si|
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≤ −d5

 r∑
i=1

|si|


1

1+η2

− d6r1−( 1+2η2
1+η2

)

 r∑
i=1

|si|


1+2η2
1+η2

− d7

 r∑
i=1

|si|


= −d5V

1
1+η2

3 − d6r
−η2

1+η2 V
1+2η2
1+η2

3 − d7V3

= −
π(1 + η2)

2η2T2
V

1
1+η2

3 −
π(1 + η2)

2η2T2r
−η2

1+η2

r
−η2
1+η2 V

1+2η2
1+η2

3 −
π(1 + η2)
η2T2

V3

= −
π(1 + η2)

2η2T2

(
V

1
1+η2

3 + 2V3 + V
1+2η2
1+η2

3

)
(3.20)

Here, we assume that d8 > |D̃i|, which satisfies Lemma 2.3. Thus, the error state trajectories will
approach the proposed sliding surface in the specified time T2.

Remark 3.2. By combining the results of the theorems, we can conclude that the systems (3.8) and (3.9)
achieve synchronization within the predetermined time T1 + T2.

4. Numerical simulation

The real financial market is usually subject to external interference, and the study of chaos syn-
chronization is helpful to predict the market behavior, prevent the occurrence of financial crisis, and
improve the regulatory efficiency. In the simulation, the previously mentioned FO financial system
serves as the master system: 

Dρ1 x1 = x3 + (x2 − a)x1

Dρ2 x2 = 1 − bx2 − bx2
1 − cx6

1

Dρ3 x3 = −x1 − dx3 − ex1x2

(4.1)

The slave system is defined as:
Dρ1y1 = y3 + (y2 − a)y1 + D1(y, t) + u1(t)
Dρ2y2 = 1 − by2 − by2

1 − cy6
1 + D2(y, t) + u2(t)

Dρ3y3 = −y1 − dy3 − ey1y2 + D3(y, t) + u3(t)

(4.2)

Different variables in the financial system often have different characteristics of time memory. For
example, the interest rate is greatly affected by long-term economic policies and has strong histori-
cal dependence, investment needs to balance historical data with current market conditions, and price
indices are more sensitive to short-term fluctuations. Assuming that all variables have the same mem-
ory effect may oversimplify these dynamic properties. With the increase of the order, the memory
effect of the Caupto derivative weakens [26]. Therefore, (ρ1, ρ2, ρ3) = (0.97, 0.98, 0.99) is chosen
as the incommensurate order in order to be more consistent with the characteristics of the actual
financial market. Figure 10 illustrates the chaotic behavior of system (4.1) when the orders are
(ρ1, ρ2, ρ3) = (0.97, 0.98, 0.99) and the starting states are (x1(0), x2(0), x3(0)) = (0.4, 0.2, 0.5). The
initial states of model (4.2) are (y1(0), y2(0), y3(0)) = (0.5, 3,−0.4). The uncertainties are selected as
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(a) Time history diagram when
(ρ1, ρ2, ρ3) = (0.97, 0.98, 0.99)

(b) Phase diagram when (ρ1, ρ2, ρ3) = (0.97, 0.98, 0.99)

Figure 10. Time history and phase diagrams of system (4.1).

∆g1(y, t) = 2.5cos(6t)y1, ∆g2(y, t) = 2cos(2t)y2, and ∆g3(y, t) = −2.5sin(3t)y3. The external interfer-
ences are selected as d1(t) = −2sin(t), d2(t) = 1.5cos(t), and d3(t) = −sin(6t).

In subsequent simulation experiments, we select the number of hidden neurons of the RBFNN as
12, the center value as [–2, –1.5, –1, –0.5, 0, 1, 2, 2.5, 3, 4.5, 5, 6], the width value as 11, the Gaussian
radial basis function as activation function, the weight learning rate as 9, the inputs as y1, y2, y3, and the
approximate effect is shown in Figure 11. As the activation function (2.9) is determined by the center
and width values, we analyze how changes in these parameters affect the approximation accuracy. As
shown in Figure 12(a), selecting 8 hidden nodes leads to underfitting, which means that the features
of the input space cannot be fully expressed. Figure 12(b) shows that increasing the number of hid-
den nodes to 20 does not significantly enhance approximation performance, indicating a limit to the
effectiveness of additional center values. Moreover, the increased computational complexity prolongs
the system’s synchronization convergence time to 0.2053 s. Similarly, as shown in Figure 13(a), too
small a width means that the sensing range of the activation function is limited, reducing approxima-
tion effectiveness. Figure 13(b) shows that increasing the width value does not significantly improve
approximation performance and prolongs synchronization time to 0.2039 s.

Experiments are implemented to validate the performance of this new approach. The numerical
simulations comprise four parts: 1) By changing the system parameters, the performance of the con-
troller when the model parameters are uncertain is studied. 2) By comparing different predefined time
and index terms, the influence of different parameters in the controller on the synchronous convergence
of the system is studied. 3) By comparing with other SMC schemes, the proposed method’s superi-
ority is evaluated. 4) By changing parameters, the robustness of the control method under parameter
variation is studied.

4.1. The influence of different system parameters

To evaluate the robustness of the proposed control method under varying system parameters, we
conduct a sensitivity analysis by modifying key parameters, including a, b, c, d, e. The simulation
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results show that, when T1 = T2 = 1 and η1 = η2 = 0.5, despite changes in these parameters, the
synchronization convergence time and error curves remain nearly identical, as shown in Figure 14. This
demonstrates that the proposed control method is robust to model parameter changes, ensuring system
stabilization even under parameter uncertainties. For the subsequent analysis, we fix a = 4.4, b =
0.1, c = 0.2, d = 0.9, e = 0.06.

0 1 2 3 4 5 6 7 8 9 10

t

-15

-10

-5

0

5

10

15

D
2

actual curve
fitted curve

Figure 11. Approximation effect when c j = [−2,−1.5,−1,−0.5, 0, 1, 2, 2.5, 3, 4.5, 5, 6].
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(a) Approximation effect when
c j = [−2,−1.5,−1,−0.5, 0, 1, 2, 2.5]
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(b) Approximation effect when
c j = [−7,−6.5,−5.5,−4.5,−3,−2,−1.5,−1,

0, 1, 1.5, 2, 2.5, 3, 4, 5, 5.5, 6, 6.5, 7]

Figure 12. Approximation effect of different center values.

In financial markets, system parameters fluctuate due to shifts in economic policy, market demand,
and other macroeconomic factors. Our control method has strong adaptability in different macroeco-
nomic environments, which is particularly important in the case of uncertainty and dynamic changes in
financial markets. This feature can be applied to high-frequency trading systems to ensure that trading
strategies remain responsive without lagging.
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(a) Approximation effect when b j = 5
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(b) Approximation effect when b j = 15

Figure 13. Approximation effect of different width values.
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Figure 14. Synchronization errors when T1 = T2 = 1 and η1 = η2 = 0.5.

4.2. The influence of different controller parameters

In the controller (3.15), the coefficient di is related to Ti and ηi. T1 + T2 is the convergence time
preset by the user, ηi is the exponential term of the controller. It is necessary to study the influence of
parameters on the convergence time.

4.2.1. The influence of different predefined time

In this simulation experiment, the predefined time is classified into three cases: (1) T1 = T2 = 0.5,
T1 + T2 = 1; (2) T1 = T2 = 0.75, T1 + T2 = 1.5; (3) T1 = T2 = 1, T1 + T2 = 2. Other parameters
are set as η1 = η2 = 0.5 and d4 = d8 = 2. Consequently, the calculated values are: (1) d1 = d5 = 3π,
d2 = d6 = 3π × 3

1
3 , and d3 = d7 = 6π; (2) d1 = d5 = 2π, d2 = d6 = 2π × 3

1
3 , and d3 = d7 = 4π; (3)

d1 = d5 = 1.5π, d2 = d6 = 1.5π × 3
1
3 , and d3 = d7 = 3π. The results are shown in Figure 15. It can be

seen that the settling time is reduced compared to the respective predefined time: (1) 0.1154 s < 1 s; (2)
0.1553 s < 1.5 s; (3) 0.1998 s < 2 s. Since case (3) has been shown in Figure 14, it will not be repeated
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here. From 0.1154 s < 0.1553 s < 0.1998 s, we can conclude that the larger the predefined time, the
slower the convergence speed. So the users can flexibly adjust the predefined time as required.
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(a) Synchronization errors when T1 = T2 = 0.5
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(b) Synchronization errors when T1 = T2 = 0.75

Figure 15. Synchronization errors with different predefined times.

4.2.2. The influence of different ηi

In this simulation experiment, ηi is classified into three cases: (1) η1 = η2 =
1
3 ; (2) η1 = η2 = 0.5;

(3) η1 = η2 =
2
3 . Other parameters are set as T1 = T2 = 1 and d4 = d8 = 2. Consequently, the

calculated values are: (1) d1 = d5 = 2π, d2 = d6 = 2π × 3
1
4 , and d3 = d7 = 4π; (2) d1 = d5 = 1.5π,

d2 = d6 = 1.5π × 3
1
3 , and d3 = d7 = 3π; (3) d1 = d5 =

5
4π, d2 = d6 =

5
4π × 3

2
5 , and d3 = d7 =

5
2π. The

results are shown in Figure 16. It is observed that the settling times are: (1) 0.1616 s; (2) 0.1998 s; (3)
0.2254 s. Since case (2) has been shown in Figure 14, it will not be repeated here. From 0.1616 s <
0.1998 s < 0.2254 s, we can conclude that the larger the exponential term, the faster the convergence
speed. So the users can flexibly adjust the ηi as required.
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(a) Synchronization errors when η1 = η2 =
1
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

e
1
, e

2
, e

3

e
1

e
2

e
3

T = 0.2254 s

(b) Synchronization errors when η1 = η2 =
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Figure 16. Synchronization errors with different exponential terms.
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The simulation results show that the controller parameters significantly influence the synchronous
convergence time. In financial markets, this implies that market participants can adjust the predefined
time based on market conditions to regulate the reaction rate. In volatile markets, selecting a shorter
predefined time allows the system to adapt more quickly to market changes, reducing potential losses.
In stable markets, choosing a longer predefined time ensures smoother system operation, preventing
excessive intervention.

In subsequent comparative simulations, we fix T1 = T2 = 1 and η1 = η2 = 0.5.

4.3. Comparative simulations

4.3.1. Comparison of the predefined-time SMC methods with and without the RBFNN

For convenience, many studies estimate the upper bounds of uncertainties and perturbations. In real
life, uncertainties and perturbations are difficult to estimate accurately, and conservative estimations
often result in large control inputs, leading to unnecessary wastage. To illustrate the superiority of the
RBFNN estimator, we compare the two methods: the sliding surface (3.11) is used as described above,
while the controller is defined as follows:

ui = fi − gi + Dρ−1
(
d1sign (ei) |ei|

1
1+η1 + d2sign (ei) |ei|

1+2η1
1+η1 + d3ei + d4sign (ei)

)
+ d5sign (si) |si|

1
1+η2 + d6sign (si) |si|

1+2η2
1+η2 + d7si + d8sign (si) + (βi |yi| + Ds) sign (si) (4.3)

where βi, Ds are the boundaries of instabilities and fluctuations, |∆gi(y, t)| ≤ βi |yi|, |di(t)| ≤ Ds. The
other parameters are the same as the preceding values. The experimental results are displayed in Figure
17. Figure 17(a) illustrates that e1, e2, e3 converge to zero within 0.2024 s under controller (4.3), and
Figures 17(b)–(d) show the control inputs for both methods. It is clear that the input amplitude of
controller (4.3) is larger than that of controller (3.15).

Obviously, the control approach suggested in this work not only guarantees the convergence time
but also reduces the error buffeting and control input. In actual financial market interventions, the con-
trol input can be regarded as the strength of the macro-control. Regulators usually want to maintain
financial stability with minimal policy intervention, avoiding market imbalances or waste of resources.
Traditional control methods rely on large control inputs to achieve rapid convergence, but this may
lead to irrational market fluctuations, the rise of policy costs, and even foster ”policy dependence”.
In contrast, our approach ensures synchronization while reducing control inputs to achieve the same
market stability effect, thereby improving regulatory efficiency. In addition, because the RBFNN can
adaptively adjust the level of intervention, our approach can be adapted to different market environ-
ments. Therefore, this control strategy can better cope with market disturbances, and can be used in a
financial supervision system. The following analyses will focus on controllers utilizing the RBFNN.

4.3.2. Comparison of various stabilization time methods with the RBFNN

To emphasize the benefits of this predetermined-time method, this part discusses the findings of
different stabilization methods. In the finite-time SMC method, the sliding surface and controller are
employed as follows:

si = Dρ−1ei + Dρ−2 (a1sign (ei) |ei|
η1 + a2sign (ei)) (4.4)
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(a) Synchronization errors of the predefined-time control
scheme without the RBFNN
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(b) Control input u1 of two predefined-time control schemes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-140

-120

-100

-80

-60

-40

-20

0

20

u
2

u
2
 with RBFNN

u
2
 without RBFNN

(c) Control input u2 of two predefined-time control schemes
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(d) Control input u3 of two predefined-time control schemes

Figure 17. Synchronization behaviors of two predefined-time control schemes.

ui = fi − gi − D̂i + Dρ−1 (a1sign (ei) |ei|
η1 + a2sign (ei)) + a3sign (si) |si|

η2 + a4sign (si) (4.5)

where a1 = a3 = 1.5π, a2 = a4 = 2, η1 = η2 =
2
3 . Figure 18(a) illustrates that e1, e2, e3 converge to zero

within 0.5924 s. Moreover, in the fixed-time SMC method, we use the following sliding-mode surface
and controller:

si = Dρ−1ei + Dρ−2 (b1sign (ei) |ei|
η1 + b2sign (ei) |ei|

η3 + b3sign (ei)) (4.6)

ui = fi − gi − D̂i + Dρ−1 (b1sign (ei) |ei|
η1 + b2sign (ei) |ei|

η3 + b3sign (ei)) + b4sign (si) |si|
η2

+ b5sign (si) |si|
η4 + b6sign (si) (4.7)

where b1 = b4 = 1.5π, b2 = b5 = 1.5π × 3
1
3 , b3 = b6 = 2, η1 = η2 =

2
3 , η3 = η4 =

4
3 . Figure 18(b)

illustrates that e1, e2, e3 will converge to zero within 0.3126 s.
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In addition, we also compare it with the method proposed in [40], where the sliding mode surface
and controller are presented below:

si = Dρ−1ei + Dρ−2
(
c1sign (ei) |ei|

1+η1
2 + c2sign (si) |ei|

3−η1
2 + c3ei + c4sign (ei)

)
(4.8)

ui = fi − gi − D̂i + Dρ−1
(
c1sign (ei) |ei|

1+η1
2 + c2sign (si) |ei|

3−η1
2 + c3ei + +c4sign (ei)

)
+ c5sign (si) |si|

1+η2
2 + c6sign (si) |si|

3−η2
2 + c7si + c8sign (si) (4.9)

where c1 = c5 = 3, c2 = c6 = 3
4
3 , c3 = c7 = 6, c4 = c8 = 2, η1 = η2 =

1
3 , T1 = T2 = 1. Figure 18(c)

illustrates that e1, e2, e3 will converge to zero within 0.2860 s.
The simulation results show that the proposed control method converges faster than finite time,

fixed time, and other predefined-time SMC methods. This feature is particularly important in high-
frequency trading and real-time risk management. The rapid volatility of the financial market requires
that the trading system and regulatory mechanism can respond quickly. Faster convergence means
traders can adjust their strategies more timely, while regulators can identify market anomalies more
swiftly, thereby improving regulatory efficiency and reducing systemic risks.

4.4. Robustness analysis

In this part of the simulation experiment, we discuss the convergence time of each method under
different parameters to strengthen the comparative analysis, and because the model (3.7) exhibits two
chaotic states, it is crucial to analyze the influence of different sets of incommensurate orders on syn-
chronous convergence. The starting conditions and the values of the uncertainties remain consistent
with the previous content. The detailed analysis process will not be reiterated here. Figure 19 illus-
trates the chaotic behavior of model (4.1) when the orders are (ρ1, ρ2, ρ3) = (0.79, 0.8, 0.81). For the
sake of analysis, we let T1 = T2, η1 = η2, and d4 = d8. Table 2 presents the convergence times of SMC
methods with different parameters values. 1) is the finite-time SMC method; 2) is the fixed-time SMC
method; 3) is the predefined-time SMC method in [40]; 4) is the predefined-time SMC method without
the RBFNN; 5) is the introduced predefined-time SMC method with the RBFNN.

Remark 4.1. From Table 2, it can be concluded that different parameter values have little effect on
the synchronization performance of the introduced method, and the proposed predefined-time scheme
demonstrates a faster convergence time compared to other schemes.

5. Application

Wu et al. [56] demonstrated that FO chaotic encryption further enlarges the key space compared
to integer-order chaotic encryption, and FO chaotic mapping only has short memory effects. Based
on these advantages, this paper employs the FO chaotic systems (4.1) and (4.2) for the encryption of
images, voice, and signals.
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(a) Synchronization errors in the finite-time control scheme
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(b) Synchronization errors in the fixed-time control scheme
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(c) Synchronization errors of the predefined-time control
scheme in [40]

Figure 18. Synchronization errors in different control schemes.

5.1. Chaotic encryption

To verify the encryption effect of the system (4.1), we apply its chaotic sequences to both image
encryption and voice encryption. The chaotic sequences are generated for two sets of fractional orders:
(ρ1, ρ2, ρ3) = (0.97, 0.98, 0.99) and (ρ1, ρ2, ρ3) = (0.79, 0.8, 0.81), respectively.

5.1.1. Image encryption

For image encryption, a color image is selected as the original input, which is then divided into small
blocks. These blocks are encoded and processed using chaotic sequences combined with DNA coding
rules. Finally, the encrypted image is obtained by recombining the processed blocks. Figure 20 shows
the original and the encrypted images. Clearly, the encrypted image lacks recognizable characteristics
of the original image, indicating that chaotic encryption ensures the security of the plaintext image
during communication.
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Figure 19. Time history and phase diagrams of system (4.1).

Table 2. Convergence time of SMC methods with different parameter values.

Fixed parameter values Variable parameter values (1) (2) (3) (4) (5)
η1 = 0.5, d4 = 2 T1 = 0.5 0.3513 0.1787 0.1619 0.1211 0.1154

T1 = 0.75 0.4747 0.2534 0.1869 0.1651 0.1553
T1 = 1 0.5924 0.3126 0.2860 0.2020 0.1998

T1 = 1, d4 = 2 η1 =
1
3 0.4825 0.2706 0.2390 0.1698 0.1616

η1 = 0.5 0.5924 0.3126 0.2860 0.2020 0.1998
η1 =

2
3 0.6737 0.3422 0.3180 0.2257 0.2254

T1 = 1, η1 = 0.5 d4 = 1 0.7848 0.3955 0.3570 0.2681 0.2447
d4 = 2 0.5924 0.3126 0.2860 0.2020 0.1998
d4 = 3 0.4855 0.2668 0.2430 0.1796 0.1657

T1 = 1, η1 = 0.5, d4 = 2 ρ = (0.79, 0.8, 0.81) 0.5477 0.3238 0.2975 0.2155 0.2153

To access the security of image encryption performance, three indicators, histogram, adjacent pixel
correlation, and information entropy, are analyzed in this part.

1) Histogram

The histogram reflects the pixel distribution of the image and is the key index of security evaluation.
Figures 21 and 22 show the histograms of the R, G, and B components for the original and encrypted
images, respectively. Figure 22 shows that the pixel distribution of the encrypted image is uniform,
eliminating the distinguishing feature of the pixel distribution of the original image.

2) Image adjacent pixel correlation

The correlation coefficient is a key metric for assessing the robustness of the encryption algorithm
against statistical analysis attacks. The following formulas are used to compute the correlation coeffi-
cients [57]:
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(a) The original image (b) The encrypted image

Figure 20. The results of image encryption.
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Figure 21. The histograms of the original image.
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Figure 22. The histograms of the encrypted image.
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E(X) =
1
N

N∑
p=1

Xp (5.1)

D(X) =
1
N

N∑
p=1

(
Xp − E(X)

)2
(5.2)

cov(X,Y) =
1
N

N∑
p=1

(Xp − E(X))(Yp − E(Y)) (5.3)

rXY =
cot(X,Y)

√
D(X) ×

√
D(Y)

(5.4)

where X and Y are adjacent pixels, E(X) and E(Y) are the mathematical expectation, D(X) is the vari-
ance, cov(X,Y) is the covariance, rXY is the correlation coefficient, N is the set of randomly sampled
pixels, and here, N is 5000. Tables 3 and 4 show the correlation coefficients rXY of the three com-
ponents in three directions: horizontal, vertical, and diagonal. As shown in the tables, the correlation
coefficient rXY of the original image is close to 1, while the correlation coefficient rXY of the encrypted
image is close to 0. This indicates that the encryption algorithm has diffusion characteristics.

Table 3. The correlation coefficients of the three components of the original image.

Original image Horizontal Vertical Diagonal
R 0.9805 0.9899 0.9710
G 0.9712 0.9835 0.9564
B 0.9387 0.9596 0.9199

Table 4. The correlation coefficients of the three components of the encrypted image.

Encrypted image Horizontal Vertical Diagonal
R 0.0032 0.0119 0.0269
G 0.0161 -0.0048 0.0028
B 0.0045 -0.0195 -0.0075

3) Information entropy
The increase of information entropy H indicates that the uncertainty in the image is enhanced, while

the decrease indicates that the image is regular. The following formula is used to compute information
entropy:

H = −
L∑

j=1

P( j)log2P( j) (5.5)
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where L is the gray level of the image and P( j) is the probability of the occurrence of j. Table 5 shows
the entropy H of the three channels. A value of H approaching 8 means that the image exhibits greater
randomness. As shown in the table, the encrypted image’s entropy H is closer to 8, which indicates
that the encryption algorithm enhances the randomness of the original image. From the above analysis,
the image encryption is successful.

Table 5. The information entropy of the original and encrypted images.

Image R G B
Original image 7.2531 7.5952 6.9686
Encrypted image 7.9993 7.9993 7.9993

5.1.2. Voice encryption

For voice encryption, nonlinear transformations are applied to the chaotic sequences, followed by
multiple XOR operations for encryption. Figure 23 illustrates the waveform diagrams of both the orig-
inal and encrypted voices. It can be seen that the encrypted voice and the original voice are completely
different in the time domain, which indicates that the voice encryption is successful.
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(b) The encrypted voice

Figure 23. The results of voice encryption.

To evaluate the security of voice encryption performance, spectrum analysis, correlation analysis,
and information entropy analysis are discussed in this part. Correlation analysis and information en-
tropy analysis are similar to the above processes and will not be repeated here.

1) Voice spectrum
Figure 24 shows the spectrum diagrams, where the encrypted voice spectrum has no obvious peak

value and shows a uniform distribution, indicating a significant difference from the original voice.
These results verify the performance of the encryption method.

2) Voice adjacent sample correlation
As shown in Table 6, the original voice’s rXY is close to 1, while the encrypted voice’s rXY is close

to 0, which indicates that the encryption algorithm has diffusion characteristics.
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Figure 24. The voice spectrum.

3) Information entropy
As shown in Table 6, the encrypted voice’s H is closer to 8, which indicates that the encryption

algorithm enhances the randomness of the original voice.

Table 6. The correlation coefficient and information entropy of the original and encrypted
voice.

Analysis Original voice Encrypted voice
Correlation 0.9926 -0.0027
Entropy 6.6270 7.9990

5.2. Chaos masking

Chaos masking is an encrypted communication method that uses chaotic signals to hide useful
signals. Its schematic diagram is shown in Figure 25. At the sending end, the useful signal S (t) is
superimposed with the chaotic sequence generated by the drive model (4.1) to obtain the encrypted
signal S e(t). S e(t) is then transmitted to the receiving end, where the synchronization is realized using
the predefined-time SMC strategy. The chaotic sequence generated by the response model (4.2) is
selected for decryption, resulting in the decrypted signal S d(t). In this part, the master-slave models
described in Section 4, along with the suggested predefined-time SMC approach, are used for chaotic
masking. The fractional orders are set to (ρ1, ρ2, ρ3) = (0.97, 0.98, 0.99), the system’s initial values,
predefined times, control parameters, and other settings remain consistent with those in Section 4. The
useful signal is chosen as S (t) = sin(3t − 3)cos(t). Figure 26 indicates the three signals and it is
found that S e(t) is different with S (t), while S d(t) is consistent with S (t). The findings reveal that the
introduced control approach can effectively realize secure communication. When the orders are set to
(ρ1, ρ2, ρ3) = (0.79, 0.8, 0.81), the analysis process is consistent with the aforementioned discussion.
Therefore, further details are omitted here for brevity.
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Figure 25. The process diagram of chaotic masking [58].
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Figure 26. The results of chaotic masking.

The simulation results of chaos encryption and chaos masking demonstrate that the proposed system
and control method have significant practical value in financial market data security. The financial mar-
ket relies on high-speed data transmission and secure communication. The chaotic encryption method
can safeguard trading orders, market data, and financial communications from theft or tampering dur-
ing transmission. Financial institutions and regulators can use this method to protect high-frequency
trading orders, bank payment information, and regulatory report data. This ensures the integrity and
confidentiality of information during transmission, reducing potential security risks.

6. Conclusions

In this work, we present an innovative FO financial chaotic system considering the non-constant
elasticity of demand and the memory effect of financial variables. The dynamic behaviors of the model
are explored using bifurcation diagrams, LE diagrams, time history diagrams, phase diagrams, a 0-1
test, and a Poincaré map. To address the synchronization challenges of chaotic models with instabili-
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ties and external perturbations, we use an RBFNN to estimate nonlinear functions. Based on Lyapunov
stability theory, we develop an innovative predefined-time SMC method incorporating an RBFNN to
achieve fast synchronization of FO financial systems. Simulation findings reveal that the approach
features the benefits of short synchronization time, predefinable control parameters, and small control
input. Furthermore, chaotic encryption and chaos masking are implemented using chaotic systems and
synchronization methods to ensure secure information transmission. The proposed FO financial chaos
system provides new insights into economic modeling and captures the complex dynamics of finan-
cial markets more accurately. The robust control method developed ensures the stability of chaotic
systems with uncertain parameters and external interference, contributing to the development of non-
linear control theory. Furthermore, the chaotic encryption technique demonstrates great promise in
securing financial data transmission and enhancing communication security. In future studies, opti-
mizing RBFNN parameters using advanced algorithms such as reinforcement learning or evolutionary
strategies may further improve synchronization performance. Additionally, exploring more complex
fractional financial models with real-world data validation can improve practical applicability. Beyond
the financial field, the control scheme is universal and can be extended to other engineering areas such
as event-triggered control, autonomous underwater vehicle (AUV) path tracking, and power system
stability control.
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