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Abstract: In physics, the semiclassical limit principle asserts that as Planck’s constant ~ → 0, quan-
tum states reduce to classical configurations. We extend this framework to the noncommutative residue
by applying the semiclassical limit to the spectral geometry. By introducing the coefficient ε, we es-
tablish a proof of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on
four-dimensional compact manifolds with (without) boundary. As ε → 0, we demonstrate the emer-
gence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result
elucidates the interplay between quantum corrections and classical geometric invariants in the presence
of boundary conditions.
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1. Introduction

The noncommutative residue, also known as great important study subject in noncommutative ge-
ometry, has been extensively studied in [1, 2]. In [3], Connes employed the noncommutative residue
to derive a four-dimensional conformal Polyakov action analogue and demonstrated that the noncom-
mutative residue on a compact manifold M coincides with the Dixmier’s trace for pseudodifferential
operators of order−dimM in [4]. Moreover, Connes claimed the noncommutative residue of the square
of the inverse of the Dirac operator was proportional to the Einstein–Hilbert action. Kastler, Kalau, and
Walze proved this conclusion respectively in [5,6], which is called the Kastler–Kalau–Walze theorem.
Afterwards, Ackermann proved that the noncommutative residue of the square of the inverse of the
Dirac operator Wres(D−2) in turn is essentially the second coefficient of the heat kernel expansion of
D2 in [7], which enriches the results on noncommutative residues on manifolds without boundary.

Furthermore, Wang uses W̃res[(π+D−1)2] instead of Wres(D−2) to generalize the results from mani-
folds without boundary to manifolds with boundary in [8,9], and proved the Kastler–Kalau–Walze-type
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theorem for the Dirac operator and the signature operator on lower-dimensional manifolds with bound-
ary [10]. Here W̃res denotes the noncommutative residue for manifolds with boundary, and π+D−1 is
an element in Boutet de Monvel’s algebra (see (3.1) in Section 3.1). In [10, 11], Wang computed
W̃res[π+D−1 ◦ π+D−1] and W̃res[π+D−2 ◦ π+D−2] for symmetric operators, where the boundary term
vanished in these cases. However, when computing W̃res[π+D−1 ◦ π+D−3], a nonvanishing boundary
term emerged [12], leading Wang to provide a theoretical interpretation of gravitational action on the
boundary. In other words, this work effectively established a framework for investigating the Kastler–
Kalau–Walze-type theorem on manifolds with boundary.

Subsequent studies [13–18] explored various perturbations of the Dirac operator by zero-order
differential operators. In [15], Wang extended the Kastler–Kalau–Walze-type theorem for perturba-
tions of Dirac operators on compact manifolds (with or without boundary) and proposed two distinct
operator-theoretic interpretations of boundary gravitational action. Further developments by Wang,
Wang, and Yang [17] ocused on 4-dimensional compact manifolds with boundary, where they derived
two operator-theoretic explanations for gravitational action and proved a Kastler–Kalau–Walze-type
theorem for nonminimal operators on complex manifolds. Additionally, in [16], Wang, Wang, and
Wu introduced novel spectral functionals, which extended traditional spectral functionals to noncom-
mutative realm with torsion and connected them to the noncommutative residue for manifolds with
boundary.

The semiclassical limit not only connects quantum and classical physics theoretically but also pro-
vides important research tools and application value in the field of mathematics. In physics, the semi-
classical limit refers to the transitional regime between quantum mechanics and classical mechanics.
When the characteristic action S̄ of a system is much larger than Planck’s constant ~, quantum effects
gradually diminish, and the system’s behavior approaches that of classical mechanics. In mathematics,
this is often achieved by taking the limit where Planck’s constant ~→ 0.

There are many studies on the semiclassical limit of the spectral geometry. Bär and Pfäffle studied
semiclassical approximations for the heat kernel of a general self-adjoint Laplace-type operator within
a geometric framework in [19]. Later, Ludewig [20] examined the semiclassical asymptotic expansion
of the heat kernel arising from Witten’s perturbation of the de Rham complex by a given function. By
employing the stationary phase method, Ludewig derived a time-dependent integral formula, ultimately
leading to a proof of the Poincaré-Hopf theorem. Meanwhile, Savale [21] analyzed the remainder term
in the semiclassical limit formula (introduced in [22]) for the eta invariant on a metric contact manifold.
Specifically, Savale demonstrated that this remainder term is governed by the volumes of recurrence
sets of the Reeb flow. Obviously, the noncommutative residues as a part of the spectral geometry; thus,
in order to extend the study of the semiclassical limit of the spectral geometry, motivated by [19–21]
and Theorem 3.12 in [23], we introduce the semiclassical limit into the noncommutative residue. Based
on the research of [24], we prove the semiclassical limit of the Kastler–Kalau–Walze-type theorem
for the perturbations of the Dirac operator on 4-dimensional compact oriented spin manifolds with
(without) boundary by taking the limit ε→ 0. For a fixed ε > 0, we may consider the Kastler–Kalau–
Walze-type theorem as a theorem in the quantum state. And when ε→ 0, we give the classical state of
the Kastler–Kalau–Walze-type theorem.

This paper is organized as follows: By using Wres(P) :=
∫

S ∗M
tr(σP

−n)(x, ξ), Section 2 gives semi-
classical limits of the noncommutative residues of three cases for the perturbations of the Dirac op-
erator on 4-dimensional manifolds without boundary. Moreover, we give the semiclassical limit of
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the Kastler–Kalau–Walze-type theorem about the perturbation of the Dirac operator on 4-dimensional
manifolds with boundary in Section 3.

2. The semiclassical limits of the noncommutative residue on 4-dimensional manifolds without
boundary

In this section, we study the semiclassical limits of the noncommutative residues on 4-dimensional
manifolds without boundary in three different cases.

Firstly, we recall the main facts regarding the Dirac operator D. Let M be a 4-dimensional compact
oriented spin manifold with Riemannian metric g, and let ∇ denote the Levi–Civita connection associ-
ated with g. Then the Dirac operator D can be expressed locally in terms of an orthonormal frame ei

(with corresponding dual coframe θk) of the frame bundle of M [5]:

D = iγi∇̃i = iγi(ei + σi);

σi(x) =
1
4
γi j,k(x)γiγk =

1
8
γi j,k(x)[γ jγk − γkγ j],

γi j,k = −γik, j =
1
2

[ci j,k + cki, j + ck j,i], i, j, k = 1, · · ·, 4;

ck
i j = θk([ei.e j]),

where the γi j,k represents the Levi–Civita connection ∇ with spin connection ∇̃, the γi denote constant
self-adjoint Dirac matrices, which satisfy γiγ j + γ jγi = −2δi j.

Using local coordinates xµ that induce the alternative vierbein ∂µ = S i
µ(x)ei (with dual vierbein dxµ),

γiei = γµ∂µ is obtained, where the γµ are now x-dependent Dirac matrices, which satisfy γµγν + γνγµ =

−2gµν (we use Latin sub-(super-) scripts for the basic ei and Greek sub-(super-) scripts for the basis ∂µ,
the type of sub-(super-) scripts specifying the type of Dirac matrices). Then the Dirac operator in the
Greek basis is expressed by

D = iγµ∇̃µ = iγµ(eµ + σµ);
σµ(x) = S i

µ(x)σi.

Consider a pseudodifferential operator P that acts on sections of a vector bundle over a compact Rie-
mannian manifold M. In [5], the noncommutative residues of P is defined by

Wres(P) :=
∫

M

∫
‖ξ‖=1

tr [σ−n (P)] (x, ξ)σ(ξ)dx, (2.1)

where ξ ∈ S n−1and tr denotes shorthand for trace.
Next, by (2.1), to obtain the semiclassical limit of the noncommutative residues on manifolds with-

out boundary, we consider the following three different cases. From the point of view of the following
three different cases, we give the classical state of the noncommutative residue on manifolds without
boundary.

(1) lim
ε→0

ε3Wres(εD2 + λ1D + λ2)−1;
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(2) lim
ε→0

ε3Wres(εD2 + λ1c(X)D + λ2)−1;

(3) lim
ε→0

ε3Wres(εD2 + λ1∇
S (T M)
X + λ2)−1,

where λ1, λ2 are C∞(M) functions.

2.1. The first case: limε→0 ε
3Wres(εD2 + λ1D + λ2)−1

In this subsection, we want to compute limε→0 ε
3Wres(εD2 + λ1D + λ2)−1, by ε3Wres(εD2 + λ1D +

λ2)−1 = ε2Wres
(
D2 + λ1

ε
D + λ2

ε

)−1

, we need to compute Wres
(
D2 + λ1

ε
D + λ2

ε

)−1

.

Set A = D2 + λ1
ε

D + λ2
ε
, we utilize the composition of pseudodifferential operators to express

the symbol of the operator. Simplify the abbreviation of the principal symbol: ξ =
∑

j ξ jdx j,
∂αξ = ∂α/∂ξα, ∂

x
α = ∂α/∂xα, then the following identity holds:

σPQ(x, ξ) =
∑
α

(−i)α

α!
∂αξσ

P(x, ξ) · ∂x
ασ

Q(x, ξ). (2.2)

Firstly, we compute the total symbol σ(x, ξ) of A, which is given by the sum of terms Ak of order
k (k = 0, 1, 2):

A = A2 + A1 + A0.

Then, we have

σA
2 (x, ξ) = |ξ|2;

σA
1 (x, ξ) = i(Γµ − 2σµ)ξµ +

iλ1

ε
c(ξ);

σA
0 (x, ξ) = −(∂xσµ + σµσµ − Γµσµ) +

1
4

s +
iλ1

ε
γµσµ +

λ2

ε
. (2.3)

Next, we compute A−1 from order -4 to order -2 using the above results; that is, σA−1

−k , k = 2, 3, 4. The
full symbol σ of A is expressed in terms of decreasing order:

σA−1
= σA−1

−2 + σA−1

−3 + σA−1

−4 + terms o f order ≤ −5.

Using (2.2), the negative order of the symbol of A−1 yields:

σA−1

−2 = (σA
2 )−1;

σA−1

−3 = −σA−1

−2 [σA
1σ

A−1

−2 − i∂µξσ
A
2∂

x
µσ

A−1

−2 ];

σA−1

−4 = −σA−1

−2 [σA
1σ

A−1

−3 + σA
0σ

A−1

−2 − i∂µξσ
A
1∂

x
µσ

A−1

−2 − i∂µξσ
A
2∂

x
µσ

A−1

−3 ].

Moreover, by (2.3), the following result is obtained.

σA−1

−2 = |ξ|−2;
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σA−1

−3 = −|ξ|−2[(i(Γµ − 2σµ)ξµ +
iλ1

ε
c(ξ))|ξ|−2 − i∂µξ (|ξ|

2)∂x
µ(|ξ|

−2)];

σA−1

−4 = −|ξ|−6ξµξν(Γµ − 2σµ)(Γν − 2σν) − 2|ξ|−8ξµξαξβ(Γν − 2σν)∂x
µg

αβ + |ξ|−4(∂xµσµ + σµσµ − Γµσµ)

−
1
4
|ξ|−4s − 2i|ξ|−2ξµ · ∂x

µσ
A−1

−3 + |ξ|−6ξαξβ(Γµ − 2σµ)∂x
µg

αβ − |ξ|−6ξαξβgµν∂x
µνg

αβ + 2|ξ|−8ξαξβξγξδgµν

∂x
µg

αβ∂x
νg

γδ − |ξ|−6λ1

ε
c(ξ)(Γµ − 2σµ)ξµ − |ξ|−6(Γµ − 2σµ)ξµ

λ1

ε
c(ξ) − |ξ|−4 1

ε
(iλ1γ

µσµ + λ2)

+ 2|ξ|−8λ1

ε
c(ξ)ξµξαξβ∂x

µg
αβ + |ξ|−4λ

2
1

ε2 − |ξ|
−4∂

µ
ξ [
λ1

ε
c(ξ)]ξαξβ∂x

µg
αβ.

Regrouping the terms and inserting

∂x
µσ

A−1

−3 = 2i|ξ|−6ξνξαξβ(Γν − 2σν)∂x
µg

αβ − i|ξ|−4ξν∂
x
µ(Γ

ν − 2σν) + 6i|ξ|−8ξνξαξβξγξδ∂
x
µg

αβ∂x
νg

γδ

− 2i|ξ|−6ξαξγξδ∂
x
µg

να∂x
νg

γδ − 2i|ξ|−6ξνξγξδ∂
x
µνg

γδ − i∂x
µ[|ξ|

−4λ1

ε
c(ξ)].

We obtain for σA−1

−4 the sum of terms:

N1 = −|ξ|−6ξµξνΓ
µΓν + |ξ|−4[gµν − |ξ|−4ξµν][σµσν − Γνσν];

N2 = |ξ|−4∂xµσµ −
1
4
|ξ|−4s;

N3 = −6|ξ|−8ξµξνξαξβ(Γν − 2σν)∂x
µg

αβ;

N4 = 2|ξ|−6ξµξν∂
x
µ(Γ

ν − 2σν);

N5 = −12|ξ|−10ξµξνξαξβξγξδ∂
x
µg

αβ∂x
νg

γδ;

N6 = 4|ξ|−8ξµξαξγξδ∂
x
µg

να∂x
νg

γδ;

N7 = |ξ|−6ξαξβ(Γµ − 2σµ)∂x
µg

αβ;

N8 = 4|ξ|−8ξµξνξγξδ∂
x
µνg

γδ;

N9 = −|ξ|−6ξαξβgµν∂x
µνg

αβ;

N10 = 2|ξ|−8ξαξβξγξδgµν∂x
µg

αβ∂x
νg

γδ,

and

M1 = −|ξ|−6λ1

ε
c(ξ)(Γµ − 2σν)ξµ; M2 = −|ξ|−6(Γµ − 2σν)ξµ

λ1

ε
c(ξ);

M3 = 2|ξ|−8λ1

ε
c(ξ)ξµξαξβ∂x

µg
αβ; M4 = |ξ|−4λ

2
1

ε2 ; M5 = −|ξ|−4 1
ε

(λ1iγµσµ + λ2);

M6 = −|ξ|−4λ1

ε
∂
µ
ξ [c(ξ)]ξαξβ∂x

µg
αβ; M7 = −2|ξ|−2ξµ∂

µ
x[|ξ|−4λ1

ε
c(ξ)].

Let s denote the scalar curvature, from [5], we obtain∫
|ξ|=1

tr[
10∑
i=1

Ni]σ(ξ) = −
s

12
tr[id]. (2.4)
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The next step involves computing
∫
|ξ|=1

tr[
∑7

i=1 Mi]σ(ξ).
(1) :
In normal coordinates, using the facts: Γ

µ
αβ(x0) = σµ(x0) = 0, ∂x

µg
αβ(x0) = 0, the results of the terms

M1, M2, M3, and M6 disappear.
(2) :

∫
|ξ|=1

tr(M4)(x0)σ(ξ) =
λ2

1

ε2 VolS 3tr[id] =
2λ2

1

ε2 π
2tr[id],

and ∫
|ξ|=1

tr(M5)(x0)σ(ξ) = −
λ2

ε
VolS 3tr[id] = −

2λ2

ε
π2tr[id].

(3) :
By ∂x

µ[|ξ|
−4c(ξ)] = −2|ξ|−6∂x

µ(|ξ|
2)c(ξ) + |ξ|−4∂x

µ[c(ξ)], ∂x
µ(|ξ|

2)(x0) = 0 and ∂x
µ[c(ξ)] = 0, we have∫

|ξ|=1
tr(M7)(x0)σ(ξ) = 0.

Therefore, when n = 4, trS (T M)[id] = 4 and by (2.1), this implies

Wres
(
D2 +

λ1

ε
D +

λ2

ε

)−1

= 4
∫

M

(2λ2
1

ε2 π
2 −

2λ2

ε
π2 +

1
12

s
)
dVolM.

Further, we obtain the semiclassical limit of the above result. That is the following theorem.

Theorem 2.1. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we
derive the semiclassical limit of the noncommutative residue about εD2 + λ1D + λ2

lim
ε→0

ε3Wres(εD2 + λ1D + λ2)−1 = 8
∫

M
λ2

1π
2dVolM.

Corollary 2.2. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when
λ1 =

√
ε, we obtain the following equality:

lim
ε→0

ε2Wres(εD2 +
√
εD + λ2)−1 = 8

∫
M

(1 − λ2)π2dVolM.

2.2. The second case: limε→0 ε
3Wres(εD2 + λ1c(X)D + λ2)−1

Let c(X) denote a Clifford action on M, where X =
∑n
α=1 aαeα =

∑n
j=1 X j∂ j is a vector field. Then

we can set B = D2 + λ1
ε

c(X)D + λ2
ε

, the next step is to compute the total symbol σ(x, ξ) of B; the sum
of terms Bk of order k (k = 0, 1, 2) is given by:

B = B2 + B1 + B0.

By (2.2), we have

σB
2 (x, ξ) = |ξ|2;
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σB
1 (x, ξ) = i(Γµ − 2σµ)ξµ +

iλ1

ε
c(X)c(ξ);

σB
0 (x, ξ) = −(∂xσµ + σµσµ − Γµσµ) +

1
4

s +
iλ1

ε
c(X)γµσµ +

λ2

ε
. (2.5)

Next, we compute B−1 from order -4 to order -2 using the above results; that is, we compute σB−1

−k , k =

2, 3, 4. the full symbol σ of B is expressed into terms of decreasing order:

σB−1
= σB−1

−2 + σB−1

−3 + σB−1

−4 + terms o f order ≤ −5.

Using (2.2), the negative order of the symbol of B−1 yields:

σB−1

−2 = (σB
2 )−1;

σB−1

−3 = −σB−1

−2 [σB
1σ

B−1

−2 − i∂µξσ
B
2∂

x
µσ

B−1

−2 ];

σB−1

−4 = −σB−1

−2 [σB
1σ

B−1

−3 + σB
0σ

B−1

−2 − i∂µξσ
B
1∂

x
µσ

B−1

−2 − i∂µξσ
B
2∂

x
µσ

B−1

−3 ].

Then by (2.5), it follows that

σB−1

−2 = |ξ|−2;

σB−1

−3 = −|ξ|−2[(i(Γµ − 2σµ)ξµ +
iλ1

ε
c(X)c(ξ))|ξ|−2 − i∂µξ (|ξ|

2)∂x
µ(|ξ|

−2)];

σB−1

−4 = −|ξ|−6ξµξν(Γµ − 2σµ)(Γν − 2σν) − 2|ξ|−8ξµξαξβ(Γν − 2σν)∂x
µg

αβ + |ξ|−4(∂xµσµ + σµσµ − Γµσµ)

−
1
4
|ξ|−4s − 2i|ξ|−2ξµ · ∂x

µσ−3 + |ξ|−6ξαξβ(Γµ − 2σµ)∂x
µg

αβ − |ξ|−6ξαξβgµν∂x
µνg

αβ + 2|ξ|−8ξαξβξγξδ

gµν∂x
µg

αβ∂x
νg

γδ − |ξ|−6λ1

ε
c(X)c(ξ)(Γµ − 2σµ)ξµ − |ξ|−6(Γµ − 2σµ)ξµ

λ1

ε
c(X)c(ξ) − |ξ|−4 1

ε
(iλ1c(X)γµ

σµ + λ2) + 2|ξ|−8λ1

ε
c(X)c(ξ)ξµξαξβ∂x

µg
αβ − |ξ|−6λ

2
1

ε2 [c(X)c(ξ)]2 − |ξ|−4∂
µ
ξ [
λ1

ε
c(X)c(ξ)]ξαξβ∂x

µg
αβ.

Regrouping the terms and inserting

∂x
µσ

B−1

−3 = 2i|ξ|−6ξνξαξβ(Γν − 2σν)∂x
µg

αβ − i|ξ|−4ξν∂
x
µ(Γ

ν − 2σν) + 6i|ξ|−8ξνξαξβξγξδ∂
x
µg

αβ∂x
νg

γδ

− 2i|ξ|−6ξαξγξδ∂
x
µg

να∂x
νg

γδ − 2i|ξ|−6ξνξγξδ∂
x
µνg

γδ − i∂x
µ[|ξ|

−4λ1

ε
c(X)c(ξ)].

Then σB−1

−4 includes the sum of terms: N1 − N10 and R1 − R7:

R1 = −|ξ|−6λ1

ε
c(X)c(ξ)(Γµ − 2σν)ξµ; R2 = −|ξ|−6(Γµ − 2σν)ξµ

λ1

ε
c(X)c(ξ);

R3 = 2|ξ|−8λ1

ε
c(X)c(ξ)ξµξαξβ∂x

µg
αβ; R4 = −|ξ|−6λ

2
1

ε2 c(X)c(ξ)c(X)c(ξ);

R5 = −|ξ|−4 1
ε

(λ1ic(X)γµσµ + λ2); R6 = −|ξ|−4λ1

ε
∂
µ
ξ [c(X)c(ξ)]ξαξβ∂x

µg
αβ;

R7 = −2|ξ|−2ξµ∂
µ
x[|ξ|−4λ1

ε
c(X)c(ξ)].
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Then, similarly, we compute
∫
|ξ|=1

tr[
∑7

i=1 Ri]σ(ξ).
(1) :
In normal coordinates, using the facts, we have: Γ

µ
αβ(x0) = σµ(x0) = 0, ∂x

µg
αβ(x0) = 0, the results of

the terms R1, R2, R3, and R6 disappear.
(2) :

tr[c(X)c(ξ)c(X)c(ξ)]|ξ|=1 = −2ξ(X)tr[c(X)c(ξ)]|ξ|=1 − |X|2tr[id],

and

− 2ξ(X)tr[c(X)c(ξ)]|ξ|=1 = 4ξ(X)2tr[id] + 2ξ(X)tr[c(ξ)c(X)]|ξ|=1. (2.6)

Then by
∫
|ξ|=1

ξ(X)2σ(ξ) = −1
2 |X|

2π2tr[id], we have∫
|ξ|=1

tr(R4)(x0)σ(ξ) =
λ2

1

ε2 |X|
2π2tr[id].

(3) :

∫
|ξ|=1

tr(R5)(x0)σ(ξ) = −
2λ2

ε
π2tr[id].

(4) :
By ∂µx[c(X)c(ξ)](x0) = c(X)∂µx[c(ξ)] + ∂

µ
x[c(X)]c(ξ) =

∑n
j=1 ∂

µ
x(X j)c(e j)c(ξ)(x0), we have

tr(R7)(x0) = 2ξµξkλ1

ε

n−1∑
k

∂µx(Xk)tr[id]. (2.7)

Then ∫
|ξ|=1

tr(R7)(x0)σ(ξ) =
λ1

2ε

∑
k

∂xk(Xk)VolS 3tr[id]

=
λ1

2ε
divM(X)VolS 3tr[id]

=
λ1

ε
divM(X)π2tr[id],

where divM denotes divergence of M.
Thus by (2.1), we obtain the following result:

Wres(D2 +
λ1

ε
c(X)D +

λ2

ε
)−1 = 4

∫
M

(λ2
1

ε2 |X|
2π2 −

2λ2

ε
π2 +

λ1

ε
divM(X)π2 +

1
12

s
)
dVolM.

Further, we obtain the following theorem.

Theorem 2.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we
derive the semiclassical limit of the noncommutative residue about εD2 + λ1c(X)D + λ2

lim
ε→0

ε3Wres(εD2 + λ1c(X)D + λ2)−1 = 4
∫

M
λ2

1|X|
2π2dVolM.
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Corollary 2.4. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when
λ1 =

√
ε, the following equality holds:

lim
ε→0

ε2Wres(εD2 +
√
εc(X)D + λ2)−1 = 4

∫
M

(|X|2 − 2λ2)π2dVolM.

2.3. The third case: limε→0 ε
3Wres(εD2 + λ1∇

S (T M)
X + λ2)−1

Define ∇S (T M)
X := X + 1

4

∑
i j〈∇

L
Xei, e j〉c(ei)c(e j), which is a spin connection. And let gi j = g(dxi, dx j)

and ∇L
∂i
∂ j =

∑
k Γk

i j∂k, we denote that

σi = −
1
4

∑
s,t

ωs,t(ei)c(ei)c(es)c(et); ξ j = gi jξi; Γk = gi jΓk
i j; σ j = gi jσi.

Set C = D2 + λ1
ε
∇

S (T M)
X + λ2

ε
, E(X) = 1

4

∑
i j〈∇

L
Xei, e j〉c(ei)c(e j). The next step is to compute the total

symbol σ(x, ξ) of C−1 from order -4 to order -2, with C the following sum of terms Ck of order k:

C = C2 + C1 + C0.

Then, we have

σC
2 (x, ξ) = |ξ|2;

σC
1 (x, ξ) = i(Γµ − 2σµ)ξµ +

iλ1

ε

n∑
j=1

X jξ j;

σC
0 (x, ξ) = −(∂xσµ + σµσµ − Γµσµ) +

1
4

s +
iλ1

ε
E(X) +

λ2

ε
.

Further, by (2.2), we obtain

σC−1

−2 = |ξ|−2;

σC−1

−3 = −|ξ|−2[(i(Γµ − 2σµ)ξµ +
iλ1

ε

n∑
j=1

X jξ j)|ξ|−2 − i∂µξ (|ξ|
2)∂x

µ(|ξ|
−2)];

σC−1

−4 = −|ξ|−6ξµξν(Γµ − 2σµ)(Γν − 2σν) − 2|ξ|−8ξµξαξβ(Γν − 2σν)∂x
µg

αβ + |ξ|−4(∂xµσµ + σµσµ − Γµσµ)

−
1
4
|ξ|−4s − 2i|ξ|−2ξµ · ∂x

µσ−3 + |ξ|−6ξαξβ(Γµ − 2σµ)∂x
µg

αβ − |ξ|−6ξαξβgµν∂x
µνg

αβ + 2|ξ|−8ξαξβξγξδgµν

∂x
µg

αβ∂x
νg

γδ − |ξ|−6λ1

ε

n∑
j=1

X jξ j(Γµ − 2σµ)ξµ − |ξ|−6(Γµ − 2σµ)ξµ
λ1

ε

n∑
j=1

X jξ j − |ξ|
−4 1
ε

(iλ1E(X) + λ2)

+ 2|ξ|−8λ1

ε

n∑
j=1

X jξ jξ
µξαξβ∂

x
µg

αβ − |ξ|−6λ
2
1

ε2

n∑
j=1

X jξ j

n∑
k=1

Xkξk − |ξ|
−4∂

µ
ξ [
λ1

ε

n∑
j=1

X jξ j]ξαξβ∂x
µg

αβ.

Regrouping the terms and inserting

∂x
µσ

C−1

−3 = 2i|ξ|−6ξνξαξβ(Γν − 2σν)∂x
µg

αβ − i|ξ|−4ξν∂
x
µ(Γ

ν − 2σν) + 6i|ξ|−8ξνξαξβξγξδ∂
x
µg

αβ∂x
νg

γδ
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− 2i|ξ|−6ξαξγξδ∂
x
µg

να∂x
νg

γδ − 2i|ξ|−6ξνξγξδ∂
x
µνg

γδ − i∂x
µ[|ξ|

−4λ1

ε

n∑
j=1

X jξ j].

We obtain for σC−1

−4 the sum of terms: N1 − N10 and T1 − T7:

T1 = −|ξ|−6λ1

ε

n∑
j=1

X jξ j(Γµ − 2σν)ξµ; T2 = −|ξ|−6(Γµ − 2σν)ξµ
λ1

ε

n∑
j=1

X jξ j;

T3 = 2|ξ|−8λ1

ε

n∑
j=1

X jξ jξ
µξαξβ∂

x
µg

αβ; T4 = −|ξ|−6λ
2
1

ε2

n∑
j=1

X jξ j

n∑
k=1

Xkξk;

T5 = −|ξ|−4 1
ε

(λ1c(X)E(X) + λ2); T6 = −|ξ|−4λ1

ε
∂
µ
ξ [

n∑
j=1

X jξ j]ξαξβ∂x
µg

αβ;

T7 = −2|ξ|−2ξµ∂
µ
ξ [|ξ|

−4λ1

ε

n∑
j=1

X jξ j].

Then, we proceed to compute
∫
|ξ|=1

tr[
∑7

i=1 Ti]σ(ξ).
(1) :
In normal coordinates, using the facts: Γ

µ
αβ(x0) = σµ(x0) = 0, ∂x

µg
αβ(x0) = 0, the results of the terms

T1, T2, T3, and T6 disappear.
(2) :
By

∫
|ξ|=1

ξ jξkσ(ξ) = 1
4VolS 3δ jk = 1

2π
2δ jk, we have

∫
|ξ|=1

tr(T4)(x0)σ(ξ) = −
λ2

1

2ε2 |X|
2π2tr[id].

(3) :

∫
|ξ|=1

tr(T5)(x0)σ(ξ) = −
2λ2

ε
π2tr[id].

(4) :
Similar to (2.7), we have ∫

|ξ|=1
tr(T7)(x0)σ(ξ) = −

λ1

ε
divM(X)π2tr[id].

Thus, we obtain the following result:

Wres(D2 +
λ1

ε
∇

S (T M)
X +

λ2

ε
)−1 = 4

∫
M

(
−
λ2

1

2ε2 |X|
2π2 −

2λ2

ε
π2 −

λ1

ε
divM(X)π2 +

1
12

s
)
dVolM.

Building on these preliminaries, we obtain:
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Theorem 2.5. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we
obtain the semiclassical limit of the noncommutative residue about εD2 + λ1∇

S (T M)
X + λ2

lim
ε→0

ε3Wres(εD2 + λ1∇
S (T M)
X + λ2)−1 = 4

∫
M
−
λ2

1

2
|X|2π2dVolM.

Corollary 2.6. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when
λ1 =

√
ε, we obtain the following equality:

lim
ε→0

ε2Wres(εD2 +
√
ε∇S (T M)

X + λ2)−1 = 4
∫

M

(
−

1
2
|X|2 − 2λ2

)
π2dVolM.

3. The semiclassical limit of the Kastler–Kalau–Walze-type theorem on 4-dimensional
manifolds with boundary

In this section, we study the semiclassical limit of the Kastler–Kalau–Walze-type theorem for the
perturbation of the Dirac operator on 4-dimensional manifolds with boundary, that is, to compute
limε→0 ε

4W̃res[π+(εD + c(X))−1 ◦ π+(εD + c(Z))−1].

3.1. Boutet de Monvel’s calculus

In this subsection, we recall some fundamental concepts and key formulas about Boutet de Monvel’s
calculus, along with the definition of the noncommutative residue for manifolds with boundary. These
preliminaries will be essential for our subsequent analysis. For a more comprehensive treatment of
these topics, we refer readers to Section 2 in [10].

Denote by π+ (resp. π−) the projection on H+ (resp. H−). Let H̃ = {rational functions having no
poles on the real axis}. Then for h ∈ H̃,

π+h(ξ0) =
1

2πi
lim

u→0−

∫
Γ+

h(ξ)
ξ0 + iu − ξ

dξ, (3.1)

where Γ+ is a Jordan closed curve included in Im(ξ) > 0 surrounding all the singularities of h in the
upper half-plane and ξ0 ∈ R. Similarly, we define π′ on H̃,

π′h =
1

2π

∫
Γ+

h(ξ)dξ. (3.2)

So π′(H−) = 0.
For h ∈ H

⋂
L1(R),

π′h =
1

2π

∫
R

h(v)dv,

and for h ∈ H+
⋂

L1(R), π′h = 0.
Let G,T be, respectively, the singular Green operator and the trace operator of order m and type

d. Let K be a potential operator and S be a classical pseudodifferential operator of order m along the
boundary. An operator of order m ∈ Z and type d is a matrix

Ã =

(
π+P + G K
T S

)
:

C∞(M, E1)⊕
C∞(∂M, F1)

−→

C∞(M, E2)⊕
C∞(∂M, F2)

,
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where M is a manifold with boundary ∂M and E1, E2 (resp. F1, F2) are vector bundles over M
(resp. ∂M). Here, P : C∞0 (Ω, E1) → C∞(Ω, E2) is a classical pseudodifferential operator of order
m on Ω, where Ω is a collar neighborhood of M and Ei|M = Ei (i = 1, 2). P has an extension:
E′(Ω, E1) → D′(Ω, E2), where E′(Ω, E1) (D′(Ω, E2)) is the dual space of C∞(Ω, E1) (C∞0 (Ω, E2)). Let
e+ : C∞(M, E1)→ E′(Ω, E1) denotes extension by zero from M to Ω, and r+ : D′(Ω, E2)→ D′(Ω, E2)
denotes the restriction from Ω to X; then define

π+P = r+Pe+ : C∞(M, E1)→ D′(Ω, E2).

In addition, P is supposed to have the transmission property; this means that, for all j, k, α, the
homogeneous component p j of order j in the asymptotic expansion of the symbol p of P in local
coordinates near the boundary satisfies

∂k
xn
∂αξ′ p j(x′, 0, 0,+1) = (−1) j−|α|∂k

xn
∂αξ′ p j(x′, 0, 0,−1),

then π+P : C∞(M, E1)→ C∞(M, E2) by Theorem 4 in [25] page 139.
Denote by B the Boutet de Monvel’s algebra. We recall that the main theorem is in [10, 26].

Theorem 3.1. [26] (Fedosov-Golse-Leichtnam-Schrohe) Let M and ∂M be connected, dimM = n ≥
3, and let S (resp. S ′) be the unit sphere about ξ (resp. ξ′) and σ(ξ) (resp. σ(ξ′)) be the corresponding

canonical n − 1 (resp. (n − 2)) volume form. Set Ã =

(
π+P + G K
T S

)
∈ B , and denote by p, b and s

the local symbols of P,G, and S , respectively. Define:

W̃res(Ã) =

∫
X

∫
S

trE
[
p−n(x, ξ)

]
σ(ξ)dx

+ 2π
∫
∂X

∫
S′

{
trE

[
(trb−n)(x′, ξ′)

]
+ trF

[
s1−n(x′, ξ′)

]}
σ(ξ′)dx′,

where W̃res denotes the noncommutative residue of an operator in the Boutet de Monvel’s algebra,
and

S = {(ξ1, ξ2, · · ·, ξn) ∈ Rn|

n∑
i, j=1

gi jξiξ j = 1},

in the normal coordinate,

S (x0) = {(ξ1, ξ2, · · ·, ξn) ∈ Rn|

n∑
i=1

ξ2
i = 1}.

Then a) W̃res([Ã, B]) = 0, for any Ã, B ∈ B; b) It is the unique continuous trace on B/B−∞.

Definition 3.2. [10] Lower-dimensional volumes of spin manifolds with boundary are defined by

Vol(p1,p2)
n M := W̃res[π+D−p1 ◦ π+D−p2],

and

W̃res[π+D−p1 ◦ π+D−p2] =

∫
M

∫
|ξ|=1

tr∧∗T ∗M ⊗
C[σ−n(D−p1−p2)]σ(ξ)dx +

∫
∂M

Φ, (3.3)
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where

Φ =

∫
|ξ′ |=1

∫ +∞

−∞

∞∑
j,k=0

∑ (−i)|α|+ j+k+1

α!( j + k + 1)!
× tr∧∗T ∗M ⊗

C[∂ j
xn
∂αξ′∂

k
ξn
σ+

r (D−p1)(x′, 0, ξ′, ξn)

× ∂αx′∂
j+1
ξn
∂k

xn
σl(D−p2)(x′, 0, ξ′, ξn)]dξnσ(ξ′)dx′, (3.4)

and the sum is taken over r + l − k − |α| − j − 1 = −n, r ≤ −p1, l ≤ −p2.

3.2. The interior term of limε→0 ε
4W̃res[π+(εD + c(X))−1 ◦ π+(εD + c(Z))−1]

By ε4W̃res[π+(εD + c(X))−1 ◦π+(εD + c(Z))−1] = ε2W̃res
[
π+

(
D +

c(X)
ε

)−1

◦π+

(
D +

c(Z)
ε

)−1]
and (3.3),

we first compute

W̃res
[
π+

(
D +

c(X)
ε

)−1

◦ π+

(
D +

c(Z)
ε

)−1]
=

∫
M

∫
|ξ|=1

trS (T M)
⊗
C

[
σ−4

(
D2 +

c(Z)D
ε

+
Dc(X)
ε

+
c(Z)c(X)

ε2

)−1]
σ(ξ)dx +

∫
∂M

Φ, (3.5)

where

Φ =

∫
|ξ′ |=1

∫ +∞

−∞

∞∑
j,k=0

∑ (−i)|α|+ j+k+1

α!( j + k + 1)!
× trS (T M)

⊗
C

[
∂ j

xn
∂αξ′∂

k
ξn
σ+

r

(
D +

c(X)
ε

)−1

(x′, 0, ξ′, ξn)

× ∂αx′∂
j+1
ξn
∂k

xn
σl

(
D +

c(Z)
ε

)−1

(x′, 0, ξ′, ξn)
]
dξnσ(ξ′)dx′, (3.6)

and the sum is taken over r + l − k − j − |α| = −3, r ≤ −1, l ≤ −1.
Since [σ−n(D−p1−p2)]|M has the same expression as σ−n(D−p1−p2) in the case of manifolds without

boundary, so locally we can compute the interior term by [5, 6, 10, 27].
Set V = D2 +

c(Z)D
ε

+
Dc(X)
ε

+
c(Z)c(X)

ε2 , where Z =
∑n
α=1 aαeα =

∑n
j=1 Z j∂ j is a vector field. The next

step is to compute the total symbol σ(x, ξ) of V−1 from order -4 to order -2, with V the following sum
of terms Vk of order k:

σV
2 (x, ξ) = |ξ|2;

σV
1 (x, ξ) = i(Γµ − 2σµ)ξµ +

i
ε

c(Z)c(ξ) +
i
ε

c(ξ)c(X);

σV
0 (x, ξ) = −(∂xσµ + σµσµ − Γµσµ) +

1
4

s +
i
ε

c(Z)γµσµ +
i
ε
γµσµc(X) +

c(Z)c(X)
ε2 .

By (2.2) and the composition formula of pseudodifferential operators, σV−1

−4 is obtained , which include
the sum of terms N1 − N10 and F1 − F7:

F1 = −|ξ|−6 1
ε

[c(Z)c(ξ) + c(ξ)c(X)](Γµ − 2σν)ξµ; F2 = −|ξ|−6(Γµ − 2σν)ξµ
1
ε

[c(Z)c(ξ) + c(ξ)c(X)];

F3 = 2|ξ|−8 1
ε

[c(Z)c(ξ) + c(ξ)c(X)]ξµξαξβ∂x
µg

αβ; F4 = −|ξ|−6 f
1
ε2 [c(Z)c(ξ) + c(ξ)c(X)]2;
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F5 = −|ξ|−4[
i
ε

c(Z)γµσµ +
i
ε
γµσµc(X) +

c(Z)c(X)
ε2 ]; F6 = −|ξ|−4 1

ε
∂
µ
ξ [c(Z)c(ξ) + c(ξ)c(X)]ξαξβ∂x

µg
αβ;

F7 = 2|ξ|−2ξµ∂
µ
ξ [|ξ|

−4 1
ε

[c(Z)c(ξ) + c(ξ)c(X)]].

Next, we proceed to compute
∫
|ξ|=1

tr[
∑7

i=1 Fi]σ(ξ).
(1) : In normal coordinates, using the facts: Γ

µ
αβ(x0) = σµ(x0) = 0, ∂x

µg
αβ(x0) = 0, the terms F1, F2,

F3, and F6 disappear.
(2) :

tr[c(Z)c(ξ) + c(ξ)c(X)]2
|ξ|=1

= tr[c(Z)c(ξ)c(Z)c(ξ)] + tr[c(Z)c(ξ)c(ξ)c(X)] + tr[c(ξ)c(X)c(Z)c(ξ)] + tr[c(ξ)c(X)c(ξ)c(X)].

By (2.6), we have ∫
|ξ|=1

= tr[c(Z)c(ξ)c(Z)c(ξ)]σ(ξ) = |Z|2π2tr[id],

∫
|ξ|=1

= tr[c(ξ)c(X)c(ξ)c(X)]σ(ξ) = |X|2π2tr[id],

∫
|ξ|=1

(
tr[c(Z)c(ξ)c(ξ)c(X)] + tr[c(ξ)c(X)c(Z)c(ξ)]

)
σ(ξ) = 4g(X,Z)π2tr[id].

Then ∫
|ξ|=1

tr(F4)(x0)σ(ξ) =
1
ε2

(
|Z|2 + |X|2 + 4g(X,Z)

)
π2tr[id].

(3) : ∫
|ξ|=1

tr(F5)(x0)σ(ξ) =
2
ε2 g(X,Z)π2tr[id].

(4) :
By (2.7), we have ∫

|ξ|=1
tr(F7)(x0)σ(ξ) = −

1
ε

[divM(X) + divM(Z)]π2tr[id].

Therefore, we obtain the following result

Wres
(
D2 +

c(Z)D
ε

+
Dc(X)
ε

+
c(Z)c(X)

ε2

)−1

= 4
∫

M

( 1
ε2 |X|

2π2 +
1
ε2 |Z|

2π2 +
6
ε2 g(X,Z)π2 −

1
ε

divM(X)π2 −
1
ε

divM(Z)π2 +
1

12
s
)
dVolM.

Further, above observations yields the following theorem

Theorem 3.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we
derive the following equality:

lim
ε→0

ε4Wres[π+(εD + c(X))−1 ◦ π+(εD + c(Z))−1] = 4
∫

M

(
|X|2 + |Z|2 + 6g(X,Z)

)
π2dVolM.
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3.3. The boundary term of limε→0 ε
4W̃res[π+(εD + c(X))−1 ◦ π+(εD + c(Z))−1]

In this subsection, we proceed to calculate the boundary term:
∫
∂M

Φ. From [10], some symbols
associated with these operators can be expressed.

Lemma 3.4. The positive order symbol of D +
c(Z)
ε

holds:

σ1

(
D +

c(Z)
ε

)
= σ1

(
D +

c(X)
ε

)
= σ1(D) = ic(ξ);

σ0

(
D +

c(Z)
ε

)
= σ0(D) +

c(Z)
ε

= −
1
4

∑
i,s,t

ωs,t(ei)c(ei)c(es)c(et) +
c(Z)
ε

;

σ0

(
D +

c(X)
ε

)
= σ0(D) +

c(X)
ε

= −
1
4

∑
i,s,t

ωs,t(ei)c(ei)c(es)c(et) +
c(X)
ε

.

Then, utilizing the composition formula of pseudodifferential operators, we arrive at the following
lemma.

Lemma 3.5. The negative order symbol of
(
D +

c(Z)
ε

)−1

holds:

σ−1

(
D +

c(Z)
ε

)−1

= σ−1

(
D +

c(X)
ε

)−1

=
ic(ξ)
|ξ|2

;

σ−2

(
D +

c(Z)
ε

)−1

=

c(ξ)σ0

(
D +

c(Z)
ε

)
c(ξ)

|ξ|4
+

c(ξ)
|ξ|6

∑
j

c(dx j)
[
∂x j(c(ξ))|ξ|2 − c(ξ)∂x j(|ξ|

2)
]
;

σ−2

(
D +

c(X)
ε

)−1

=

c(ξ)σ0

(
D +

c(X)
ε

)
c(ξ)

|ξ|4
+

c(ξ)
|ξ|6

∑
j

c(dx j)
[
∂x j(c(ξ))|ξ|2 − c(ξ)∂x j(|ξ|

2)
]
.

By computations, we obtain the semiclassical limit of the Kastler–Kalau–Walze-type theorem.

Theorem 3.6. Let M be a 4-dimensional oriented compact manifold with boundary ∂M, then

lim
ε→0

ε4W̃res[π+(εD + c(X))−1 ◦ π+(εD + c(Z))−1] = 4
∫

M

(
|X|2 + |Z|2 + 6g(X,Z)

)
π2dVolM.

In particular, as the semiclassical limit is taken, the boundary term goes to zero.

Proof. For n = 4, the summation condition r + l − k − j − |α| = −3, r ≤ −1, l ≤ −1, it leads to the
following five cases:
case a) When r = −1, l = −1, k = j = 0, |α| = 1.
By (3.6), we obtain

Φ1 = −

∫
|ξ′ |=1

∫ +∞

−∞

∑
|α|=1

tr
[
∂αξ′π

+
ξn
σ−1

(
D +

c(X)
ε

)−1

× ∂αx′∂ξnσ−1

(
D +

c(Z)
ε

)−1]
(x0)dξnσ(ξ′)dx′.

For i < n, we obtain

∂xi

(
ic(ξ)
|ξ|2

)
(x0) =

i∂xi[c(ξ)](x0)
|ξ|2

−
ic(ξ)∂xi(|ξ|

2)(x0)
|ξ|4

= 0,
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so Φ1 = 0.
case b) When r = −1, l = −1, k = |α| = 0, j = 1.
From (3.6), we obtain

Φ2 = −
1
2

∫
|ξ′ |=1

∫ +∞

−∞

tr
[
∂xnπ

+
ξn
σ−1

(
D +

c(X)
ε

)−1

× ∂2
ξn
σ−1

(
D +

c(Z)
ε

)−1]
(x0)dξnσ(ξ′)dx′.

Applying Lemma 3.5 yields

∂2
ξn
σ−1

(
D +

c(Z)
ε

)−1

(x0) = i
(
−

6ξnc(dxn) + 2c(ξ′)
|ξ|4

+
8ξ2

nc(ξ)
|ξ|6

)
;

∂xnσ−1

(
D +

c(X)
ε

)−1

(x0) =
i∂xnc(ξ′)(x0)
|ξ|2

−
ic(ξ)|ξ′|2h′(0)

|ξ|4
.

Using the Clifford algebra relations and the trace property trab = trba, we obtain:

tr[c(ξ′)c(dxn)] = 0; tr[c(dxn)2] = −4; tr[c(ξ′)2](x0)||ξ′ |=1 = −4;
tr[∂xnc(ξ′)c(dxn)] = 0; tr[∂xnc(ξ′)c(ξ′)](x0)||ξ′ |=1 = −2h′(0).

Then, we obtain

Φ2 = −

∫
|ξ′ |=1

∫ +∞

−∞

ih′(0)(ξn − i)2

(ξn − i)4(ξn + i)3 dξnσ(ξ′)dx′

= −ih′(0)Ω3

∫
Γ+

1
(ξn − i)2(ξn + i)3 dξndx′

= −ih′(0)Ω32πi
[ 1
(ξn + i)3

](1)∣∣∣∣∣
ξn=i

dx′

= −
3
8
πh′(0)Ω3dx′,

where Ω3 is the canonical volume of S 2.

case c) When r = −1, l = −1, j = |α| = 0, k = 1.
From (3.6), we obtain

Φ3 = −
1
2

∫
|ξ′ |=1

∫ +∞

−∞

tr
[
∂ξnπ

+
ξn
σ−1

(
D +

c(X)
ε

)−1

× ∂ξn∂xnσ−1

(
D +

c(Z)
ε

)−1]
(x0)dξnσ(ξ′)dx′.

Applying Lemma 3.5 yields

∂ξn∂xnσ−1

(
D +

c(Z)
ε

)−1

(x0)||ξ′ |=1 = −ih′(0)
[
c(dxn)
|ξ|4

− 4ξn
c(ξ′) + ξnc(dxn)

|ξ|6

]
−

2ξni∂xnc(ξ′)(x0)
|ξ|4

;

∂ξnπ
+
ξn
σ−1

(
D +

c(X)
ε

)−1

(x0)||ξ′ |=1 = −
c(ξ′) + ic(dxn)

2(ξn − i)2 .
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Similar to case b), we obtain

tr
{

c(ξ′) + ic(dxn)
2(ξn − i)2 × ih′(0)

[
c(dxn)
|ξ|4

− 4ξn
c(ξ′) + ξnc(dxn)

|ξ|6

]}
= 2h′(0)

i − 3ξn

(ξn − i)4(ξn + i)3

and

tr
[
c(ξ′) + ic(dxn)

2(ξn − i)2 ×
2ξni∂xnc(ξ′)(x0)

|ξ|4

]
=

−2ih′(0)ξn

(ξn − i)4(ξn + i)2 .

Thus, we obtain

Φ3 = −

∫
|ξ′ |=1

∫ +∞

−∞

h′(0)(i − 3ξn)
(ξn − i)4(ξn + i)3 dξnσ(ξ′)dx′ −

∫
|ξ′ |=1

∫ +∞

−∞

h′(0)iξn

(ξn − i)4(ξn + i)2 dξnσ(ξ′)dx′

= −h′(0)Ω3
2πi
3!

[
(i − 3ξn)
(ξn + i)3

](3) ∣∣∣∣∣
ξn=i

dx′ + h′(0)Ω3
2πi
3!

[
iξn

(ξn + i)2

](3) ∣∣∣∣∣
ξn=i

dx′

=
3
8
πh′(0)Ω3dx′.

case d) When r = −2, l = −1, k = j = |α| = 0.
From (3.6), we obtain

Φ4 = −i
∫
|ξ′ |=1

∫ +∞

−∞

tr
[
π+
ξn
σ−2

(
D +

c(X)
ε

)−1

× ∂ξnσ−1

(
D +

c(Z)
ε

)−1]
(x0)dξnσ(ξ′)dx′.

Denote

Q(x0) = −
1
4

∑
s,t,i

ωs,t(ei)(x0)c(ei)c(es)c(et).

Then applying Lemma 3.5 yields

π+
ξn
σ−2

(
D +

c(X)
ε

)−1∣∣∣∣∣
|ξ′ |=1

= π+
ξn

[c(ξ)Q(x0)c(ξ)
(1 + ξ2

n)2

]
+ π+

ξn

[c(ξ)c(X)c(ξ)
ε(1 + ξ2

n)2

]
+ π+

ξn

[c(ξ)c(dxn)∂xn[c(ξ′)](x0)
(1 + ξ2

n)2 − h′(0)
c(ξ)c(dxn)c(ξ)

(1 + ξ2
n)3

]
:= E1 − E2 + E3,

where

E1 =
−1

4(ξn − i)2 [(2 + iξn)c(ξ′)Q2
0(x0)c(ξ′) + iξnc(dxn)Q2

0(x0)c(dxn)

+ (2 + iξn)c(ξ′)c(dxn)∂xnc(ξ′) + ic(dxn)Q2
0(x0)c(ξ′) + ic(ξ′)Q2

0(x0)c(dxn) − i∂xnc(ξ′)], (3.7)

E2 =
h′(0)

2

[
c(dxn)

4i(ξn − i)
+

c(dxn) − ic(ξ′)
8(ξn − i)2 +

3ξn − 7i
8(ξn − i)3 [ic(ξ′) − c(dxn)]

]
, (3.8)
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and

E3 =
2 + iξn

4ε(ξn − i)2 c(ξ′)c(X)c(ξ′) +
i

4ε(ξn − i)2 c(ξ′)c(X)c(dxn) +
i

4ε(ξn − i)2 c(dxn)c(X)c(ξ′)

+
iξn

4ε(ξn − i)2 c(dxn)c(X)c(dxn).

Since

∂ξnσ−1

(
D +

c(Z)
ε

)−1

= i
[
c(dxn)
1 + ξ2

n
−

2ξnc(ξ′) + 2ξ2
nc(dxn)

(1 + ξ2
n)2

]
. (3.9)

Using the Clifford algebra relations and the trace property trab = trba, we obtain:

tr[c(ξ′)c(X)c(ξ′)c(dxn)] = −4Xn; tr[c(ξ′)c(X)c(ξ′)c(ξ′)] = 4g(X, ξ′);
tr[c(dxn)c(X)c(dxn)c(dxn)] = 4Xn; tr[c(dxn)c(X)c(ξ′)c(ξ′)c(dxn)] = 4g(X, ξ′).

By (3.7) and (3.9), we have

tr
[
C1 × ∂ξnσ−1

(
D +

c(Z)
ε

)−1]∣∣∣∣∣
|ξ′ |=1

=
3ih′(0)

2(ξn − i)2(1 + ξ2
n)2 + h′(0)

ξ2
n − iξn − 2

2(ξn − i)(1 + ξ2
n)2 ,

By (3.8) and (3.9), we have

tr
[
C2 × ∂ξnσ−1

(
D +

c(Z)
ε

)−1]∣∣∣∣∣
|ξ′ |=1

= 2ih′(0)
−iξ2

n − ξn + 4i
4(ξn − i)3(ξn + i)2 ,

and

tr
[
C3 × ∂ξnσ−1

(
D +

c(Z)
ε

)−1]∣∣∣∣∣
|ξ′ |=1

=
2i

ε(ξn − i)3(ξn + i)
Xn − 4

ξn + iξ2
n

ε(ξn − i)4(ξn + i)2 Xn

+
2

ε(ξn − i)3(ξn + i)
g(X, ξ′) +

4iξn − ξ
2
n

ε(ξn − i)4(ξn + i)2 g(X, ξ′).

When i < n,
∫
|ξ′ |=1

ξi1ξi2 · · · ξi2d+1σ(ξ′) = 0, so g(X, ξ′) has no contribution for computing case d). Thus,
we obtain

− i
∫
|ξ′ |=1

∫ +∞

−∞

tr
[
(E1 − E2) × ∂ξnσ−1

(
D +

c(X)
ε

)−1]
(x0)dξnσ(ξ′)dx′

= Ω3

∫
Γ+

3h′(0)(ξn − i) + ih′(0)
2(ξn − i)3(ξn + i)2 dξndx′

=
9
8
πh′(0)Ω3dx′.

− i
∫
|ξ′ |=1

∫ +∞

−∞

tr
[
E3 × ∂ξnσ−1

(
D +

c(X)
ε

)−1]
(x0)dξnσ(ξ′)dx′

= −i
∫
|ξ′ |=1

∫ +∞

−∞

2i
ε(ξn − i)3(ξn + i)

Xndξnσ(ξ′)dx′ − i
∫
|ξ′ |=1

∫ +∞

−∞

−4
ξn + iξ2

n

ε(ξn − i)4(ξn + i)2 Xndξnσ(ξ′)dx′
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= Ω3Xn
1
ε

∫
Γ+

2
(ξn − i)3(ξn + i)

dξndx′ + 4i f Ω3Xn
1
ε

∫
Γ+

ξn + iξ2
n

(ξn − i)4(ξn + i)2 dξndx′

= Ω3Xn
2πi
2!ε

[ 2
(ξn + i)

](2)∣∣∣∣∣
ξn=i

dx′ + 4i f Ω3Xn
2πi
3!ε

[ ξn + iξ2
n

(ξn + i)2

](3)∣∣∣∣∣
ξn=i

dx′

= −
1
ε

XnπΩ3dx′.

Thus

Φ4 =

(9
8

h′(0) −
1
ε

Xn

)
πΩ3dx′.

case e) Whenr = −1, l = −2, k = j = |α| = 0.
From (3.6), we obtain

Φ5 = −i
∫
|ξ′ |=1

∫ +∞

−∞

tr
[
π+
ξn
σ−1

(
D +

c(X)
ε

)−1

× ∂ξnσ−2

(
D +

c(Z)
ε

)−1]
(x0)dξnσ(ξ′)dx′.

Applying Lemma 3.5 yields

π+
ξn
σ−1

(
D +

c(X)
ε

)−1∣∣∣∣∣
|ξ′ |=1

=
c(ξ′) + ic(dxn)

2(ξn − i)
. (3.10)

Since

σ−2

(
D +

c(Z)
ε

)−1

(x0)

=

c(ξ)σ0

(
D +

c(Z)
ε

)
(x0)c(ξ)

|ξ|4
+

c(ξ)
|ξ|6

c(dxn)
[
∂xn[c(ξ′)](x0)|ξ|2 − c(ξ)h′(0)|ξ|2∂M

]
.

Further

∂ξnσ−2

(
D +

c(Z)
ε

)−1

(x0)
∣∣∣∣∣
|ξ′ |=1

= ∂ξn

{c(ξ)
(
Q(x0) +

c(Z)
ε

)
c(ξ)

|ξ|4
+

c(ξ)
|ξ|6

c(dxn)[∂xn[c(ξ′)](x0)|ξ|2 − c(ξ)h′(0)]
}

= ∂ξn

{ [c(ξ)Q(x0)]c(ξ)
|ξ|4

+
c(ξ)
|ξ|6

c(dxn)[∂xn[c(ξ′)](x0)|ξ|2 − c(ξ)h′(0)]
}

+ ∂ξn

(c(ξ) c(Z)
ε

c(ξ)
|ξ|4

)
.

By computations, we have

∂ξn

(c(ξ) c(Z)
ε

c(ξ)
|ξ|4

)
= −

4ξn

ε(1 + ξ2
n)3 c(ξ′)c(Z)c(ξ′) +

( 1
ε(1 + ξ2

n)2 −
4ξ2

n

ε(1 + ξ2
n)3

)(
c(ξ′)c(Z)c(dxn)

+ c(dxn)c(Z)c(ξ′)
)

+

( 2ξn

ε(1 + ξ2
n)2 −

4ξ3
n

ε(1 + ξ2
n)3

)
c(dxn)c(Z)c(dxn). (3.11)
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We denote
q1
−2 =

c(ξ)Q(x0)c(ξ)
|ξ|4

+
c(ξ)
|ξ|6

c(dxn)[∂xn[c(ξ′)](x0)|ξ|2 − c(ξ)h′(0)],

then

∂ξn(q
1
−2) =

1
(1 + ξ2

n)3

[
(2ξn − 2ξ3

n)c(dxn)Q(x0)c(dxn) + (1 − 3ξ2
n)c(dxn)Q(x0)c(ξ′)

+ (1 − 3ξ2
n)c(ξ′)Q(x0)c(dxn) − 4ξnc(ξ′)Q(x0)c(ξ′) + (3ξ2

n − 1)∂xnc(ξ′)

− 4ξnc(ξ′)c(dxn)∂xnc(ξ′) + 2h′(0)c(ξ′) + 2h′(0)ξnc(dxn)
]

+ 6ξnh′(0)
c(ξ)c(dxn)c(ξ)

(1 + ξ2
n)4 . (3.12)

By (3.10) and (3.12), we have

tr
[
π+
ξn
σ−1

(
D +

c(X)
ε

)−1

× ∂ξn(q
1
−2)

]
(x0) =

3h′(0)(iξ2
n + ξn − 2i)

(ξ − i)3(ξ + i)3 +
12h′(0)iξn

(ξ − i)3(ξ + i)4 .

Then

−iΩ3

∫
Γ+

[3h′(0)(iξ2
n + ξn − 2i)

(ξn − i)3(ξn + i)3 +
12h′(0)iξn

(ξn − i)3(ξn + i)4

]
dξndx′ = −

9
8
πh′(0)Ω3dx′.

Then, using the Clifford algebra relations and the trace property trab = trba, we obtain:

tr[c(ξ′)c(Z)c(ξ′)c(dxn)] = −4Zn; tr[c(ξ′)c(Z)c(ξ′)c(ξ′)] = 4g(Z, ξ′);
tr[c(dxn)c(Z)c(dxn)c(dxn)] = 4Zn; tr[c(dxn)c(Z)c(ξ′)c(ξ′)c(dxn)] = 4g(Z, ξ′).

By (3.10) and (3.11), we have

tr
[
π+
ξn
σ−1

(
D +

c(X)
ε

)−1

× ∂ξn

(c(ξ)c(Z)c(ξ)
ε|ξ|4

)]
(x0)

= 4
1 − 3ξ2

n + 3iξn − iξ3
n

ε(ξn − i)4(ξn + i)3 Zn + 4
i(1 − 3ξ2

n) − 3ξn + ξ3
n

ε(ξn − i)4(ξn + i)3 g(Z, ξ′).

When i < n,
∫
|ξ′ |=1

ξi1ξi2 · · · ξi2d+1σ(ξ′) = 0 and g(Z, ξ′) has no contribution for computing case e), we
have

− i
∫
|ξ′ |=1

∫ +∞

−∞

tr
[
π+
ξn
σ−1

(
D +

c(X)
ε

)−1

× ∂ξn

(c(ξ)c(Z)c(ξ)
ε|ξ|4

)]
(x0)dξnσ(ξ′)dx′

= −i
∫
|ξ′ |=1

∫ +∞

−∞

4
1 − 3ξ2

n + 3iξn − iξ3
n

ε(ξn − i)4(ξn + i)3 Zndξnσ(ξ′)dx′

= −4iΩ3Zn
1
ε

∫
Γ+

1 − 3ξ2
n + 3iξn − iξ3

n

(ξn − i)4(ξn + i)3 dξndx′

= −4iΩ3Zn
2πi
3!ε

[1 − 3ξ2
n + 3iξn − iξ3

n

(ξn + i)3

](3)∣∣∣∣∣
ξn=i

dx′

=
1
ε

ZnπΩ3dx′.
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Therefore

Φ5 =

(
−

9
8

h′(0) +
1
ε

Zn

)
πΩ3dx′.

Now Φ can be expressed as the sum of the case a)–case e),

Φ =

5∑
i=1

Φi =
1
ε

(Zn − Xn)πΩ3dx′.

Finally, we obtain

lim
ε→0

ε2
∫
|ξ′ |=1

Φ = lim
ε→0

ε2
∫
|ξ′ |=1

1
ε

(Zn − Xn)πΩ3dVolM = 0.

By Theorem 3.3, Theorem 3.6 holds. �
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