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Abstract: In physics, the semiclassical limit principle asserts that as Planck’s constant 77 — 0, quan-
tum states reduce to classical configurations. We extend this framework to the noncommutative residue
by applying the semiclassical limit to the spectral geometry. By introducing the coefficient &, we es-
tablish a proof of the Kastler—Kalau—Walze-type theorem for the perturbations of the Dirac operator on
four-dimensional compact manifolds with (without) boundary. As € — 0, we demonstrate the emer-
gence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result
elucidates the interplay between quantum corrections and classical geometric invariants in the presence
of boundary conditions.
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1. Introduction

The noncommutative residue, also known as great important study subject in noncommutative ge-
ometry, has been extensively studied in [1,2]. In [3], Connes employed the noncommutative residue
to derive a four-dimensional conformal Polyakov action analogue and demonstrated that the noncom-
mutative residue on a compact manifold M coincides with the Dixmier’s trace for pseudodifferential
operators of order—dimM in [4]. Moreover, Connes claimed the noncommutative residue of the square
of the inverse of the Dirac operator was proportional to the Einstein—Hilbert action. Kastler, Kalau, and
Walze proved this conclusion respectively in [5, 6], which is called the Kastler—Kalau—Walze theorem.
Afterwards, Ackermann proved that the noncommutative residue of the square of the inverse of the
Dirac operator Wres(D2) in turn is essentially the second coeficient of the heat kernel expansion of
D? in [7], which enriches the results on noncommutative residues on manifolds without boundary.

Furthermore, Wang uses W?é/s[(n*D‘l)z] instead of Wres(D~2) to generalize the results from mani-
folds without boundary to manifolds with boundary in [8,9], and proved the Kastler—Kalau—Walze-type
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theorem for the Dirac operator and the signature operator on lower-dimensional manifolds with bound-
ary [10]. Here Wres denotes the noncommutative residue for manifolds with boundary, and 7t D! is
an element in Boutet de Monvel’s algebra (see (3.1) in Section 3.1). In [10, 11], Wang computed
Wres[z*D™"' o 7*D~'] and Wres[z* D2 o ¥ D2] for symmetric operators, where the boundary term
vanished in these cases. However, when computing Wres[7*D™! o 77 D7), a nonvanishing boundary
term emerged [12], leading Wang to provide a theoretical interpretation of gravitational action on the
boundary. In other words, this work effectively established a framework for investigating the Kastler—
Kalau—Walze-type theorem on manifolds with boundary.

Subsequent studies [13—18] explored various perturbations of the Dirac operator by zero-order
differential operators. In [15], Wang extended the Kastler—Kalau—Walze-type theorem for perturba-
tions of Dirac operators on compact manifolds (with or without boundary) and proposed two distinct
operator-theoretic interpretations of boundary gravitational action. Further developments by Wang,
Wang, and Yang [17] ocused on 4-dimensional compact manifolds with boundary, where they derived
two operator-theoretic explanations for gravitational action and proved a Kastler—Kalau—Walze-type
theorem for nonminimal operators on complex manifolds. Additionally, in [16], Wang, Wang, and
Wu introduced novel spectral functionals, which extended traditional spectral functionals to noncom-
mutative realm with torsion and connected them to the noncommutative residue for manifolds with
boundary.

The semiclassical limit not only connects quantum and classical physics theoretically but also pro-
vides important research tools and application value in the field of mathematics. In physics, the semi-
classical limit refers to the transitional regime between quantum mechanics and classical mechanics.
When the characteristic action § of a system is much larger than Planck’s constant 7, quantum effects
gradually diminish, and the system’s behavior approaches that of classical mechanics. In mathematics,
this 1s often achieved by taking the limit where Planck’s constant 77 — O.

There are many studies on the semiclassical limit of the spectral geometry. Bdar and Pfaffle studied
semiclassical approximations for the heat kernel of a general self-adjoint Laplace-type operator within
a geometric framework in [19]. Later, Ludewig [20] examined the semiclassical asymptotic expansion
of the heat kernel arising from Witten’s perturbation of the de Rham complex by a given function. By
employing the stationary phase method, Ludewig derived a time-dependent integral formula, ultimately
leading to a proof of the Poincaré-Hopf theorem. Meanwhile, Savale [21] analyzed the remainder term
in the semiclassical limit formula (introduced in [22]) for the eta invariant on a metric contact manifold.
Specifically, Savale demonstrated that this remainder term is governed by the volumes of recurrence
sets of the Reeb flow. Obviously, the noncommutative residues as a part of the spectral geometry; thus,
in order to extend the study of the semiclassical limit of the spectral geometry, motivated by [19-21]
and Theorem 3.12 in [23], we introduce the semiclassical limit into the noncommutative residue. Based
on the research of [24], we prove the semiclassical limit of the Kastler—Kalau—Walze-type theorem
for the perturbations of the Dirac operator on 4-dimensional compact oriented spin manifolds with
(without) boundary by taking the limit &€ — 0. For a fixed € > 0, we may consider the Kastler—Kalau—
Walze-type theorem as a theorem in the quantum state. And when € — 0, we give the classical state of

the Kastler—Kalau—Walze-type theorem.

This paper is organized as follows: By using Wres(P) := fs " tr(o” )(x, &), Section 2 gives semi-

classical limits of the noncommutative residues of three cases for the perturbations of the Dirac op-
erator on 4-dimensional manifolds without boundary. Moreover, we give the semiclassical limit of
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the Kastler—Kalau—Walze-type theorem about the perturbation of the Dirac operator on 4-dimensional
manifolds with boundary in Section 3.

2. The semiclassical limits of the noncommutative residue on 4-dimensional manifolds without
boundary

In this section, we study the semiclassical limits of the noncommutative residues on 4-dimensional
manifolds without boundary in three different cases.

Firstly, we recall the main facts regarding the Dirac operator D. Let M be a 4-dimensional compact
oriented spin manifold with Riemannian metric g, and let V denote the Levi—Civita connection associ-
ated with g. Then the Dirac operator D can be expressed locally in terms of an orthonormal frame e;
(with corresponding dual coframe #) of the frame bundle of M [5]:

D= i?’iﬂvvz' = iy'(e; + 0);

1 . 1 . .
oi(x) = Z’yij,k(x)'yl'yk = g?’ij,k(x)[yjyk — ¥/,

1 ..
Yiik = ~Yikj = E[Cij,k +Cuij+ckjil, Gjk=1,---4;

C;{j = 6’k([t‘fi-ej]),

where the vy;;; represents the Levi—Civita connection V with spin connection V, the ¥' denote constant
self-adjoint Dirac matrices, which satisfy y'y/ + y/y' = =26,

Using local coordinates x* that induce the alternative vierbein d, = S L(x)e,- (with dual vierbein dx*),
Y'e; = y*0, is obtained, where the y* are now x-dependent Dirac matrices, which satisfy y*y” +y"y* =
—2g"” (we use Latin sub-(super-) scripts for the basic e; and Greek sub-(super-) scripts for the basis d,,
the type of sub-(super-) scripts specifying the type of Dirac matrices). Then the Dirac operator in the
Greek basis is expressed by

D= iy”FVvﬂ = iyt (e, + 0,);
o, (x) = SL(x)o’,-.

Consider a pseudodifferential operator P that acts on sections of a vector bundle over a compact Rie-
mannian manifold M. In [5], the noncommutative residues of P is defined by

Wres(P) := f f trlo_, (P)] (x,&)0(&)dx, 2.1
M Jé=1

where & € S" 'and tr denotes shorthand for trace.

Next, by (2.1), to obtain the semiclassical limit of the noncommutative residues on manifolds with-
out boundary, we consider the following three different cases. From the point of view of the following
three different cases, we give the classical state of the noncommutative residue on manifolds without
boundary.

(1) lin(l) &'Wres(eD* + 1,D + 1,)™";
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(2) lim eWres(eD? + 1,c(X)D + 1)

(3) lim &’ Wres(eD’ + LV ),

where A;, A, are C*(M) functions.

2.1. The first case: lim,_,o &3 Wres(eD? + 4,D + A,)~!
In this subsection, we want to compute lim,_, &> Wres(eD? + 4,D + 1,)7!, by &2 Wres(eD? + 4,D +
-1 -1
)= gWVres(D2 + %D + %) , we need to compute Wres(D2 + %D + L;)

Set A = D* + %D + %2, we utilize the composition of pseudodifferential operators to express
the symbol of the operator. Simplify the abbreviation of the principal symbol: & = 3 ;&;dx;,
6‘; = 0%/0¢,, 05, = 0,/0x“, then the following identity holds:

aox, €)= (_"!)Qaga‘”(x, &) 92x, é). (2.2)

a

Firstly, we compute the total symbol o (x, &) of A, which is given by the sum of terms A; of order
k(k=0,1,2):

A=A, +A +A0.

Then, we have

oh(x,€) = I¢I;
ot (x, &) = i = 201)¢, + %C(f);
o“g(x, &) =—(0"o,+0to, —THo,) + %s + %7"0’# + % (2.3)

Next, we compute A~ from order -4 to order -2 using the above results; that is, o-‘i‘,;' ,k=2,3,4. The
full symbol o of A is expressed in terms of decreasing order:

o= 0{‘; + of; + O'é: + terms of order < 5.

Using (2.2), the negative order of the symbol of A™! yields:

I (o
oy = —ot) oo, — idi b, ;
oy = o oo + oot — ot — ittty

Moreover, by (2.3), the following result is obtained.
oty = 1
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-1 A
oty = —|EIG@ - 201)E, + l;‘c(fmfﬁ — 0 (€7 (E7)]);
o, = —ROE £ = 20T = 207) = 28 E, 85T = 207)058" + €174(0% 0, + oo, — V)
1 -1
= s = 2078 - a0y + 6 6aip (T — 207038 — I °60bing 0,8 + 201 Mabint bog
A A 1
0,9 0,¢"° - |§|—6;1c<§>(rf‘ - 20M)&, — &7 - 204‘)5,,;10(6) — ey oy + )
A2 Pl
= ~ B @by,

1
&

g4 ‘a _
+ U @8 sy + T
Regrouping the terms and inserting

Gty = 20687 = 2070318 — I EGLT = 207) + 61T 6 £abs 6508018
: - X VT QX . — 4 X > X - /1
~ 26,6058 018" — 20168 665087 — O (€],

We obtain for o{‘: the sum of terms:

Ny = -6 E T T + K (g — 1€ 0] lo* 0 = 0]
No = 9%, ~ Slés

N3 = —6l¢°8'¢,£,E5(T — 207)8),8",

Ny = 20E7°8'¢,05(T" - 207);

N5 = — 1207108 &€ ,£46,£50,,8 0,87,

No = 4lE17°8"€.8, 650,87 08"

N7 = 0, E5(T" — 20408

Ng = 4é° 88 €,£50,,8";

No = —|¢°6,£58" 0,8

Nio = 206,858,658 0,87 058",

and
—6/11 v -6 v /11
My =~ @I =206 My =~ = 207)6,—c(®);
A A2 1
M; = Q=@ 6ubp0l8™: Ma= 651 Ms = —lé —(iy'o, + Lo);
A A
My =~ — 9 1c@)éatpdg™s My = ~2E60 7 @),

Let s denote the scalar curvature, from [5], we obtain

10
R
> Nijo (&) = ——=tr[id]. (2.4)
f,f,zl Z &) =1

i=1
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The next step involves computing =1 tr[ Y, Mjlo(é).

1 : ‘

In normal coordinates, using the facts: FZ 'B(xo) = 0,(x) =0, ajjg"ﬁ(xo) = 0, the results of the terms
M, M,, M5, and M, disappear.

2):
A2 ) 24, .
f tr(M4)(x0)0(§) = — Volgstr[id] = —n"tr[id],
=1 € €
and
f tr(Ms)(x0)o (&) = —@Volsgtr[id] = —%nztr[id].
l¢l=1 € €
3):

By 31117 c(€)] = ~21€1°F5(EP)e(€) + €110 [e()], 5(I€1)(x0) = 0 and 35[c(€)] = 0, we have

f tr(M7)(x0)o(¢) = 0.
=1

Therefore, when n = 4, trg(rpn[1id] = 4 and by (2.1), this implies

A A\7! 202 21 1
Wres(D2 + 2D+ —2) = 4f (—17'(2 Saihey S —s)dVolM.
e e w \ &2 e 12

Further, we obtain the semiclassical limit of the above result. That is the following theorem.
Theorem 2.1. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we

derive the semiclassical limit of the noncommutative residue about eD* + 1,D + A,

£i_r>% &Wres(eD* + 1,D + ;)" = 8f /l%ﬂ'deOlM.

M

Corollary 2.2. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when
Ay = /&, we obtain the following equality:

lir% &Wres(eD* + VeD + 1,)"' =8 f (1 = )mdVoly,.
E— M

2.2. The second case: lim,_, eWres(eD? + 1,c(X)D + 1,)!

Let ¢(X) denote a Clifford action on M, where X = . _, a,e, = Z;?:] X;0; is a vector field. Then
we can set B = D* + /L—IC(X)D + i—z, the next step is to compute the total symbol o(x, &) of B; the sum
of terms By of order k (k = 0, 1,2) is given by:

B =B, + B| + By.
By (2.2), we have

o3 (x,€) = P
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o (x,€) = iT" = 204, + %]C(X)C(-f);

1 ia 2
h(x.8) = ("0 + 0¥, ~ T + 5+ e Xyto, + 22 2.5)
E E

Next, we compute B~! from order -4 to order -2 using the above results; that is, we compute o{‘,;l k=

2,3, 4. the full symbol o of B is expressed into terms of decreasing order:
o =08 + 0B + 0B, +terms of order < -5,

Using (2.2), the negative order of the symbol of B! yields:

_2 = (0'2)_
—1
o =~ [oPo?) l@”O’f@xaBz]
— Bax B! . Bax _B
o, = -8 [oBo®, + oBot) - i0,070,02, — 16';‘0'2(9#0'_3]

Then by (2.5), it follows that

ofy =187
=~ [T - 20%)E, + %C(X)c(f))lfl‘z SR AGRINCIIE

o, = 6L, (T = 20T - 207) = 20 P €50 — 2071338 + 40 o + otory, — TV
- %Ifl“‘s = 20€728" - 8505 + E 60 Ep (T = 20058 — € 08,858 07,87 + 211 Eap s

£ ~ L0 ~ 2008, ~ 7T — 2016, e(X)el@) ~ L (4100
T+ )+ 2L (X0 E L8 |§|—6i—§[c<X>c(§>]2 T (X050
Regrouping the terms and inserting
Oty = 21617 06,6, 6517 = 201318 — el &0 — 207) + 6i|§|‘8fyfafﬁ§y§a g’ g”
~ QU6 £ £y B — LT EE " — LTI (X))

Then 0'1_3: includes the sum of terms: N7 — Nijg and R; — R7:
—6/11 u YN . _ —6 T v A .
—¢l —C(X)C(é)(l" =20 Ry = -] (F -20 )fy—C(X)C(f),

Ry = 204 c(&d@fﬂ@gﬁ a; |§|‘ C(X)C(§)C(X)C(§)
= —l¢I™ —(Mc(X)y“a,, +42); Rg= —|§|—“ﬁﬁg[c(X)c@)]fafﬁa;ga
R A —e(X)e(@)].
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Then, similarly, we compute fl et tr[ZZ: | Rilo(é).

1) : ’

In normal coordinates, using the facts, we have: F’; 5
the terms Ry, R, R3, and R¢ disappear.

2):

(x0) = ou(x0) = 0, 338" (x0) = 0, the results of

trle(X)e@)e(X)c@)lg=1 = 26X tle(X)c(@)]g=1 — IXPulid],

and
= 26X)tr[e(X)e(E)]g=1 = 46X r[id] + 2600t [c(E)e(X) g1 (2.6)
Then by f| o EX)*o (&) = —LXPr*ulid], we have
/12
f (R (x)or(é) = —XPr’ulid].
=1 &

3):

f tr(Rs)(xo)o(§) = —%ﬂztr[id]-
=1 €

@ :
By 9 [c(X)c(&)](x0) = c(X)F[c(€)] + F[c(X)]e(€) = Xy 0v(X))c(e)e(€)(xo), we have

n—1
(r(Ry)(x0) = 26652 D dXulid]. (2.7)
€ k
Then

_ A _
f@: R0 = 5L 3 8,00 Volsatid

A
= ZLdiv(X)Volgstr[id]
2e

A
= Zdivy(X)n*ulid],
g
where div), denotes divergence of M.
Thus by (2.1), we obtain the following result:
A A PN 24 A 1
Wres(D? + “Le(X)D + 2y = 4 f (—1|X|2772 = 22 4 CLdivy (X + = JdVoly
g e y \&2 e e 12

Further, we obtain the following theorem.

Theorem 2.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we
derive the semiclassical limit of the noncommutative residue about eD?* + A1,¢(X)D + A,

lim &'Wres(eD* + 1;c(X)D + ;)" = 4 f X *r*dVolyy.
E M
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Corollary 2.4. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when
A1 = Vg, the following equality holds:

1in01 e*Wres(eD? + Vec(X)D + 1) =4 f (1XI* = 22,)7*dVoly,.
E— M

2.3. The third case: lim,_o&’Wres(eD? + 1, V3™ + 2,)!

Define VS(TM) =X+1 Zl i(V5ei, ej)c(e)c(e;), which is a spin connection. And let g = g(dx;, dx;)
and V [_6‘ = Zk Fl]é?k, we denote that

1 T ; T
Ui = 3 Z wsec(eclece); & =glé; Th= g’Ff‘,, ol =g'o;.
s,t

Set C = D? + %V;UM) + L;, EX) =3 ZUWXel, e;j)c(e;)c(ej). The next step is to compute the total
symbol o(x, &) of C™! from order -4 to order -2, with C the following sum of terms C; of order k:
C=0C+Cy+Cy.
Then, we have
o5 (x, &) = €1
0T (x, &) = i(T" = 20%)é, + %1 Zn: Xi€js
=1
O'S(x, &) =—(0"o, + 0o, —THoy) + }Ls + %E(X) + A
Further, by (2.2), we obtain
oSy =kl
—E G = 204, + % Zn: XGEDIE? = id (€706
j=1
e EE T = 20T = 207) = 2 £, (T = 2071038 + €140V 0r, + 0¥y~ THor)
- %Ifl“‘s — QU728 - B0 5 + O Ep (T = 2078 — |E176ulp g 0,8 + 2N EnbiplyEsg™

A v 1
8:g%0,g" — |47 1ZXJ§(F“ 201, — €70 - “)fugl ZXjfj— |§|_4g(i/llE(X)+/12)

+2|f|-sglzxj§j§“§afﬁ i — I IZX,.f,Zxkfk—la AG Zx,f, £abp0'8
j=1

Regrouping the terms and inserting
a;crfg‘ = 200 Eap (T = 207)358F — il E,05(I = 207) + 6| *é,£alpl 650,87 8"
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Pl X V@ qx o g1—6 &V X . nx - A -
~ 2T but £50,8 038" ~ 2k OE E,£05,87 — LIET = ) X))
j=1

C*l

We obtain for o=,

the sum of terms: N; — Nypand T — T7:
—6/1l c " v -6 T v /ll "
Ty = 17 ) X =200 T =~ =206, ) Xié:
j=1 j=1
B /l n o B /12 n n
T3 = 20677 ) X Entpys™s To= ~I05 ) XiE ) Xk
j=1 j=1 k=1
- 1 - % C X
Ts =~ = (UcOEX) + L) To = —E 20| X i€ 1€a65058";
& E =
-2 & —4/11 C
T = —212£,9:11€) ;;Xjfj].

Then, we proceed to compute =1 tr[ZZ: | Tilo(€).
1: ’

In normal coordinates, using the facts: Fgﬁ(xo) = ou(xp) =0, (’)ﬁg“ﬁ (x9) = 0, the results of the terms
Ty, T,, T3, and T disappear.

2):
By ﬁflzl é:jfko-(f) = %VOZSG(sjk = %71'25].](’ we have

/1% 2_2 .
f tr(T4)(xo)o(€) = —ﬁIXI rotr[id].
=1 €

3):

f tr(T5)(x0)or(§) = —%ﬂztr[id].
lgl=1 €

@ :

Similar to (2.7), we have
/11 . 2 .
tr(T7)(xp)o(¢) = ——divy(X)m-tr[id].
Igl=1 €
Thus, we obtain the following result:

A A 4 21 A 1
Wres(D? + V5™ 4 2yl =4 f ( — LxPa? - 2222 - Zdivy(Xn® + —s)dVolM.
£ g u\ 2 € £ 12

Building on these preliminaries, we obtain:

Electronic Research Archive Volume 33, Issue 4, 2452-2474.



2462

Theorem 2.5. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we
obtain the semiclassical limit of the noncommutative residue about eD* + /llVf((TM) + Ay

/12
lim&*Wres(eD? + 4,V "™ + 1) = 4 f —?1|X|2n2dVolM.

M
Corollary 2.6. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when
A1 = V&, we obtain the following equality:

lirré *Wres(eD* + \/EV?TM) + ) =4 f

M

|
( - SIXP - 2/12)7r2dV01M.

3. The semiclassical limit of the Kastler—Kalau—Walze-type theorem on 4-dimensional
manifolds with boundary

In this section, we study the semiclassical limit of the Kastler—Kalau—Walze-type theorem for the
perturbation of the Dirac operator on 4-dimensional manifolds with boundary, that is, to compute
lim,_,o e*Wres[n*(eD + ¢(X))™! o nt(eD + c(Z2))7].

3.1. Boutet de Monvel’s calculus

In this subsection, we recall some fundamental concepts and key formulas about Boutet de Monvel’s
calculus, along with the definition of the noncommutative residue for manifolds with boundary. These
preliminaries will be essential for our subsequent analysis. For a more comprehensive treatment of
these topics, we refer readers to Section 2 in [10].

Denote by 7™ (resp. n~) the projection on H* (resp. H™). Let H = {rational functions having no
poles on the real axis}. Then for i € H,

[ h(&)
Th(é&) = — 1 ———d¢, 3.1
TG0 = o M L B G-
where I'* is a Jordan closed curve included in Im(¢) > O surrounding all the singularities of /4 in the

upper half-plane and &, € R. Similarly, we define n’ on A,
1
nh=— h(&)dé. (3.2)
2 r+
Son’'(H™) =0.
For h € HNL'(R),

1
nh=— fh(v)dv,
21 R
and for h € H* " L'(R), 7’h = 0.

Let G,T be, respectively, the singular Green operator and the trace operator of order m and type
d. Let K be a potential operator and S be a classical pseudodifferential operator of order m along the
boundary. An operator of order m € Z and type d is a matrix

C*(M, E)) C*(M, E»)

— +

A:(’;“Gf): & — D .
C®(OM, F,) C®(OM, F»)
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where M is a manifold with boundary M and E,,E, (resp. Fi,F,) are vector bundles over M
(resp. OM). Here, P : C7 (L, E)) — C®(Q,E,) is a classical pseudodifferential operator of order
m on Q, where Q is a collar neighborhood of M and E{M = E; (i = 1,2). P has an extension:
E(Q,E)) — D'(Q, Ey), where E'(Q, E) (D' (Q, Ey)) is the dual space of C*(Q, Ey) (CF(Q, E)). Let
et :C°(M,E)) — 8’(Q,E_1) denotes extension by zero from M to Q, and r* : D'(Q, E_z) - D'(Q,E,)
denotes the restriction from Q to X; then define

n"P=r"Pe" :C(M,E,) - D'(Q, Ey).

In addition, P is supposed to have the transmission property; this means that, for all j, k,a, the
homogeneous component p; of order j in the asymptotic expansion of the symbol p of P in local
coordinates near the boundary satisfies

& 3% pi(x',0,0,+1) = (~1)/ M3k 8¢ p;(x',0,0,-1),

then 7t P : C*(M, E|) — C*(M, E;) by Theorem 4 in [25] page 139.
Denote by B the Boutet de Monvel’s algebra. We recall that the main theorem is in [10,26].

Theorem 3.1. [26] (Fedosov-Golse-Leichtnam-Schrohe) Let M and OM be connected, dimM = n >

3, and let S (resp. S’) be the unit sphere about & (resp. &) and o (&) (resp. 0(£')) be the corresponding
mP+G K

T s )eB,anddenote by p, b and s

canonical n — 1 (resp. (n — 2)) volume form. Set A = (

the local symbols of P,G, and S, respectively. Define:
Wres(A) = f f trg [pn(x, €)] o(&)dx
X JS

+ 27 fa fs {trg [(trb_ (X', €] + trp [s1.,(X, EN]} o (£')d X,
X 7

where Wres denotes the noncommutative residue of an operator in the Boutet de Monvel’s algebra,
and

S =& &) R Y gUEE; = 1),

ij=1

in the normal coordinate,

S(x) = (€1, &) R Y & = 11,
i=1

Then a) m([l B)) =0, for any X, B € B; b) It is the unique continuous trace on B/B~.

Definition 3.2. [10] Lower-dimensional volumes of spin manifolds with boundary are defined by
VolPP2) M = Wres[n* D" o n* D772,
and

Wres[n* D" o xt D] = f
M

f trperem @clo—. (D))o (€)dx + f D, (3.3)
lg1=1

oM
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where
o- | fmfiz X throw el 020 0 (D(,0,8,6)
=1 al(j+k+1)!
X 0L 6 (DK, 0,€,£,)IdE 0 (€ ), (3.4)
and the sumis takenoverr+[/—k —|a|—j—1=—-n, r<-p;, [ < —p;.

3.2. The interior term of lim,_ *Wres[n*(eD + ¢(X)) ™! o 1*(eD + ¢(2))™']

1 1
By e*Wreslr(eD + c(X)) ™ o (D + c(2))'] = gZWT(?s[f(D +0) or(p+22) ] and (3.3),

we first compute

Wres[ (D + @) 7r+(D + @)_]]

>
Z)D Dc(X Z)c(X)\!
_ f f trS(TM)®C[O'_4(D2+C( D, D) , e )) ](T(f)dx+ f ®, (35
M Jg=1 & 2 € oM
where
+oo ( l)|a|+;+k+1 [ . ( C(X))_l , ,

fm lf ijOZCY'(]+k+1)' s @c| P 0e 06,07 \D+ =7 ) (0,860

x 80,0\ o @+iﬁ<cmwﬂ%Mﬁw, (3.6)
and the sumis takenoverr+/—k— j—|a|=-3, r<-1, [ <-1.

Since [o_,(D7P'"7?)]|,; has the same expression as o_,(D7”'"7?) in the case of manifolds without
boundary, so locally we can compute the interior term by [5,6,10,27].
Set V = D? + 492 4 D) (@) ‘where Z = Y'_, dgeq = Y, Z;0, is a vector field. The next
& & & J

a=1
step is to compute the total symbol o(x, &) of V~! from order -4 to order -2, with V the following sum

of terms V,, of order k:

oy (x,€) = |é;

ol (x,€) = i = 20)é, + éC(Z)C(f) + éC(S)C(X);

c(Z2)c(X)

1 . .
G(‘)/(x, & =—-(0'c,+0lo, —T"o,) + Zs + éC(Z))/#O'# + éy”a,,c(X) + =

By (2.2) and the composition formula of pseudodifferential operators, o"_/: is obtained , which include
the sum of terms N; — Nyp and F; — F7:

1 1
Fi =~ = [c(@)c(€) + c(@cOITY = 20,5 Fy = (" — ZO'V)SHE[C(Z)C(S) +c(&)c(X)];

&

1 1
Fs = 2I€|_8;[C(Z)C(§) + @OV €abpdig™;  Fa = —E°f 21 D)e) + (@)X
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] ] Z)c(X 1
Fs =~ Le@nto, + Sy m,e() + LX) R = i L e2)e@) + ek 08"

1
Fy = 217,80 [|§|_4;[C(Z)C(§) +c(§)c(X)]].

Next, we proceed to compute fl =1 tr[ZZ:1 Filoé).
(1) : In normal coordinates, using the facts: F’;B(xo) = o,(xp) =0, aﬁg“ﬁ(xo) = 0, the terms F, F»,
F5, and F¢ disappear.
(2):
tr[e(Z)e@) + @)Xy
= tr[c(Z)c(©)e(Z)c()] + tr[c(Z)c(€)c(§)c(X)] + tr[c(§)c(X)e(Z)c(§)] + tr[c(§)c(X)e(&)e(X)].
By (2.6), we have

f = tr[c(Z)c(@)c(Z)c(E))o(€) = |ZPr*te[id],

1€1=1

f| = tr[c(@e(X)e@)c(X))o (@) = X ulid],
&=

v[ ‘ 1(tr[C(Z)C(f)C(f)C(X)] +tr[C(é")C(X)C(Z)C(f)])ff(f) = 4g(X, Z)n*tr[id].
LE

Then
1
f CF)0)o(@ = (17 + XP + 49X, 2)|ulid],

=1 €

3):
2 5. <
f (r(F5)(x0)0r(€) = = ¢(X, Z)ulid].
=1 &

OF

By (2.7), we have

f tr(F7)(xp)o(€) = —l[divM(X) + divy(Z) |7 tr[id].
lg1=1

&
Therefore, we obtain the following result

c(Z)D N Dc(X) N c(Z)i(X) )‘1
& & &

Wres(D2+
Lo 15, 6 , 1. , 1 , 1

_4 (—|X| P+ —|ZP7 + 2 g(X, Z)7* — ~divy(X)T* — ~divy(Z)n +—s)dVolM.
w \E? g2 &2 g £ 12

Further, above observations yields the following theorem

Theorem 3.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we
derive the following equality:

lim & Wres[* (6D + c()) ' o 7°(eD + ¢(2) '] = 4 f (|X|2 + 12 + 6g(X, Z))JrdeolM.

M
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3.3. The boundary term of lim,_, *Wres[n* (eD + ¢(X))™! o n*(eD + ¢(Z))™"]

In this subsection, we proceed to calculate the boundary term: faM ®. From [10], some symbols
associated with these operators can be expressed.

Lemma 3.4. The positive order symbol of D + % holds:

0'1(D ; @) _ 0'1(D + @) — o1(D) = ic(d):

V4 V4
oo(D+ D) = 0y + L = 3w edctedetencten +

i,8,t

@),
E
X
O'o(D + %) oo(D) + C(g ) 7 Z wy(ei)c(ei)c(eg)c(e,) + %

Then, utilizing the composition formula of pseudodifferential operators, we arrive at the following
lemma.

1
Lemma 3.5. The negative order symbol of (D + ‘(Z)) holds:

r(p+ ) = oo OR) < T
o1 @D+ 2 )e@)

oD+ 92) = (| = ) |§2Z )]0 (c@NIET — €10, (€P)]:
1 @0\ D+ 22 e

oa(p+ H) ( = ) |§6)Zc(dx’) 0, (C(EIEF — ()0, (P

By computations, we obtain the semiclassical limit of the Kastler—Kalau—Walze-type theorem.

Theorem 3.6. Let M be a 4-dimensional oriented compact manifold with boundary OM, then
lim e Wres" (D + (X)) o (6D + e(2)) '] = 4 f (|X|2 +1ZP + 6g(X, Z))JrdeolM.
ED M

In particular, as the semiclassical limit is taken, the boundary term goes to zero.

Proof. For n = 4, the summation condition r+ [ —k — j—|a| = =3, r < -1, [ < -1, it leads to the
following five cases:

casea) Whenr=-1,l=-1,k=j=0, |o| = 1.

By (3.6), we obtain

Lq 1 f Z tr 6" 7T§ o- 1(D + @) 63?(?&0_1(D + %Z))_l](xo)dgng(g')dx'_

9. (10(5))( )= 10y [c(©))(x0) _ ic(@)dy(€P)(x0) _ 0.

e 1

Electronic Research Archive Volume 33, Issue 4, 2452-2474.



2467

so ®; =0.
caseb) Whenr=-1,/=-1, k=|a| =0, j=1.
From (3.6), we obtain

®, = —% L . f :o w0, 7D+ @)_] x 2o (D+ %)_]](xo)dfncr(f’)dx’.

&

Applying Lemma 3.5 yields

2

D\ [ &) +26(E)  8Ec(E)
aé“”P)+_§_)(””:’(' &F T TR )

c(X)

-1 ] 4 H 1121,/
zma(D+7T)@@:ﬁm@x%pgdﬁﬂhm)

|17 &1

Using the Clifford algebra relations and the trace property trab = trba, we obtain:

tr[c(&)e(dx,)] = 0 trle(dx,)’] = —4; tr[c(@)*1(xo)ligie1 = —4;
tr[,, c(&)e(dx,)] = 0; tr[0y, c(€)c(EN(x)le=1 = —2h'(0).

Then, we obtain

O (0)(E, — i) o
P dé,o(&)d
i fl§'|=1 Ioo (& — D&+ D) En0r(&)dx

1
= —ik' (0)Q . —dé,dx’
N T T i
(1)
= —ih’ (0)Q; 27 dx’
O | fei
3
= —gﬂ'h,(O)Q3dxl,

where Q; is the canonical volume of S 2.
casec) Whenr=-1,1=-1, j=la| =0, k= 1.
From (3.6), we obtain

Applying Lemma 3.5 yields

2)\! dx, Y+ Enc(dxy)] 2,00, c(€
5§n5x,10'_1(D + %) (x0)lieri=1 = —ih'(0) [C(lfl)i ) _ 4¢, «&) +|§|6c( : )] -2 |§|E1§ )(XO);
X)\™! ") + ic(dx,
05,,71;0'_1(D + %) (xo)hfllzl = —%-
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Similar to case b), we obtain

{c(f’) + ic(dx,)
tr{———
20, — i)

xMﬂDru%) C@Q+&dmwﬁzzﬁm) r= 3%,

- 4 n B N
g T e @' + )

and

« [C(f’) +ic(dx,)  26i05,¢(& )(XO)] —2il'(0)¢,
28, — 0)? €1 (& —D*E + D>

Thus, we obtain

== [ [T e - [ [ ot
£11=1 =1 J—oo (&

00 ('fn - 1)4('fn + )3 - 1)4(§n + l)2
2mi [ (i - 3&) |7 i i&, ¥ ,
=N (0)93— Gty §n—zd +H (0)93 G 17 gn:idx
= %ﬂh’(O)lex .

cased) Whenr=-2,I=-1, k=j=la|l =
From (3.6), we obtain

-1
D, = —zf f 7r§ _2 D + @) X 8§n0_1(D + @) ](xo)dfna'(f’)dx'.
¢'1=1 € €

Denote

0) = ~3 3" wle)weeeteee),

S0

Then applying Lemma 3.5 yields

o | <O
+ﬂ;n[0(§)6(dzcz)fx;;§§ )](x0) _ 1 )C(f)C(d);Z);(f)]
.= E| — E; + Ej,
where
E, = [(2 + i&,)c(€) Q5 (x0)c(&) + i&,c(dx,) QF(Xo)c(dx,)

4(&n - )2
+ (2 + i€,)c(€)e(dx,)B, (&) + ic(dx,) Q(x0)c(€') + ic(€) QF(xo)e(dxy) = id, (€], (3.7

WO | _cldx,)  cldx,)—ic§) = 36 =T
2 |4 —1) 8(&n — 1) 8(&n — i)’

E, = lic(§") — c(dxy)]]| (3.8)
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and

= 2 (X)Xl + ———e(dr)e(X)elE)

3= 48(§n_i)20€: c(X)e(€ 48(§n_i)20é: c(X)c(dx, 4e(§n—i)2c( xXp)c(X)e(é
i,

+ 12, — 17 c(dx,)c(X)c(dx,).

Since
@\ [eldx,)  2&,c(E) + 2&2¢(dx,)
af"‘r“(DJrT) “Nire 1+ &) (3:9)

Using the Clifford algebra relations and the trace property trab = trba, we obtain:

trlc(€)e(X)e(€)edx,)] = =4X,; tr[e(€)e(X)e(€)eE)] = 48(X,&);
trfe(dx)c(X)e(dxy)e(dx,)] = 4X,; trle(dx,)c(X)e(§)e(Ee(dx,)] = 48(X, &).

By (3.7) and (3.9), we have

c(Z)\™! ~ 3ik’(0) yon Er =i =2
u|Cix a0 (D+ ) ”m:l "2 -—na+ar "% harer
By (3.8) and (3.9), we have
c(Z)\! i g, 44
tr[c2 x agna_](D + T) ]'m:l = 20O g e
and
c(Z)\"! 2i &, + ié?
C 6 _ D — = Xn _4 . . Xn
“[ 3 X060 ‘( e ) ] oot B — DG+ D) " 8 — DAE, + P

N 2 4i¢, — &

8(&1 - l)3(§n + l) g(é:n - 1)4(§n + l)z
When i < n, f| =1 &éiy &y 0(E) = 0, 50 g(X, €) has no contribution for computing case d). Thus,
we obtain

8(X, &) +

8(X,&).

+00 X -1
iy f f tr[(El—E»xagna_l(m@) |Gy riera
=1 Joo

€
~ 30 (O)(En — D) + il (0) :
‘Q3fr 26 - o

9
= gﬂh’(O)dix’.

iy fl y f ” tr[E3 Xagna_l(D+ @)_l]uo)dgna(g')dx'
/=1 J—co

&

_ i f f T2yt - f f T BYE e @y
[ N R A A R et Jow & = E
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1 2 1 &y + i

—QXn dndx+4tQX - —d&,dx’
} I+ (‘fn - 1)3(§n + ) g f ’ T+ (é:n )4(§n + l)2 é:
27Tl 2 @ 2mi fn +ié2®
2 T ae tsiroux, 2 [—] dx’
3 2!3[(§n+i)] A TS ) B
1
= ——X,7Qsdx’.
e
Thus
D, = ( h(0) — )ﬂdix

casee) Whenr = -1, [=-2, k= j=|a| =
From (3.6), we obtain

s = —i fg g f |t D+%) X oD + c(g)) |cropdziorerax.

Applying Lemma 3.5 yields

. c(X)\! (&) +ic(dx,)
moa(D+ 2 '|§| = (3.10)
Since
7 -1
(@)oo D + 2 |(xp)e(é)
- | = ) Cléfé) ()| 8, [e@ R — @ O, |
Further
7 -1
8§HO',Q(D + %) (XO) o
(2
=6E{C(§)(Q(XO)+ - )C(g) el i, [e@ s ~ el 0]
‘o TR "
_ ) ([O0® | c®) , (OLe()
= 5 {FEEEPRE 1 L 10 @ = e O] + 8 (=)
By computations, we have
(&) c(#) 4¢, ¢
o0~ ) = s e @)+ (= = S J(c&re@ecan)
28, 3
+da)e@)e@) + - g fgg)z ST §§2)3 Je@rye@eds,). (3.11)
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We denote ©O0(0)cE) (@)

g, =" |;|ZOC +C|§|6 c(dx)[y, [cE ()R — c@h (O],
then

1
96(412) = (5 gy | %~ 2EDeldx)Quetdxy) + (1 = 3 )eldx)Qx)e(€)

+ (1 = 3E)c(€)Q(x0)c(dx,) = 4€,c(€)Q(x0)c(€') + (3€, = 1), c(€)

— 4£,0(&)c(dx,)0,, (&) + 21 (0)c(€) + 21 (0)é,c(dx,) | + 66,h'(0) 1+ &y
By (3.10) and (3.12), we have

X)

-1 iy s oD e o
alrzoi(p+ D) xon gy = TP 2D PO,

& — D +10) E-D3E+D*

Then

_i0 f [3h’(0)(i§,f + &, — 20) N 121 (0)i&,
SR T @G ) G- PGt

Then, using the Clifford algebra relations and the trace property trab = trba, we obtain:

9
dé,dx' = - gﬂh'(0)§23dx’.

tr[c(€)e(@)e(€Ne(dx,)] = —4Zy; tlc(§)e(Z)e(E)e(E)] = 48(Z, &),
tr[e(dxy)c(Z)e(dxy)c(dxy)] = 4Zy; trle(dx,)c(Z)e(§)e(E)e(dx,)] = 48(Z,&).

By (3.10) and (3.11), we have

3 1 -3& +3ig, —i& i(1 - 362) =3¢, + & ,
B T L R T T A

c©)edx,)c(€)

(3.12)

When i < n, f|§'|:1 &€&y, 0(E) = 0 and g(Z, &) has no contribution for computing case e), we

have

: iflfw:l f: e+ 42) ‘961(%)]<x0)d§na(§’>dx'

. 3¢ 4 3ig, — if) o
- ! Z,dé, (€ )d
lflmzl Iw a(&, — )&, + i) £n0(&)dx

1 [ 1-38+3ig, - i&}
= —4i0sZ, - f TR TP PN
&€ Jr+ (é‘:n_l) (§n+l)
i1 — 32 + 3ig, — g3
=—4iﬂan£[ &t {f lfn] A
3le (& +i) &y=i
1

= —Z,7Q3dx’.
P
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Therefore
9 ’ 1 ’
s = ( _ZHO) + —Zn)ﬂQ3dx .
8 &
Now @ can be expressed as the sum of the case a)—case e),

1
O = Z O, = —(Z, — X,)mQudx’ .
- E

5
i=1

Finally, we obtain
1
lim & f ® =limé’ f —(Z, = X,)nQ3dVoly = 0.
20 Jig=1 20 Jig=1 €
By Theorem 3.3, Theorem 3.6 holds. O
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