

https://www.aimspress.com/journal/era

ERA, 33(4): 2312–2324.

DOI: 10.3934/era.2025102

Received: 18 January 2025

Revised: 30 March 2025

Accepted: 01 April 2025

Accepted: 01 April 2025 Published: 21 April 2025

#### Research article

# A Liouville-type theorem of a weighted semilinear parabolic equation on weighted manifolds with boundary

## Junsheng Gong and Jiancheng Liu\*

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

\* Correspondence: Email: liujc@nwnu.edu.cn.

**Abstract:** We derive a Liouville-type theorem for positive ancient solutions to a weighted semilinear parabolic equation with a Dirichlet boundary condition on complete noncompact weighted manifolds with a compact boundary. This result can be viewed as an extension of Dung et al.'s work on a linear heat equation.

**Keywords:** Liouville-type theorem; ancient solution; semilinear parabolic equation; weighted manifold; gradient estimate

#### 1. Introduction

Let  $(\hat{M}^n, g, e^{-h}dv)$  be a *weighted manifold*, which is in fact an *n*-dimensional complete Riemannian manifold endowed with a weighted measure  $e^{-h}dv$ , where h is a smooth function on  $\hat{M}^n$  and dv is the volume element of the metric g. The associated weighted Laplacian is defined as  $\Delta_h := \Delta - \nabla h \cdot \nabla$ , where  $\Delta$  and  $\nabla$ , respectively, denote the rough Laplacian and the Levi-Civita connection. The Bakry-Émery Ricci curvature is given by  $\text{Ric}_h := \text{Ric} + \text{Hess}h$ , where Ric and Hess, respectively, are the Ricci curvature of  $\hat{M}^n$  and the Hessian operator with respect to g (see [1]).

Recently, many authors have devoted themselves to studying Liouville-type theorems of parabolic equations on weighted manifolds with or without a boundary, and there have been plenty of results obtained (see [2–4] and the references therein). For example, Wu [5] proved elliptic gradient estimates for positive solutions to the linear heat equation

$$u_t = \Delta_h u \tag{1.1}$$

on  $(\hat{M}^n, g, e^{-h}dv)$  without a boundary and obtained Liouville theorems for positive ancient solutions (i.e., solutions defined in all space and negative time) satisfying some growth restriction near infinity. Abolarinwa [6] showed Souplet-Zhang gradient estimates for positive solutions to the weighted

semilinear parabolic equation

$$u_t = \Delta_h u + q(x, t) u^{\alpha} \tag{1.2}$$

on weighted manifolds without a boundary, where  $\alpha \in \mathbb{R}$  and the function q(x, t) is  $C^1$  in x and  $C^0$  in t. In particular, he obtained the following Liouville-type theorem.

**Theorem A.** Let  $(\hat{M}^n, g, e^{-h}dv)$  be a complete noncompact weighted manifold (without a boundary) with  $\operatorname{Ric}_h \geq 0$ . Assume that  $q(x,t) = q(x) \neq 0$ , that is, it is time-independent and satisfies  $||q^+||_{L^{\infty}(B_{\rho}(x_0))} = o(\rho^{-(\alpha-1)})$  and  $||\nabla q||_{L^{\infty}(B_{\rho}(x_0))} = o(\rho^{-(\alpha-1)})$  as  $\rho \to \infty$ . If u is a positive ancient solution to Eq (1.2) satisfying  $u(x,t) = o(r^{\frac{1}{2}}(x) + |t|^{\frac{1}{4}})$  as  $r(x) \to \infty$  and  $t \to -\infty$ , then u is a constant, where  $q^+ = \max\{q(x), 0\}$ ,  $B_o(x_0)$  is a geodesic ball with the center at  $x_0$  and a radius  $\rho$ .

For further generalization of the result above, see also [7] and a recent paper [8]. Inspired by the works of Kunikawa and Sakurai [9], Dung et al. [10] gave elliptic gradient estimates for positive solutions to Eq (1.1) on weighted manifolds with a compact boundary. They also showed the following result.

**Theorem B.** Let  $(\hat{M}^n, g, e^{-h}dv)$  be a complete noncompact weighted manifold with the compact boundary  $\partial \hat{M}$ ,  $\operatorname{Ric}_h \geq 0$  and  $\operatorname{H}_h \geq 0$ . Assume that u is a positive ancient solution to Eq (1.1) with a Dirichlet boundary condition (i.e., the solution is constant on the boundary). If  $u_{\eta} \geq 0$ ,  $u_t \leq 0$  over  $\partial \hat{M} \times (-\infty, 0]$ , and  $u(x, t) = e^{o(r_{\partial \hat{M}}(x) + |t|)}$  (as  $r_{\partial \hat{M}}(x) \to \infty$  and  $t \to -\infty$ ,  $o(r_{\partial \hat{M}}(x) + |t|)$  is an infinitely small quantity), then u must be constant.

Here and below,  $H_h$  stands for the weighted mean curvature on  $\partial \hat{M}$  and is defined as  $H_h := H - \nabla h \cdot \eta$ , where H denotes the mean curvature of the boundary  $\partial \hat{M}$ ,  $\eta$  is the outer unit normal vector to  $\partial \hat{M}$ ,  $u_{\eta}$  stands for the derivative of u along the direction  $\eta$ , and  $r_{\partial \hat{M}}(x)$  is the distance function from the boundary.

In this paper, on weighted manifolds with a compact boundary, we study the Liouville property of positive ancient solutions to Eq (1.2). On the basis of Souplet-Zhang gradient estimates for positive solutions to Eq (1.2) with a Dirichlet boundary condition, we obtain the following Liouville-type theorem, in the spirit of Theorem 3.3 of Souplet and Zhang in [11].

**Main theorem.** Let  $(\hat{M}^n, g, e^{-h}dv)$  be a complete noncompact weighted manifold with the compact boundary  $\partial \hat{M}$ ,  $\operatorname{Ric}_h \geq 0$  and  $\operatorname{H}_h \geq 0$ . Assume that  $q(x,t) = q(x) \neq 0$  satisfies  $\|q^+\|_{L^{\infty}(B_{\rho}(\partial \hat{M}))} = o(\rho^{-(\alpha-1)})$  and  $\|\nabla q\|_{L^{\infty}(B_{\rho}(\partial \hat{M}))} = o(\rho^{-(\alpha-1)})$  as  $\rho \to \infty$ . Let u be a positive ancient solution to Eq (1.2) with a Dirichlet boundary condition. If  $u_{\eta} \geq 0$ ,  $u_t \leq qu^{\alpha}$  over  $\partial \hat{M} \times (-\infty, 0]$  and  $u(x,t) = e^{o(r_{\partial \hat{M}}(x) + |t|)}$  (as  $r_{\partial \hat{M}}(x) \to \infty$  and  $t \to -\infty$ ,  $o(r_{\partial \hat{M}}(x) + |t|)$  is an infinitely small quantity), then u must be constant, where  $B_{\rho}(\partial \hat{M}) := \{x \in \hat{M}^n | d(x, \partial \hat{M}) < \rho\}$ .

**Remark.** If  $q(x,t) \equiv 0$ , Eq (1.2) reduces to Eq (1.1), and hence our result generalizes the corresponding result of Dung et al. in [10]. When  $q(x,t) \equiv -1$ ,  $\alpha = 1$ , and  $\hat{M} = (-\infty, 0]$ , h = x. It can be checked that  $u = e^{x-t}$  is a positive ancient solution to Eq (1.2), where  $u_{\eta} \geq 0$ ,  $u_{t} \leq qu^{\alpha}$  over  $\partial \hat{M} \times (-\infty, 0]$  and its growth rate is  $e^{|x|+|t|}$ . The example shows that our growth condition is necessary and sharp in both the spatial and time directions. Hence, it is better than the condition  $u(x,t) = o(r^{\frac{1}{2}}(x) + |t|^{\frac{1}{4}})$  (as  $r(x) \to \infty$  and  $t \to -\infty$ ) used in [6].

#### 2. Basic lemmas

In this section, we present some definitions and results. On a weighted manifold  $(\hat{M}^n, g, e^{-h}dv)$  with the compact boundary  $\partial \hat{M}$ , the distance function from the boundary is given by

$$r(x) := r_{\partial \hat{M}}(x) = d(x, \partial \hat{M}), \quad x \in \hat{M}^n.$$

This is a smooth function outside of the cut locus for the boundary (see [12]). We introduce the weighted Laplacian comparison theorem for the distance function on weighted manifolds with a boundary.

**Lemma 2.1.** [13] Let  $(\hat{M}^n, g, e^{-h}dv)$  be an n-dimensional weighted manifold with the compact boundary  $\partial \hat{M}$ . If  $\text{Ric}_h \ge -(n-1)K$  and  $H_h \ge -L$  for some non-negative constants K and L, then

$$\Delta_h r(x) \le (n-1)K\rho + L \tag{2.1}$$

for all  $x \in B_{\rho}(\partial \hat{M})$ .

We give the following useful derivative equality, which is called the Reilly's formula.

**Lemma 2.2.** [14] Let  $\varphi$  be a smooth function on a weighted manifold  $(\hat{M}^n, g, e^{-h}dv)$  with the compact boundary  $\partial \hat{M}$ . Then

$$\frac{1}{2}(|\nabla\varphi|^{2})_{\eta} = \varphi_{\eta}[\triangle_{h}\varphi - \triangle_{\partial\hat{M},h}(\varphi|_{\partial\hat{M}}) - \varphi_{\eta}H_{h}] + g_{\partial\hat{M}}(\nabla_{\partial\hat{M}}(\varphi|_{\partial\hat{M}}), \nabla_{\partial\hat{M}}\varphi_{\eta}) 
- \Pi(\nabla_{\partial\hat{M}}(\varphi|_{\partial\hat{M}}), \nabla_{\partial\hat{M}}(\varphi|_{\partial\hat{M}})),$$
(2.2)

where  $\Pi$  is the second fundamental form of  $\partial \hat{M}$ .

Next, we introduce a smooth cut-off function originally developed by Li-Yau. It is very useful in the proof of elliptic gradient estimates.

**Lemma 2.3.** [15] Let  $(\hat{M}^n, g, e^{-h}dv)$  be an *n*-dimensional weighted manifold with the compact boundary  $\partial \hat{M}$ . A smooth cut-off function  $\psi = \psi(x, t)$  supported in  $Q_{\rho,T}(\partial \hat{M}) := B_{\rho}(\partial \hat{M}) \times [-T, 0]$  exists such that

- (i)  $\psi = \psi(r_{\partial \hat{M}}(x), t) \equiv \psi(r, t); \psi(r, t) = 1 \text{ in } Q_{\rho/2, T/2}(\partial \hat{M}), 0 \le \psi \le 1;$
- (ii)  $\psi$  is decreasing as a radial function in the spatial variables, and  $\psi_r = 0$  in  $Q_{\rho/2,T}(\partial \hat{M})$ ;
- (iii)  $|\psi_t| \le \frac{C\psi^{1/2}}{T}$ ,  $|\psi_r| \le \frac{C_\epsilon \psi^\epsilon}{\rho}$  and  $|\psi_{rr}| \le \frac{C_\epsilon \psi^\epsilon}{\rho^2}$ , where C > 0 is a universal constant and  $C_\epsilon > 0$  is a constant depending only on  $0 < \epsilon < 1$ .

According to Souplet and Zhang's idea in [16], by introducing the auxiliary function  $\sqrt{1 + \log(N/u)}$  instead of  $\log(u/N)$  used in [6], we prove a derivative inequality, which plays an important role in the proof of Proposition 3.1.

**Lemma 2.4.** Let u be a smooth solution to Eq (1.2) and  $0 < u \le N$  for some constant N. Let  $v = \sqrt{\log(P/u)}$ , where P = Ne and  $\omega = |\nabla v|^2$ . We then have

$$\Delta_h \omega - \omega_t \ge 2(v^{-2} + 2)\omega^2 - [2(\alpha - 1) + v^{-2}]qu^{\alpha - 1}\omega + 2\operatorname{Ric}_h(\nabla v, \nabla v) + 2(2v - v^{-1})\langle \nabla \omega, \nabla v \rangle + v^{-1}u^{\alpha - 1}\langle \nabla q, \nabla v \rangle.$$
(2.3)

*Proof.* Since  $u = Pe^{-v^2}$ , we compute

$$u_t = -2Pve^{-v^2}v_t = -2uvv_t (2.4)$$

and

$$\nabla u = -2Pve^{-v^2}\nabla v = -2uv\nabla v.$$

Further, we get

$$\Delta u = \nabla \nabla u$$

$$= -2u|\nabla v|^2 - 2v\langle \nabla u, \nabla v \rangle - 2uv\Delta v$$

$$= -2u|\nabla v|^2 + 4uv^2|\nabla v|^2 - 2uv\Delta v,$$

hence

$$\Delta_h u = \Delta u - \langle \nabla u, \nabla h \rangle$$

$$= -2uv\Delta_h v - 2u|\nabla v|^2 + 4uv^2|\nabla v|^2.$$
(2.5)

If we substitute (2.4) and (2.5) into Eq (1.2), it follows that

$$v_t = \Delta_h v - (2v - v^{-1})|\nabla v|^2 - \frac{1}{2}qv^{-1}u^{\alpha - 1}.$$
 (2.6)

Using the Bochner formula (see [5]) for  $\omega$ , we have

$$\Delta_h \omega = \Delta_h |\nabla v|^2$$

$$= 2|\text{Hess}v|^2 + 2\langle \nabla \Delta_h v, \nabla v \rangle + 2\text{Ric}_h(\nabla v, \nabla v)$$

$$\geq 2\langle \nabla \Delta_h v, \nabla v \rangle + 2\text{Ric}_h(\nabla v, \nabla v).$$

Hence

$$\Delta_h \omega - \omega_t \ge 2\langle \nabla \Delta_h v, \nabla v \rangle + 2 \operatorname{Ric}_h(\nabla v, \nabla v) - \omega_t$$

$$\ge 2\langle \nabla (v_t + (2v - v^{-1})|\nabla v|^2 + \frac{1}{2}qv^{-1}u^{\alpha - 1}), \nabla v \rangle$$

$$+ 2 \operatorname{Ric}_h(\nabla v, \nabla v) - \omega_t,$$

where we used (2.6) in the second inequality.

A direct computation shows that

$$\omega_{t} = (|\nabla v|^{2})_{t} = 2\langle \nabla v_{t}, \nabla v \rangle,$$

$$\nabla [(2v - v^{-1})|\nabla v|^{2}] = (2 + v^{-2})|\nabla v|^{2}\nabla v + (2v - v^{-1})\nabla |\nabla v|^{2}$$

$$= (2 + v^{-2})\omega \nabla v + (2v - v^{-1})\nabla \omega$$

and

$$\begin{split} \nabla (q v^{-1} u^{\alpha - 1}) &= v^{-1} u^{\alpha - 1} \nabla q + (\alpha - 1) q v^{-1} u^{\alpha - 2} \nabla u - q v^{-2} u^{\alpha - 1} \nabla v \\ &= v^{-1} u^{\alpha - 1} \nabla q - 2(\alpha - 1) q u^{\alpha - 1} \nabla v - q v^{-2} u^{\alpha - 1} \nabla v. \end{split}$$

We then arrive at

$$\Delta_h \omega - \omega_t \ge 2(2 + v^{-2})\omega^2 + 2(2v - v^{-1})\langle \nabla \omega, \nabla v \rangle + v^{-1}u^{\alpha - 1}\langle \nabla q, \nabla v \rangle - 2(\alpha - 1)qu^{\alpha - 1}\omega - qv^{-2}u^{\alpha - 1}\omega + 2\operatorname{Ric}_h(\nabla v, \nabla v),$$

which is the desired inequality (2.3).

This completes the proof of Lemma 2.4.

## 3. Elliptic gradient estimates

In this section, on the basis of the key derivative inequality, by applying maximum principle, we establish Souplet-Zhang gradient estimates for positive solutions to Eq (1.2) with a Dirichlet boundary condition. In particular, we need to use Reilly's formula to deal with the boundary case. In fact, we obtain the following result.

**Proposition 3.1.** Let  $(\hat{M}^n, g, e^{-h}dv)$  be an n-dimensional weighted manifold with the compact boundary  $\partial \hat{M}$ . Assume that  $\mathrm{Ric}_h \geq -(n-1)K$  and  $\mathrm{H}_h \geq -L$ . Here  $K \geq 0$ ,  $L \geq 0$  and N > 0 are some constants. Let  $u \leq N$  be a positive solution to Eq (1.2) with a Dirichlet boundary condition on  $Q_{\rho,T}(\partial \hat{M})$ . If  $u_{\eta} \geq 0$  and  $u_t \leq qu^{\alpha}$  over  $\partial \hat{M} \times [-T, 0]$ , then a constant C depending on n and  $\alpha$  exists such that the following estimates hold.

(i) If  $\alpha > 1$ , then

$$\sup_{Q_{\rho/2,T/2}(\partial \hat{M})} \frac{|\nabla u|}{u} \leq C \left( \frac{1 + \sqrt{D}}{\rho} + \sqrt{K} + L + \sqrt{\alpha} N^{\frac{1}{2}(\alpha - 1)} ||q||_{L^{\infty}(Q_{\rho,T}(\partial \hat{M}))}^{\frac{1}{2}} + \frac{1}{\sqrt{T}} + N^{\frac{1}{3}(\alpha - 1)} ||\nabla q||_{L^{\infty}(Q_{\rho,T}(\partial \hat{M}))}^{\frac{1}{3}} \right) \sqrt{1 + \log \frac{N}{u}},$$
(3.1)

where  $D = 1 + \log N - \log(\inf_{Q_{p,T}(\partial \hat{M})} u)$ .

(ii) If  $\alpha \leq 1$ , then

$$\sup_{Q_{\rho/2,T/2}(\partial \hat{M})} \frac{|\nabla u|}{u} \leq C \left( \frac{1 + \sqrt{D}}{\rho} + \sqrt{K} + L + \bar{N}^{\frac{1}{2}(\alpha - 1)} ||q||_{L^{\infty}(Q_{\rho,T}(\partial \hat{M}))}^{\frac{1}{2}} + \frac{1}{\sqrt{T}} + \bar{N}^{\frac{1}{3}(\alpha - 1)} ||\nabla q||_{L^{\infty}(Q_{\rho,T}(\partial \hat{M}))}^{\frac{1}{3}} \right) \sqrt{1 + \log \frac{N}{u}},$$
(3.2)

where  $\bar{N} = \inf\{u(x, t) | (x, t) \in Q_{\rho, T}(\partial \hat{M})\}.$ 

*Proof.* Let  $\psi\omega$  reach its maximum at  $(x_1, t_1) \in Q_{\rho/2, T/2}(\partial \hat{M})$ , where  $\psi$  denotes the cut-off function in Lemma 2.3 and  $\omega$  is the function in Lemma 2.4. We divide the arguments into two cases.

**Case 1.** When  $x_1 \notin \partial \hat{M}$ , without loss of generality, we may assume that  $x_1 \notin \text{Cut}(\partial \hat{M})$  by Calabi's argument [17]. At  $(x_1, t_1)$ , we know that

$$\Delta_h(\psi\omega) \leq 0, \qquad (\psi\omega)_t \geq 0,$$

and

$$\nabla(\psi\omega)=0.$$

That is

$$\nabla \omega = -\frac{\omega}{\psi} \nabla \psi.$$

A direct computation shows that

$$\Delta_h(\psi\omega) - (\psi\omega)_t = \psi(\Delta_h\omega - \omega_t) + \omega(\Delta_h\psi - \psi_t) + 2\langle\nabla\omega,\nabla\psi\rangle. \tag{3.3}$$

Combining (2.3) with (3.3), and using the condition of  $Ric_h \ge -(n-1)K$ , then at  $(x_1, t_1)$ , we get

$$\begin{split} 2(v^{-2}+2)\psi\omega^2 \leq & 2(2v-v^{-1})\omega\langle\nabla\psi,\nabla v\rangle - v^{-1}u^{\alpha-1}\psi\langle\nabla q,\nabla v\rangle \\ & + [2(\alpha-1)+v^{-2}]qu^{\alpha-1}\psi\omega + 2(n-1)K\psi\omega \\ & - \omega(\triangle_h\psi-\psi_t) + \frac{2\omega}{\psi}|\nabla\psi|^2. \end{split}$$

Since  $0 < \frac{2\nu^2}{2\nu^2 + 1} \le 1$ ,  $0 < \frac{1}{2\nu^2 + 1} \le 1$ , and  $0 < \frac{\nu}{2\nu^2 + 1} \le \frac{\sqrt{2}}{4}$ , then

$$2\psi\omega^{2} \leq -\frac{v^{2}}{2v^{2}+1}\omega(\triangle_{h}\psi-\psi_{t}) + (n-1)K\psi\omega + \frac{\omega}{\psi}|\nabla\psi|^{2}$$

$$+\frac{2v(2v^{2}-1)}{2v^{2}+1}\langle\nabla\psi,\nabla v\rangle\omega + \frac{\sqrt{2}}{4}u^{\alpha-1}\psi|\nabla q||\nabla v|$$

$$+|(\alpha-1)q|u^{\alpha-1}\psi\omega + |q|u^{\alpha-1}\psi\omega.$$
(3.4)

Next, we estimate every term on the right-hand side of (3.4) at  $(x_1, t_1)$ .

$$-\frac{v^{2}}{2v^{2}+1}\omega\Delta_{h}\psi = -\frac{v^{2}}{2v^{2}+1}(\psi_{r}\Delta_{h}r + \psi_{rr}|\nabla r|^{2})\omega$$

$$\leq \frac{(n-1)K\rho + L}{2}\omega|\psi_{r}| + \frac{1}{2}\omega|\psi_{rr}|$$

$$\leq \frac{|\psi_{rr}|}{2\psi^{1/2}}\psi^{1/2}\omega + \frac{(n-1)K\rho + L}{2}\psi^{1/2}\omega\frac{|\psi_{r}|}{\psi^{1/2}}$$

$$\leq \frac{1}{7}\psi\omega^{2} + C\left[\left(\frac{|\psi_{rr}|}{\psi^{1/2}}\right)^{2} + (K^{2}\rho^{2} + L^{2})\left(\frac{|\psi_{r}|}{\psi^{1/2}}\right)^{2}\right]$$

$$\leq \frac{1}{7}\psi\omega^{2} + \frac{C}{\rho^{4}} + CK^{2} + \frac{CL^{2}}{\rho^{2}}$$

$$\leq \frac{1}{7}\psi\omega^{2} + \frac{C}{\rho^{4}} + CK^{2} + CL^{4},$$
(3.5)

where we used (2.1) in the first inequality.

By the Cauchy-Schwarz inequality, we have

$$\frac{v^{2}}{2v^{2}+1}\omega\psi_{t} \leq \frac{1}{2}\omega|\psi_{t}| = \psi^{1/2}\omega\frac{|\psi_{t}|}{2\psi^{1/2}}$$

$$\leq \frac{1}{7}(\psi^{1/2}\omega)^{2} + C\left(\frac{|\psi_{t}|}{\psi^{1/2}}\right)^{2}$$

$$\leq \frac{1}{7}\psi\omega^{2} + \frac{C}{T^{2}},$$
(3.6)

$$(n-1)K\psi\omega \le \frac{1}{7}\psi\omega^2 + CK^2,\tag{3.7}$$

and

$$\frac{|\nabla \psi|^2}{\psi}\omega = (\psi^{1/2}\omega)\left(\frac{|\nabla \psi|^2}{\psi^{3/2}}\right)$$

$$\leq \frac{1}{7}\psi\omega^2 + C\frac{|\nabla \psi|^4}{\psi^3}$$

$$\leq \frac{1}{7}\psi\omega^2 + \frac{C}{\rho^4}.$$
(3.8)

By the Young's inequality, we get

$$\frac{2\nu(2\nu^{2}-1)}{2\nu^{2}+1}\langle\nabla\nu,\nabla\psi\rangle\omega\leq 2\nu\frac{|2\nu^{2}-1|}{2\nu^{2}+1}|\nabla\psi||\nabla\nu|\omega$$

$$\leq 2\nu|\nabla\psi|\omega^{3/2}$$

$$= 2\nu\left(\frac{|\nabla\psi|}{\psi^{3/4}}\right)(\psi\omega^{2})^{3/4}$$

$$\leq \frac{1}{7}\psi\omega^{2}+C\nu^{4}\frac{|\nabla\psi|^{4}}{\psi^{3}}$$

$$\leq \frac{1}{7}\psi\omega^{2}+\frac{CD^{2}}{\rho^{4}},$$
(3.9)

where  $D = 1 + \log N - \log(\inf_{Q_{\rho,T}(\partial \hat{M})} u)$ .

We now estimate the terms that contain the parameter  $\alpha$  and divide the arguments into two cases.

Case (i). If  $\alpha > 1$ , then by using the Young's inequality

$$\frac{\sqrt{2}}{4}u^{\alpha-1}\psi|\nabla q||\nabla v| = \frac{\sqrt{2}}{4}u^{\alpha-1}|\nabla q|\psi\omega^{1/2}$$

$$\leq \frac{\sqrt{2}}{4}N^{\alpha-1}|\nabla q|\psi\omega^{1/2}$$

$$= \frac{\sqrt{2}}{4}(\psi^{1/4}\omega^{1/2})(|\nabla q|\psi^{3/4}N^{\alpha-1})$$

$$\leq \frac{1}{7}(\psi^{1/4}\omega^{1/2})^4 + C(|\nabla q|\psi^{3/4}N^{\alpha-1})^{4/3}$$

$$\leq \frac{1}{7}\psi\omega^2 + C|\nabla q|^{4/3}N^{4(\alpha-1)/3},$$
(3.10)

and the Cauchy-Schwarz inequality

$$\begin{aligned} |(\alpha - 1)q|u^{\alpha - 1}\psi\omega + |q|u^{\alpha - 1}\psi\omega &\leq \alpha |q|u^{\alpha - 1}\psi\omega \\ &\leq (\psi^{1/2}\omega)(\alpha|q|N^{\alpha - 1}\psi^{1/2}) \\ &\leq \frac{1}{7}\psi\omega^2 + C\alpha^2q^2N^{2(\alpha - 1)}. \end{aligned}$$
(3.11)

Combining (3.5)–(3.9) with (3.10) and (3.11), for all  $(x, t) \in Q_{\rho, T}(\partial \hat{M})$ , we have

$$\begin{split} \psi\omega^{2}(x,t) \leq & \psi\omega^{2}(x_{1},t_{1}) \\ \leq & C\bigg(\frac{1+D^{2}}{\rho^{2}} + K^{2} + L^{4} + \alpha^{2}N^{2(\alpha-1)}\|q\|_{L^{\infty}(Q_{\rho,T}(\partial\hat{M}))}^{2} \\ & + \frac{1}{T^{2}} + N^{4(\alpha-1)/3}\|\nabla q\|_{L^{\infty}(Q_{\rho,T}(\partial\hat{M}))}^{4/3}\bigg). \end{split}$$

Noting that  $\psi(x,t) = 1$  in  $Q_{\rho/2,T/2}(\partial \hat{M})$  and  $\omega = |\nabla v|^2$ , where  $v = \sqrt{\log(Ne/u)}$ . It follows that

$$\begin{split} \frac{|\nabla u|}{u} \leq & C \bigg( \frac{1 + \sqrt{D}}{\rho} + \sqrt{K} + L + \sqrt{\alpha} N^{(\alpha - 1)/2} ||q||_{L^{\infty}(Q_{\rho, T}(\partial \hat{M}))}^{1/2} \\ & + \frac{1}{\sqrt{T}} + N^{(\alpha - 1)/3} ||\nabla q||_{L^{\infty}(Q_{\rho, T}(\partial \hat{M}))}^{1/3} \bigg) \sqrt{1 + \log \frac{N}{u}}. \end{split}$$

Namely, we get the desired estimate (3.1).

Case (ii). If  $\alpha \le 1$ , then by using the Young's inequality

$$\begin{split} \frac{\sqrt{2}}{4} u^{\alpha - 1} \psi |\nabla q| |\nabla v| &\leq \frac{\sqrt{2}}{4} \bar{N}^{\alpha - 1} |\nabla q| \psi \omega^{1/2} \\ &= \frac{\sqrt{2}}{4} (\psi^{1/4} \omega^{1/2}) (|\nabla q| \psi^{3/4} \bar{N}^{\alpha - 1}) \\ &\leq \frac{1}{7} (\psi^{1/4} \omega^{1/2})^4 + C (|\nabla q| \psi^{3/4} \bar{N}^{\alpha - 1})^{4/3} \\ &\leq \frac{1}{7} \psi \omega^2 + C |\nabla q|^{4/3} \bar{N}^{4(\alpha - 1)/3}, \end{split} \tag{3.12}$$

where  $\bar{N} = \inf\{u(x,t)|(x,t) \in Q_{\rho,T}(\partial \hat{M})\}.$ 

Using the Cauchy-Schwarz inequality

$$\begin{split} |(\alpha - 1)q|u^{\alpha - 1}\psi\omega + |q|u^{\alpha - 1}\psi\omega &\leq (2 - \alpha)|q|u^{\alpha - 1}\psi\omega \\ &\leq C(\psi^{1/2}\omega)(|q|\bar{N}^{\alpha - 1}\psi^{1/2}) \\ &\leq \frac{1}{7}\psi\omega^{2} + Cq^{2}\bar{N}^{2(\alpha - 1)}. \end{split} \tag{3.13}$$

Combining (3.5)–(3.9) with (3.12) and (3.13) for all  $(x, t) \in Q_{\rho, T}(\partial \hat{M})$ , we get

$$\begin{split} \psi\omega^{2}(x,t) \leq & \psi\omega^{2}(x_{1},t_{1}) \\ \leq & C\bigg(\frac{1+D^{2}}{\rho^{2}} + K^{2} + L^{4} + \bar{N}^{2(\alpha-1)}\|q\|_{L^{\infty}(Q_{\rho,T}(\partial\hat{M}))}^{2} \\ & + \frac{1}{T^{2}} + \bar{N}^{4(\alpha-1)/3}\|\nabla q\|_{L^{\infty}(Q_{\rho,T}(\partial\hat{M}))}^{4/3}\bigg). \end{split}$$

Using  $\psi(x,t) = 1$  in  $Q_{\rho/2,T/2}(\partial \hat{M})$  and the definition of  $\omega$ , we obtain

$$\begin{split} \frac{|\nabla u|}{u} \leq & C \bigg( \frac{1 + \sqrt{D}}{\rho} + \sqrt{K} + L + \bar{N}^{(\alpha - 1)/2} ||q||_{L^{\infty}(Q_{\rho, T}(\partial \hat{M}))}^{1/2} \\ & + \frac{1}{\sqrt{T}} + \bar{N}^{(\alpha - 1)/3} ||\nabla q||_{L^{\infty}(Q_{\rho, T}(\partial \hat{M}))}^{1/3} \bigg) \sqrt{1 + \log \frac{N}{u}}, \end{split}$$

which is the desired estimate (3.2).

Case 2. When  $x_1 \in \partial \hat{M}$ , we only consider the case  $\alpha > 1$  because  $\alpha \le 1$  is similar. In the case, the estimate (3.1) still holds. Moreover, at  $(x_1, t_1)$ , we get

$$(\psi\omega)_{\eta}\geq 0$$
,

namely,

$$\psi_n\omega + \psi\omega_n = \psi\omega_n \ge 0.$$

Hence

$$\omega_n \geq 0$$
.

Since  $\omega = |\nabla v|^2$ , where  $v = \sqrt{\log(P/u)}$ , by assumption, we know that  $\omega$  also satisfies the Dirichlet boundary condition. It follows from Lemma 2.2 that

$$0 \le \omega_{\eta} = (|\nabla v|^2)_{\eta} = 2v_{\eta}(\triangle_{h}v - H_{h}v_{\eta}). \tag{3.14}$$

Because u satisfies the Dirichlet boundary condition, then

$$|\nabla u| = u_{\eta}.$$

Since

$$\nabla v = -\frac{\nabla u}{2u\sqrt{\log(P/u)}},$$

$$v_{\eta} = -\frac{1}{2u\sqrt{\log(P/u)}}u_{\eta} = -\frac{|\nabla u|}{2u\sqrt{\log(P/u)}} = -\omega^{1/2}.$$

We directly compute

$$\Delta_{h}v = \Delta v - \langle \nabla v, \nabla h \rangle 
= -\nabla \left( \frac{\nabla u}{2u\sqrt{\log(P/u)}} \right) - \langle \nabla v, \nabla h \rangle 
= -\frac{\Delta_{h}u}{2u\sqrt{\log(P/u)}} + \frac{|\nabla u|^{2}}{2u^{2}\sqrt{\log(P/u)}} - \frac{|\nabla u|^{2}}{4u^{2}(\log(P/u))^{3/2}} 
= \frac{1}{2uv}(-u_{t} + qu^{\alpha}) + \left( \frac{2v^{2} - 1}{v} \right) \omega,$$
(3.15)

where we used (1.2) in the fourth equality.

Substituting (3.15) into (3.14), we arrive at

$$0 \le -2\omega^{1/2} \left[ \frac{1}{2uv} (-u_t + qu^{\alpha}) + (2v - v^{-1})\omega + \omega^{1/2} H_h \right],$$

that is

$$\frac{1}{2uv}(-u_t + qu^{\alpha}) + (2v - v^{-1})\omega + \omega^{1/2}H_h \le 0$$
(3.16)

at  $(x_1, t_1)$ . The condition that  $u_t \le qu^{\alpha}$  over  $\partial \hat{M} \times [-T, 0]$  yields

$$\frac{1}{2uv}(-u_t+qu^\alpha)\geq 0.$$

It follows from (3.16) that

$$(2v - v^{-1})\omega + \omega^{1/2}H_h \le 0.$$

Since  $v \ge 1$ ,  $2v - v^{-1} \ge 1$ , and we get

$$\omega + \mathbf{H}_h \omega^{1/2} \le 0$$

at  $(x_1, t_1)$ , which implies

$$\omega(x_1, t_1) = 0 \tag{3.17}$$

or

$$\omega^{1/2}(x_1, t_1) \le L \tag{3.18}$$

on  $Q_{\rho,T}(\partial \hat{M})$ , where we used the condition of  $H_h \geq -L$ .

If (3.17) holds, then u is constant and the conclusion follows.

If (3.18) holds, then for all  $(x, t) \in Q_{\rho/2, T/2}(\partial \hat{M})$ ,  $\psi(x, t) = 1$ , and we have

$$|\nabla v|^2(x,t) = \omega(x,t) = \psi(x,t)\omega(x,t) \le \psi(x_1,t_1)\omega(x_1,t_1) \le L^2$$
.

It also implies the conclusion by using

$$|\nabla v| = \frac{|\nabla u|}{2u\sqrt{\log(P/u)}}.$$

We complete the proof of Proposition 3.1.

## 4. Proof of the main theorem

In this section, applying the Souplet-Zhang gradient estimates for positive solutions to Eq (1.2) with a Dirichlet boundary condition, we complete the proof of the main theorem.

*Proof.* We only consider the case  $\alpha \le 1$  because  $\alpha \ge 1$  is similar. The arguments can be divided into two cases.

Case 1. When  $\alpha < 1$ , by the estimate (3.2) in Proposition 3.1 for K = L = 0, we know that

$$\frac{|\nabla u(x,t)|}{u(x,t)} \le C \left( \frac{1+\sqrt{D}}{\rho} + \frac{1}{\sqrt{T}} + \bar{N}^{\frac{1}{2}(\alpha-1)} ||q||_{L^{\infty}(Q_{\rho,T}(\partial \hat{M}))}^{\frac{1}{2}} + \bar{N}^{\frac{1}{3}(\alpha-1)} ||\nabla q||_{L^{\infty}(Q_{\rho,T}(\partial \hat{M}))}^{\frac{1}{3}} \right) \sqrt{1 + \log \frac{N}{u}}$$
(4.1)

for all  $(x, t) \in Q_{\rho/2, T/2}(\partial \hat{M})$ .

Fixing  $(x_0, t_0)$  and using (4.1) to u on  $Q_{\rho,\rho}(\partial \hat{M}) := B_{\rho}(\partial \hat{M}) \times [t_0 - \rho, t_0]$  and the assumption conditions, we get

$$\frac{|\nabla u(x_0, t_0)|}{u(x_0, t_0)} \le C \left( \frac{\sqrt{o(\rho + |\rho|)}}{\rho} + \frac{1}{\sqrt{\rho}} + o(\rho^{\frac{1}{2}(\alpha - 1)}) o(\rho^{-\frac{1}{2}(\alpha - 1)}) + o(\rho^{\frac{1}{3}(\alpha - 1)}) o(\rho^{-\frac{1}{3}(\alpha - 1)}) \right) \sqrt{o(\rho + |\rho|) - \log(u(x_0, t_0))}.$$

Letting  $\rho \to \infty$ , we have  $|\nabla u(x_0, t_0)| = 0$ . Because  $(x_0, t_0)$  is arbitrary,  $\nabla u(x, t) \equiv 0$  and u must be constant in space, namely, u(x, t) = u(t). We now prove u(t) is a constant by contradiction.

Let  $\tilde{q} := q(x)$ , and thus by Eq (1.2), we have

$$\frac{du(t)}{dt} = \tilde{q}u^{\alpha}(t). \tag{4.2}$$

Integrating (4.2) in the interal (t, 0] with t < 0, we get

$$u^{1-\alpha}(t) = u^{1-\alpha}(0) + (1-\alpha)\tilde{q}t.$$

Using the condition of  $\tilde{q} > 0$  and letting  $t \to -\infty$ , we have  $u^{1-\alpha}(t) < 0$ , which is impossible, since u is a positive solution. Hence  $\tilde{q} = 0$  and u(x, t) is a constant.

Case 2. When  $\alpha = 1$ , by the same arguments as in Case 1, we easily find that u must be constant in space, namely, u(x, t) = u(t). Similarly, we have

$$\log u(0) - \log u(t) \le -\tilde{q}t$$

for all t < 0.

Hence

$$u(t) \geq u(0)e^{\tilde{q}t}$$

which is a contradiction to the condition that  $u(x, t) = e^{o(r_{\partial \hat{M}}(x) + |t|)}$  near infinity.

This proof is completed.

## 5. Conclusions

In this paper, we prove a Liouville-type theorem for positive ancient solutions to a weighted semilinear parabolic equation with a Dirichlet boundary condition on complete noncompact weighted manifolds with a compact boundary. The proof technique is based on Souplet-Zhang gradient estimates for positive solutions. This result can be viewed as an extension of Dung et al.'s [10] work on a linear heat equation.

The weight of the equation is expressed by a smooth function q(x, t) in this paper. But for technical reasons, a Liouville-type theorem is obtained in the subcase q(x) (i.e., it is time-independent). A natural question is whether there is a similar Liouville-type theorem when the weight is q(x, t).

#### Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

## Acknowledgments

This research was partially supported by the NSF of China (12161078) and the Funds for Innovative Fundamental Research Group Project of Gansu Province (24JRRA778).

#### **Conflict of interest**

The authors declare there is no conflict of interest.

#### References

- 1. G. Wei, W. Wylie, Comparison geometry for the Bakry-Émery Ricci tensor, *J. Differ. Geom.*, **83** (2009), 377–405. https://doi.org/10.4310/jdg/1261495336
- 2. H. T. Dung, N. T. Dung, Sharp gradient estimates for a heat equation in Riemannian manifolds, *Proc. Am. Math. Soc.*, **147** (2019), 5329–5338. https://doi.org/10.1090/proc/14645
- 3. B. Ma, F. Zeng, Hamilton-Souplet-Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation, *C. R. Math.*, **356** (2018), 550–557. https://doi.org/10.1016/j.crma.2018.04.003
- 4. X. Zhu, Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds, *Nonlinear Anal.*, **74** (2011), 5141–5146. https://doi.org/10.1016/j.na.2011.05.008
- 5. J. Wu, Elliptic gradient estimates for a weighted heat equation and applications, *Math. Z.*, **280** (2015), 451–468. https://doi.org/10.1007/s00209-015-1432-9
- 6. A. Abolarinwa, Elliptic gradient estimates and Liouville theorems for a weighted nonlinear parabolic equation, *J. Math. Anal. Appl.*, **473** (2019), 297–312. https://doi.org/10.1016/j.jmaa.2018.12.049
- 7. R. Filippucci, P. Pucci, P. Souplet, A Liouville-type theorem in a half-space and its applications to the gradient blow-up behavior for superquadratic diffusive Hamilton-Jacobi equations, *Commun. Partial Differ. Equations*, **45** (2020), 321–349. https://doi.org/10.1080/03605302.2019.1684941
- 8. W. Liang, Z. Zhang, A priori estimates and Liouville-type theorems for the semilinear parabolic equations involving the nonlinear gradient source, *Calculus Var. Partial Differ. Equations*, **64** (2025), 47. https://doi.org/10.1007/s00526-024-02907-1
- 9. K. Kunikawa, Y. Sakurai, Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition, *Proc. Am. Math. Soc.*, **150** (2022), 1767–1777. https://doi.org/10.1090/proc/15768
- 10. H. T. Dung, N. T. Dung, J. Wu, Sharp gradient estimates on weighted manifolds with compact boundary, *Commun. Pure Appl. Anal.*, **20** (2021), 4127–4138. https://doi.org/10.3934/cpaa.2021148
- 11. P. Souplet, Q. S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, *J. Anal. Math.*, **99** (2006), 355–396. https://doi.org/10.1007/BF02789452

- 12. Y. Sakurai, Rigidity of manifolds with boundary under a lower Ricci curvature bound, *Osaka J. Math.*, **54** (2017), 85–119.
- 13. N. T. Dung, J. Wu, Gradient estimates for weighted harmonic function with Dirichlet boundary condition, *Nonlinear Anal.*, **213** (2021), 112498. https://doi.org/10.1016/j.na.2021.112498
- 14. R. Reilly, Applications of the Hessian operator in a Riemannian manifold, *Indiana Univ. Math. J.*, **26** (1977), 459–472. https://doi.org/10.1512/iumj.1977.26.26036
- 15. P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, *Acta Math.*, **156** (1986), 153–201. https://doi.org/10.1007/BF02399203
- 16. P. Souplet, Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, *Bull. London Math. Soc.*, **38** (2006), 1045–1053. https://doi.org/10.1112/S0024609306018947
- 17. E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, *Duke Math. J.*, **25** (1958), 45–56. https://doi.org/10.1215/s0012-7094-58-02505-5



© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)