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Abstract: For the wood moisture content (MC) detection engineering problem by planar capacitive
sensors, a high accuracy is required. To meet this demand, we constructed a mathematical model
in this paper, as this is an inverse problem in the multi-physics fields. Furthermore, we proposed
a new numerical method with high accuracy, which is called the multiple varying bounds integral
method. We applied this numerical method to establish a high accuracy and compact numerical
scheme for solving this model. Because the unknown function is continuous in some physical fields
and discontinuous in others, we needed to use different numerical methods to construct numerical
schemes in these fields. For example, we used the multiple varying bounds integral (MVBI) method
and interpolation methods. Next, based on the results of the numerical experiments, a regression model
was established between capacitance and the dielectric constant of wood. The results indicated that the
larger the value of dielectric constant, the larger the value of capacitance. This is consistent with the
physical principle. Moreover, the determination coefficient R? of the regression model was greater
than 0.91. Additionally, the confidence degree exceeded 0.99, which implies that the reliability of the
regression model is strong. This indicates that the regression model shows a high goodness of fit and
high confidence degree.

Keywords: wood moisture content; multiple varying bounds integral numerical method; dielectric
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Assumptions of the model and notation description

Some notations and basic assumptions are given in this paper:
1) B, and B, denote two thin electrode plates of the capacitive sensor.
2) B denotes the measured wood, and B, B;, B, do not intersect each other.
3) € = &(x, y, z) denotes the dielectric constant of the wood at the point (x, y, z).
4) & denotes the dielectric constant of air.
5) V = V(x,y, z) denotes the potential at the point (x, y, 7).
6) Vi and V, denote the potentials of B; and B,, respectively.
7) E = E(x,y, z) denotes the electric field strength at the point (x, y, z).
8) C denotes the capacitance of the capacitive sensor.
9) ¢ and g, denote the charge carried by B, and B,, respectively, with g; = g,. Additionally, g,
also satisfies
c=-—1_

Vi-Va

10) dB;, and 0B,,,, denote the interior and exterior of the wood boundary, respectively.

1. Introduction

Wood moisture content (MC) detection is one essential problem in the modern world. All wood
products contain some level of moisture, and too high or too low MC can cause quality issues in
wood products. Thus, inaccurate MC detection severely impacts quality control in the wood
processing industry. It also impacts the maintenance of wooden historical buildings and the protection
of rare tree species [1-7]. Once wood products or wooden structures are completed, their shape and
material no longer change. The key factors determining their internal quality are primarily the MC
and drying stress. When the equilibrium moisture content is reached, cracking and deformation are
least likely to occur. In recent years, inaccurate MC detection has resulted in a wood utilization rate of
only 50%—60%. In contrast, technologically advanced countries have achieved rates as high as 90%.
This has led to frequent significant economic losses in the national economy.

Due to the significant social and economic benefits of MC detection, scholars from various
countries have conducted extensive and in-depth research on this topic. With continuous research,
methods for MC detection [8] have also been continuously developed and improved. Martin et al. [9]
used the resistance method to study the relationship between MC and average resistivity of silver fir.
Van Blokland and Adamopoulos [10] analyzed the electrical resistance characteristics of Norway
spruce. Through simple linear regression, they derived a first-order polynomial function relationship
between MC and resistance of the wood. However, the resistance method can obtain only ideal
measurement results when the MC is between 6% and 25%. The measurement error is severely
limited by the value of MC. Edwards and Jarvis [11], Batranin et al. [12], and Penttila et al. [13]
used the ray technique to detect changes in MC, which are not limited by specific MC values.
However, the ray technique has high detection costs, slow speeds, and safety hazards, posing
challenges for inspectors. Qin et al. [14] studied the relationship between MC and & but noted that
different tree species require different dielectric models. Compared to these methods, we aim to find a
more widely applicable method that can meet more measurement requirements. Capacitive
sensors [15] are electronic components that can convert the measured physical quantities and their
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variation laws into capacitance and capacitance change laws. They have the outstanding advantage of
performing non-contact, continuous, and high-precision measurements. Therefore, we consider
measuring the capacitance between the electrode plates to calculate MC [16—19]. On the other hand,
we found that most researchers use only experimental methods to MC detection. We propose
combining experiments with mathematical methods to build a mathematical model and complete the
MC detection.

For the mathematical model, it is also very important to choose the appropriate numerical method,
which will have a great influence on numerical accuracy and speed. To some extent, the finite volume
method [20-22] has absorbed some advantages of the finite element method and the finite difference
method. The finite volume method is mainly applied to solve fluid flow and heat transfer problems.
With this method, the numerical scheme obtained can keep some properties of original differential
equations, such as the conservation of mass, momentum, and energy.

The multiple varying bounds integral method [23-27] is a new numerical method developed based
on the finite volume method. First, by means of multiple integrals, all the derivatives in the space
direction of the differential equation can be eliminated. In this way, the differential equation can be
equitably represented by another new equation that contains only the unknown function than its
derivatives. On this basis, we begin to construct the corresponding numerical scheme for this new
equation. This avoids the occurrence of large errors greatly, especially where the change rate of the
derivative is large. Furthermore, multiple integrals with varying bounds are important. Different
Integral bounds can help us get different numerical schemes. Depending on the physical properties of
differential equation, we can choose an appropriate scheme from them.

The layout of the paper is as follows. In Section 2, we provide the methodology for MC detection.
In Section 3, we discuss the steps for MC detection. In Section 4, by multiple varying bounds integral
method, we construct second-order compact discrete schemes in fields where the potential is
continuous and discontinuous, respectively, and conduct error estimation and numerical experiments.
In Section 5, a conclusion is provided.

2. Methodology for wood moisture content detection

A core issue for wood moisture content detection is to construct the function relationship between
the capacitance C and the dielectric constant . The methodology is shown in Figure 1. This is a
multi-physics inverse problem with partial differential equations. We choose many suitable values of
&. On this basis, through the mathematics model we constructed, we obtain the values of C. The data
C and ¢ are regressed to fit a function € = &(C). Then, by capacitive sensor, we measure the value of
C, and substitute it into the aforementioned fitted function to calculate . Ultimately, by the one-to-one
correspondence between & and MC, we obtain the value of MC.
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G’ocedure for Wood Moisture Content DetectioD
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Figure 1. Methodology for wood moisture content detection.

3. Steps for wood MC detection

We focus on constructing the function relationship between € and C. The steps are as follows:
1) The measured wood B and the electrode plates B; and B, are shown in Figure 2.
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Figure 2. The placement of B, By, and B,.

During practical wood detection, MC is always indirectly measured. This is accomplished by
finding a physical quantity correlated with MC, measuring this quantity, and establishing its
relationship with MC to determine MC. In this paper, we use the dielectric constant as the physical
quantity related to MC.

As shown in Figure 2, two metal plates of identical material and specifications are used as the
electrode plates of the capacitive sensor and are fixed at specific positions, labeled B; and B,.
According to physical law, the capacitive sensor’s internal dielectric material affects the amount of
charge it can store. Therefore, the capacitance between the two plates is influenced by the
surrounding environment. If the surrounding environment remains unchanged, and the measured
wood is placed on top of the plates, an electromagnetic field is generated around it. If the dimension
of measured wood is known, the value of C will be uniquely determined by &, establishing a
one-to-one correspondence between C and e. Thus, by measuring C, we can obtain . Additionally,
we have found that there is a one-to-one relationship between &£ and MC. Therefore, by & as an
intermediary, we first establish the relationship between C and &, and then leverage the corresponding
relationship between & and MC to determine MC.

2) According to the mathematical model in [28], satisfied by the potential V(x,y, z),

VZV(X,)’vZ):O, (xay,Z)E(RS_Bl_BZ_E)’
2 956 lgradV(x,y,9|dS = —& 956 lgradVi(x,y, 2| dS,
9B, 9B,
ovV(x,y,2) L 0V(x,y,2)
& 8” |(3Bin - f 811 aBnut’ (3'1)

V(x,y,z)‘aB_ = V(x,y,z)‘aB ;

lim Vix,y,2) = 0.
Vx2+yr+z2—>00

If V| and ¢ are given, then V = V(x,y, z) and V, are uniquely determined.
3) If V(x,y, z) is determined, the electric field strength E(x,y, z) can be determined by

E(x,y,z) = —gradV(x,y, 7).
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It can be seen that E(x, y, z) is related to &(x, y, 7).

4) By integral,
q1 :é‘#v |g’"advl(xay71)|d5 :# éEl(-x’yaZ)dSa
631 aBl

q = 59%6 lgradV,(x,y,z)|dS = # EE>(x,y,2)dS,
0B> 0B,

the charge ¢, (or ¢,) of B; (or B,) is obtained [29]. Obviously, ¢, (or g;) is also related to &(x, y, z).
5) By the equation

and

C = q1 ,
Vi-V,
the capacitance C can be obtained, and it can be seen that C is also related to &(x, y, 7).
Thus, V(x,y,2), E(x,y,z), and C are related to &(x,y,z). Therefore, when V| and & are given, it
means that the system is determined. In view of this, when we regard the values of ¢ as integers from 1
to 20, a series of corresponding C can be obtained. Through regression analysis, we can construct the

function relationship between € and C.
4. The multiple varying bounds integral method

To maintain the advantages of the finite volume method and meet the high-precision demands of
detection problems, we develop a new method called the multiple varying bounds integral method to
calculate the capacitive sensor model.

The two electrode plates occupy the domain

B ={(x,y,2)|—a<x<ab<y<c0<z<d},

and
B, ={(x,y,29)|—a<x<a,-b<y<-c,0<z<d}.

The measured wood occupies the domain
B= {(x,y,z)l—kﬁxSk,—lSySl,mSzSn}.

This is an unbounded problem. To achieve numerical computation, we set a reasonable artificial

boundary [x;, xg] X[y, yr]1X[z1, zr]. The computational domain is discretized by taking i, = %, hy =

ML and h, = 2L as the step size in the direction of the x-axis, y-axis, and z-axis, respectively. Here
y 2z

Ny, Ny, and N; are three given positive integers, so we get (N, + 1) X (Ny + 1) X (N, + 1) grid nodes.

Let each grid node be (x;,;, 2), where x; = x +ih, (i = 0,1, ,N,),y; =y + jhy (j = 0, 1,--- . Ny)

and zx = zp + kh,(k=0,1,--- ,N,). Set V(x;,y;,zx) = Vijx, which approximately represents the

corresponding potential at each node.

4.1. Establishment of a compact discrete scheme

In fact, the mathematical model to be solved is a multi-physics inverse problem. Therefore, for
different fields, we should select appropriate numerical methods for different differential equations.
We divide physical fields into two regions: Field 1, where V; ;; is continuous, and field 2, where V;
is discontinuous.
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4.1.1. Field 1

In the computational domain, the variable V; ;; is continuous except at the faces, vertices and edges
of the wood. Therefore, the multiple varying bounds integral method can be directly applied to
discretize the equation in field 1.

When (x,y,z) € (R* — B, — B, — B), the potential V(x,y, z) satisfies

VV(x,y,2) =0, 4.1)

and is continuous, so we can directly apply the multiple varying bounds integral method in this field
to integrate Eq (4.1). We perform multiple varying bound integrals with respect to x, y, and z on both
sides of Eq (4.1), so we have

2 2 02V 62V 62
( )a’xa’ydz =0. 4.2)
L fyl X 8x2 8y2
By Eq (4.2)
20V 9V 29V 9V 229V oV
f (— - —)dydz + f (=— — =—)dxdz + f (=— — =—)dxdy = 0. 4.3)
2 (9)62 2 (9)/2 (9y1 i 822 (9

Then, integrating both sides of Eq (4.3) within the control volume, we have

Tk Zk+ Yt Xit
ff fa‘f ff [ffﬁ‘a—n)dydz

X2 av av 12 av 8V
+ f (— — =—)dxdz + f (— - —)dxdy]dxldxzdyldyzdzld@ =0.
21 6y2 8y1 Y1 X1 (922

4.4)

The three terms on the left-hand side of Eq (4.4) have identical structures. Therefore, we compute
only the first term on the left-hand side. The other two terms can be handled similarly.

Zk 2+ it 2 gy oV
f f f f f f f (7— — z)dydzldxidx,dy dy>dz dz,
Xi—Qx VX axz 8)61
Z"+ J Vit Y2 X+
f f f f f f [f f (_ - _)dxlCl')Cz]dydzdyla’yza’zldz2
—@y Xi—@y JX; aXQ axl
Zk+ )J
f f f oy f f f 'y V(xl ~ y’ Z) V(Xl, y, Z)] (45)

_[V(xi, Yy, Z) - V(xi — Ay, Y, Z)] }dydzd)’ld)’deIdZZ

Zk+ j )/ V2
SO A 0 S A RS S

+ EV(xi -y, Y, 2)]}dydzdy,dy,dz1dz,,

where, a,,@, and @, are undetermined parameters. In the case of following the wood physical
properties, we set @, = @, = a, = o and h, = hy = h, = h.
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Through the integral, the derivative function of an unknown function V(x,y, z) can be eliminated,
thus reducing numerical errors, especially where the rate of change of the derivative is large. Next, we
interpolate the original function of V(x,y, z). Here, let the node step size in each direction be 7. We
select three interpolation nodes in each of the x, y, and z directions, generating a total of 27 grid nodes
(X Yjs26)s (X yjcn20)s KoY, KcnYp ), (GenYjicn20), (Kch Y20, (Xits Vs 20,
(Xis15Yj=1>26)s (Xt 15 Vw15 20> (Xis ¥ Zhe1)s (Xis Yjm15 Zh=1)s (i V1> Z1)s (Xim1, Y5 Za=1)s (Xic15 Yjo15 Zk-1)s
(X1, Yjr1>2k-1)s - Xis s Yjp 1)y Xir 15 YVjc15Z=1)s (Kirts Yjs1s Z-1)s - (X Y 2k—2)s (Xis Yjo15 Zk-2)s
(Xis Yjr1>2k=2)s  (Xict, Y 2k=2)s (Xic1,Yjm15Zk-2)s (XKic15 Vw10 Zk=2)s - (Xis15Yj» 2k=2)s  (Xis1» Yjm1 Zk=2)s
(Xix1,Yj+1, Zk—2), as shown in Figure 3.

T

| ! 1

I 1 |

| | |

| | \ Xi-1l» V4 Zk

! It @ - -5

1 71 1 71

[ (A |

1/ ! 1,7 1

(Xi, Vi1, |7k J----t--- o Xy z

S| Gz Gy viet 2 )
S T A :

| ! | 1

B B a7

I 7 | e

| 7 4

v o __ . _—
ﬁCz > Vis Ak

Y
(xi+1 » Vis Zk )

Figure 3. The interpolation nodes in field 1.

Based on these 27 nodes, we construct the interpolating function for the unknown function V(x, y, z),
as follows

i+1  j+1 k+1 i+1 X—x j+1 y—y k+1 -7z
p q  Lr
Vara= 5 3 S Ve [ 22 [T 22 [] 22 e
m=i—1 s=j—1 t=k—1 p=i-1 " Pogmjo1 Vs T Va5 o T o
p#Em q#s r#t

Substituting Eq (4.6) into Eq (4.5), we have

M Victjrg—1 = 204 Vijci =1 + A Vi jmrj-1 + Vit jee1 = 2V k-1 + Vit i
+ BVictjrik-1 = 23V jeipe1 + 3Vigrjriper + Vo joix — 20V ok + Vi o
+ AVicjx = 244Vijx + AViejx + AsVicjoik — 245Vijoix + AsVie ek 4.7)
+ Vst joiker = 23V ot gt + A3Vigajciger + AsVictjuer — 245V jrer + AsVied jen
+ /16Vi—1,j+1,k+1 - 2/16Vi,j+1,k+1 + /16Vi+1,j+1,k+1 = Oa

2 (4h+3a)® 3a(=3213-24h? a+4ha’+3a’ ?(-16h%+9a2
a”(4h+3a) /l__a( a+ a+a/)’/13:oz( +a),/l4:9(—8h2+a2)2,

where A, = A= 5 1
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As = _ 3e(32r3- 24h2a 4ho?+3a7) and g = (4h-3a)%a?

< To this end, we have completed the discretization of
Eq (4.1) by the multlple varying bounds 1ntegral method.

4.1.2. Field 2

We divide the wood boundary into three parts: Faces, vertices, and edges. We found that ‘;—‘rf is
discontinuous in these fields, so direct integral cannot be performed and special treatment is required.

1) Analysis about faces of wood.

The wood has a total of six faces. We use the upper face as an example. The other faces follow in a
similar fashion. By the Taylor expansion exterior to the upper face, we have

1 124
Vijket = Viju+h- Vi + = 5 BV (4.8)
and
Vijkeo = Vije +2h -V, ) + (2h) ke 4.9)
From Eqgs (4.8) and (4.9), it follows that
, AVi ik = Vijusr = 3Vijk
Viik = : 2;1 S 4.10)
Similarly, within the interior of the upper face of the wood, there are
, Vijk—2 = 4Vijx—1 +3Vijx
Vijk = o . 4.11)
Since the upper face is horizontal, the V] ik direction is vertical. Thus, Vl’Jk = ‘g—x. Consequently,
o =g can be rewritten as
on aBin on 3Bout
8Vi,j,k—2 — 48Vi,j,k—l + 3( £+ é)ViJ’k — 4‘§Vi,j,k+l + ‘Z;V'i,j,k+2 =0. (412)

Similarly, we can obtain the discrete equations for the other 5 faces of the wood.

2) Analysis about vertices of wood.

The wood has a total of eight vertices. We use the upper front right vertex of the wood as an
example. By model (3.1), there is

av v v v v av
= —d —ds = —d —d —d —d
0 sz] on 5 fgz on 5= ngl on S szl on S fgzz on s fgn on 5 (4.13)

This is assuming that € represents a spherical surface with its center at the upper front right vertex and
a radius of 4. Q; and Q, denote the parts of Q interior and exterior the wood, respectively. There are
Q = %Q and Q, = %Q . ), can also be divided into three parts based on the vertices, edges, and faces
into three parts, that is QQ = 921 + 922 + 923. Moreover, Q21 = %Q , sz = iQ , and 923 = %Q , as
shown in Figure 4.
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. . denotes Q,,

- denotes Q,,

B denotes Q;

|

Figure 4. Field division when processing vertices.

From ‘; g Ccos v + LAs cos B + Ll cos v, we have Eq (4.13), which can be written as

1%
f (—dydz + —dxdz + a—dedy) +& f (a—vdydz + e+ a—dedy)
0z Qz, x dy 0z
oV

(4.14)
(9V ov ov
+éf (—dydz + —dxdz + —dxdy) + sf (—d dz + —dxdz + —dxdy)
Q0 ox (9 0 o ox 8

Jy

Next, we discuss each of the items in Eq (4.14).
(i) Consider the interior of the sphere

Take f fQ dydz as an example. When calculating f fQ dydz, we take (x;,y;, z) as the center and
extend two steps in the negative x, y, and z directions, w1th a step length of 2. We define the upper
front right vertex as (xy, Yo, 20). At this point, 27 points (xg, Yo, Z0), (X0, Y0 Z-1)> (X0, Y0, Z-2)5 (X0, Y-1, 20)
(X0, Y-1,2-1), (X0, y-1,2-2),  (X0,¥-2,20), (X0, ¥-2,2-1),  (X0,¥-2,2-2),  (X-1,)0,20)> (X-1,Y0,2-1)
(X-1,50,2-2)s (X-1,¥-1,20)s (X-1,¥-1,2-1)s (-1, ¥-1,2-2)s (X-1,¥-2,20)5 (X-1,¥-2,2-1)s (X-1,¥-2,2-2),
(x-2,¥0,20), (X-2,Y0,2-1), (X-2,¥0,2-2)s (X-2,¥-1,20), (X-2,¥-1,2-1), (X-2,¥-1,2-2), (x-2,¥-2,20),

(x_2,¥-2,2-1), (x_2,y-2,2-») inside the wood are selected for interpolation, as shown in Figure 5.
The interpolation function is

MW

0 vex, vy, 0 -z
k)ngzxi_Xm.~ 1_[ ]

i==2 j=—2k=-2 Sszi_jz Yji—=Js ;ﬁ_k ke — Xt
(4.15)
X~ Xm y Vs - Zz
S H ]2
e v;&] t¢_k
Since g—‘;l,-, ik 1s unknown, it is represented by the difference quotient, and we have
ov Viik=Vic
| =T (4.16)
Ox ik h
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In that case,

-2 j=—2k=-2 t=—
s#j t#k

IR X=X T Y = Vs T 2~ 2
azﬁZZZ[ ik — zl]k)n 7T zk—t]’ (4.17)
m#:l
then there is

f —dydz

=7 Z Z[ Vojk = ViA1= (Vi ju = Voo j)As + = (V—Z_]k V_3,k)A3].

Jj=—2k=-2

(4.18)

! 66-2,)/0,20)
i (x-z,yoyzo)

___@(hy_()_, 20)

*
|
I
|
MR
|
I
f /(?{, Yoz )
|
’ ‘ (é:yO:Z-Z)

Figure 5. The interpolation points used when handling the vertex and calculating Q;.

The integration domain of A; can be seen according to the yoz plane of Figure 6, so there is

h 3n 0 0 .
2 cos 0 — sh siné — th
A = f f [(—vh? — p? + 2h)(— \Vh? — p> + h) | |(p]—s) | |(pk—t)]pdpd0- (4.19)
0 Jn §=—2 - =2 -
S#E] t#k

The same reasoning leads to

.
a= | f N s O +2h>]_[<p st ”’)]‘[(” O pdpdo,  (420)

s#/ t¢k
and
As = f f [~ VB =g~V = p+h>ﬂ(p i Sh)ﬂ(““‘g Vodpde.  (4.21)
§==2 -
S#E] tik
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Further simplification and organization gives

NS
f—dydz—— ZZﬁ ik — zl]k)Bla

where,

VR =2 —mh_° 60— sh 0 -
B, = ff [1—[( . -m l—l(pcos K )l—l(psm )]pdpd@.
rr?#z

si J tik

A
(xo, Vi, ZOS)/ : (X_z, Yo, Zo)
| |
| |
T |
| | X_] 0, 20
660,)/_2 Zol) | | i ( » Yo, )
T T [l [l
I U4 Y A EY) y
[ : :
1, | | 1
s | I 1
i | | X0
| : : : Xob Vo, Z-J)
B i R
I Vs 1 ’
I// I//
o _L___ v_____ ] .
// ///
‘ d (é, Vo, Z_z)

Figure 6. Q; in the coordinate system.

(4.22)

(4.23)

Similarly, when calculating f f aa_‘y/ dxdz and f f ‘?)—‘Z/ dxdy, it is also necessary to construct an

Q] Ql

interpolation function. The interpolation nodes used for this purpose are illustrated in Figure 5. Thus,

there are
ff gy =" Z Z Z Viik = Vijo14) Ba,
i==2 j=-2 k=—
and
ff = ZZ Z}ﬂ Viie = Vijit) Ba,
i==2 j==2k=-2

among them,

psm@ mh p —sh 0 pcosf —
Bz—ff ﬂ( )H( . 1555 ) jodpas.
mil s;t]

t;&k

(4.24)

(4.25)

(4.26)
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and

2 —
B, _f f [l—l(pcose mh) l—l(psme sh)l—l( h ;; th)] dpdb. 427)
m#:l ‘|

t;tk

Therefore,

0z

Z Z Z Viik = Vic 1]k) B, + (Vi,j,k - Vi,j—l,k) B, + (Vi,j,k - Vi,j,k—l) 33]

i==2 j==2k=

ov
f (—dydz + —dxdz + —dxdy)
Q
1 (4.28)

We have completed the discretization at ;.
(i1) Consider the exterior of the sphere

We use the method for calculating ; to compute the integral on Q,; (i = 1,2, 3). First, consider
field Q,;. We need to interpolate around it by selecting 27 points (xo, Yo, 20)> (X0, Yo0,21)s (X0, Y0, 22),
(X0, y-1,20)> (X0,Y-1,21)> (X0,¥-1,22)> (X0,¥-2,20)> (X0,Y-2,21)5 (X0,Y-2,22), (X-1,¥0,20)> (X_1,Y0,21),
(Xx-1,%0,22), (X-1,¥-1,20), (X-1,y-1,21), (X-1,¥-1,22), (X-1,¥-2,20), (X-1,¥-2,21),  (X-1,¥-2,22),

(x-2,¥0,20),  (x-2,¥0,21), (X22,0,22), (X-2,¥-1,20), (X-2,y-1,21), (X-2,y-1,22), (X-2,¥-2,20),
(x_2,¥-2,21), (x_2,¥-2,22) on the exterior of the wood, as shown in Figure 7.
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Figure 7. The interpolation points used when handling the vertex and calculating €,;.
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At this point, the interpolating polynomial constructed are

ov & & oV o x—x, 1o y—y 2 72—z
- = (=] ) - - -]
m#i s;t] t#k
0 0 2 0 2
1 ov X = Xp Y=Y 2=
== (| ) . I,
6 — —
h ;;—2; 0x i,k nDZ b=m 5 j- =0 k-1
m#i S#E] t#k
151% I 14 0 X — Xp, 0 V=Y Z 2=
- = (=] ) |
m#i SE] 1+

0 L _ 4 Oy—y 2 2
R Sl 0,

i—m L j=s k—t

i=-2 j=-2 k=0 i,k m=-2 t=
m#i s£j t#k
and

0 0 2 0 0 2
Y A N e s
DO e, Ry 0z ik mep X T Xm L 5V T Vs g Tk T

m#i S#j t#k

0 0 2 0 0 2

1 oV X — Xp Y=Y 71—

w2 2 2G5 =

im0 %l mem =2 J 1=0

m#i SEJ t#k

Thus, we can get

0z

0 0 2
__ﬁzzz l]k Vl ljk)B4+(Vljk Vz] lk)BS_(Vl]k+l Vt]k)B6]

ov
f (—d dz + —dxdz + —dxdy)
Oy

where,

V2 = p* —mh_° 06— h 60— th
&-ff[]‘[( : m)]‘[(’”"s d ﬂ”smt Ypdpde,

m=-2
m#i s;ﬁj tik
h 2
sin@ — mh h —p —sh cosf —
Bs = f f [ﬂ(p )ﬂ( - )]_[(p ) jodpds,
0 2 m=-2 s— 2
m#i t#k

and

m=-2
m#i 3:;]

h 0 — mh 0 — sh
Bo = f f []—[(p cos6 —m )H(p Sinf— s )H( " lodpdo.
t;tk

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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Next, consider field €2,,, as shown in Figure 8.
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Figure 8. The interpolation points used when handling the vertex and calculating Q,,.

Thus, we obtain

ov ov ov
f (=—dydz + —dxdz + —dxdy)

o ox ay dz
| 0 1
=52, 2 D2 M Virrga = Viga) By = (Viga = Vejra) Bs + (Viaor = Vix) (Bo = Buo)l,
i=0 j=-2k=-1
where,
"orE 2 BT = p? —mh
o> —m cosf — sh sinf — th
B = f[ﬂ ———[]¢ [ ]E lodpdo
o Jz -
’ n’:l;(l? s#j 1k
sin@ — mh h2 02 — sh cos 6 —
By = f [ [H(p )ﬂ “ )ﬂ(p 2 Jodpde,
m;tl SS_:FJZ
h
cos 6 —mh sinf — sh
B[ f []‘[(p >]—[<” )ﬂ( " odpds,
0 ol
m:ﬁl &#]2
and

t=—1
t+k

h 0 — mh 0 — sh V2 = p? -
By = fo f ﬂ(p cosr o )ﬂ(p sinf - s )H( pt " \odpd.
mil A;tj

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
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Finally, consider region €2,3, as shown in Figure 9.
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Figure 9. The interpolation points used when handling the vertex and calculating 3.

We can get

ff (a—vdydz + a—vdxdz + a—vdxdy)
o dy 0z

1 2 1
= hi Z Z Z[ i1k — zjk) (B11 — Bpp) + ( itk — szk) Bz + (szk+1 zjk) (B14 — B1s)],

-1 j=0 k=-1
among it,
horg A h? — p* —mh cos O — sh sin @ —
b= [ A[] ] )ﬂ(p oo
’ mn;f:il s:#j t:ﬁk
h b 1 2
—/h? = p?> —mh cosf — sh sinf —
By = f (] ]« & [ == o odpdo,
-3 m=—1 t—m s=0 =1
m#i S#J t#k
h 21 .
sin @ — mh p — sh cosé —
Bis = (] ey Pl )ﬂ(p ™ lodode.
0 0 m=—1 t—m =0
m#i S ]
cos @ —mh sin6 — sh
ne= [ [ ] )H(p sy g IR
mn;;t_zl S:Fj tt_;tkl
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and

2 —
BlS—ff l—l(pcose mh l—[(psmé sh)l—[( h p th)] dpdo. (4.46)

m=—1 t=—1
m#i s#j t#k

Consequently, Eqgs (4.28), (4.32), (4.36), and (4.41) constitute the discrete scheme of the upper front
right vertex Eq (4.13). After rearrangement, we have

5,

— &

e
Mo

]

|
S

<.

M-
N

[ i,k — Vt ljk)Bl +(Vl]k sz lk)BZ+(thk Vt]k I)BS]

|
i8]
>~
1}

-2

[(Vi,j,k - Vi—l,j,k) By + (Vi,j,k - Vi,j—l,k) Bs — (Vi,j,k+1 - Vi,j,k) Bg]

T
I
[\
~.
I
I
[\
ol

0

(4.47)

1

M=

-4
.
Il
|
o
kel
I

g
M-

(=]

[(Vi+1,j,k - Vi,j,k) B; - (Vi,j,k - Vi,j—l,k) Bg + (Vi,j,k+l - Vi,j,k) (By — Bio)]

—_

+& [(Vi+1,j,k th)(Bll - Bp)+ ( i Lk — thk)BB + (Vi,j,k+1 - Vi,j,k) (B4 — 315)] =0

k=—1

=—1 Jj=
Similarly, discrete schemes for the other 7 vertices can be obtained.
3) Analysis about edges of wood.

The wood has twelve edges. We use the upper right edge of the wood as an example. By model (3.1),
there is

—af —ds+sff —ds—sf —ds+sff —ds+sff —ds (4.48)
Ql Q1 Qo Qxn

where € denotes a cylindrical surface with the upper right edge as the axis and # as the radius. €, and
Q, denote the parts of Q in the interior and exterior of the wood, respectively. There are Q; = iQ and
Q, = %Q. ), is also divided into two parts according to the edges and faces, that is Q, = Q,; + Qy,
where €, = %Q and Q,, = %Q, as illustrated in Figure 10.

B denotes O,
I denotes Q»,

. denotes Q..

Figure 10. Field division when processing edges.
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First, consider region ;. We need to interpolate around it by selecting 27 points (xo, Yo, 20)s
(XO,)’O, Z—Z)’ (x()ayO, Z—l)a (-x()ay—l’ Z0)7 (x()ay—l’ Z—l)a (XO,)’—l,Z—Z)a (XOaY—Z, ZO), (xO’y—Za Z—1)9 (XO,)’—za Z—Z)’
(xl’yO»ZO)a (xlayO’Z—l)a (xlay()aZ—Z)a (-xhy—laz())? (xl,)’—l,Z—l), (xlay—l’z—2)9 (XI,Y—Z’ Z0)9 (xl9y—27z—l)a

(X1, ¥-2,2-2), (x2,¥0,20)s (X2,Y0,2-1), (X2,Y0,2-2), (X2,Y-1,20), (X2,Y-1,2-1), (X2,¥-1,2-2), (X2,¥-2,20),
(x2,¥-2,2-1), (x2,¥-2,2-») on the interior of the wood as shown in Figure 11.

66-1 » Vo, Zo)
Yo, Zo)

_Zo)

660, V-2, Zo)

b Vo, Z-])

Figure 11. The interpolation points used when handling the edge and calculating Q;.

The interpolating polynomial constructed are

0 0
X=X Y= JYs Z— %
) ]
IE=E=IiE=

i=—1 j=—2k=-2 i,k m— l oy tt:;t_kz
s#]
12201201 ad nx Xy T Y= Vs T 22 ¢4
=7 ol ) “| 5= 1,
6 - —
h° k== PMlijk m=m =2 178 = k-t
m#i SE] t#k
ov LG w, v X = Xp 0 y = Vs 0 -2
- = (| ) ]
ay FZ—FZ—ZICZ—Z Y i,j,k nl__—[l Xi = X S=—2yj_yS[=l__k[Zk_Zt
m#i s:#j t#
LI (9V ey y y 0 s (4.50)
_ - ) m s []’
6 — —
h ;JZH:ZZ dy i)k nDl - S =2 k-t
m#i s;&j t+k
and e o . .
191% oV X = X Y=Y 2—2Z
= = (S| ) ‘ ]
0z ;;,;2 Z”k lei_xmsz_zyj_yst:l:([zzk_zt
m#i SF] [£2
1220120] ov Hx X T Y=Y ﬁz—z @2
- [(_ ) m : s I]
6 - —
h i=—1 j==2k=-2 (92 iLjk m=-1 s==2 J=S t=—2 k—t
m#i S#E] t+k
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Therefore,

0
f (—dydz + —dxdz + —dedy)

0z

1 0 o
Z%ZZZ Vierjk — z]k)(cl CZ)_(zjk szlk)C3_(szk Vi je- 1)C4]

where,

LSS SR/~ — mh 06— sh 6 —
C = f f ([ ] ot om )]_[(p kA >]_[(” SN0 = thy dpdo,
0 b/g

m=—1
m#i

s==2
S#jJ

t#k

2 =p? —mh_° 6 — sh 0 —
cz—ff[ﬁ( V- e S)H(psm ) lodpde.

m=—1
m#i

si]

v

h 0 — mh VR =p? = sh_* 06—
C; = ff[ﬂ(”sm m)ﬂ( .p S)]‘[(‘)COS " odpdo,

m=—1
m#i

and

21
pcosf — mh psinf — sh Vh? = p* -
c4—ff [ﬂ( ﬂ( = )ﬂ( ) dpde

m=—1
m#i

Second, we consider f fQﬂ ‘Z—‘;ds. The interpolation nodes of field €),; are shown in Figure 12.
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Figure 12. The interpolation points used when handling the edge and calculating Q;;.
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Equally,

oV oV ov
Y avdz + Ldxdz + Zdxd
f%fw)“ gy Pt 5 ddy)

1

0o 2
= Z Z Z Vierjx — z]k) (Cs —Cs) — ( ik — Vi,j—l,k) Cr+ (Vi,j,k+1 - Vi,j,k) Cs] ,
i=—1

Jj==2 k=0
among it
h JT 1 hz_ 2 _ h 0 _ 2 . _
pF—m pcosf — sh psinf —th
cs= [ [T [ ]2 Vlodpde.
m#i sE] t#k
h2 p —mh_ 1% pcosf— sh sinf —
Cs = f f ]_[( . =2 )]—[<p " lpdode,
oy s:;sz poy’
sind — mh p —sh > pcosf —
Q—ff‘ﬁf )H( ; ﬂf ) pdpds.
’ ”:’V::#_ll s#[ l;tk
and

2 0 — mh 0 — sh
Cs = f f [ﬂ(p ekl )H(p Sinf - s )H( ™ lodpdo.
t;&k

m=-1 -
m#i srﬁj

Finally, we consider f fnzz g—‘;ds. The interpolation nodes of field €, are shown in Figure 13.
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Figure 13. The interpolation points used when handling the edge and calculating Q;;.
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With the same way,

9 F1% P1%
f (—dedz + —dxdz + —dxdy)
972 Ox (9 0z

(4.62)

2

1
Z Z Z[ i1,k — Vijk (C9 - Cip) +( itk — ljk) Cp + (Vi,j,k+l - Vi,j,k) (C12 = C3)],

i=—1 j=0 k=-1
where,

1

! —p? —mh 0 — sh 0 -
i (T )ﬂ(p s IO o, )

m=—1 t=—1

m#i Si] 12k
: _ —mh cos 8 — sh sin@ —
€= f f ﬂ< ; ﬂ<p >ﬂ<p A lpdpds,  (4.64)
2 mrr:;t_ll Sij tt_ikl
> sin@ — mh — sh cos 0 — th
= f f 1_[ S )ﬂ( V- >l_[<p )lodpd, (4.65)
n};:#tl s#:J t:#k
cos @ — mh sinf — sh
= f f [n (p >ﬂ<p )n( )]pdpd@ (4.66)
mn;e_zl #J 'ft;—kl

and

0 — mh 0 — sh h2 —
Cis = f f [ﬂ(p =7 )ﬂ(p nf-s )ﬂ( ‘; Y lodods. @67

m=—1 t=—1
m#i s#j t#k

Thus, Eqs (4.52), (4.57), and (4.62) constitute the discrete scheme of the upper right edge Eq (4.48),
organized as

)

i=1

0
Z Viejk — 1]k)(C1 Cy) - (ljk Vij- lk)C _(Vi,j,k_vi,j,k—l)c4]

Me

~.
|
[
~
1l
[\)

M
DM |

[(VH—l]k_ ljk)(CS_C6)_( i,jk — Vz] lk)C7+( ijk+1 — t]k)C8] (468)
k

I
~.

I

l
|38

—
(=]

-
e

T
I
~.
i
(=]
-

Z [(Vi+1,j,k ljk) (Co—Cyo) + ( itk — ‘/l,j,k) Cn + (Vi,j,k+1 - Vi,j,k) (C2 - C13)] =0

Similarly, we can obtain discrete equations for the other 11 edges of the wood.

4.2. Error estimation of discrete schemes

We take the first equation and third equation in system (3.1) as examples for error estimation, and
the remaining equations follow a similar approach.
1) Error estimation of the first equation
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Since the first equation V2V(x, y, z) = 0 employs the Lagrange interpolation function, the remainder
term of the Lagrange interpolation is given by

89V(f n é,) i+1 k+1
R(-xa y7 Z) = 3!3!3!ax3ay3az3 plz—i_ll (.x - -XP l_[ y yq }J:A[l (Z Zr) (4-69)
where, £ € (xi-1, xi41) .7 € (yj—l,yj+1) s € (Zg-1, zka1)- IE gxféig’gé? < M, we have
i+1 k+1
R(x, .2 < oo ,,1_,_[ (r == ]_[ ¥ =% rD} (2= 2)|. (4.70)
Therefore, the error of the first equation is
zwf ,+— x1+7 Y2 X 2 2 2
f f f (6 f R R 6 f)dxdydz} dxodxidy,dydzdzy|. (4.71)
=y JYyj Xi—@y JX; xi Gx a

Due to the identical structure of the three terms, we perform only the calculation for 22, as the other

two terms can be computed similarly. First, integrating with respect to x, we have

X+ X2 2
f f a—dxdxzdxl
Xi=Qx Xi X1

T2 (OR - OR

el

j); %j: (ﬁxz 8x1) e
T [
Xi—Qx Y X axz X2 XI Xi—Qx Y X axl xz XI

> OR a,
= a, oy - = R,
@ fx: 6)62 2 2 6x1 o

32’

= O(h?).

Next, integrating with respect to y, we have

Y j )’j"’% Y2
f f f OV =y~ =y = yjsdydyrdy
Yi—@y JYy; Y1
Y j 2

Y2
- f =y —h) =y —y; + hy)dydy,dy,
Y=y VYy; Y1
Y y}"’T} V2 ) )
- f [ o= = 2] = spdrdyaa (473)
Yji—@y Y1

j yj"'% 1 4 h§
f f 4@ -y - 3()’ — ) Nrdy2dy,
yi—ay Jy;

S L o )] s 2| dy,d
= _ v\ v\ o AT . .
fyj_aj a0 T g O g Oy O ) dyady

J
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At this point, integrating with respect to y,, we have

1 o )
ZQ’z -y - 5()’2 -y~ | dy2dy:

f)’_/ f
Yji—@y VY

f@[% r- 7la
=« —(2 =) = =2 = y)*|dy2
y v 4 J 2 J

ay
L
Vit 3
J

Vit 3

(4.74)
I
= a, —1 — =t |dt
o fo (4 2
1 6 h§ 4 6
=555 (@) ~ g (@) = 0w,
Similarly, the integral for y; is
Yj Vits p
f f f = y-00 = yPO = yjs)dydydy, = O(hy). 4.75)
yi—ay Jay i

Likewise, the integral with respect to the z direction is also O(hg). Therefore,

“* Ut V) Vit F Y+S o~ v oo O*R
f f f f f f f f a2 rdydzdxydxdy,dy dzpdz
&= Vi yi—ay Vy; Xi—ay Jx; a Iyn In ox (4.76)

= O(h%+hS +ht).

However, to ensure accuracy, it is also necessary to divide by the integration factor. The integration

factor is
Zk Zk+a77 22 Y j y/'+%y Y2
f f f dzdzydz, f f f dydy,dy, = O(l) + I). 4.77)
Zk—; J 2k 21 Y=y VYy; Y1

Therefore, the accuracy of Eq (4.76) should be O(h} + h; + k). Thus, the error of Eq (4.71) is
O(R + 12 + B2y + Ot + B2 + 12) + Okt + 12 + 12) = O3 + I + 1),

Hence, the local truncation error of the discrete scheme is O(h)3C + h; + hg), and the global error is
O} + b} + I2).

2) Error estimation of the third equation

By the Taylor expansion, we have

/ 1 77 1 72 1

Vijker = Viji+ heVijp+ SRV + 2V + hViG, (4.78)
’ 1 2y 1 3y 1 4y ,(4)

Vigier = Vijae + 20V o+ 5Qh) Vi + 5:Qh) Vi + 5 Ch)™Vi (4.79)

/ 1 77 1 77 1
Vigket = Vijie = h:Vi gy + Ehzz, Vijk = 5}@ Vijkt mh?‘/%)k, (4.80)

and | | |

Vijia = Vijx =20V ;) + 5(2hz)2V{,},k - 5(2@)3\/;,;{,( + 4—!(2hz)4Vl.(f]‘.’)k. (4.81)
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By 4 x (4.78) — (4.79) and (4.81) — 4 x (4.80), we eliminate Vl”]k and obtain

4Viiwe1 = Vijuro = 3Vije 1 1
, _ 5> 5> 50 2y117 3y,4)
Vik = 2, + ghz Vit th Vi (4.82)
and
V,‘ ik—2 — 4V, ik—1 T 3V; ik 1 1
r 5 s i,J, L], 2y 711 3y,(4)
Vijk = 2. + 3 Vige = 70V (4.83)
Thus,
~6V| 6V|
E—log, — €715
32‘?91 . _6\’/l< éjU: -3Via 1 1 Viikea —4Viig1+3Vig 1 1 (4.84)
o~ 1,J,K+ 1,J,K+ 1], 2y111 3y/(4) 1,J,K— 1,J,K— 1], 2y111 3y,(4)
=& 2h, + ghz Vi,j,k + th Vi,j,k) - 8( 2h, + ghz Vi,j,k - th Vi,j,k) '

In practical situations, & # &. Therefore, the error is O(hﬁ) Similarly, it can be concluded that the error

in the x and y directions are O(hi) and O(hg). As a result, the third equation error is O(h + 3 + h2).

4.3. Numerical analysis

We illustrate the theory in this paper through a numerical example using the multiple varying bounds
integral method.
The two electrode plates occupy the domain

Bl:{(X,y,Z)|—3SXS3,15}’36,03152},

and
B, ={(x,y,2)| -3<x<3,-6<y<-1,0<z<2}.

The measured wood occupies the domain
B={(x,y,z)|—33xs3,—5 §y§5,3§Z§5}‘

Moreover, we set the artificial boundaries to [—10, 10] X [-10, 10] x [—10, 10]. In the above domains,
the unit of length is centimeters and the step sizeis o, = ay = a;, =a = hy =h, = h, = h = 1. Itis
clear that the domain is symmetric. Based on the physical principles, V, = —V;. Suppose V; = 1 and
V> = a (where a is an unknown to be determined). If, through numerical computation, the value of a is
close to -1, it indicates that the multiple varying bounds integral method is reasonable.

We perform numerical experiments on the above example and obtain the data in Table 1. These
data are consistent with the physical principle that C increases as € increases. Based on the data, the
corresponding image is shown in Figure 14(a). It can be seen that, compared with other methods [30],
our method eliminates the initial oscillations and maintains the original trend of C variation.
Figure 14(b) shows the fitted function image derived from Reference [30]. Then, we perform a
regression analysis on these data to establish a regression model:

£ =1.45C*-97.31C + 1635.10. (4.85)
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Table 1. The numerical results of C about .

Dielectric constant & Capacitance value C Vs

1 33.2245 -1.0458
2 33.8890 -1.0088
3 34.3597 -0.9900
4 34.7295 -1.0288
5 35.0345 -1.0198
6 35.2935 -1.0147
7 35.5178 -1.0112
8 35.7151 -1.0087
9 35.8906 -1.0067
10 36.0483 -1.0051
11 36.1910 -1.0039
12 36.3212 -1.0028
13 36.4407 -1.0019
14 36.5508 -1.0011
15 36.6528 -1.0050
16 36.7477 -0.9999
17 36.8363 -0.9994
18 36.9194 -0.9989
19 36.9974 -0.9985
20 37.0709 -0.9981

First, we evaluate the goodness of fit for Eq (4.85). A higher goodness of fit indicates a stronger
ability of the model to predict the dependent variable. As calculated from the data presented in Table 2,
the determination coefficient R?> = % = % = 0.91, where SSR represents the sum of squares
regression and SST denotes the sum of squares total for Eq (4.85). This indicates that, when C is
given, the regression model can more accurately predict the value of ¢.

In addition, we consider the confidence degree, which represents the reliability of €. The higher the
confidence degree, the stronger the reliability. Table 2 shows that F(1,18) = 176.39, and according
to the F-distribution table, F(1,18) = 8.29 (« = 0.01). Because 176.39 > 8.29, it can be concluded
that the confidence degree of the model is greater than 0.99. This means the values of £ obtained
through (4.85) are highly reliable and more concentrated around the true value. The results of this
regression analysis indicate that the functional relationship model between & and C that we established
can effectively predict the value of € from C, with small errors. It can be seen that the multiple varying

bounds integral method is a valid numerical method for this kind of problem.

Table 2. The analysis of variance of regression model between C and &.

Model df Sum of variance MS F Significance F
Regression 1 603.42 603.42 176.39 9.69 x 107!
Residual 18 61.58 3.42

Total 19 665
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®  Numerical solution
The curve fitted by equation (4.85)

Dielectric Constant F/m
]

35 335 34 345 35 355 36 36.5 37 375
Capacitance F

(a) Multiple varying bounds integral method.

s The curve fitted by ref[30] |

Dielectric Constant F/m

Capacitance F

(b) Previous method in Reference [30].

Figure 14. The function image of C about &.

5. Conclusions

Wood moisture content detection is an inverse problem in multi-physics fields. Based on the high
precision demand for moisture content detection, we propose a new numerical method, that is, the
multiple varying bounds integral method. Moreover, in different physics fields, we choose different
discrete methods to construct numerical schemes. For the physical field where the unknown function
is discontinuous, this field has to be divided into several additional parts. For each smaller part, such
as faces, vertices, and edges, we build corresponding interpolation functions and handle the integral
to meet the precision requirements for the engineering problem. Moreover, we carry out numerical
experiments and perform regression analysis to obtain the function relationship between & and C. This
model obeys the physical principle that C increases with an increase in . Moreover, the established
regression model R? is greater than 0.91, indicating a high goodness of fit and effectively reflecting
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the relationship between € and C. This demonstrates that the data derived from this method are valid.
Additionally, this numerical method is applicable to other engineering problems.

On the other hand, the discrete scheme constructed in this paper has second-order precision. There
are 2982 unknowns, and the computation time is 875.57 s. If a higher precision is desired, we can
consider adding interpolation nodes to improve precision. Moreover, this would also increase the
computational cost.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

The authors would like to thank all the references which arehelpful for this article and the valuable
suggestions which are put out by experts andreaders. These have improved this paper greatly and
made it perfect. This paper was supported by the National Natural Science Foundation of China
(Grant No. NSFC11526064), the Fundamental Research Funds for the Central Universities (Grant
No. 3072024XX2402), and Harbin Engineering University (Grant No. KYWZ220240710).

Conflict of interest

The authors declare there are no conflicts of interest.

References

1. M. Broda, S. F. Curling, M. Frankowski, The effect of the drying method on the cell wall structure
and sorption properties of waterlogged archaeological wood, Wood Sci. Technol., 55 (2021), 971—
989. https://doi.org/10.1007/s00226-021-01294-6

2. Z.B.He, J. Qian, L. J. Qu, Z. Y. Wang, S. L. Yi, Simulation of moisture transfer during wood
vacuum drying, Results Phys., 12 (2019), 1299-1303. https://doi.org/10.1016/j.rinp.2019.01.017

3. O. E. Ozkan, Effects of cryogenic temperature on some mechanical properties of
beech (Fagus orientalis Lipsky) wood, Eur J. Wood Wood Prod., 79 (2021), 417-421.
https://doi.org/10.1007/s00107-020-01639-1

4. L. Rostom, S. Caré, D. Courtier-Murias, Analysis of water content in wood material through 1D
and 2D H-1 NMR relaxometry: Application to the determination of the dry mass of wood, Magn.
Reson. Chem., 59 (2021), 614—627. https://doi.org/10.1002/mrc.5125

5. M.D.J, C.S. Gui, J. W. Ao, Y. FE. Shen, J. Z. Zhao, J. J. Fu, Analysis of innovation trends of
Chinese wood flooring industry (in Chinese), China Wood-Based Panels, 28 (2021), 7-9.

6. M. Li, D. Chen, K. Tian, J. M. He, Y. H. She, Experimental study on cracking load of wood
membersunder different moisture content (in Chinese), For. Eng., 38 (2022), 69-81.

7. X.Xu, H. Chen, B. H. Fei, W. F. Zhang, T. H. Zhong, Effects of age, particle size and moisture
content on physical and mechanical properties of moso bamboo non-glue bonded composites (in
Chinese), J. For. Eng., 8 (2023), 30-37. https://doi.org/10.13360/j.issn.2096-1359.202204036

Electronic Research Archive Volume 33, Issue 4, 2246-2274.


http://dx.doi.org/https://doi.org/10.1007/s00226-021-01294-6
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2019.01.017
http://dx.doi.org/https://doi.org/10.1007/s00107-020-01639-1
http://dx.doi.org/https://doi.org/10.1002/mrc.5125
http://dx.doi.org/https://doi.org/10.13360/j.issn.2096-1359.202204036

2273

8.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

P. Dietsch, S. Franke, B. Franke, A. Gamper, S. Winter, Methods to determine wood moisture
content and their applicability in monitoring concepts, J. Civ. Struct. Health Monit., 5 (2015),
115-127. https://doi.org/10.1007/s13349-014-0082-7

L. Martin, H. Cochard, S. Mayr, E. Badel, Using electrical resistivity tomography to
detect wetwood and estimate moisture content in silver fir, Ann. For. Sci., 78 (2021), 65.
https://doi.org/10.1007/s13595-021-01078-9

J. Van Blokland, S. Adamopoulos, Electrical resistance characteristics of thermally modified wood,
Eur. J. Wood Wood Prod., 80 (2022), 749-752. https://doi.org/10.1007/s00107-022-01813-7

W. R. N. Edwards, P. G. Jarvis, A method for measuring radial differences in water content of
intact tree stems by attenuation of gamma radiation, Plant Cell Environ., 6 (1983), 255-260.
https://doi.org/10.1111/1365-3040.ep11587650

A. V. Batranin, S. L. Bondarenko, M. A. Kazaryan, A. A. Krasnykh, I. A. Miloichikova, S. V.
Smirnov, et al., Evaluation of the effect of moisture content in the wood sample structure on the

quality of tomographic X-Ray studies of tree rings of stem wood, Bull. Lebedev Phys. Inst., 46
(2019), 16-18. https://doi.org/10.3103/S1068335619010056

P. A. Penttild, M. Altgen, N. Carl, P. van Der Linden, I. Morfin, M. C)sterberg, et al., Moisture-
related changes in the nanostructure of woods studied with X-ray and neutron scattering, Cellulose,
27 (2020), 71-87. https://doi.org/10.1007/s10570-019-02781-7

R. X. Qin, H. D. Xu, N. Z. Chen, Z. L. Zhen, J. D. Wei, The correlation between wood moisture
content and dielectric constant based on dielectric spectroscopy (in Chinese), J. Cent. South Univ.
For. Technol., 42 (2022), 162-1609. https://doi.org/10.14067/j.cnki.1673-923x.2022.03.017

W. Y. Tang, X. L. Zhang, Sensors, 6th edition, China Machine Press, Beijing, 2021.

V. T. H. Tham, T. Inagaki, S. Tsuchikawa, A new approach based on a combination of capacitance
and near-infrared spectroscopy for estimating the moisture content of timber, Wood Sci. Technol.,
53 (2019), 579-599. https://doi.org/10.1007/s00226-019-01077-0

S. K. Korkua, S. Sakphrom, Low-cost capacitive sensor for detecting palm-wood moisture content
in real-time, Heliyon, 6 (2020), e04555. https://doi.org/10.1016/j.heliyon.2020.e04555

H. Li, M. Perrin, F. Eyma, X. Jacob, V. Gibiat, Moisture content monitoring in glulam
structures by embedded sensors via electrical methods, Wood Sci. Technol., 52 (2018), 733-752.
https://doi.org/10.1007/s00226-018-0989-y

Z. Wang, X. M. Wang, Z. J. Chen, Water states and migration in Xinjiang poplar and
Mongolian Scotch pine monitored by TD-NMR during drying, Holzforschung, 72 (2018), 113—
123. https://doi.org/10.1515/hf-2017-0033

D. Wu, Several Studies on Finite Volume Methods for Diffusion Problems (in Chinese), Ph.D
thesis, Jilin University, 2023.

X. Liu, Research on Polyhedral Mesh Quality Based on Finite Volumn Method (in
Chinese), Ph.D thesis, Chongqing University of Posts and Telecommunications, 2022.
https://doi.org/10.27675/d.cnki.gcydx.2022.001125

Electronic Research Archive Volume 33, Issue 4, 2246-2274.


http://dx.doi.org/https://doi.org/10.1007/s13349-014-0082-7
http://dx.doi.org/https://doi.org/10.1007/s13595-021-01078-9
http://dx.doi.org/https://doi.org/10.1007/s00107-022-01813-7
http://dx.doi.org/https://doi.org/10.1111/1365-3040.ep11587650
http://dx.doi.org/https://doi.org/10.3103/S1068335619010056
http://dx.doi.org/https://doi.org/10.1007/s10570-019-02781-7
http://dx.doi.org/https://doi.org/10.14067/j.cnki.1673-923x.2022.03.017
http://dx.doi.org/https://doi.org/10.1007/s00226-019-01077-0
http://dx.doi.org/https://doi.org/10.1016/j.heliyon.2020.e04555
http://dx.doi.org/https://doi.org/10.1007/s00226-018-0989-y
http://dx.doi.org/https://doi.org/10.1515/hf-2017-0033
http://dx.doi.org/https://doi.org/10.27675/d.cnki.gcydx.2022.001125

2274

22.

23.

24.

25.

26.

27.

28.

29.

30.

U. Ahmed, D. S. Mashat, D. A. Maturi, Finite volume method for a time-dependent convection-
diffusion-reaction equation with small parameters, Int. J. Differ. Equations, 2022 (2022), 3476309.
https://doi.org/10.1155/2022/3476309

Y. S. Luo, X. L. Li, C. Guo, Fourth-order compact and energy conservative scheme for solving
nonlinear Klein-Gordon equation, Numer. Methods Partial Differ. Equations, 33 (2017), 1283-
1304. https://doi.org/10.1002/num.22143

C. Guo, W. J. Xue, Y. L. Wang, Z. X. Zhang, A new implicit nonlinear discrete scheme for
Rosenau-Burgers equation based on multiple integral finite volume method, AIP Adv., 10 (2020),
045125. https://doi.org/10.1063/1.5142004

C. Guo, F. Li, W. Zhang, Y. S. Luo, A conservative numerical scheme for rosenau-rlw equation
based on multiple integral finite volume method, Bound. Value Probl., 2019 (2019), 168.
https://doi.org/10.1186/s13661-019-1273-2

C. Guo, Y. Wang, Y. S. Luo, A conservative and implicit second-order nonlinear numerical scheme
for the rosenau-kdv equation, Mathematics, 9 (2021), 1183. https://doi.org/10.3390/math9111183

J. N. Wu, C. Guo, B. Y. Fan, X. B. Zheng, X. L. Li, Y. X. Wang, Two high-precision compact
schemes for the dissipative symmetric regular long wave (SRLW) equation by multiple varying
bounds integral method, AIP Adv., 14 (2024), 125009. https://doi.org/10.1063/5.0233771

Y. S. Luo, C. Guo, Q. S. Liu, S. Liang, S. G. Liu, Mathematical model and its application of the
planar capacitance sensor under non-uniform and non-symmetrical conditions (in Chinese), Chin.
J. Eng. Math., 30 (2013), 317-328.

D. Chalishajar, D. Kasinathan, R. Kasinathan, Viscoelastic Kelvin—Voigt model on Ulam—Hyer’s
stability and T-controllability for a coupled integro fractional stochastic systems with integral
boundary conditions via integral contractors, Chaos Solitons Fractals, 191 (2025), 115785.
https://doi.org/10.1016/j.chaos.2024.115785

C. Guo, Research on Mathematical Model and Algorithm of Capacitance Sensor Used to Detect
Wood Moisture Content (in Chinese), Ph.D thesis, Harbin Engineering University, 2014.

) ©2025 the Author(s), licensee AIMS Press. This
1S an open access article 1stribute under the
= i icle distributed under  th

MS AJMS Press

@ terms of the Creative Commons Attribution License

Elec

(http://creativecommons.org/licenses/by/4.0)

tronic Research Archive Volume 33, Issue 4, 2246-2274.


http://dx.doi.org/https://doi.org/10.1155/2022/3476309
http://dx.doi.org/https://doi.org/10.1002/num.22143
http://dx.doi.org/https://doi.org/10.1063/1.5142004
http://dx.doi.org/https://doi.org/10.1186/s13661-019-1273-2
http://dx.doi.org/https://doi.org/10.3390/math9111183
http://dx.doi.org/https://doi.org/10.1063/5.0233771
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2024.115785
http://creativecommons.org/licenses/by/4.0

	Introduction
	Methodology for wood moisture content detection
	Steps for wood MC detection
	The multiple varying bounds integral method
	Establishment of a compact discrete scheme
	Field 1
	Field 2

	Error estimation of discrete schemes
	Numerical analysis

	Conclusions

