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Abstract: For the wood moisture content (MC) detection engineering problem by planar capacitive
sensors, a high accuracy is required. To meet this demand, we constructed a mathematical model
in this paper, as this is an inverse problem in the multi-physics fields. Furthermore, we proposed
a new numerical method with high accuracy, which is called the multiple varying bounds integral
method. We applied this numerical method to establish a high accuracy and compact numerical
scheme for solving this model. Because the unknown function is continuous in some physical fields
and discontinuous in others, we needed to use different numerical methods to construct numerical
schemes in these fields. For example, we used the multiple varying bounds integral (MVBI) method
and interpolation methods. Next, based on the results of the numerical experiments, a regression model
was established between capacitance and the dielectric constant of wood. The results indicated that the
larger the value of dielectric constant, the larger the value of capacitance. This is consistent with the
physical principle. Moreover, the determination coefficient R2 of the regression model was greater
than 0.91. Additionally, the confidence degree exceeded 0.99, which implies that the reliability of the
regression model is strong. This indicates that the regression model shows a high goodness of fit and
high confidence degree.
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Assumptions of the model and notation description

Some notations and basic assumptions are given in this paper:
1) B1 and B2 denote two thin electrode plates of the capacitive sensor.
2) B denotes the measured wood, and B, B1, B2 do not intersect each other.
3) ε = ε(x, y, z) denotes the dielectric constant of the wood at the point (x, y, z).
4) ε̃ denotes the dielectric constant of air.
5) V = V(x, y, z) denotes the potential at the point (x, y, z).
6) V1 and V2 denote the potentials of B1 and B2, respectively.
7) E = E(x, y, z) denotes the electric field strength at the point (x, y, z).
8) C denotes the capacitance of the capacitive sensor.
9) q1 and q2 denote the charge carried by B1 and B2, respectively, with q1 = q2. Additionally, q1

also satisfies
C =

q1

V1 − V2
.

10) ∂Bin and ∂Bout denote the interior and exterior of the wood boundary, respectively.

1. Introduction

Wood moisture content (MC) detection is one essential problem in the modern world. All wood
products contain some level of moisture, and too high or too low MC can cause quality issues in
wood products. Thus, inaccurate MC detection severely impacts quality control in the wood
processing industry. It also impacts the maintenance of wooden historical buildings and the protection
of rare tree species [1–7]. Once wood products or wooden structures are completed, their shape and
material no longer change. The key factors determining their internal quality are primarily the MC
and drying stress. When the equilibrium moisture content is reached, cracking and deformation are
least likely to occur. In recent years, inaccurate MC detection has resulted in a wood utilization rate of
only 50%–60%. In contrast, technologically advanced countries have achieved rates as high as 90%.
This has led to frequent significant economic losses in the national economy.

Due to the significant social and economic benefits of MC detection, scholars from various
countries have conducted extensive and in-depth research on this topic. With continuous research,
methods for MC detection [8] have also been continuously developed and improved. Martin et al. [9]
used the resistance method to study the relationship between MC and average resistivity of silver fir.
Van Blokland and Adamopoulos [10] analyzed the electrical resistance characteristics of Norway
spruce. Through simple linear regression, they derived a first-order polynomial function relationship
between MC and resistance of the wood. However, the resistance method can obtain only ideal
measurement results when the MC is between 6% and 25%. The measurement error is severely
limited by the value of MC. Edwards and Jarvis [11], Batranin et al. [12], and Penttila et al. [13]
used the ray technique to detect changes in MC, which are not limited by specific MC values.
However, the ray technique has high detection costs, slow speeds, and safety hazards, posing
challenges for inspectors. Qin et al. [14] studied the relationship between MC and ε but noted that
different tree species require different dielectric models. Compared to these methods, we aim to find a
more widely applicable method that can meet more measurement requirements. Capacitive
sensors [15] are electronic components that can convert the measured physical quantities and their
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variation laws into capacitance and capacitance change laws. They have the outstanding advantage of
performing non-contact, continuous, and high-precision measurements. Therefore, we consider
measuring the capacitance between the electrode plates to calculate MC [16–19]. On the other hand,
we found that most researchers use only experimental methods to MC detection. We propose
combining experiments with mathematical methods to build a mathematical model and complete the
MC detection.

For the mathematical model, it is also very important to choose the appropriate numerical method,
which will have a great influence on numerical accuracy and speed. To some extent, the finite volume
method [20–22] has absorbed some advantages of the finite element method and the finite difference
method. The finite volume method is mainly applied to solve fluid flow and heat transfer problems.
With this method, the numerical scheme obtained can keep some properties of original differential
equations, such as the conservation of mass, momentum, and energy.

The multiple varying bounds integral method [23–27] is a new numerical method developed based
on the finite volume method. First, by means of multiple integrals, all the derivatives in the space
direction of the differential equation can be eliminated. In this way, the differential equation can be
equitably represented by another new equation that contains only the unknown function than its
derivatives. On this basis, we begin to construct the corresponding numerical scheme for this new
equation. This avoids the occurrence of large errors greatly, especially where the change rate of the
derivative is large. Furthermore, multiple integrals with varying bounds are important. Different
Integral bounds can help us get different numerical schemes. Depending on the physical properties of
differential equation, we can choose an appropriate scheme from them.

The layout of the paper is as follows. In Section 2, we provide the methodology for MC detection.
In Section 3, we discuss the steps for MC detection. In Section 4, by multiple varying bounds integral
method, we construct second-order compact discrete schemes in fields where the potential is
continuous and discontinuous, respectively, and conduct error estimation and numerical experiments.
In Section 5, a conclusion is provided.

2. Methodology for wood moisture content detection

A core issue for wood moisture content detection is to construct the function relationship between
the capacitance C and the dielectric constant ε. The methodology is shown in Figure 1. This is a
multi-physics inverse problem with partial differential equations. We choose many suitable values of
ε. On this basis, through the mathematics model we constructed, we obtain the values of C. The data
C and ε are regressed to fit a function ε = ε(C). Then, by capacitive sensor, we measure the value of
C, and substitute it into the aforementioned fitted function to calculate ε. Ultimately, by the one-to-one
correspondence between ε and MC, we obtain the value of MC.
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Figure 1. Methodology for wood moisture content detection.

3. Steps for wood MC detection

We focus on constructing the function relationship between ε and C. The steps are as follows:
1) The measured wood B and the electrode plates B1 and B2 are shown in Figure 2.
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Figure 2. The placement of B, B1, and B2.

During practical wood detection, MC is always indirectly measured. This is accomplished by
finding a physical quantity correlated with MC, measuring this quantity, and establishing its
relationship with MC to determine MC. In this paper, we use the dielectric constant as the physical
quantity related to MC.

As shown in Figure 2, two metal plates of identical material and specifications are used as the
electrode plates of the capacitive sensor and are fixed at specific positions, labeled B1 and B2.
According to physical law, the capacitive sensor’s internal dielectric material affects the amount of
charge it can store. Therefore, the capacitance between the two plates is influenced by the
surrounding environment. If the surrounding environment remains unchanged, and the measured
wood is placed on top of the plates, an electromagnetic field is generated around it. If the dimension
of measured wood is known, the value of C will be uniquely determined by ε, establishing a
one-to-one correspondence between C and ε. Thus, by measuring C, we can obtain ε. Additionally,
we have found that there is a one-to-one relationship between ε and MC. Therefore, by ε as an
intermediary, we first establish the relationship between C and ε, and then leverage the corresponding
relationship between ε and MC to determine MC.

2) According to the mathematical model in [28], satisfied by the potential V(x, y, z),

∇2V(x, y, z) = 0, (x, y, z) ∈ (R3 − B1 − B2 − B),

ε̃

	
∂B1

|gradV(x, y, z)| dS = −ε̃
	
∂B2

|gradV(x, y, z)| dS ,

ε
∂V(x, y, z)
∂n

∣∣∣∣
∂Bin
= ε̃
∂V(x, y, z)
∂n

∣∣∣∣
∂Bout
,

V(x, y, z)
∣∣∣∣
∂Bin
= V(x, y, z)

∣∣∣∣
∂Bout
,

lim√
x2+y2+z2→∞

V(x, y, z) = 0.

(3.1)

If V1 and ε are given, then V = V(x, y, z) and V2 are uniquely determined.
3) If V(x, y, z) is determined, the electric field strength E(x, y, z) can be determined by

E(x, y, z) = −gradV(x, y, z).
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It can be seen that E(x, y, z) is related to ε(x, y, z).
4) By integral,

q1 = ε̃

	
∂B1

|gradV1(x, y, z)| dS =
	
∂B1

ε̃E1(x, y, z)dS ,

and
q2 = ε̃

	
∂B2

|gradV2(x, y, z)| dS =
	
∂B2

ε̃E2(x, y, z)dS ,

the charge q1 (or q2) of B1 (or B2) is obtained [29]. Obviously, q1 (or q2) is also related to ε(x, y, z).
5) By the equation

C =
q1

V1 − V2
,

the capacitance C can be obtained, and it can be seen that C is also related to ε(x, y, z).
Thus, V(x, y, z), E(x, y, z), and C are related to ε(x, y, z). Therefore, when Vl and ε are given, it

means that the system is determined. In view of this, when we regard the values of ε as integers from 1
to 20, a series of corresponding C can be obtained. Through regression analysis, we can construct the
function relationship between ε and C.

4. The multiple varying bounds integral method

To maintain the advantages of the finite volume method and meet the high-precision demands of
detection problems, we develop a new method called the multiple varying bounds integral method to
calculate the capacitive sensor model.

The two electrode plates occupy the domain

B1 = {(x, y, z) | − a ≤ x ≤ a, b ≤ y ≤ c, 0 ≤ z ≤ d} ,

and
B2 = {(x, y, z) | − a ≤ x ≤ a,−b ≤ y ≤ −c, 0 ≤ z ≤ d} .

The measured wood occupies the domain

B =
{
(x, y, z)| − k ≤ x ≤ k,−l ≤ y ≤ l,m ≤ z ≤ n

}
.

This is an unbounded problem. To achieve numerical computation, we set a reasonable artificial
boundary [xL, xR]×[yL, yR]×[zL, zR]. The computational domain is discretized by taking hx =

xR−xL
Nx
, hy =

yR−yL
Ny

and hz =
zR−zL

Nz
as the step size in the direction of the x-axis, y-axis, and z-axis, respectively. Here

Nx,Ny, and Nz are three given positive integers, so we get (Nx + 1) ×
(
Ny + 1

)
× (Nz + 1) grid nodes.

Let each grid node be (xi, y j, zk), where xi = xL + ihx (i = 0, 1, · · · ,Nx) , y j = yL + jhy

(
j = 0, 1, · · · ,Ny

)
and zk = zL + khz (k = 0, 1, · · · ,Nz). Set V(xi, y j, zk) = Vi, j,k, which approximately represents the
corresponding potential at each node.

4.1. Establishment of a compact discrete scheme

In fact, the mathematical model to be solved is a multi-physics inverse problem. Therefore, for
different fields, we should select appropriate numerical methods for different differential equations.
We divide physical fields into two regions: Field 1, where Vi, j,k is continuous, and field 2, where Vi, j,k

is discontinuous.
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4.1.1. Field 1

In the computational domain, the variable Vi, j,k is continuous except at the faces, vertices and edges
of the wood. Therefore, the multiple varying bounds integral method can be directly applied to
discretize the equation in field 1.

When (x, y, z) ∈ (R3 − B1 − B2 − B), the potential V(x, y, z) satisfies

∇2V(x, y, z) = 0, (4.1)

and is continuous, so we can directly apply the multiple varying bounds integral method in this field
to integrate Eq (4.1). We perform multiple varying bound integrals with respect to x, y, and z on both
sides of Eq (4.1), so we have∫ z2

z1

∫ y2

y1

∫ x2

x1

(
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 )dxdydz = 0. (4.2)

By Eq (4.2)∫ z2

z1

∫ y2

y1

(
∂V
∂x2
−
∂V
∂x1

)dydz +
∫ z2

z1

∫ x2

x1

(
∂V
∂y2
−
∂V
∂y1

)dxdz +
∫ y2

y1

∫ x2

x1

(
∂V
∂z2
−
∂V
∂z1

)dxdy = 0. (4.3)

Then, integrating both sides of Eq (4.3) within the control volume, we have∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ xi

xi−αx

∫ xi+
αx
2

xi

[
∫ z2

z1

∫ y2

y1

(
∂V
∂x2
−
∂V
∂x1

)dydz

+

∫ z2

z1

∫ x2

x1

(
∂V
∂y2
−
∂V
∂y1

)dxdz +
∫ y2

y1

∫ x2

x1

(
∂V
∂z2
−
∂V
∂z1

)dxdy]dx1dx2dy1dy2dz1dz2 = 0.
(4.4)

The three terms on the left-hand side of Eq (4.4) have identical structures. Therefore, we compute
only the first term on the left-hand side. The other two terms can be handled similarly.∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ xi

xi−αx

∫ xi+
αx
2

xi

[
∫ z2

z1

∫ y2

y1

(
∂V
∂x2
−
∂V
∂x1

)dydz]dx1dx2dy1dy2dz1dz2

=

∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ z2

z1

∫ y2

y1

[
∫ xi

xi−αx

∫ xi+
αx
2

xi

(
∂V
∂x2
−
∂V
∂x1

)dx1dx2]dydzdy1dy2dz1dz2

=

∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ z2

z1

∫ y2

y1

{αx[V(xi +
αx

2
, y, z) − V(xi, y, z)]

−
αx

2
[V(xi, y, z) − V(xi − αx, y, z)]}dydzdy1dy2dz1dz2

=

∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ z2

z1

∫ y2

y1

{αx[V(xi +
αx

2
, y, z) −

3
2

V(xi, y, z)

+
1
2

V(xi − αx, y, z)]}dydzdy1dy2dz1dz2,

(4.5)

where, αx, αy and αz are undetermined parameters. In the case of following the wood physical
properties, we set αx = αy = αz = α and hx = hy = hz = h.
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Through the integral, the derivative function of an unknown function V(x, y, z) can be eliminated,
thus reducing numerical errors, especially where the rate of change of the derivative is large. Next, we
interpolate the original function of V(x, y, z). Here, let the node step size in each direction be h. We
select three interpolation nodes in each of the x, y, and z directions, generating a total of 27 grid nodes
(xi, y j, zk), (xi, y j−1, zk), (xi, y j+1, zk), (xi−1, y j, zk), (xi−1, y j−1, zk), (xi−1, y j+1, zk), (xi+1, y j, zk),
(xi+1, y j−1, zk), (xi+1, y j+1, zk), (xi, y j, zk−1), (xi, y j−1, zk−1), (xi, y j+1, zk−1), (xi−1, y j, zk−1), (xi−1, y j−1, zk−1),
(xi−1, y j+1, zk−1), (xi+1, y j, zk−1), (xi+1, y j−1, zk−1), (xi+1, y j+1, zk−1), (xi, y j, zk−2), (xi, y j−1, zk−2),
(xi, y j+1, zk−2), (xi−1, y j, zk−2), (xi−1, y j−1, zk−2), (xi−1, y j+1, zk−2), (xi+1, y j, zk−2), (xi+1, y j−1, zk−2),
(xi+1, y j+1, zk−2), as shown in Figure 3.

xi , yj , zk ( ) xi , yj+1 , zk ( )

xi-1 , yj , zk ( )

xi , yj , zk-1 ( )

xi+1 , yj , zk ( )

xi , yj-1 , zk ( )

xi , yj , zk+1 ( )

Figure 3. The interpolation nodes in field 1.

Based on these 27 nodes, we construct the interpolating function for the unknown function V(x, y, z),
as follows

V (x, y, z) =
i+1∑

m=i−1

j+1∑
s= j−1

k+1∑
t=k−1

V (xm, ys, zt)
i+1∏

p=i−1
p,m

x − xp

xm − xp

j+1∏
q= j−1

q,s

y − yq

ys − yq

k+1∏
r=k−1

r,t

z − zr

zt − zr
. (4.6)

Substituting Eq (4.6) into Eq (4.5), we have

λ1Vi−1, j−1,k−1 − 2λ1Vi, j−1,k−1 + λ1Vi+1, j−1,k−1 + λ2Vi−1, j,k−1 − 2λ2Vi, j,k−1 + λ2Vi+1, j,k−1

+ λ3Vi−1, j+1,k−1 − 2λ3Vi, j+1,k−1 + λ3Vi+1, j+1,k−1 + λ2Vi−1, j−1,k − 2λ2Vi, j−1,k + λ2Vi+1, j−1

+ λ4Vi−1, j,k − 2λ4Vi, j,k + λ4Vi+1, j,k + λ5Vi−1, j+1,k − 2λ5Vi, j+1,k + λ5Vi+1, j+1,k

+ λ3Vi−1, j−1,k+1 − 2λ3Vi, j−1,k+1 + λ3Vi+1, j−1,k+1 + λ5Vi−1, j,k+1 − 2λ5Vi, j,k+1 + λ5Vi+1, j,k+1

+ λ6Vi−1, j+1,k+1 − 2λ6Vi, j+1,k+1 + λ6Vi+1, j+1,k+1 = 0,

(4.7)

where λ1 =
α2(4h+3α)2

4 , λ2 = −
3α(−32h3−24h2α+4hα2+3α3)

2 , λ3 =
α2(−16h2+9α2)

4 , λ4 = 9(−8h2 + α2)2,
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λ5 = −
3α(32h3−24h2α−4hα2+3α3)

2 and λ6 =
(4h−3α)2α2

4 . To this end, we have completed the discretization of
Eq (4.1) by the multiple varying bounds integral method.

4.1.2. Field 2

We divide the wood boundary into three parts: Faces, vertices, and edges. We found that ∂V
∂n is

discontinuous in these fields, so direct integral cannot be performed and special treatment is required.
1) Analysis about faces of wood.
The wood has a total of six faces. We use the upper face as an example. The other faces follow in a

similar fashion. By the Taylor expansion exterior to the upper face, we have

Vi, j,k+1 = Vi, j,k + h · V ′i, j,k +
1
2

h2 · V ′′i, j,k, (4.8)

and

Vi, j,k+2 = Vi, j,k + 2h · V ′i, j,k +
1
2

(2h)2 · V ′′i, j,k. (4.9)

From Eqs (4.8) and (4.9), it follows that

V ′i, j,k =
4Vi, j,k+1 − Vi, j,k+2 − 3Vi, j,k

2h
. (4.10)

Similarly, within the interior of the upper face of the wood, there are

V ′i, j,k =
Vi, j,k−2 − 4Vi, j,k−1 + 3Vi, j,k

2h
. (4.11)

Since the upper face is horizontal, the V ′i, j,k direction is vertical. Thus, V ′i, j,k =
∂V
∂n . Consequently,

ε ∂V
∂n

∣∣∣∣
∂Bin
= ε̃ ∂V

∂n

∣∣∣∣
∂Bout

can be rewritten as

εVi, j,k−2 − 4εVi, j,k−1 + 3( ε + ε̃)Vi, j,k − 4ε̃Vi, j,k+1 + ε̃Vi, j,k+2 = 0. (4.12)

Similarly, we can obtain the discrete equations for the other 5 faces of the wood.
2) Analysis about vertices of wood.
The wood has a total of eight vertices. We use the upper front right vertex of the wood as an

example. By model (3.1), there is

0 = ε
"
Ω1

∂V
∂n

ds + ε̃
"
Ω2

∂V
∂n

ds = ε
"
Ω1

∂V
∂n

ds + ε̃
"
Ω21

∂V
∂n

ds + ε̃
"
Ω22

∂V
∂n

ds + ε̃
"
Ω23

∂V
∂n

ds. (4.13)

This is assuming that Ω represents a spherical surface with its center at the upper front right vertex and
a radius of h. Ω1 and Ω2 denote the parts of Ω interior and exterior the wood, respectively. There are
Ω1 =

1
8Ω and Ω2 =

7
8Ω . Ω2 can also be divided into three parts based on the vertices, edges, and faces

into three parts, that is Ω2 = Ω21 + Ω22 + Ω23. Moreover, Ω21 =
1
8Ω ,Ω22 =

1
4Ω , and Ω23 =

1
2Ω , as

shown in Figure 4.
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Figure 4. Field division when processing vertices.

From ∂V
∂n =

∂V
∂x cosα + ∂V

∂y cos β + ∂V
∂z cos γ, we have Eq (4.13), which can be written as

ε

"
Ω1

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy) + ε̃
"
Ω21

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

+ε̃

"
Ω22

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy) + ε̃
"
Ω23

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy) = 0.
(4.14)

Next, we discuss each of the items in Eq (4.14).
(i) Consider the interior of the sphere
Take

!
Ω1

∂V
∂x dydz as an example. When calculating

!
Ω1

∂V
∂x dydz, we take (xi, y j, zk) as the center and

extend two steps in the negative x, y, and z directions, with a step length of 2h. We define the upper
front right vertex as (x0, y0, z0). At this point, 27 points (x0, y0, z0), (x0, y0, z−1), (x0, y0, z−2), (x0, y−1, z0),
(x0, y−1, z−1), (x0, y−1, z−2), (x0, y−2, z0), (x0, y−2, z−1), (x0, y−2, z−2), (x−1, y0, z0), (x−1, y0, z−1),
(x−1, y0, z−2), (x−1, y−1, z0), (x−1, y−1, z−1), (x−1, y−1, z−2), (x−1, y−2, z0), (x−1, y−2, z−1), (x−1, y−2, z−2),
(x−2, y0, z0), (x−2, y0, z−1), (x−2, y0, z−2), (x−2, y−1, z0), (x−2, y−1, z−1), (x−2, y−1, z−2), (x−2, y−2, z0),
(x−2, y−2, z−1), (x−2, y−2, z−2) inside the wood are selected for interpolation, as shown in Figure 5.

The interpolation function is

∂V
∂x
=

0∑
i=−2

0∑
j=−2

0∑
k=−2

[(
∂V
∂x

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

xi − xm

0∏
s=−2
s, j

y − ys

y j − ys

0∏
t=−2
t,k

z − zt

zk − zt
]

=
1
h6

0∑
i=−2

0∑
j=−2

0∑
k=−2

[(
∂V
∂x

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

0∏
t=−2
t,k

z − zt

k − t
].

(4.15)

Since ∂V
∂x |i, j,k is unknown, it is represented by the difference quotient, and we have

∂V
∂x

∣∣∣
i, j,k
=

Vi, j,k − Vi−1, j,k

h
. (4.16)
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In that case,

∂V
∂x
=

1
h7

0∑
i=−2

0∑
j=−2

0∑
k=−2

[(Vi, j,k − Vi−1, j,k)
0∏

m=−2
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

0∏
t=−2
t,k

z − zt

k − t
], (4.17)

then there is"
Ω1

∂V
∂x

dydz

= −
1
h7

0∑
j=−2

0∑
k=−2

[
1
2

(V0, j,k − V−1, j,k)A1 − (V−1, j,k − V−2, j,k)A2 +
1
2

(V−2, j,k − V−3, j,k)A3].
(4.18)

x0 , y-2 , z0 ( )

x0 , y-1 , z0 ( )

x0 , y0 , z-2 ( )

x0 , y0 , z-1 ( )

x-2 , y0 , z0 ( )
x-1 , y0 , z0 ( )

x0 , y0 , z0 ( )

Figure 5. The interpolation points used when handling the vertex and calculating Ω1.

The integration domain of A1 can be seen according to the yoz plane of Figure 6, so there is

A1 =

∫ h

0

∫ 3π
2

π

[(−
√

h2 − ρ2 + 2h)(−
√

h2 − ρ2 + h)
0∏

s=−2
s, j

(
ρ cos θ − sh

j − s
)

0∏
t=−2
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ. (4.19)

The same reasoning leads to

A2 =

∫ h

0

∫ 3π
2

π

[(−
√

h2 − ρ2)(−
√

h2 − ρ2 + 2h)
0∏

s=−2
s, j

(
ρ cos θ − sh

j − s
)

0∏
t=−2
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.20)

and

A3 =

∫ h

0

∫ 3π
2

π

[(−
√

h2 − ρ2)(−
√

h2 − ρ2 + h)
0∏

s=−2
s, j

(
ρ cos θ − sh

j − s
)

0∏
t=−2
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ. (4.21)
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Further simplification and organization gives"
Ω1

∂V
∂x

dydz = −
0∑

i=−2

0∑
j=−2

0∑
k=−2

1
h7

(
Vi, j,k − Vi−1, j,k

)
B1, (4.22)

where,

B1 =

∫ h

0

∫ 3π
2

π

[
0∏

m=−2
m,i

(
−

√
h2 − ρ2 − mh

i − m
)

0∏
s=−2
s, j

(
ρ cos θ − sh

j − s
)

0∏
t=−2
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ. (4.23)

Figure 6. Ω1 in the coordinate system.

Similarly, when calculating
!
Ω1

∂V
∂y dxdz and

!
Ω1

∂V
∂z dxdy, it is also necessary to construct an

interpolation function. The interpolation nodes used for this purpose are illustrated in Figure 5. Thus,
there are "

Ω1

∂V
∂y

dxdz = −
0∑

i=−2

0∑
j=−2

0∑
k=−2

1
h7

(
Vi, j,k − Vi, j−1,k

)
B2, (4.24)

and "
Ω1

∂V
∂z

dxdy = −
0∑

i=−2

0∑
j=−2

0∑
k=−2

1
h7

(
Vi, j,k − Vi, j,k−1

)
B3, (4.25)

among them,

B2 =

∫ h

0

∫ 3π
2

π

[
0∏

m=−2
m,i

(
ρ sin θ − mh

i − m
)

0∏
s=−2
s, j

(
−

√
h2 − ρ2 − sh

j − s
)

0∏
t=−2
t,k

(
ρ cos θ − th

k − t
)]ρdρdθ, (4.26)
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and

B3 =

∫ h

0

∫ 3π
2

π

[
0∏

m=−2
m,i

(
ρ cos θ − mh

i − m
)

0∏
s=−2
s, j

(
ρ sin θ − sh

j − s
)

0∏
t=−2
t,k

(
−

√
h2 − ρ2 − th

k − t
)]ρdρdθ. (4.27)

Therefore,

"
Ω1

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

= −
1
h7

0∑
i=−2

0∑
j=−2

0∑
k=−2

[(
Vi, j,k − Vi−1, j,k

)
B1 +

(
Vi, j,k − Vi, j−1,k

)
B2 +

(
Vi, j,k − Vi, j,k−1

)
B3

]
.

(4.28)

We have completed the discretization at Ω1.

(ii) Consider the exterior of the sphere

We use the method for calculating Ω1 to compute the integral on Ω2i (i = 1, 2, 3). First, consider
field Ω21. We need to interpolate around it by selecting 27 points (x0, y0, z0), (x0, y0, z1), (x0, y0, z2),
(x0, y−1, z0), (x0, y−1, z1), (x0, y−1, z2), (x0, y−2, z0), (x0, y−2, z1), (x0, y−2, z2), (x−1, y0, z0), (x−1, y0, z1),
(x−1, y0, z2), (x−1, y−1, z0), (x−1, y−1, z1), (x−1, y−1, z2), (x−1, y−2, z0), (x−1, y−2, z1), (x−1, y−2, z2),
(x−2, y0, z0), (x−2, y0, z1), (x−2, y0, z2), (x−2, y−1, z0), (x−2, y−1, z1), (x−2, y−1, z2), (x−2, y−2, z0),
(x−2, y−2, z1), (x−2, y−2, z2) on the exterior of the wood, as shown in Figure 7.

x0 , y0 , z0 ( )
x0 , y-1 , z0 ( )

x-1 , y0 , z0 ( )

x-2 , y0 , z0 ( )

x0 , y-2 , z0 ( )

x0 , y0 , z1 ( )

x0 , y0 , z2 ( )

Figure 7. The interpolation points used when handling the vertex and calculating Ω21.
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At this point, the interpolating polynomial constructed are

∂V
∂x
=

0∑
i=−2

0∑
j=−2

2∑
k=0

[(
∂V
∂x

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

xi − xm

0∏
s=−2
s, j

y − ys

y j − ys

2∏
t=0
t,k

z − zt

zk − zt
]

=
1
h6

0∑
i=−2

0∑
j=−2

2∑
k=0

[(
∂V
∂x

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

2∏
t=0
t,k

z − zt

k − t
],

(4.29)

∂V
∂y
=

0∑
i=−2

0∑
j=−2

2∑
k=0

[(
∂V
∂y

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

xi − xm

0∏
s=−2
s, j

y − ys

y j − ys

2∏
t=0
t,k

z − zt

zk − zt
]

=
1
h6

0∑
i=−2

0∑
j=−2

2∑
k=0

[(
∂V
∂y

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

2∏
t=0
t,k

z − zt

k − t
],

(4.30)

and
∂V
∂z
=

0∑
i=−2

0∑
j=−2

2∑
k=0

[(
∂V
∂z

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

xi − xm

0∏
s=−2
s, j

y − ys

y j − ys

2∏
t=0
t,k

z − zt

zk − zt
]

=
1
h6

0∑
i=−2

0∑
j=−2

2∑
k=0

[(
∂V
∂z

∣∣∣∣∣∣
i, j,k

)
0∏

m=−2
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

2∏
t=0
t,k

z − zt

k − t
].

(4.31)

Thus, we can get"
Ω21

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

= −
1
h7

0∑
i=−2

0∑
j=−2

2∑
k=0

[(
Vi, j,k − Vi−1, j,k

)
B4 +

(
Vi, j,k − Vi, j−1,k

)
B5 −

(
Vi, j,k+1 − Vi, j,k

)
B6

]
,

(4.32)

where,

B4 =

∫ h

0

∫ π

π
2

[
0∏

m=−2
m,i

(
−

√
h2 − ρ2 − mh

i − m
)

0∏
s=−2
s, j

(
ρ cos θ − sh

j − s
)

2∏
t=0
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.33)

B5 =

∫ h

0

∫ 2π

3π
2

[
0∏

m=−2
m,i

(
ρ sin θ − mh

i − m
)

0∏
s=−2
s, j

(
−

√
h2 − ρ2 − sh

j − s
)

2∏
t=0
t,k

(
ρ cos θ − th

k − t
)]ρdρdθ, (4.34)

and

B6 =

∫ h

0

∫ 3π
2

π

[
0∏

m=−2
m,i

(
ρ cos θ − mh

i − m
)

0∏
s=−2
s, j

(
ρ sin θ − sh

j − s
)

2∏
t=0
t,k

(

√
h2 − ρ2 − th

k − t
)]ρdρdθ. (4.35)
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Next, consider field Ω22, as shown in Figure 8.

x0 , y-2 , z0 ( ) x0 , y-1 , z0 ( )

x1 , y0 , z0 ( )

x2 , y0 , z0 ( )

x0 , y0 , z-1 ( )

x0 , y0 , z1 ( )

x0 , y0 , z0 ( )

Figure 8. The interpolation points used when handling the vertex and calculating Ω22.

Thus, we obtain"
Ω22

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

=
1
h7

2∑
i=0

0∑
j=−2

1∑
k=−1

[
(
Vi+1, j,k − Vi, j,k

)
B7 −

(
Vi, j,k − Vi, j−1,k

)
B8 +

(
Vi, j,k+1 − Vi, j,k

)
(B9 − B10)],

(4.36)

where,

B7 =

∫ h

0

∫ 3π
2

π
2

[
2∏

m=0
m,i

(

√
h2 − ρ2 − mh

i − m
)

0∏
s=−2
s, j

(
ρ cos θ − sh

j − s
)

1∏
t=−1
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.37)

B8 =

∫ h

0

∫ π

0
[

2∏
m=0
m,i

(
ρ sin θ − mh

i − m
)

0∏
s=−2
s, j

(
−

√
h2 − ρ2 − sh

j − s
)

1∏
t=−1
t,k

(
ρ cos θ − th

k − t
)]ρdρdθ, (4.38)

B9 =

∫ h

0

∫ 2π

3π
2

[
2∏

m=0
m,i

(
ρ cos θ − mh

i − m
)

0∏
s=−2
s, j

(
ρ sin θ − sh

j − s
)

1∏
t=−1
t,k

(

√
h2 − ρ2 − th

k − t
)]ρdρdθ, (4.39)

and

B10 =

∫ h

0

∫ 2π

3π
2

[
2∏

m=0
m,i

(
ρ cos θ − mh

i − m
)

0∏
s=−2
s, j

(
ρ sin θ − sh

j − s
)

1∏
t=−1
t,k

(
−

√
h2 − ρ2 − th

k − t
)]ρdρdθ. (4.40)
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Finally, consider region Ω23, as shown in Figure 9.

x1 , y0 , z0 ( )

x0 , y1 , z0 ( ) x0 , y2 , z0 ( )

x0 , y0 , z-1 ( )

x-1 , y0 , z0 ( )

x0 , y0 , z1 ( )

x0 , y0 , z0 ( )

Figure 9. The interpolation points used when handling the vertex and calculating Ω23.

We can get"
Ω23

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

=
1
h7

1∑
i=−1

2∑
j=0

1∑
k=−1

[
(
Vi+1, j,k − Vi, j,k

)
(B11 − B12) +

(
Vi, j+1,k − Vi, j,k

)
B13 +

(
Vi, j,k+1 − Vi, j,k

)
(B14 − B15)],

(4.41)

among it,

B11 =

∫ h

0

∫ π
2

− π2

[
1∏

m=−1
m,i

(

√
h2 − ρ2 − mh

i − m
)

2∏
s=0
s, j

(
ρ cos θ − sh

j − s
)

1∏
t=−1
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.42)

B12 =

∫ h

0

∫ π
2

− π2

[
1∏

m=−1
m,i

(
−

√
h2 − ρ2 − mh

i − m
)

2∏
s=0
s, j

(
ρ cos θ − sh

j − s
)

1∏
t=−1
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.43)

B13 =

∫ h

0

∫ 2π

0
[

1∏
m=−1
m,i

(
ρ sin θ − mh

i − m
)

2∏
s=0
s, j

(

√
h2 − ρ2 − sh

j − s
)

1∏
t=−1
t,k

(
ρ cos θ − th

k − t
)]ρdρdθ, (4.44)

B14 =

∫ h

0

∫ π

0
[

1∏
m=−1
m,i

(
ρ cos θ − mh

i − m
)

2∏
s=0
s, j

(
ρ sin θ − sh

j − s
)

1∏
t=−1
t,k

(

√
h2 − ρ2 − th

k − t
)]ρdρdθ, (4.45)
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and

B15 =

∫ h

0

∫ π

0
[

1∏
m=−1
m,i

(
ρ cos θ − mh

i − m
)

2∏
s=0
s, j

(
ρ sin θ − sh

j − s
)

1∏
t=−1
t,k

(
−

√
h2 − ρ2 − th

k − t
)]ρdρdθ. (4.46)

Consequently, Eqs (4.28), (4.32), (4.36), and (4.41) constitute the discrete scheme of the upper front
right vertex Eq (4.13). After rearrangement, we have

− ε

0∑
i=−2

0∑
j=−2

0∑
k=−2

[
(
Vi, j,k − Vi−1, j,k

)
B1 +

(
Vi, j,k − Vi, j−1,k

)
B2 +

(
Vi, j,k − Vi, j,k−1

)
B3]

− ε̃

0∑
i=−2

0∑
j=−2

2∑
k=0

[
(
Vi, j,k − Vi−1, j,k

)
B4 +

(
Vi, j,k − Vi, j−1,k

)
B5 −

(
Vi, j,k+1 − Vi, j,k

)
B6]

+ ε̃

2∑
i=0

0∑
j=−2

1∑
k=−1

[
(
Vi+1, j,k − Vi, j,k

)
B7 −

(
Vi, j,k − Vi, j−1,k

)
B8 +

(
Vi, j,k+1 − Vi, j,k

)
(B9 − B10)]

+ ε̃

1∑
i=−1

2∑
j=0

1∑
k=−1

[
(
Vi+1, j,k − Vi, j,k

)
(B11 − B12) +

(
Vi, j+1,k − Vi, j,k

)
B13 +

(
Vi, j,k+1 − Vi, j,k

)
(B14 − B15)

]
= 0.

(4.47)

Similarly, discrete schemes for the other 7 vertices can be obtained.
3) Analysis about edges of wood.
The wood has twelve edges. We use the upper right edge of the wood as an example. By model (3.1),

there is

0 = ε
"
Ω1

∂V
∂n

ds + ε̃
"
Ω2

∂V
∂n

ds = ε
"
Ω1

∂V
∂n

ds + ε̃
"
Ω21

∂V
∂n

ds + ε̃
"
Ω22

∂V
∂n

ds, (4.48)

where Ω denotes a cylindrical surface with the upper right edge as the axis and h as the radius. Ωl and
Ω2 denote the parts of Ω in the interior and exterior of the wood, respectively. There are Ω1 =

1
4Ω and

Ω2 =
3
4Ω. Ω2 is also divided into two parts according to the edges and faces, that is Ω2 = Ω21 + Ω22,

where Ω21 =
1
4Ω and Ω22 =

1
2Ω, as illustrated in Figure 10.

Figure 10. Field division when processing edges.
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First, consider region Ω1. We need to interpolate around it by selecting 27 points (x0, y0, z0),
(x0, y0, z−2), (x0, y0, z−1), (x0, y−1, z0), (x0, y−1, z−1), (x0, y−1, z−2), (x0, y−2, z0), (x0, y−2, z−1), (x0, y−2, z−2),
(x1, y0, z0), (x1, y0, z−1), (x1, y0, z−2), (x1, y−1, z0), (x1, y−1, z−1), (x1, y−1, z−2), (x1, y−2, z0), (x1, y−2, z−1),
(x1, y−2, z−2), (x2, y0, z0), (x2, y0, z−1), (x2, y0, z−2), (x2, y−1, z0), (x2, y−1, z−1), (x2, y−1, z−2), (x2, y−2, z0),
(x2, y−2, z−1), (x2, y−2, z−2) on the interior of the wood as shown in Figure 11.

x0 , y0 , z0 ( )
x0 , y-1 , z0 ( )

x0 , y0 , z-2 ( )

x0 , y0 , z-1 ( )

x1 , y0 , z0 ( )

x-1 , y0 , z0 ( )
x0 , y-2 , z0 ( )

Figure 11. The interpolation points used when handling the edge and calculating Ω1.

The interpolating polynomial constructed are

∂V
∂x
=

1∑
i=−1

0∑
j=−2

0∑
k=−2

[(
∂V
∂x

∣∣∣∣∣∣
i, j,k

)
1∏

m=−1
m,i

x − xm

xi − xm

0∏
s=−2
s, j

y − ys

y j − ys

0∏
t=−2
t,k

z − zt

zk − zt
]

=
1
h6

1∑
i=−1

0∑
j=−2

0∑
k=−2

[(
∂V
∂x

∣∣∣∣∣∣
i, j,k

)
1∏

m=−1
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

0∏
t=−2
t,k

z − zt

k − t
],

(4.49)

∂V
∂y
=

1∑
i=−1

0∑
j=−2

0∑
k=−2

[(
∂V
∂y

∣∣∣∣∣∣
i, j,k

)
1∏

m=−1
m,i

x − xm

xi − xm

0∏
s=−2
s, j

y − ys

y j − ys

0∏
t=−2
t,k

z − zt

zk − zt
]

=
1
h6

1∑
i=−1

0∑
j=−2

0∑
k=−2

[(
∂V
∂y

∣∣∣∣∣∣
i, j,k

)
1∏

m=−1
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

0∏
t=−2
t,k

z − zt

k − t
],

(4.50)

and
∂V
∂z
=

1∑
i=−1

0∑
j=−2

0∑
k=−2

[(
∂V
∂z

∣∣∣∣∣∣
i, j,k

)
1∏

m=−1
m,i

x − xm

xi − xm

0∏
s=−2
s, j

y − ys

y j − ys

0∏
t=−2
t,k

z − zt

zk − zt
]

=
1
h6

1∑
i=−1

0∑
j=−2

0∑
k=−2

[(
∂V
∂z

∣∣∣∣∣∣
i, j,k

)
1∏

m=−1
m,i

x − xm

i − m

0∏
s=−2
s, j

y − ys

j − s

0∏
t=−2
t,k

z − zt

k − t
].

(4.51)
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Therefore,"
Ω1

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

=
1
h7

1∑
i=−1

0∑
j=−2

0∑
k=−2

[(
Vi+1, j,k − Vi, j,k

)
(C1 −C2) −

(
Vi, j,k − Vi, j−1,k

)
C3 −

(
Vi, j,k − Vi, j,k−1

)
C4

]
,

(4.52)

where,

C1 =

∫ h

0

∫ 3π
2

π

[
1∏

m=−1
m,i

(

√
h2 − ρ2 − mh

i − m
)

0∏
s=−2
s, j

(
ρ cos θ − sh

j − s
)

0∏
t=−2
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.53)

C2 =

∫ h

0

∫ 3π
2

π

[
1∏

m=−1
m,i

(
−

√
h2 − ρ2 − mh

i − m
)

0∏
s=−2
s, j

(
ρ cos θ − sh

j − s
)

0∏
t=−2
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.54)

C3 =

∫ h

0

∫ 3π
2

π
2

[
1∏

m=−1
m,i

(
ρ sin θ − mh

i − m
)

0∏
s=−2
s, j

(
−

√
h2 − ρ2 − sh

j − s
)

0∏
t=−2
t,k

(
ρ cos θ − th

k − t
)]ρdρdθ, (4.55)

and

C4 =

∫ h

0

∫ 2π

π

[
1∏

m=−1
m,i

(
ρ cos θ − mh

i − m
)

0∏
s=−2
s, j

(
ρ sin θ − sh

j − s
)

0∏
t=−2
t,k

(
−

√
h2 − ρ2 − th

k − t
)]ρdρdθ. (4.56)

Second, we consider
!
Ω21

∂V
∂n ds. The interpolation nodes of field Ω21 are shown in Figure 12.

x0 , y0 , z0 ( )
x1 , y0 , z0 ( )

x0 , y0 , z1 ( )

x-1 , y0 , z0 ( )

x0 , y0 , z2 ( )

x0 , y-2 , z0 ( )

x0 , y-1 , z0 ( )

Figure 12. The interpolation points used when handling the edge and calculating Ω21.
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Equally,"
Ω21

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

=
1
h7

1∑
i=−1

0∑
j=−2

2∑
k=0

[(
Vi+1, j,k − Vi, j,k

)
(C5 −C6) −

(
Vi, j,k − Vi, j−1,k

)
C7 +

(
Vi, j,k+1 − Vi, j,k

)
C8

]
,

(4.57)

among it

C5 =

∫ h

0

∫ π

π
2

[
1∏

m=−1
m,i

(

√
h2 − ρ2 − mh

i − m
)

0∏
s=−2
s, j

(
ρ cos θ − sh

j − s
)

2∏
t=0
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.58)

C6 =

∫ h

0

∫ π

π
2

[
1∏

m=−1
m,i

(
−

√
h2 − ρ2 − mh

i − m
)

0∏
s=−2
s, j

(
ρ cos θ − sh

j − s
)

2∏
t=0
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.59)

C7 =

∫ h

0

∫ π
2

− π2

[
1∏

m=−1
m,i

(
ρ sin θ − mh

i − m
)

0∏
s=−2
s, j

(
−

√
h2 − ρ2 − sh

j − s
)

2∏
t=0
t,k

(
ρ cos θ − th

k − t
)]ρdρdθ, (4.60)

and

C8 =

∫ h

0

∫ 2π

π

[
1∏

m=−1
m,i

(
ρ cos θ − mh

i − m
)

0∏
s=−2
s, j

(
ρ sin θ − sh

j − s
)

2∏
t=0
t,k

(

√
h2 − ρ2 − th

k − t
)]ρdρdθ. (4.61)

Finally, we consider
!
Ω22

∂V
∂n ds. The interpolation nodes of field Ω22 are shown in Figure 13.

x0 , y0 , z0 ( )

x0 , y0 , z1 ( )

x-1 , y0 , z0 ( )

x0 , y0 , z-1 ( )

x0 , y2 , z0 ( )x0 , y1 , z0 ( )

x1 , y0 , z0 ( )

Figure 13. The interpolation points used when handling the edge and calculating Ω21.
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With the same way,"
Ω22

(
∂V
∂x

dydz +
∂V
∂y

dxdz +
∂V
∂z

dxdy)

=
1
h7

1∑
i=−1

2∑
j=0

1∑
k=−1

[
(
Vi+1, j,k − Vi, j,k

)
(C9 −C10) +

(
Vi, j+1,k − Vi, j,k

)
C11 +

(
Vi, j,k+1 − Vi, j,k

)
(C12 −C13)],

(4.62)

where,

C9 =

∫ h

0

∫ π
2

− π2

[
1∏

m=−1
m,i

(

√
h2 − ρ2 − mh

i − m
)

2∏
s=0
s, j

(
ρ cos θ − sh

j − s
)

1∏
t=−1
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.63)

C10 =

∫ h

0

∫ π
2

− π2

[
1∏

m=−1
m,i

(
−

√
h2 − ρ2 − mh

i − m
)

2∏
s=0
s, j

(
ρ cos θ − sh

j − s
)

1∏
t=−1
t,k

(
ρ sin θ − th

k − t
)]ρdρdθ, (4.64)

C11 =

∫ h

0

∫ 2π

0
[

1∏
m=−1
m,i

(
ρ sin θ − mh

i − m
)

2∏
s=0
s, j

(

√
h2 − ρ2 − sh

j − s
)

1∏
t=−1
t,k

(
ρ cos θ − th

k − t
)]ρdρdθ, (4.65)

C12 =

∫ h

0

∫ π

0
[

1∏
m=−1
m,i

(
ρ cos θ − mh

i − m
)

2∏
s=0
s, j

(
ρ sin θ − sh

j − s
)

1∏
t=−1
t,k

(

√
h2 − ρ2 − th

k − t
)]ρdρdθ, (4.66)

and

C13 =

∫ h

0

∫ π

0
[

1∏
m=−1
m,i

(
ρ cos θ − mh

i − m
)

2∏
s=0
s, j

(
ρ sin θ − sh

j − s
)

1∏
t=−1
t,k

(
−

√
h2 − ρ2 − th

k − t
)]ρdρdθ. (4.67)

Thus, Eqs (4.52), (4.57), and (4.62) constitute the discrete scheme of the upper right edge Eq (4.48),
organized as

ε

1∑
i=1

0∑
j=−2

0∑
k=−2

[(
Vi+1, j,k − Vi, j,k

)
(C1 −C2) −

(
Vi, j,k − Vi, j−1,k

)
C3 −

(
Vi, j,k − Vi, j,k−1

)
C4

]
+ ε̃

1∑
i=1

0∑
j=−2

2∑
k=0

[(
Vi+1, j,k − Vi, j,k

)
(C5 −C6) −

(
Vi, j,k − Vi, j−1,k

)
C7 +

(
Vi, j,k+1 − Vi, j,k

)
C8

]
+ ε̃

1∑
i=−1

2∑
j=0

1∑
k=−1

[(
Vi+1, j,k − Vi, j,k

)
(C9 −C10) +

(
Vi, j+1,k − Vi, j,k

)
C11 +

(
Vi, j,k+1 − Vi, j,k

)
(C12 −C13)

]
= 0.

(4.68)

Similarly, we can obtain discrete equations for the other 11 edges of the wood.

4.2. Error estimation of discrete schemes

We take the first equation and third equation in system (3.1) as examples for error estimation, and
the remaining equations follow a similar approach.

1) Error estimation of the first equation
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Since the first equation ∇2V(x, y, z) = 0 employs the Lagrange interpolation function, the remainder
term of the Lagrange interpolation is given by

R(x, y, z) =
∂9V(ξ, η, ζ)

3!3!3!∂x3∂y3∂z3

i+1∏
p=i−1

(
x − xp

) j+1∏
q= j−1

(
y − yq

) k+1∏
r=k−1

(z − zr) , (4.69)

where, ξ ∈ (xi−1, xi+1) , η ∈
(
y j−1, y j+1

)
, ζ ∈ (zk−1, zk+1). If

∣∣∣∣∂9V(ξ,η,ζ)
∂x3∂y3∂z3

∣∣∣∣ ≤ M, we have

|R(x, y, z)| ≤
M

216

∣∣∣∣∣∣∣
i+1∏

p=i−1

(
x − xp

) j+1∏
q= j−1

(
y − yq

) k+1∏
r=k−1

(z − zr)

∣∣∣∣∣∣∣ . (4.70)

Therefore, the error of the first equation is∣∣∣∣∣∣∣
∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ xi

xi−αx

∫ xi+
αx
2

xi

[∫ z2

z1

∫ y2

y1

∫ x2

x1

(
∂2R
∂x2 +

∂2R
∂y2 +

∂2R
∂z2

)
dxdydz

]
dx2dx1dy2dy1dz2dz1

∣∣∣∣∣∣∣ . (4.71)

Due to the identical structure of the three terms, we perform only the calculation for ∂
2R
∂x2 , as the other

two terms can be computed similarly. First, integrating with respect to x, we have∫ xi

xi−αx

∫ xi+
αx
2

xi

∫ x2

x1

∂2R
∂x2 dxdx2dx1

=

∫ xi

xi−αx

∫ xi+
αx
2

xi

(
∂R
∂x2
−
∂R
∂x1

)
dx2dx1

=

∫ xi

xi−αx

∫ xi+
αx
2

xi

∂R
∂x2

dx2dx1 −

∫ xi

xi−αx

∫ xi+
αx
2

xi

∂R
∂x1

dx2dx1

= αx

∫ xi+
αx
2

xi

∂R
∂x2

dx2 −
αx

2

∫ xi

xi−αx

∂R
∂x1

dx1

= O(h4
x).

(4.72)

Next, integrating with respect to y, we have∫ y j

yi−αy

∫ y j+
αy
2

y j

∫ y2

y1

(y − y j−1)(y − y j)(y − y j+1)dydy2dy1

=

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ y2

y1

(y − y j − hy)(y − y j)(y − y j + hy)dydy2dy1

=

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ y2

y1

[
(y − y j)2 − h2

y

]
(y − y j)dydy2dy1

=

∫ y j

y j−αy

∫ y j+
αy
2

y j

1
4

(y − y j)4 −
h2

y

2
(y − y j)2

 |y2
y1

dy2dy1

=

∫ y j

y j−α j

∫ y j+
αy
2

y j

1
4

(y2 − y j)4 −
h2

y

2
(y2 − y j)2 −

1
4

(y1 − y j)4 +
h2

y

2
(y1 − y j)2

 dy2dy1.

(4.73)
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At this point, integrating with respect to y2, we have∫ y j

y j−αy

∫ y j+
αy
2

y j

1
4

(y2 − y j)4 −
h2

y

2
(y2 − y j)2

 dy2dy1

= αy

∫ y j+
αy
2

y j

1
4

(y2 − y j)4 −
h2

y

2
(y2 − y j)2

 dy2

= αy

∫ αy
2

0

1
4

t4 −
h2

y

2
t2

 dt

=
1

20 · 25

(
αy

)6
−

h2
y

6 · 23

(
αy

)4
= O(h6

y).

(4.74)

Similarly, the integral for y1 is∫ y j

y j−αy

∫ y j+
αy
2

αy

∫ y2

y1

(y − y j−1)(y − y j)(y − y j+1)dydy2dy1 = O(h6
y). (4.75)

Likewise, the integral with respect to the z direction is also O(h6
z ). Therefore,∣∣∣∣∣∣∣

∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ xi

xi−αx

∫ xi+
αx
2

xi

∫ z2

z1

∫ y2

y1

∫ x2

x1

∂2R
∂x2 dxdydzdx2dx1dy2dy1dz2dz1

∣∣∣∣∣∣∣
= O

(
h4

x + h6
y + h6

z

)
.

(4.76)

However, to ensure accuracy, it is also necessary to divide by the integration factor. The integration
factor is ∫ zk

zk−αz

∫ zk+
αz
2

zk

∫ z2

z1

dzdz2dz1

∫ y j

y j−αy

∫ y j+
αy
2

y j

∫ y2

y1

dydy2dy1 = O(h3
y + h3

z ). (4.77)

Therefore, the accuracy of Eq (4.76) should be O(h4
x + h3

y + h3
z ). Thus, the error of Eq (4.71) is

O(h4
x + h3

y + h3
z ) + O(h4

y + h3
z + h3

x) + O(h4
z + h3

y + h3
x) = O(h3

x + h3
y + h3

z ).

Hence, the local truncation error of the discrete scheme is O(h3
x + h3

y + h3
z ), and the global error is

O(h2
x + h2

y + h2
z ).

2) Error estimation of the third equation
By the Taylor expansion, we have

Vi, j,k+1 = Vi, j,k + hzV ′i, j,k +
1
2

h2
z V ′′i, j,k +

1
3!

h3
z V ′′′i, j,k +

1
4!

h4
z V (4)

i, j,k, (4.78)

Vi, j,k+2 = Vi, j,k + 2hzV ′i, j,k +
1
2

(2hz)2V ′′i, j,k +
1
3!

(2hz)3V ′′′i, j,k +
1
4!

(2hz)4V (4)
i, j,k, (4.79)

Vi, j,k−1 = Vi, j,k − hzV ′i, j,k +
1
2

h2
z V ′′i, j,k −

1
3!

h3
z V ′′′i, j,k +

1
4!

h4
z V (4)

i, j,k, (4.80)

and
Vi, j,k−2 = Vi, j,k − 2hzV ′i, j,k +

1
2

(2hz)2V ′′i, j,k −
1
3!

(2hz)3V ′′′i, j,k +
1
4!

(2hz)4V (4)
i, j,k. (4.81)
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By 4 × (4.78) − (4.79) and (4.81) − 4 × (4.80), we eliminate V ′′i, j,k and obtain

V ′i, j,k =
4Vi, j,k+1 − Vi, j,k+2 − 3Vi, j,k

2hz
+

1
3

h2
z V ′′′i, j,k +

1
4

h3
z V (4)

i, j,k, (4.82)

and

V ′i, j,k =
Vi, j,k−2 − 4Vi, j,k−1 + 3Vi, j,k

2hz
+

1
3

h2
z V ′′′i, j,k −

1
4

h3
z V (4)

i, j,k. (4.83)

Thus,

ε̃
∂V
∂n
|∂Bin − ε

∂V
∂n
|∂Bout

= ε̃

(
4Vi, j,k+1 − Vi, j,k+2 − 3Vi, j,k

2hz
+

1
3

h2
z V ′′′i, j,k +

1
4

h3
z V (4)

i, j,k

)
− ε

(
Vi, j,k−2 − 4Vi, j,k−1 + 3Vi, j,k

2hz
+

1
3

h2
z V ′′′i, j,k −

1
4

h3
z V (4)

i, j,k

)
.

(4.84)

In practical situations, ε̃ , ε. Therefore, the error is O
(
h2

z

)
. Similarly, it can be concluded that the error

in the x and y directions are O
(
h2

x

)
and O

(
h2

y

)
. As a result, the third equation error is O(h2

x + h2
y + h2

z ).

4.3. Numerical analysis

We illustrate the theory in this paper through a numerical example using the multiple varying bounds
integral method.

The two electrode plates occupy the domain

B1 = {(x, y, z) | − 3 ≤ x ≤ 3, 1 ≤ y ≤ 6, 0 ≤ z ≤ 2} ,

and
B2 = {(x, y, z) | − 3 ≤ x ≤ 3,−6 ≤ y ≤ −1, 0 ≤ z ≤ 2} .

The measured wood occupies the domain

B =
{
(x, y, z)| − 3 ≤ x ≤ 3,−5 ≤ y ≤ 5, 3 ≤ z ≤ 5

}
.

Moreover, we set the artificial boundaries to [−10, 10] × [−10, 10] × [−10, 10]. In the above domains,
the unit of length is centimeters and the step size is αx = αy = αz = α = hx = hy = hz = h = 1. It is
clear that the domain is symmetric. Based on the physical principles, V2 = −V1. Suppose V1 = 1 and
V2 = a (where a is an unknown to be determined). If, through numerical computation, the value of a is
close to -1, it indicates that the multiple varying bounds integral method is reasonable.

We perform numerical experiments on the above example and obtain the data in Table 1. These
data are consistent with the physical principle that C increases as ε increases. Based on the data, the
corresponding image is shown in Figure 14(a). It can be seen that, compared with other methods [30],
our method eliminates the initial oscillations and maintains the original trend of C variation.
Figure 14(b) shows the fitted function image derived from Reference [30]. Then, we perform a
regression analysis on these data to establish a regression model:

ε = 1.45C2 − 97.31C + 1635.10. (4.85)
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Table 1. The numerical results of C about ε.

Dielectric constant ε Capacitance value C V2

1 33.2245 -1.0458
2 33.8890 -1.0088
3 34.3597 -0.9900
4 34.7295 -1.0288
5 35.0345 -1.0198
6 35.2935 -1.0147
7 35.5178 -1.0112
8 35.7151 -1.0087
9 35.8906 -1.0067
10 36.0483 -1.0051
11 36.1910 -1.0039
12 36.3212 -1.0028
13 36.4407 -1.0019
14 36.5508 -1.0011
15 36.6528 -1.0050
16 36.7477 -0.9999
17 36.8363 -0.9994
18 36.9194 -0.9989
19 36.9974 -0.9985
20 37.0709 -0.9981

First, we evaluate the goodness of fit for Eq (4.85). A higher goodness of fit indicates a stronger
ability of the model to predict the dependent variable. As calculated from the data presented in Table 2,
the determination coefficient R2 = S S R

S S T =
603.42

665 = 0.91, where SSR represents the sum of squares
regression and SST denotes the sum of squares total for Eq (4.85). This indicates that, when C is
given, the regression model can more accurately predict the value of ε.

In addition, we consider the confidence degree, which represents the reliability of ε. The higher the
confidence degree, the stronger the reliability. Table 2 shows that F(1, 18) = 176.39, and according
to the F-distribution table, F(1, 18) = 8.29 (α = 0.01). Because 176.39 > 8.29, it can be concluded
that the confidence degree of the model is greater than 0.99. This means the values of ε obtained
through (4.85) are highly reliable and more concentrated around the true value. The results of this
regression analysis indicate that the functional relationship model between ε and C that we established
can effectively predict the value of ε from C, with small errors. It can be seen that the multiple varying
bounds integral method is a valid numerical method for this kind of problem.

Table 2. The analysis of variance of regression model between C and ε.

Model df Sum of variance MS F Significance F
Regression 1 603.42 603.42 176.39 9.69 × 10−11

Residual 18 61.58 3.42
Total 19 665
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(a) Multiple varying bounds integral method.

(b) Previous method in Reference [30].

Figure 14. The function image of C about ε.

5. Conclusions

Wood moisture content detection is an inverse problem in multi-physics fields. Based on the high
precision demand for moisture content detection, we propose a new numerical method, that is, the
multiple varying bounds integral method. Moreover, in different physics fields, we choose different
discrete methods to construct numerical schemes. For the physical field where the unknown function
is discontinuous, this field has to be divided into several additional parts. For each smaller part, such
as faces, vertices, and edges, we build corresponding interpolation functions and handle the integral
to meet the precision requirements for the engineering problem. Moreover, we carry out numerical
experiments and perform regression analysis to obtain the function relationship between ε and C. This
model obeys the physical principle that C increases with an increase in ε. Moreover, the established
regression model R2 is greater than 0.91, indicating a high goodness of fit and effectively reflecting
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the relationship between ε and C. This demonstrates that the data derived from this method are valid.
Additionally, this numerical method is applicable to other engineering problems.

On the other hand, the discrete scheme constructed in this paper has second-order precision. There
are 2982 unknowns, and the computation time is 875.57 s. If a higher precision is desired, we can
consider adding interpolation nodes to improve precision. Moreover, this would also increase the
computational cost.
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