
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 33(4): 2148–2171.
DOI: 10.3934/era.2025094
Received: 03 December 2024
Revised: 17 March 2025
Accepted: 27 March 2025
Published: 15 April 2025

Research article

An improved conjugate gradient algorithm by adapting a new line search
technique

Asma Maiza1, Raouf Ziadi1, Mohammed A. Saleh2,*and Abdulgader Z. Almaymuni2

1 Laboratory of Fundamental and Numerical Mathematics (LMFN), Department of Mathematics,
University Setif-1-Ferhat Abbas, Setif, Algeria

2 Department of Cybersecurity, College of Computer, Qassim University, Saudi Arabia

* Correspondence: Email: m.saleh@qu.edu.sa.

Abstract: The conjugate gradient (CG) method is an optimization technique known for its rapid
convergence; it has blossomed into significant developments and applications. Numerous variations
of CG methods have emerged to enhance computational efficiency and address real-world challenges.
This work presents a new conjugate gradient method for solving nonlinear unconstrained optimization
problems by introducing a new conjugate gradient parameter. To improve the convergence properties,
we have proposed a new inexact line search technique that fits in with the suggested approach and can
also be useful for other gradient descent methods. The existence of a steplength that meets the new line
search conditions is established. The generated descent direction and the convergence properties of the
suggested approach are studied under the new line search conditions, where the global convergence
is proven under mild assumptions. The proposed approach is evaluated on various test functions, and
a comparison with recent similar algorithms is carried out. Furthermore, the proposed algorithm is
applied for restoring images with different noise levels.

Keywords: optimization algorithms; conjugate gradient methods; inexact line search technique;
global convergence; image processing

1. Introduction

In this study, we consider the following nonlinear optimization problem:

f ∗ = min
x∈Rn

f (x), (P)

where f : Rn → R is continuously differentiable. Numerous practical problems in real-life
applications can be expressed as unconstrained optimization problems that involve differentiable cost
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functions [1, 2]. Spotting a solution for these problems becomes difficult when their dimensions are
high. CGs are extensively employed to deal with these situations thanks to their low memory
requirements and simplicity [3]; they are also widely employed in numerous applications, in
particular in image processing [4, 5], designing adaptive filters and learning algorithms [6], neural
networks [7], machine learning and signal processing [8, 9], molecular physics [10], and statistical
modeling [11]. Starting from a point x0 ∈ R

n, the sequence of points {xk}k∈N ⊂ R
n is generated by the

following recursive scheme:
xk+1 = xk + αkdk, k ∈ N, (1.1)

where dk is the descent direction and αk is the steplength that ensures that f (xk+1) < f (xk). The
determination of the steplength αk is crucial for global convergence. Usually, it is determined using
inexact line searches, which guarantee taking steps that should be neither too long nor too short, such
as the weak Wolfe line search

f (xk + αkdk) − f (xk) ≤ αkδdt
kgk,

g(xk + αkdk)tdk ≥ σdt
kgk,

or the strong Wolfe line search

f (xk + αkdk) − f (xk) ≤ αkδdt
kgk,∣∣∣g(xk + αkdk)tdk

∣∣∣ ≤ −σdt
kgk,

where 0 < δ < σ < 1. The descent search direction dk is typically computed by the following iterative
formula:

d0 = −g0; dk+1 = −gk+1 + βkdk, k ∈ N∗,

where βk ∈ R is the conjugate parameter that characterizes the various conjugate gradient variants. The
most famous classical conjugate gradient methods include Hestenes and Stiefel (HS) [12], Fletcher and
Reeves (FR) [13], Polak-Ribière-Polyak (PRP) [14, 15], Conjugate Descent (CD) [13], Liu and Storey
(LS) [16], and Dai and Yuan (DY) [17], where their parameters βk are given respectively as follows:

βHS
k =

gt
k+1yk

dt
kyk
, βPRP

k =
gt

k+1yk

∥gk∥
2 , β

LS
k = −

gt
k+1yk

gt
kdk

βFR
k =

∥gk+1∥
2

∥gk∥
2 , β

CD
k = −

∥gk+1∥
2

gt
kdk
, βDY

k =
∥gk+1∥

2

dt
kyk
,

where yk = gk+1 − gk and ∥.∥ denotes the Euclidean norm in Rn. The DY, CD, and FR have better
theoretical convergence properties, but practically, they are less effective. Conversely, the LS, HS, and
PRP methods are more efficient in practice, but they may not always be convergent.

Due to the difficulty of developing new conjugate gradient formulas with interesting properties, the
efforts devoted to combining CG methods to achieve effectiveness and good convergence properties.
Numerous works combine conjugate gradient methods; for example, the Touati-Ahmed and Storey
(TS) variant [18], the hybrid LS-DY (hLSDY) variant proposed by Liu and Li [19], the hybrid HS-DY
(hHSDY) variant proposed by Andrei [20], the hybrid HS-CD (hHSCD) variant proposed by Zheng et
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al. [21], the hybrid LS-CD (hLSCD) variant proposed by Djordjevic [22], and so on. For more recent
hybrid conjugate gradient methods, see [4, 23].

Over the last decade, this research topic has attracted the attention of several researchers and
numerous studies have been carried out to develop new efficient conjugate gradient formulas with
good numerical performances and global convergent properties. We cite, for example, the RMIL
method proposed by Rivaie et al. [24], the WYL method proposed by Wei et al. [25], the NHS and
NPRP methods proposed by Zhang [26], the hSM method proposed by Sulaiman-Mohammed [27],
and the MHS method proposed by Yao et al. [28], where their parameters βk are given respectively as
follows:

βRMIL
k =

gt
k+1yk

∥dk∥
2 , β

WYL
k =

gt
k+1(gk+1 −

∥gk+1∥

∥gk∥
gk)

∥gk∥
2 ,

βNHS
k =

∥gk+1∥
2 −

∥gk+1∥

∥gk∥
|gT

k+1gk|

dT
k yk

, βNPRP
k =

∥gk+1∥
2 −

∥gk+1∥

∥gk∥
|gT

k+1gk|

∥gk∥
2 ,

βhS M
k =

gT
k+1(gk+1 + gk)
∥dk∥

2 , βMHS
k =

gT
k+1

(
gk+1 −

∥gk+1∥

gk
gk

)
yT

k gk
.

For more recent conjugate gradient formulas, the reader can see [3, 11].
Inspired by these works, we propose a new conjugate gradient parameter (see Section 2.1 below).

Furthermore, to achieve good convergence properties, we have adopted a new inexact line search
technique that fits in with the proposed conjugate gradient parameter and can also be useful for other
gradient descent methods. The proposed approach converges globally under mild assumptions. The
algorithm is successfully applied on a broad set of test functions (with varied analytical expressions
and structures) that range from the simplest to the hardest, as well as image processing.

The paper is summarized as follows: the new parameter βMZ
k and the adopted steplength are

presented in the next section. The convergence analysis and the global convergence are established in
Section 3. The performance of the suggested approach is presented in the last section with some
conclusions.

2. The proposed conjugate gradient algorithm

2.1. The new conjugate gradient formula and the corresponding algorithm

Inspired by the RMIL [24] and PRP [15] formulas,

βRMIL
k =

gt
k+1(gk+1 − gk)
∥dk∥

2 ,

βPRP
k =

gt
k+1yk

∥gk∥
2 ,

we have designed a new parameter, βMZ
k (where “MZ” relates to the authors for easy reference only),

which is computed as follows:
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βMZ
k =

gt
k+1

(
gk+1 +

∥dk∥
2

∥gk∥
2 yk

)
∥dk∥

2 . (2.1)

Indeed,

βMZ
k =

gt
k+1gk+1 + ∥dk∥

2 gt
k+1yk

∥gk∥2

∥dk∥
2

=

gt
k+1

(
gk+1 +

∥dk∥
2

∥gk∥
2 yk

)
∥dk∥

2 .

For good convergence properties, we adopt a new inexact line search technique that fits in with the
suggested conjugate gradient parameter βMZ

k where the steplength αk satisfies the following conditions:

f (xk + αkdk) − f (xk) ≤ αkδdt
kgk
∥gk∥

2

∥dk∥
2 , (2.2)∣∣∣g(xk + αkdk)tdk

∣∣∣ ≤ −σdt
kgk
∥gk∥

2

∥dk∥
2 , (2.3)

where σ ∈
(
0, µ−1
µ2(µ2+1.2)

]
, with µ > 1 and 0 < δ < σ. Since µ > 1, it results that 0 < δ < σ < 1. The new

line search technique is a modification of the strong Wolfe one by adding the term ∥gk∥
2

∥dk∥2
(to the right side

of the strong Wolf inequalities). The new term depends on the gradient values and the descent direction
at each point xk. We have adopted this line search to fit in with the proposed MZ parameter and ensure
global convergence with good numerical performance. This modification obtains a steplength that is
neither too long nor too short. Also, as shown below, the proposed method exhibits good convergence
properties and satisfactory performance. The main steps of the MZ method are sketched in Algorithm 1
below.

Algorithm 1: The MZ algorithm

Step 0: (Initialization) Choose a scalar µ > 1 and the parameters δ and σ such that 0 < δ < σ < µ−1
µ2(µ2+1.2) .

Choose a scalar ϵ > 0 sufficiently small to stop the algorithm. Compute f (x0), g0 = ∇ f (x0) and
d0 = −g0. Select a point x0 ∈ R

n and set k = 0.
Step 1: If ∥gk∥ ≤ ϵ, then stop; otherwise:

- Compute the steplegth αk using the new line search technique (2.2) and (2.3).
- Put xk+1 = xk + αkdk and gk+1 = ∇ f (xk+1).

Step 2: βk computation: Set yk = gk+1 − gk and compute the conjugate gradient parameter βMZ
k

following Eq (2.1).
Step 3: Search direction computation: if the restart criterion of Powell |gT

k+1gk| ≥ 0.2 ∥gk+1∥
2 holds,

then set dk+1 = −gk+1; otherwise dk+1 = −gk+1 + β
MZ
k dk and repeat Step 1.
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2.2. The sufficient descent property

It is well known that the sufficient descent property is crucial for global convergence to hold. To
establish it, we first prove the following result that will be required below.

Theorem 2.1. Let {gk}k∈N, {βk}k∈N and {dk}k∈N be the sequences generated by the MZ Algorithm under
the conditions (2.2) and (2.3). Then

∥gk∥

∥dk∥
⩽ µ, ∀k ∈ N. (2.4)

Proof. It is clear that in the case where Powell’s restart criterion holds (i.e., |gt
kgk+1| ≥ 0.2 ∥gk+1∥

2), the
descent direction dk is defined as dk = −gk, and the relation (2.4) holds.

Now, if the Powell condition does not hold, we prove the above relation by induction. For k = 0,
the condition (2.4) holds since d0 = −g0. Assume the relation (2.4) holds for k ≥ 1, and let us prove it
for k + 1. Since

dk+1 = −gk+1 + β
MZ
k dk, (2.5)

by multiplying both sides of (2.5) by gt
k+1, we obtain

dt
k+1gk+1 = − ∥gk+1∥

2 + βMZ
k dt

kgk+1. (2.6)

On the other hand, we have ∣∣∣βMZ
k

∣∣∣ ≤ ∥gk+1∥
2

∥dk∥
2 + 1.2

∥gk+1∥
2

∥gk∥
2 . (2.7)

Indeed, ∣∣∣βMZ
k

∣∣∣ ≤ ∥gk+1∥
2

∥dk∥
2 +

∣∣∣∥gk+1∥
2
− gt

k+1gk

∣∣∣
∥gk∥

2

≤
∥gk+1∥

2

∥dk∥
2 +

∥gk+1∥
2 +

∣∣∣gt
k+1gk

∣∣∣
∥gk∥

2

≤
∥gk+1∥

2

∥dk∥
2 + 1.2

∥gk+1∥
2

∥gk∥
2 .

Hence, from (2.6) and condition (2.3), it follows that

∥gk+1∥
2
≤

∣∣∣dt
k+1gk+1

∣∣∣ + ∣∣∣βMZ
k

∣∣∣ ∣∣∣dt
kgk+1

∣∣∣
≤

∣∣∣dt
k+1gk+1

∣∣∣ + σ ∣∣∣βMZ
k

∣∣∣ ∣∣∣dt
kgk

∣∣∣ ∥gk∥
2

∥dk∥
2

≤ ∥dk+1∥ ∥gk+1∥ + σ
∣∣∣βMZ

k

∣∣∣ ∥gk∥
3

∥dk∥

≤ ∥dk+1∥ ∥gk+1∥ + σ

(
1.2
∥gk∥

∥dk∥
+
∥gk∥

3

∥dk∥
3

)
∥gk+1∥

2 . (2.8)

Furthermore, since σ ≤ µ−1
µ2(µ2+1.2) , we obtain

1 − σ
(
∥gk∥

3

∥dk∥
3 + 1.2

∥gk∥

∥dk∥

)
≥ 1 − σ(µ3 + 1.2µ),
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≥ 1 −
µ − 1
µ
=

1
µ
> 0, (2.9)

by dividing both sides of (2.8) by ∥gk+1∥ . ∥dk+1∥, then from (2.9) it results that

∥gk+1∥

∥dk+1∥
≤

(
1 − σ

(
∥gk∥

3

∥dk∥
3 + 1.2

∥gk∥

∥dk∥

))−1

≤ µ.

Thus, the proof is complete. □

Now, we are in the position to prove the sufficient descent condition.

Theorem 2.2. The sequences {gk}k∈N, {βk}k∈N, and {dk}k∈N generated by the MZ Algorithm under the
new line search conditions (2.2) and (2.3) with σ ∈

(
0, µ−1
µ2(µ2+1.2)

]
and µ > 1 satisfy

gt
kdk ⩽ −ξ ∥gk∥

2 , ∀k ∈ N. (2.10)

where ξ > 0.

Proof. It is evident, in the case where the restart criterion of Powell holds (i.e.,
∣∣∣gt

kgk+1

∣∣∣ ≥ 0.2∥gk+1∥
2),

the descent direction dk is then given by dk = −gk , and the relation (2.10) holds.
Now, in the case where the Powell condition does not hold, we prove the above relation by induction.

Indeed, for k = 0, the search direction d0 = −g0, which implies that dt
0g0 = −∥g0∥

2, and relation (2.10)
holds.
Suppose that (2.10) is true for k ≥ 1. For k + 1, by multiplying two sides of (2.5) by gt

k+1, we obtain

dt
k+1gk+1 = − ∥gk+1∥

2 + βMZ
k dt

kgk+1

≤ − ∥gk+1∥
2 +

∣∣∣βMZ
∣∣∣ ∣∣∣dt

kgk+1

∣∣∣
≤ − ∥gk+1∥

2 + σ

(
1.2 ∥gk+1∥

2

∥gk∥
2 +

∥gk+1∥
2

∥dk∥
2

)
∥gk∥∥dk∥

∥gk∥
2

∥dk∥
2 , (using relations (2.3) and (2.7))

≤ − ∥gk+1∥
2 + σ

(
1.2
∥gk∥

∥dk∥
+
∥gk∥

3

∥dk∥
3

)
∥gk+1∥

2

≤ − ∥gk+1∥
2
(
1 − σ(µ3 + 1.2µ)

)
≤ −

1
µ
∥gk+1∥

2 , (using relations (2.4) and (2.9)).

Then the proof is complete for ξ = 1
µ
. □

3. The convergence analysis

Before analyzing the convergence of the proposed approach, we first show that it is well-defined. In
the following theorem, we prove the existence of a steplength α (0 < α < ∞) that meets the conditions
(2.2) and (2.3), where 0 < δ < σ, with σ ∈

(
0, µ−1
µ2(µ2+1.2)

]
and µ > 1.

Theorem 3.1. Let f be a twice continuously differentiable function that is bounded below. If gt
kdk < 0,

then there exists a strictly positive real constant α that meets the conditions (2.2) and (2.3).
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Proof. Let us define the following function

h(α) = f (xk + αdk) − f (xk) − δαgt
kdk
∥gk∥

2

∥dk∥
2 .

Using a standard Taylor development, from relation (2.4), it follows that

h(α) = f (xk + αdk) − f (xk) − δαgt
kdk
∥gk∥

2

∥dk∥
2

=
(
f (xk) + αgt

kdk + o(α)
)
− f (xk) − δαgt

kdk
∥gk∥

2

∥dk∥
2 ,

= αgt
kdk − δαgt

kdk
∥gk∥

2

∥dk∥
2 + o(α)

≤ α
(
1 − δµ2

)
gt

kdk + o(α)

≤ α

(
1 −

µ − 1
µ2 + 1.2

)
gt

kdk + o(α) < 0

Furthermore, since the function f is lower-bounded, it results that lim
α→+∞

h(α) = +∞ and h(0) = 0.
Hence, the function h(.) changes its sign, then there exists a constant τ > 0 such that h(τ) = 0. It is
clear that h(α) has a negative sign over the interval [0, τ], and its global minimum cannot occur at the
endpoints since h(0) = h(τ) = 0. Therefore, there exists α∗ ∈ (0, τ), such that h(α∗) < 0 and h′(α∗) = 0.
Hence

h(α∗) = f (xk + α
∗dk) − f (xk) − δα∗gt

kdk
∥gk∥

2

∥dk∥
2 < 0,

so that

f (xk + α
∗dk) < f (x) + δα∗gt

kdk
∥gk∥

2

∥dk∥
2 ,

and the first condition (2.2) holds. On the other hand, we have

h′(α) = gt
k+1dk − δgt

kdk
∥gk∥

2

∥dk∥
2 .

Since h′(α∗) = 0, then

σgt
kdk
∥gk∥

2

∥dk∥
2 ≤ δg

t
kdk
∥gk∥

2

∥dk∥
2 = gt

k+1dk < 0,

therefore, ∣∣∣gt
k+1dk

∣∣∣ ≤ −σgt
kdk
∥gk∥

2

∥dk∥
2 .

Thus, the second condition (2.3) is also satisfied. □

The global convergence property is crucial for any conjugate gradient method. To establish it, we
assume that:
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Assumption 3.1. The level set Ω = {x ∈ Rn| f (x) ≤ f (x0)} is bounded for any starting point x0.

Assumption 3.2. f is continuously differentiable, whose gradient function g satisfies the Lipschitz
condition in some closed neighborhood N of Ω, i.e., ∃L > 0 such that

∥g(x) − g(y)∥ ≤ L ∥x − y∥ ∀x, y ∈ N . (3.1)

The above assumptions imply the existence of a real number Γ ≥ 0 such that

∥gk∥ ≤ Γ ∀x ∈ Ω. (3.2)

To establish that the MZ algorithm converges globally (see Theorem 3.2 below), we need to prove the
following results, which will be needed below.

Lemma 3.1. Let {gk}k∈N, {αk}k∈N and {dk}k∈N be the sequences generated by the MZ algorithm; then for
some ϖ > 0 we have

gt
kdk ≥ −ϖ ∥gk∥

2 , ∀k ∈ N. (3.3)

Proof. By multiplying Eq (2.5) by gk+1, we obtain∣∣∣dt
k+1gk+1

∣∣∣ ≤ ∥gk+1∥
2 +

∣∣∣βMZ
k

∣∣∣ ∣∣∣dt
kgk+1

∣∣∣ .
Then, from relation (2.4), it follows that∣∣∣dt

k+1gk+1

∣∣∣ ≤ ∥gk+1∥
2 + σ

(
1.2
∥gk∥

∥dk∥
+
∥gk∥

3

∥dk∥
3

)
∥gk+1∥

2 ,

≤
(
1 + σ

(
1.2µ + µ3

))
∥gk+1∥

2 ,

which means that,
−ϖ ∥gk+1∥

2
≤ dt

k+1gk+1 ≤ ϖ ∥gk+1∥
2

where ϖ = 1 + σ
(
1.2µ + µ3

)
and the proof is complete. □

Lemma 3.2. Under the above assumptions, the sequence of steplengths {αk}k∈N generated by the MZ
algorithm under the new line search conditions (2.2) and (2.3) with σ ∈

(
0, µ−1
µ2(µ2+1.2)

]
and µ > 1,

satisfies

αk ≥
σ∥gk∥

2/∥dk∥
2 − 1

L∥dk∥
2 dt

kgk, ∀k ∈ N.

Proof. From Theorem 2.1, it follows that

σ
∥gk∥

2

∥dk∥
2 <

µ − 1
µ2 + 1.2

< 1,

hence, from condition (2.3), it results that(
σ
∥gk∥

2

∥dk∥
2 − 1

)
dt

kgk < dt
k(gk+1 − gk) ≤ Lαk∥dk∥

2,

which completes the proof. □
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Lemma 3.3. Under Assumption 3.1, the sequences {gk}k∈N and {dk}k∈N produced by the MZ algorithm
satisfy ∑

k≥0

(gt
kdk)2

∥dk∥
2 < +∞. (3.4)

Proof. Using the condition (2.2) and relation (3.3), we have

f (xk) − f (xk + αkdk) ≥ −δαkgt
kdk
∥gk∥

2

∥dk∥
2

≥
δαk

ϖ

(gt
kdk)2

∥dk∥
2 .

Then we have,
δαk

ϖ

(gt
kdk)2

∥dk∥
2 ≤ f (xk) − f (xk+1).

Let m = min{αk : k ∈ N}; by summing this inequality from k = 0 to infinity, we obtain

δm
ϖ

∑
k≥0

(gt
kdk)2

∥dk∥
2 ≤

∑
k≥0

δαk

ϖ

(gt
kdk)2

∥dk∥
2 < +∞.

and the inequality (3.4) holds. □

Theorem 3.2. Under the above assumptions, the MZ algorithm converges globally in the sense that

lim
k→+∞

inf ∥gk∥ = 0. (3.5)

Proof. Assume that the assertion (3.5) does not hold. Then, there exists a strictly positive value r > 0
such that

∥gk∥ > r, ∀k ∈ N. (3.6)

Let m = min{αk : k ∈ N} and D = max{∥x − y∥ : x, y ∈ Ω}. From relation (1.1), it results that

∥dk∥
2 =
∥xk+1 − xk∥

2

α2
k

≤
D2

m2 .

On the other hand, from (2.7), (3.6), (3.2), and (2.4) we obtain

dk+1 ≤ ∥gk+1∥ +
∣∣∣βMZ

k

∣∣∣ ∥dk∥

≤ Γ +
(1.2Γ2

r2 +
µ2Γ2

r2

)D
m
= M,

hence, ∑
k≥0

1
∥dk∥

2 = +∞.

But, from (3.6), (2.10), and (3.4), it results that

ξ2r4
∑
k≥0

1
∥dk∥

2 ≤
∑
k≥0

ξ2 ∥gk∥
4

∥dk∥
2 ≤

∑
k≥0

(gt
kdk)2

∥dk∥
2 < +∞,
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therefore ∑
k≥0

1
∥dk∥

2 < +∞,

which contradicts the claim (3.6), so the assertion (3.5) is true. □

4. Computational experiments

4.1. Application on typical test functions

Here, we present a series of computational performances concerning the MZ algorithm, applied to
84 test functions with 310 test problems, as listed in Table 1 and taken from CUTEr [29] and [30],
with dimensions ranging from 2 to 100,000, as well as on restoring four images with different noise
levels. All the codes are written and implemented in Matlab. In all experiments, the MZ algorithm is
implemented with the setting parameters µ = 1.6, δ = 10−4, and σ = 10−3.

To demonstrate the effectiveness of the suggested approach, we compared it with HRM [31] with
θ = 0.4, NPRP [21], NHS [21], NMFR, MP-CG [32] and CG-DESCENT [33] methods. The methods
HRM, NPRP, NHS, and NMFR are implemented using the strong Wolfe conditions, whereas MP-
CG and CG-DESCENT are implemented using the weak Wolfe conditions by setting δ = 10−4 and
σ = 10−3 (the other parameters are set as default as taken in [32]). For this comparison, the same
starting point is assigned for each test problem, and each implementation is considered successful if a
point xk where ∥g(xk)∥∞ ≤ 10−6 is reached within 2000 iterations, with CPU time less than 500 seconds;
alternatively, the implementation is assigned as a failure.

Throughout the numerical results, in Figures 1–4, we compare the performance of the proposed
method with NPRP, HRM, NHS, NMFR, MP-CG, and CG-DESCENT methods using the logarithmic
performance profile of Dolan and Moré [34], relative to the number of iterations, function evaluations,
gradient evaluations, and CPU-time. For a solver s, we define the ratio

rp,s =
Np,s

min{Np,s : s ∈ S }
,

where Np,s denotes either the number of iterations, the number of function (gradient) evaluations, or
the CPU time required by the solver s to solve a problem p. If a solver s does not solve the problem
p, the ratio rp,s is assigned a large number. The logarithmic performance profile for each solver s is
defined as follows:

ρs(τ) =
number of problems where log2(rp,s) ≤ τ

total number of problems
,

For each method, we plot the fraction ρs(τ) of problems for which the method has a number of iterations
(resp. number of function (gradient) evaluations and CPU time) that is within a factor τ. The curve
that is shaped on the top corresponds to the code that solves the majority of the test problems within
the given factor τ; for more details, see [34].

Figures 1–4 illustrate that the MZ method outperforms the others; notably, it is faster for
approximately 36% of the test problems and successfully solves around 97% of them, followed by the
CG-DESCENT method with 96% of test problems. The NPRP, MP+-CG, and NMFR methods have
solved 93% of test problems with superiority to the MP+-CG method, whereas HRM and NHS solved
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respectively, about 91% and 86% of the test problems. These outcomes prove the competitiveness and
rapid convergence of the MZ algorithm in the majority of the test problems.

Table 1. List of test functions.
Function Dimension n Function Dimension n
Extended Maratos 500, 700, 1000,2000,4000, 9000, 9500,

60,000, 10,000, 15,000
Arwhead 50, 60, 80, 100, 150, 200, 800, 1000,

5000
COSINE 10, 100 , 500, 1000 SINE 10, 100 , 500, 1000
ENGVAL1 100, 600, 800, 1000, 1500, 1600,1800,

10,000
Diagonal 1 2,10, 100, 1000, 10,000, 100,000

Generalized Tridiagonal 1 2, 10, 20,300, 500, 700, 10,000 FLETCHCR 2, 4
Extended White and Holst 1000, 2000, 3000, 4000, 5000, 6000 Diagonal 2 2, 4, 10, 800, 1000, 80,000
Diagonal 7 500, 700, 1000, 1500, 2000, 7000, 8000 Extended Rosenbrock 10, 20,100 ,1200, 3000, 4000, 5000
Quadratic QF2 100, 200,1000,5000, 7000, 9000, 10,000,

50,000
Diagonal 8 100, 200, 400, 500, 1000, 1500, 2000

Extended Freudenstein and Roth 10, 100, 1000, 4000, 9000, 10,000,
20,000, 50,000, 60,000, 80,000

Diagonal 3 2, 4, 6, 10, 50, 100, 200, 400, 700

DENSCHNF 10, 100, 10,000, 25,000, 30,000 50,000,
70,000, 80,000, 90,000

Extended Himmelblau 4, 6,10, 9000, 10,000

Perturbed Quadratic 2 POWER 2
QUARTC 2 Raydan 1 2
Generalized Rosenbrock 2, 50, 800, 1000 Perturbed quadratic diagonal 2
DENSCHNB 10, 90, 100, 2000, 3000, 4000, 5000,

6000, 7000, 9000
Raydan 2 1000, 4000, 50,000,80,000

HIMMELBG 2000, 3000, 6000, 30,000, 50,000, 80,000 LIARWHD 10,50, 4000,5000, 5500, 10,000, 20,000,
80,000

Extended quadratic exponential EP1 40,000, 50,000, 60,000, 70,000 Diagonal 5 100, 200, 700, 1000, 1500, 2000, 2200,
2500

Extended BD1 4, 800, 900, 2000, 3000, 5000 20,000,
40,000, 60,000, 70,000, 80,000

Extended quadratic penalty QP1 4, 6, 8, 10, 50, 100, 700, 1000, 1500

Hager 2, 4,10,50, 80, 150, 300 NONSCOMP 2, 4, 1000, 5000, 70,000
HIMMELLH 10, 50, 300, 500, 10,000, 50,000, 60,000,

80,000, 10,000
Quadratic QF1 5000, 6000, 8000, 9000, 20,000, 50,000,

70,000, 80,000
Extended quadratic penalty QP2 40, 60, 200 Diagonal 4 20,000, 30,000, 40,000, 50,000, 60,000,

70,000
DIXON3DQ 2, 4, 600 Extended PSC1 2, 4, 10, 100, 1000,10,000
Almost Perturbed Quadratic 2, 4, 6 Diagonal 9 10, 30,50, 60, 70, 90
Extended Tridiagonal 1 6, 10, 20,80, 90, 100, 150, 300, 500, 700,

1000, 5000, 6000
NONDIA 10, 100,500,1000,5000,100,000

EIGENALS 2550 BDQRTIC 5000
EIGENBLS 2550 EIGENCLS 2652
BROYDN7D 5000 BRYBND 5000
CHENHARK 5000 CHAINWOO 4000
EXTROSNB 1000 ENGVAL1 5000
ENGVAL2 3 ERRINROS 50
EXTROSNB 1000 FLETCBV2 5000
FLETCBV3 5000 FLETCHBV 5000
ROSENBR 2 S308 2
SPMSRTLS 4999 DIXMAANE 3000
DIXMAANF 3000 DIXMAANG 3000
DIXMAANH 3000 JENSMP 2
VAREIGVL 50 DIXMAANI 3000
KOWOSB 4 VIBRBEAM 8
DIXMAANJ 3000 LIARWHD 5000
WATSON 12 DIXMAANK 3000
LOGHAIRY 2 WOODS 4000
HILBERTA 2 TOINTGOR 50
HIMMELBB 2 TOINTPSP 50
HIMMELBF 4 TOINTQOR 50

Electronic Research Archive Volume 33, Issue 4, 2148–2171.



2159

τ

2 4 8 16 32 64 128 256 512

ρ
s
(τ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NPRP

NMFR

MZ

HRM

NHS

MP+ -CG

CG-DESCENT

Figure 1. Performance profiles plot based on CPU time.
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Figure 2. Performance profiles plot based on the number of iterations.
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Figure 3. Performance profiles plot based on the number of function evaluations.
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Figure 4. Performance profiles plot based on the number of gradient evaluations.

4.2. Image restoration problems

In optimization fields, image restoration problems are considered among the most difficult ones;
they aim to restore the original image from one that has been corrupted by impulse noise. For this
comparison, four test images (Man.png, Boat.png, Lena.jpg, and Bridge.bmp) of size 512 × 512 are
chosen to evaluate the effectiveness of the MZ algorithm against the same variants used in the previous
comparisons. The image quality is assessed by two factors: the peak signal-to-noise ratio (PSNR) and
its relative error (Err),

PS NR = 10 log10
M × N × 2552∑

i, j(xr
i, j − x∗i, j)2 , Err =

∥xr − x∗∥
∥x∗∥

where M and N are the sizes of the image, xr
i, j represents the pixel values of the restored image, and x∗i, j

denotes the original pixel values. The setting parameters of the proponent algorithms are set similarly
to the previous test, and each computation will stop if any of the following criteria are fulfilled:

Iter > 300 or
| f (xk+1 − f (xk)|
| f (xk)|

< 10−4.

Figures 5–10 show the restored images by impulse 30 %, 50%, and 70 % of noise. The performance
of each algorithm is measured by the restored image quality, the elapsed time, and the number of
iterations. The numerical outcomes are reported in Tables 2–4. The algorithm with a high PSNR and
minimal error with less CPU time is considered the best.

Upon examining the results in Tables 2–4 and Figures 5–10, it becomes evident that the MZ
algorithm delivers good performance. In fact, as illustrated in Table 2 and Figures 5 and 6, we can
observe that the NHS, NPRP and MP-CG methods failed to restore images with 30% noise, whereas
the other methods were successful with a PSNR greater than 25, and the MZ method has the highest
PSNR value for the Man and Bridge images. On the other hand, the visual outcomes of Figures 7 and
8 with 50% noise show that the NHS, NPRP, and MP-CG methods also failed to remove the noise
with a PSNR less than 25, while the HRM, MZ, NMFR, and CG-DESCENT methods succeeded in
restoring all the images and the bold values in Table 3 indicate the superiority of the MZ method for
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restoring three images. For 70% noise, as shown in Figures 9 and 10, and Table 4, the NHS, NPRP,
and MP-CG methods failed to restore the original images; the HRM method succeeded in removing
the noise from the Boat and Bridge images, and the NMFR method succeeded in restoring the images
of Man, Boat, and Lena, while the MZ and CG-DESCENT methods succeeded in removing the noise
from all images, where the highest PSNR value corresponds to the MZ method.

On the whole, the numerical and visual outcomes of removing 30%, 50%, and 70% of noise show
a satisfactory performance of the MZ algorithm. Notably, the bold values in Tables 2–4 highlight the
efficiency of the proposed algorithm and take a short time to restore the majority of the test images.

Table 2. Numerical results for image restoration problems with 30% salt-and-pepper.

Methods
Images

Man Boat Lena Bridge

Iter 26 26 25 23
NHS CPU 15.7869 14.9272 14.5193 14.4291

PSNR 15.7231 17.5183 17.3303 16.2491
Err 0.3405 0.2462 0.2993 0.3110
Iter 18 16 15 35

NMFR CPU 13.5430 12.8837 13.1202 16.5120
PSNR 31.5222 33.6216 37.6712 28.4505
Err 0.0552 0.0385 0.0287 0.0763
Iter 13 14 16 19

HRM CPU 14.4333 16.1088 15.9510 18.3902
PSNR 31.4316 33.5530 37.7937 28.5705
Err 0.0558 0.0388 0.0283 0.0752
Iter 6 6 6 6

NPRP CPU 12.4714 12.5510 11.1241 12.1049
PSNR 15.7089 17.5182 17.3155 16.2439
Err 0.3410 0.2461 0.2998 0.3111
Iter 15 27 18 20

MZ CPU 16.3077 13.2510 12.3024 17.5385
PSNR 31.5635 33.1524 37.6352 28.5895
Err 0.0458 0.0423 0.0296 0.07401
Iter 4 4 4 4

MP-CG CPU 12.0037 11.4063 11.5515 11.8034
PSNR 15.7392 17.5272 17.3172 16.2386
Err 0.3398 0.2459 0.2997 0.3113
Iter 17 17 17 16

CG-DESCENT CPU 14.0641 13.9686 14.3062 16.8352
PSNR 31.5597 33.6639 37.7533 28.5640
Err 0.0549 0.0383 0.0285 0.0753

5. Conclusions

In this paper, we propose a new conjugate gradient algorithm by introducing a novel conjugate
gradient parameter for solving nonlinear unconstrained optimization problems. To speed up the
convergence, we have adopted a new inexact line search technique that fits in with the proposed
conjugate gradient parameter. The existence of a steplength that meets the new line search conditions
is established, and the generated search direction dk satisfies the sufficient descent condition. The
convergence properties of the suggested approach are analyzed under the new line search conditions,
and the proposed method converges globally under mild assumptions. Numerical experiments are
carried out on 310 test functions and four image restoration problems with three noise levels. The
numerical comparison with similar and recent CG methods shows that the proposed algorithm is
competitive and efficient for solving large-scale complex problems as well as image restoration ones.
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Table 3. Numerical results for image restoration problems with 50% salt-and-pepper.

Methods
Images

Man Boat Lena Bridge

Iter 31 34 33 30
NHS CPU 24.3502 24.8263 24.8593 23.0874

PSNR 13.4363 15.2070 14.7535 14.1568
Err 0.4430 0.3212 0.4027 0.3957
Iter 22 17 17 18

NMFR CPU 20.1598 18.0440 18.1020 17.7847
PSNR 29.1302 31.0974 35.0066 26.5072
Err 0.072728 0.051554 0.039116 0.095465
Iter 19 14 26 14

HRM CPU 31.6329 22.9351 33.0992 21.4267
PSNR 29.0482 30.0439 35.0633 26.2812
Err 0.073418 0.058202 0.038862 0.097982
Iter 6 6 6 5

NPRP CPU 16.0684 18.4926 16.6391 16.2163
PSNR 13.4675 15.1712 14.7757 14.1672
Err 0.441405 0.322532 0.401702 0.395223
Iter 19 22 22 21

MZ CPU 27.0201 22.20145 24.2571 24.3507
PSNR 29.1725 31.1735 35.1438 26.6304
Err 0.0723 0.0523 0.0393 0.0943
Iter 6 6 6 5

MP-CG CPU 18.9429 19.0158 18.4746 16.5455
PSNR 13.4606 15.2050 14.7792 14.1677
Err 0.4417 0.3212 0.4015 0.3952
Iter 22 19 20 23

CG-DESCENT CPU 26.4330 23.1224 21.7718 29.0420
PSNR 29.1528 31.1018 35.0045 26.7484
Err 0.0725 0.0525 0.0395 0.0935

Table 4. Numerical results for image restoration problems with 70% salt-and-pepper.

Methods
Images

Man Boat Lena Bridge

Iter 34 37 34 31
NHS CPU 29.7937 30.6846 27.8669 22.3260

PSNR 11.3935 12.9901 12.5870 12.1899
Err 0.5604 0.4146 0.5168 0.4963
Iter 24 23 20 25

NMFR CPU 24.9760 23.0873 13.6592 25.6359
PSNR 26.2295 28.1877 28.5882 24.4006
Err 0.101563 0.072068 0.075126 0.121667
Iter 10 26 20 25

HRM CPU 28.8301 49.0126 40.3861 48.7749
PSNR 22.3136 28.1401 30.0993 24.2470
Err 0.159416 0.072465 0.068821 0.123838
Iter 6 6 6 6

NPRP CPU 22.5660 20.0892 20.4119 19.4860
PSNR 11.3863 13.0485 12.5869 12.1776
Err 0.560914 0.411816 0.516821 0.496963
Iter 33 30 29 37

MZ CPU 27.2350 27.0357 26.4757 30.5668
PNSR 26.5342 28.2927 32.9605 25.5351
Err 0.1003 0.071202 0.0424 0.1020
Iter 6 6 6 7

MP-CG CPU 22.9555 24.2128 23.7843 26.3187
PNSR 11.4052 13.0353 12.6075 12.1781
Err 0.5596 0.4124 0.5156 0.4969
Iter 23 23 26 18

CG-DESCENT CPU 32.5424 34.5871 34.7645 29.9523
PNSR 26.2393 28.2483 31.7190 24.3003
Err 0.1014 0.0715 0.0571 0.1230
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Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise

HRM HRM HRM HRM

NHS NHS NHS NHS

NMFR NMFR NMFR NMFR

Figure 5. The noisy images with 30% salt-and-pepper (first row) and the restored images by
HRM (second row), NHS (third row), and NMFR (last row).
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MP-CG MP-CG MP-CG MP-CG

CG-DESCENT CG-DESCENT CG-DESCENT CG-DESCENT

Figure 6. The restored images with 30% salt-and-pepper by NPRP (first row), MZ (second
row), MP-CG (third row), and CG-DECENT (last row).

Electronic Research Archive Volume 33, Issue 4, 2148–2171.



2165

Original with 50% salt-and-pepper noise Original with 50% salt-and-pepper noise Original with 50% salt-and-pepper noise Original with 50% salt-and-pepper noise
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NHS NHS NHS NHS

NMFR NMFR NMFR NMFR

Figure 7. The noisy images with 50% salt-and-pepper (first row) and the restored images by
HRM (second row), NHS (third row), and NMFR (last row).
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Figure 8. The restored images with 50% salt-and-pepper by NPRP (first row), MZ (second
row), MP-CG (third row), and CG-DECENT (last row).

Electronic Research Archive Volume 33, Issue 4, 2148–2171.



2167

Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise
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Figure 9. The noisy images with 70% salt-and-pepper (first row) and the restored images by
HRM (second row), NHS (third row), and NMFR (last row).
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Figure 10. The restored images with 70% salt-and-pepper by NPRP (first row), MZ (second
row), MP-CG (third row), and CG-DECENT (last row).
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