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Abstract: In this paper, we investigate the fixed-time synchronization of fuzzy stochastic cellular
neural networks (FSCNNs) with mixed delay and Lévy noise. We designed the feedback controller and
adaptive controller for cellular neural networks with Lévy noise to achieve fixed-time synchronization.
Using the Lyapunov theory and the [I70 formula, we established the criterion for fixed-time
synchronization of FSCNNs with Lévy noise. Additionally, we obtained the resulting settling time,
which is independent of the initial values of the system. The practicality and validity of the theoretical
conclusions are demonstrated through two examples. The research results show that when the
intensity of random interference is not large, FSCNNs can achieve synchronization through appropriate
control means.
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1. Introduction

Neural networks are widely used in many fields such as biomedical, image processing, automatic
control, pattern recognition, signal processing, and secure communication; the synchronization
problem of neural networks has been widely studied in recent years [1-7]. In 1988, Chua and Yang
first proposed cellular neural networks through parallel processing [8]; subsequently, CNNs attracted
the attention of many scholars. In order to deal with some uncertain and incomplete data, Yang et al.
added fuzzy logic to the structure of traditional CNNs and first proposed the fuzzy cellular neural
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network model (FCNNs) [9]. Compared with traditional CNNs, FCNNs have many advantages such
as better adaptability, fault tolerance and robustness, and the ability to process information faster [10].
In addition, neural networks in the real environment are inevitably affected by signal transmission
delay and external stochastic interference, which make the analysis of the networks
more complicated.

Synchronization is a very important dynamic behavior of neural networks and has become a hot
topic. In most of the research on neural networks synchronization, scholars have focused on the
asymptotic and exponential synchronization of neural networks [11-15]. Asymptotic or exponential
synchronization means that the synchronization can only be achieved when time approaches infinity.
The applications of these theories are limited, because many systems in practical applications such as
secure communications, manufacturing engineering, and power networks require achieving
synchronization in finite time. Therefore, the finite-time synchronization of complex networks has
gradually been studied by many researchers. In [16], Yang and Cao investigated the finite-time
synchronization of complex networks with white noise perturbations by using the finite-time stability
theorem and inequality techniques. In [17], Wang investigated the finite-time synchronization of
fuzzy cellular neural networks with proportional delays. In [18], Duan et al. researched the finite-time
synchronization of delayed fuzzy cellular neural networks with discontinuous activations. In [19], Wu
et al. obtained the finite-time synchronization criteria for a chaotic dynamic neural networks with
mixed time-varying delays and stochastic disturbance by using the state feedback control and adaptive
control. In [20], Abdurahman et al. studied the finite-time synchronization of fuzzy cellular neural
networks with time-varying delays. Other literature on finite-time synchronization of neural networks
can be found in references [21-25].

Compared with the asymptotic synchronization, the finite-time synchronization can be achieved in
a finite time and has faster convergence speed and stronger anti-interference. However, the
convergence time of the finite-time synchronization is usually very dependent on the initial state of
the systems. That is, different initial states can lead to different convergence times. The initial state of
the systems in many practical problems are difficult to know. Therefore, obtaining a fixed
convergence time that does not depend on the initial states of the systems has been the focus of
scholars in recent years. In [26], Yang et al. investigated the fixed-time synchronization of complex
networks with impulsive effects by designing a new Lyapunov function and constructing comparison
systems. In [27], Khanzadeh and Pourgholi investigated the fixed-time synchronization of complex
dynamical networks with nonidentical nodes in the presence of bounded uncertainties and
disturbances by using the sliding mode control technique. In [28], Zhang et al. studied the fixed-time
synchronization of stochastic complex networks with white noise and designed a continuous
controller to avoid the chattering phenomenon. In [29], Ren et al. investigated the fixed-time
synchronization of stochastic memristor-based neural networks with white noise via the state
feedback control and the adaptive control. In [30], Kong et al. studied the fixed-time synchronization
of a class of discontinuous fuzzy inertial neural networks with time-varying delays by relaxing the
conditions of the C-regular Lyapunov function. Other literature on fixed-time synchronization of
stochastic neural networks can be found in references [31-35].

It is worth noting that in the above studies on fixed-time synchronization, stochastic neural
networks are all driven by white noise. White noise is a continuous effect that can be used to
characterize continuous stochastic interference. However, discontinuous stochastic perturbations
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should also be considered, which can be used to describe sudden external influences. Lévy noise
combines time, Brownian motion, and random jumps and can better simulate extremely unusual and
sudden events such as earthquakes, flash floods, and epidemics, which can not be depicted just by
white noise. The introduction of Lévy noise brings new difficulties and challenges to the research of
neural networks. In [36], Zhu proved several Razumikhin-type theorems for the pth moment
exponential stability of stochastic functional differential equations with Lévy noise. In [37], Zhou et
al. investigated the stabilization of stochastic coupled systems with time-varying delays and Lévy
noise via the periodically intermittent control. In [38], Zhou et al. studied the cluster synchronization
of coupled neural networks with Lévy noise by proposing a trigger mechanism and designing a data
sampling strategy. In [39], Shi et al. discussed the pth moment exponential synchronization of
one-leader multi-follower systems by using the Lyapunov stability theory and the exponential stability
criterion. In [40], Zhang et al. researched the semi-globally exponential synchronization of stochastic
systems with mixed time delay and Lévy noise under the aperiodic intermittent delayed sampled-data
control. However, few studies on fixed-time synchronization of stochastic neural networks with Lévy
noise can be found. In [41], a fixed-time synchronization criterion for stochastic cellular neural
networks with Lévy noise was established by utilizing the Lyapunov function method and the
inequality technique. The research in this area is far from enough and deserves further study.

Based on the above analysis, this article is devoted to the fixed-time synchronization of FSCNNs
with white noise, Lévy noise, and mixed time delay under feedback control and adaptive control. The
following three points reflect the core contributions of this paper.

e A first attempt is made to study the fixed-time synchronization of FSCNNs with Lévy noise. Based
on the Lyapunov theory, a fixed-time synchronization criterion for FSCNNs under the influence
of Lévy noise is derived. The obtained synchronization time is independent of the initial value of
the systems.

e This paper designs two control methods, feedback control and adaptive control, to achieve the
fixed-time synchronization of FSCNNs with Lévy noise.

e In the discussion of the fixed-time synchronization of FSCNNs with Lévy noise, we use high-
order terms to limit the impact of Lévy noise.

In fact, the main purpose of this paper is to generalize the fixed-time synchronization method of
stochastic neural networks with white noise in reference [29] to stochastic neural networks with Lévy
noise. Moreover, compared with the Lévy noises in existing literature such as [36—41], the assumption
about the intensity function of Lévy noise in this paper is different.

The remainder of the article is divided into the sections below. Section 2 presents some
preliminary descriptions and model characterizations. Section 3 presents the derivation of a
fixed-time synchronization criterion with Lévy noise based on the Lyapunov theory and the [t0
formula. In Section 4, some numerical examples are given to validate the proposed criterion.

2. Preliminaries and model descriptions
This paper considers a class of FSCNNs with discrete and distributed delays under white noise and

Lévy noise
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where «;(7) represents the state of the ith node at time ¢ with i € {1,2,---,[}, and [ is the total number
of neuron nodes. a; represents the passive decay rate to the ith node; i represents the delay that occurs
at the dynamic node; ¢;;, v;;, and 6;; represent the elements of the feedback template; p; represents the
input of the ith neuron; D, is the deviation of the ith neuron. m;j, 0;j, ¢;;, &; are the elements of the
fuzzy feedback template; G;;, H;; are the elements of the fuzzy feed-forward template. ]7(-) :R—>R
and g(-) : R — R are the activation functions. (Q, ¥, F,P) is the complete probability of the sample
space with the filtration F = {¥F;},»o satisfying the usual conditions (i.e., it is right continuous and %
contains all P-null sets). The intensity of white noise is denoted by w; : R X R* — R, and B(¢) is
the one-dimensional Brownian motion defined on (Q, 7,F,P). y(-) : RXR* xS — R serves as the
Lévy noise intensity function; the compensated Poisson random measure is represented as N(dt, du) =
N(dt, du) — A(du), where N(dt, du) is the Poisson counting measure on [0, +oco] X S. A is the intensity
measure and S is the measurable subset of R* such that A(S) < co and A(S) = A. Write Lffo ([—h, 0]; Rl)

for the family of all ¥,-measurable C ([—h, O];RZ)—Value random variables x such that E(||x]?) < oo,
where E(-) denotes the mathematical expectation with respect to the given probability measure P.
The system (2.1) is used as a drive system and the following is the response system
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+ f)/l(ﬁl(t)’ Z, M)N(dt, du)’
S

where u;(f) is a suitable controller and will be designed to ensure that systems (2.1) and (2.2) are
synchronized at a fixed time. The initial conditions of systems (2.1) and (2.2) are

B(5) = (B1(5), $a(s), -+, $u(9) € L, ([=h, OLR'), w(s) = W(s), ga(s), -+, Yils)) € L3, (I=h, O '),
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respectively. Define the error as () = 5;(t) — a;(t). From (2.1) and (2.2), the error system is as follows

[ r
dzi(®» :[ —a;gi(1) + Z (S‘ijf(fj(f)) + Vijf(gj(t —h)) +6;; fh F((j(s))ds)
J=1 -
I l l r
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dr + W; dB() + f [, N(dt, du),
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where

1 1 [
FGO) = FB() = (), \ myGi() = \ migB,() = /\ migte;(),
j=1 j=1 j=1

Wi = wi(Bi(2), 1) — wilai(0), 1), T'i =yi(Bi(0),t,u) — yi(ai(0), t, u).

Consider a stochastic system as follows
dp(t) = f(t.p(0)d(®) + w(t, p(t)dB(t) + f Y(o(1), t, )N (dt, du), (2.3)
S

where p(0) = py € R. The system (2.3) is a Lévy process-driven stochastic differential equation, and
the /to formulation for the generalization of such equations is given in the monograph [42]. The first
hitting time is a function about the settling time expressed as T(pg, €) = inf{f|o(#) = 0,¢ > 0}, where
€ € Q is a fundamental event.

Definition 2.1. [29] For any initial state py € R, if the following are satisfied,

1) The origin is globally stochastic finite-time stable in probability.

2) The mathematical expectation of T (py, €) has a upper bound M > 0, which is not dependent on
the selection of initial values,

T = E(T(0o,€)) < M, ¥po € R,
then the trivial solution of system (2.3) is considered to be stochastic fixed-time stable in probability.
Assumption 2.2. There exists a positive number »;, such that
Te[W] Wil < %l (D4().
Assumption 2.3. For any sy, s, € R, there exist positive constants L, and L, satisfying

1f(s1) = f(s2)| < Lilsy — s,
[g(s1) —g(s2)| < Lylsy — s

Assumption 2.4. For any {(t) € R, t € R*, u € S and m\,ms,...,m, > 1, there exists a positive
number @;, such that

I | < @ildi(O™.
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Lemma 2.5. [9] Assuming p, and p, represent two states of system (2.1), then

l
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Lemma 2.6. [43]1fS,S2,...,8,>20and0<m <1, M > 1, then
Sy ST (S S, Sl sM = (sl s

This section establishes an adequate criterion for fixed-time synchronization of FSCNNs based on
the Lyapunov method.

2.1. Feedback control

State feedback control aims to generate a control input that drives a system to a desired state by
utilizing the state variables of the system. By monitoring the current state of the system, the controller
will adjust the control input so that the error between the current state and the expected state of the
system is constantly reduced and the two states are finally in agreement. Because the control rules are
fixed and the feedback gain does not change over time, the design process of the feedback controller
is relatively simple and easy to implement. In addition, the synchronization criterion of a system
under feedback control is also easier to derive. The advantages of feedback controller are its simple
design, small amount of computation, easy derivation of synchronization criteria, and convenient
realization. These advantages make the state feedback control a most commonly used technique in
modern control theory. First, we design a state feedback controller u;(f) to synchronize FSCNNs at a
fixed time as follows:

/

XG0 - Y (o~ Misien(G) - Sy [ taopas 0
B P
o= i (2.4)
— ulZ0)sign(Zi(0) = m [1LOP" + 12" Isign(£i(), if £i(r) # 0,
" if £i(1) = 0

where N;, w;;, 41, 11, @;; are all nonnegative numbers, 0 < g < 1, and M > m > 1. The block diagram
of feedback control model is shown in Figure 1.
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{input }—)[ drive system ] o
W [ error system ]—)—[check synchronization]

yes

output

Figure 1. Block diagram of feedback control model.

[ response system]

Theorem 2.7. Under the Assumptions 2.2-2.4, the systems (2.1) and (2.2) are stochastic fixed-time
synchronization under the feedback control (2.4), if the following four conditions hold

)
— 2a,~ — 2Nl + X + Z(nglj + ngﬁ + H’J + 0jj +§:ij) < 0,
=1

!
ZZ (LlVij + |myj| Ly + |e;| Lo — wij) <0,
j=1
/
Z (h@,j (L1)2 + I’lSj,' (L2)2 + l’lCﬁ (L2)2 - wi,-) <0,
=1
277111_M - /_U(p > 0.
And the settling time is
1 1 1 1
T T AT T
ml-0 mM-1
where @ = max[¢?], M = max[m,], m = min[m,], i1 = 2, Q = 22, iy = 21" M - Ag.

Proof. We structure the Lyapunov function V({(z)) = Zﬁzl {f(t){,-(t). According to the Itd formula,
we have
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By calculation, we can write the expression for LV (2.5) as LV = Z}fl LV;, where

l l l l
Lvi=2) 0 iF @), Lvy=2> 0 Y viFEt - h),
i=1

i=1 =1 = J=1
LVs =2 i (@) Al myG(i(t—h), LVy=2 i () Vl 4Gt =),
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i= = =
LVe =2 zll] 0 [ Al o [ Zh G(z,(s)ds + Vlfi,- | th 5(§,<s>>ds],
i= Jj= = Jj= =
LV; =2 i L(tu(t), LVg = i fs [(m) + )" (Gt + To) = & (OG0 = 2] (O3 [A(du)

) 1
LVy =2 —al] (0G(0), LVig= ) Te(W] W)).
i=1 i=1
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Now, we use the inequality scaling for each part of LV. From Assumption 2.3, we can obtain that

1

] 1 ]
LV <2 1601 Y sylaldi(01 2 ) syl < Y (syLaliiOF + s Lilg (o))

i=1 j=1 i,j=1 ij=1

1 1 1
< D LGP + > GLIGOF < Y sy + sl ) IGOP,

ij=1 ij=1 i,j=1
and
1 1 l
LV2 <2 311601 Y vilald it = I <2 3 v Ll e = bl
i=1 j=1 ij=1

By using Assumption 2.3 and Lemma 2.5, one has

! l /
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i=1 J=1 ij=1
and
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In the same way, we have
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i,j=1 =
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In addition, it follows from Lemma 2.6, Assumptions 2.2 and 2.4 that

l+q
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M
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Further, if the conditions in Theorem 2.7 hold, we can obtain that
! = ! M I m
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Substituting (2.16) into the expression for (2.15), we have

/
LV <=2 (V@) = 20" (V@D = 20" (V@) + 1Y @ (VED)™
i=1

< —2p (V) 7 = 2m 1M (VDY = 21 (VL (0))”
+ AP[(VELON + (VD)™ (2.17)

< =2 (VEO)T = @il = 2) (V@)™ — @il = ) (VD))"

—2uy (V) 7 = @I = i) (VZ (D)
< =i (V)2 = i (V@)™

IA

where ﬂl = 2/.11, 0= %, ﬁl = 27]1[1_M - /_U(,_O

The next step is to estimate the settling time. According to [44], since the V({) is a positive and
radially unbounded function, there are two K, class functions y; and g such that g1([Z]) < V() <
f2(1Z)) for any £ € R/,

Letr > 0 and O < & < 1 be arbitrary, and define o, = inf {¢;|{(¢; y)| > r}, where {y = B(0) — a(0).
By supermartingale inequality,

P(o, <) u(r) £ E[l;,«V((0)] < E[V{(t Ao))] < V(o) < (140D

Taking 6 = &' ({1(r)e), we can obtain that P (o, < 1) < & when |{o| < 6. Let t — oo, then we have
P (0, < o) < g, which implies that P(suptZO |(t; &)l < r) >1-e.
Next, we prove the fixed-time attraction in probability. Structure a function

V() 1
R(V() = fo — s

fus? + s

The function R(V()) is positive definite and twice continuously differentiable in R'\{0}. For any initial
condition £, € R'\{0}, the stopping time is characterized as h; = inf{t > 0; |£(t; {o)| & (%, k)}. Fort < hy,

ARy

o 1 ov
ROV A h) =RVE@) + | LROVE)ds + fo v

Ve 7,V Gz 8(£(5))dB(s)

t ARy (2. 1 8)
+ f LORV((5))Nd(dt, du).
0

Since W%—Z'g’@ (5)) is bounded in interval ; < |{] < k, we have
1 ov_
- =0.

Taking expectations on both sides of (2.18), it follows from E [ fo AP LORWV((s)))Nd(dt,du)| = 0 that

N

E[R(V(( A h))] = R(V(5)) + LR(V((5)))ds, (2.19)

0
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where

LR(V({(1))) AT LV((®)

1 4 ove! +pMyM-t oV _ oV _
T2 @verqvy? [(_g@) (_g@)}

i oL
V(&+y) 1 1
+ i ds — 7 (V({{ +y) - V( ))]/l(du)-
fs st(g“) f152 + 7y sM Ve +iq v1 £+ ¢
Because the function V({) is positive definite and f1;,7;, Q, M are positive constants, we have
1 4, 0Ve! +fMvM-! oV _ oV _
SoAEl T —g@) =28(0)
2 (1 Ve + 1, VM) e e

Note that &, V€ + #; V™ is positive and increasing. Thus

V({+y) 1 l
1 el —n V({+y) -V ))]ﬂ(du)
L[fV({) /JISQ + 771SM /l]VQ + VM ({ 7) (é/

1 1
) fs [(MV@*)Q + VIO Ve + ﬁlVM) V(¢ +y) - V({))] A(du) <0,

where {* € ({,{+7y) wheny > 0and * € ({+7,{) wheny < 0. According to (2.17), we can obtain that
1
V(@) £ ———F— - LV({(@) < -1.
LR(V((1)) < YA LV({(©) <
It follows from (2.19) that

E[R(V((@ AR < RV(Z0) — (A ly),

which implies
E[R(V({(t A h)))] < R(V (&)

Let k — oo, then we have t A h; — T, a.s. Thus the settling time could be obtained as

1

V@) 1
— E[T(,0)] < RV()) = f 1 <
0

1 1
fus@ + iy sM il -

1
+ — .
0 mM-1

That is T, < +oco and independent of the initial state.

2.2. Adaptive control

Although feedback control has many advantages, it does not mean that other control methods are
meaningless. The fixed structure of feedback controller will not only make the design and
implementation simple but also lead to the waste of resources. For example, the feedback gain
coeflicient is usually so large that it would result in an unreasonable use of resources. In order to avoid
such waste of resources, the adaptive controller has been proposed. The adaptive controller constantly
measures the states of the system and makes decisions to change the structure and parameters of the
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controller. Or, it changes the control rules according to the adaptive laws. The main purpose of this
controller is to make the system achieve the desired states with less consumption by changing the
control rules. Compared with the feedback control, the design of the adaptive control is complicated,
its calculation is larger, and its synchronization criterion is more challenging to deduce. However, if
the adaptive control scheme is feasible, it can achieve the same goal with a smaller control input.
Moreover, the adaptive control generally has better stability and robustness than the feedback control.
The comparison of the feedback controller and the adaptive controller can be seen in Table 1 below.

Table 1. Comparison of the feedback controller and the adaptive controller.

Controller Gains Calculation  Design Synchronization time ~ Consume resources  Stability
feedback controller  fixed simple simple more more weak
adaptive controller =~ dynamic  complex complex less fewer strong

Next, we design an adaptive controller to synchronize FSCNNs within a fixed time as follows:

/

1 ! i
- Ri(OG(@) - Z [a)z‘ JI¢i(t = lsign(Zi(0)) — 3 @ij f |§i(s)|2ds| g(tl)z]
o £ —h &)l

— pal&i(Osign(&i(®) — mallOPM ™" + 140" Isign(£i(D), if (1) # 0,

0, if £i(r) = 0,
(2.20)

where N;(?) is the adaptive adjustment feedback gain, and the designed adaptive rate is

Ri(0) = & (OG(0) — pasign(Ri(1) = R D®i(0) = 81T = masign(R; () = RDIR(0) = 8 )M+ (Ri(0) -8 ],
(2.21)

where N is a constant to be determined.

Theorem 2.8. Assume that the Assumptions 2.2-2.4 hold. The systems (2.1) and (2.2) are stochastic

fixed-time synchronization under the adaptive control (2.20) with adaptive rate (2.21), if the following

four conditions hold:

1
- 2a,~ - 2N1 + x; + Z (ngij + ngji + 9,']' + 0ij +§ij) < O,

=

!
2 Z (|L1| vij + Imijlly + ol Ly — a),-j) <0,
=1

—~

(Abji (1) + hsji (L) + heji (L) — @3;) <0,

—

j:
oM = AUg) 27 > 0.
And the settling time is
11 11
TE =~ 1 A + ~ Az  1°
pl-0Q i M-1
where [y = 2y and 7y, = (21"~ — Alp) 217V,
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Proof. We structure the Lyapunov function V(t,£(£)) = YL, [T (0)&i(t) + (Ri(t) — 81)?]. According to
the 1td formula, we have

Lv 224 (t)[ a;(r)+2(gUF(§,<t»+v,]F<4j<r n) +6; f F(Z,(9)ds)

j=1

1
+ ui(t) + A miG(Zj(t = h)) + \/ Gt =) + )\ 0 f Gl&i(nds
j=1 j=1 =

Jj=1
! ¢
+v1§ij f G o)ds

l
+ Z f (4,-<r) + )" (G0 + ) = & (060 - 24 (t)%]/l(du)

i !
n Z} Tr(W] Wy) +2 Z] (Ri(1) = R) - Ry(r)

=2 Z —~ail] (DG(1) +2 Z 40 Z GiF (1) +2 Z A0 Z viF (it =)

i=1 j=1 i=1 j=1

+2 Z 40 Z 0 f F(Zj(s))ds +2 Z g /\ miG(Zi(t = )

+2 Z 40 V 4G (= 1)) + 2 Z 40 /\ 0; f G(Zj(5)ds

+2 Z 0 \/ & f G(Z;(s))ds +2 Z (Do) + Z Te(W! W)
i=1 j=1 1=h i=1 i=1

l i
+2 (RO =R) R + f [(m) + ) (@G + 1) = (040 - 28] (T | A(dw).
i=1 i=1 VS
(2.22)

Comparing (2.5) and (2.22), we can find that the terms in (2.22) are all scaled in the proof of
Theorem 2.7, except for the term

l i
23 Ouin +2 ) (Rilo) = 8) - Ry,
i=1 i=1
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By using (2.21), we obtain that
! !
2 Z & Ou(r) +2 Z (Ri0) = ) - Ri(0)

Lo |
zZé(r)( x(t)g(r)—Z(qué,(t Dl f ordsi o)

— &GO (D) = mlIGOP ™ + 14 P 1]({z(t))) + 22(&(0 N - ({iT(t)é(t)

i=1

— pa(Ri(1) = NDWi(1) = N = 12(Ri() = RDI(E) = XM+ (Ri(t) - xl)zm_l])

1
4()
< ZU”( (R:(1) = R £:(0) — Z(wulm )~ f Gi(s)d m)p

— IGO0 = Ml + |§,~<r>|2m-1]<§,-<r>>) +2 Z(&(r) -N)- (5? (0D
— pa(Ri(1) = RD®(1) = R = mai(t) = RDIR() = 8™+ Ri0) - &)2"“1)
-2 i Rl 0G).

Therefore, it follows from Lemma 2.6 that

l l
2 Z & Our) +2 Z (Ni(0) = ) - Ri(0)

I+q
2

-2 Z WlGOI (e = 1) = Z @y f Zi(9)PPds = 2415 [Z ¢ (z)au))

i,j=1 i,j=1

= 2l M (Z 4 <r>g,-(z>]
i=1
l
=2l [Z (Ni(0) — &)2]
i=1

(2.23)

M m
= 2l ™" [Z a-T(z)éL-(r)) - 24 Z (Ri0) =N
i=1 i=1

M

! n l
- 2ml' " [Z (Ni(1) - Nl)z] -2 )" N 4.
i=1 i=1
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Combined with (2.6)—(2.14), (2.16), and (2.23), we have

o3

ij

>N
i,j=1
— 2

- 2uo

+ Al

2al 2'Nl + Z(gl]Ll + gthl + 01] + Oij + ‘ftj) + %U] |§l(t)|

+2 Z (Vile + [mjj|Lo + |t;;|Ly — wij)|{i(f)||§j(f - h)|

1

hb]z (Ll) + hs]z (LZ) + hc]z (LZ) le f |§l(S)|2dS

1+g

- M

l l
>, 4“?(04(0] — 2l (Z 4 (r)@(r))
i=1 i=1

I+q

I m
2l [Z 4-%40))
i=1

M

i=1 i=1 i=1

M

i l m
D g,f(rm(z)] + g [Z 4,70)40)) .
i=1 i=1

Assume that the conditions in Theorem 2.8 hold, then

LV <- 2/12

)

+ Al

Electronic Research Archive

l4q

1 2 1
>, 4?(04(:)] — 2l M (Z d (r)g,(r)]
i=1 i=1

l+q

1 2 1
D) - mz) - 2l [Z ®i(0) - W]
i=1 i=1

M / m
— 2l [Z 4’0)4(:))
i=1

M

! M 1 m
> (z);-(t)] + Al [Z 4?@)4@)) .
i=1 i=1

l 2 l l mn
DR - &)2) — 2l [Z (Ni(r) - Nl)z] = 2l (Z (Ni(r) - mz)

I m
-2l (Z (Ni(1) - W)
i=1
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Thus, it follows from Lemma 2.6 that

1+g
- M

! l "
— 2l M (Z 4 <r>4-<r>] — 2l [Z 4?(040))
i=1 i=1

I Ex I M ! m
— 2| > (RilD) - xoz) — 2l [Z (Ni(1) - W] — 2l (Z (Ri(1) - &)2)

M m M

i i 1
+AUp| ) 4?(04@)] + Al [Z d(t)g(t)) + AU (Z (Ni() - xoz)
i=1 i=1 i=1

1 m
+ AUp| ) R0 - &)2]
i=1

l
Lv<-on| ) d (t)gm]
i=1

! 5t I M
<-2m| ) éf(r)g-(r)] = 2l M (Z d <r>§,-<r>]
i=1 i=1
! 5 ! M
= 2| > (Ril) - Noz) =2l ™ (Z (i) - W]
i=1 i=1

! M ! M
+AUp| >l (t)&-(t)] + Al [Z Ni(0) - 81)2]
i=1 i=1

l+g
2

IA

1
= 2| Y (& OGO + (i) = R, ))
i=1 l "
— (2™ - tp) 2" (Z (& DG + ®i(0) = 81 ))
i=1
< = 2 (V@) > = (2™ = ) 2" (VL (1)
< = (V0N = i (VO™

where ¢ = max[¢?], M = max[m;], m = min[m], fo = 25, Q = B2, iy = (2mp"™M - Alp) 2!

By using a similar approach in the proof of Theorem 2.7, we can easily obtain taht the settling time is

as follows:
1 1 1 1

= — + — .
L1-0 HhM-1

T

3. Numerical examples

In this section, two detailed numerical simulations are provided to demonstrate the validity of our
results. First, we give the simulation process:
Step 1. Take the values of the system parameters including the connection weights of
coefficient matrix.
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Step 2. Define the initial values of the drive and response systems.

Step 3. Generate discrete time nodes. Randomly generate white noise perturbations and the time nodes
of Lévy jumps. Merge them with the original time series to obtain a new time series.

Step 4. Treatment of fuzzy terms.
Step 5. Establish the iterative format of the drive system.
Step 6. Compute control item and establish the iterative format of the response system.
Step 7. Obtain the error data by iteration.
Let [ = 8, then the drive system is as follows:

8 -
da (1) :[ - aei(®) + ) (suflai0) + vifla e - ) + 0 f Flarjnas)

=1
8 8 8 !
+ [\ migla;t =)+ \/ uglat — ) + )\ o f aj(s)ds
J=1 j=1 j=1 t=h (3.1)
8 . 8 8
+\/ & f B (s)ds + N\ Gipj+ \/ Hijp; + Dildt + wi(ai(n), dB(?)
=1 =h j=1 j=1

+ f%(ai(l‘), t, u)N(dt, du).
s

4 =16,h=001,D=0,L =Ly = 1, f() = 3() = tan(-), p; = 0.1, G;; = Hy; = 1, w; = 3 (1),
wy = 3.5a5(8), wi = 3a3(t), wa = 4.5a4(t), ws = =3as(t), wg = —3.5a4(t), wy,t) = —4a7 (), wg =
—4.5a5(0), y1 = log(1 + a1 (1)), y2 = e2(n) log(1 + a(1)), 75 = 3(1)? log(1 + a3(1)), 74 = log(1 + au(1)),
ys = as()1og(l + as(0)), 6 = as()? log(l + (1)), y7 = log(l + a7 (1)), ys = as(?) log(1l + as(1)), and

0 0 06 0 0 0 0 0]
06 0 0 0 0 05 0 0
0 07 0 0 05 0 0 0
0050 0 0 0 0 0
G =03%1 0 6 o 0 0 0 06 0 |
0 0 0 06 0 0 05 0
0 0 05 0 0 0 0 06
0 0 0 0 0 06 0 0 |
[0 06 0 0 0 0 0]
06 0 0 0 0 05 0 0
0 07 0 0 05 0 0 0
0050 0 0 0 0 0
s =025 0 0 0 0 0 06 0 |
0 0 0 06 0 0 05 0
0 0 05 0 0 0 0 06
L0 0 0 0 0 06 0 O |
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The response system is

8 r

dBi(1) :[ — a0+ ) (g,-f(ﬁja)) + Vi f(Bi(t = 1)) + 6 f h f(ﬁj(s»ds)

- -
8 ' 8 8 t

+ /\ m;;g(B(t — h)) + \/ Li;i8(B(t = h)) + /\ 0ij fhg(ﬁj(s))ds

j=1 j=1 !

IS

(3.2)

8 . 8 8
+ \/lfij fhg(ﬂj(s))ds + /\ Gijp; + \/ Hiipj+ D; + u;(t) |dt + w;(B;(1), )dB(t)
d

= J=1 J=1

+ f‘)/l(ﬁl(t)a t’ M)N(dt, du)’
S

wi = 3B1(0), wa = 3.562(0), wy = 3B3(1), wy = 4.584(1), ws = —3ﬁ5(t1), we = —3.5B6(1), w1 = —4B7(0),
wg = —4.5B5(2), y1 = log(1+61(2)), 72 = Ba(0) log(1+5:(1)), y3 = B3(1)2 log(1+83(2)), ya = log(1+B4(1)),
¥s = Bs(®) log(1 + Bs(1)), v6 = Bs(1)2 log(1 + Bs(1)), y7 = log(1 + B7(1)), vs = Bs(£) log(1 + Bs(7)). Thus,
we can obtain that the error system is

8 ¢
dzi() :[ —adi(t) + ) (gijf(gj(r» +viF((t = 1) + 6 f h F(g,-(s))ds)
- -
8 _ : 8
+ [\ myG(ie =) +
j=1

J=1 J

8 r
n Gt = ) + /\ 0; f Glgi()ds (3.3)
j=1 =

8 f
+ \/ gij fh 5(§](s))ds + l/ll'(l'):|dt + WldB(f) + j;l“i({i(t), t, M)N(dt, dl/t)
Jj=1 =

Example 3.1. Consider the effectiveness of fixed-time synchronization of CNNs with Lévy noise by
under the influence of feedback control.

The feedback control is given by

8 1 8 1 i
SN - Y el - i) - 3 Y@y [ R0
u(t) = =1 PR i) (3.4)
— il OV sign(Zi(0) — mUGOPY™" + 12" Isign(£(1)), if gi(r) # 0,

0, if £i(1) = 0.

where 8; =50, u; =0.5,7, =0.6, w; =4,¢=0.1, M =3, m = 1.1, w;; = &;, and all other values not
mentioned are zero.

It is not difficult to verify that all the conditions in Theorem 2.7 can be satisfied. The trajectories of
the drive system (3.1) and the response system (3.2) are shown in Figures 2 and 3, respectively.
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_20 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 3.5 4 4.5 5

Time T

Figure 2. The trajectories of the drive system (3.1).

20

_20 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Time T

Figure 3. The trajectories of the response system (3.2) under feedback controller (3.4) .

The trajectories of the error system (3.3) with and without feedback control (3.4) are shown in
Figures 4 and 5, respectively.
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¢3(0)
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¢5(1)
¢6() |
¢
¢8(1) |

25
Time T

3.5

Figure 4. The trajectories of the error system (3.3) with feedback controller (3.4).

&)

el(t)
e2(t) |
e3(t)
e4(t) |
e5(t)
eb(t) |
e7(t)
e8(t) |

25
Time T

Figure 5. The trajectories of the error system (3.3) without feedback controller (3.4).

In Figure 4, it is obvious that the trajectory of the error system (3.3) tends to zero at a fixed time,
which implies that the drive system (3.1) and the response system (3.2) are synchronized at a fixed
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time. This result shows that Theorem 2.7 is valid. Moreover, Figure 5 shows that the error system
(3.3) in the absence of control does not tend to zero, which implies that the drive system (3.1) and the
response system (3.2) cannot achieve synchronization.

Example 3.2. Consider the effectiveness of fixed-time synchronization of CNNs with Lévy noise under
adaptive control.

The adaptive control is

8 | t |
= NG = ) (@ildi(e = Wisign(G(0) - 5 f ’ Iéi(s)lzdsé((tt))lz)

) = i i 2M-1 2m—1 -t_ l . 3.5)
— 2| (O sign(i(0)) — GO~ + 160" 1sign(&(0)), if £.1) # 0,
" if £(n) = 0,

and the adaptive rate is

Rit) = I (G(0) ~ pasign(®i(0) = 8 D®A(D) — 8D~ asign(Ri(0) =)0 =8 )+ R - N>,
(3.6)
where 8| =90, 4, = 05,17, = 0.6, w; = 4,9 =0.1, M = 1.4, m = 1.1, w;; = &;;, and all other values
not mentioned are zero.
It is easy to verify that all the conditions in Theorem 2.8 can be satisfied. The trajectories of the
drive system (3.1), the response system (3.2), and the error system (3.3) under the adaptive control
(3.6) are shown in Figures 6-8, respectively.

o)

_20 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Time T

Figure 6. The trajectories of the drive system (3.1).
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B,

1

25 3 3.5 4 4.5
Time T

Figure 7. The trajectories of the response system (3.2) under the adaptive controller (3.5).

50

40

30

20

25 3 3.5 4 45
Time T

Figure 8. The trajectories of the error system (3.3) under the adaptive controller (3.5). The
inset in Figure 8 shows the curve of the adaptive gain.

In Figure 8, it is obvious that the trajectory of the error system (3.3) tends to zero at a fixed time,
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which implies that the drive system (3.1) and the response system (3.2) are synchronized in a fixed
time. This result shows that Theorem 2.8 is valid.

In addition, we can also summarize some rules from the above simulation results. It takes about two
units of time for the adaptive controller to synchronize the drive system (3.1) and the response system
(3.2), while it takes about three units of time for the feedback controller. This shows that the adaptive
controller can synchronize a system faster than the feedback controller.

4. Conclusions

Based on the Lyapunov theory and the It6 formula, we research the fixed-time synchronization
of FSCNNs with mixed delays driven by white noise and Lévy noise. Theorem 2.7 shows a sufficient
criterion for fixed-time synchronization of FSCNNs under a feedback control and a method to compute
the stabilization time. In addition, in order to reduce the consumption of resources, we design an
adaptive controller. By Theorem 2.8, we obtain a sufficient criterion for fixed-time synchronization of
FSCNNs under the adaptive control and the upper bound of the stabilization time. The results show
that when the intensities of white noise and Lévy noise are small, FSCNNs can achieve synchronization
through appropriate control means.

At present, there are many works on the synchronization problem of stochastic neural networks with
continuous random perturbations (white noise). However, there are few studies on the synchronization
problem of stochastic neural networks with Levy noise. In fact, discontinuous random perturbations
(Lévy noise) should also be considered, which can be used to describe sudden external influences.
Moreover, many works on neural network synchronization focus on asymptotic synchronization. But
the infinite synchronization time cannot be used for practical problems in engineering. People are
more likely to expect neural networks to be synchronized in a finite time. Since the initial state of a
neural network is generally difficult to master, the fixed-time synchronization that does not depend on
the initial state of the system is more practical. Our results can be applied to neural networks with
Lévy noise and obtain a synchronization time independent of the initial state of the system, which
complements the synchronization theory of stochastic neural networks.

There are many interesting questions that deserve to be investigated for the fixed-time
synchronization of FSCNNs with Lévy noise. In this paper, we use two kinds of control methods: the
feedback control and the adaptive control. There are many other control methods that are useful and
efficient. The effectiveness of other control methods such as pinning control, intermittent control, and
state observation control is also worth studying. Moreover, the parameters of the neural networks in
this paper are assumed to be constants. In fact, the time-varying parameters and parameters with
switching characteristics such as Markov switch and semi-Markov switch should also be considered.
These time-varying and switching parameters can make the dynamic behavior of the system more
complex. The construction of the Lyapunov function will be more difficult, and the derivation of the
synchronization theorem is not known to be feasible. Of course, we have only theoretically
demonstrated the synchronization criteria for FSCNNs with Lévy noise. How to apply theoretical
results to practical problems is also a very challenging problem for us. The difficulties for the practical
application of the synchronization theorem mainly focus on the technical realization, environmental
factors, and system complexity. In order to overcome these difficulties, it is necessary to use a variety
of technical means, and optimize the design according to the specific application scenario.
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