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Abstract: In this paper, we analyzed and tested a nonlinear implicit compact finite difference scheme
for the pseudo-parabolic Burgers’ equation. The discrete conservation laws and boundedness of the
scheme were rigorously established. We then proved the unique solvability of the numerical scheme
by reformulating it as an equivalent system. Furthermore, using the energy method, we derived an
error estimate for the proposed scheme, achieving a convergence order of O(τ2 + h4) under the discrete
L∞-norm. The stability of the compact finite difference scheme was subsequently proven using a
similar approach. Finally, a series of numerical experiments were performed to validate the theoretical
findings.
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1. Introduction

In this paper, a nonlinear compact finite difference scheme is studied for the following the pseudo-
parabolic Burgers’ equation [1]

ut = µuxx + γuux + ε
2uxxt, 0 < x < L, 0 < t ≤ T, (1.1)

subject to the periodic boundary condition

u(x, t) = u(x + L, t), 0 ≤ x ≤ L, 0 < t ≤ T, (1.2)
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and the initial data

u(x, 0) = φ(x), 0 ≤ x ≤ L, (1.3)

where µ > 0 is the coefficient of kinematic viscosity, γ and ε > 0 are two parameters, φ(x) is an L-
periodic function. Parameter L denotes the spatial period. Setting ε = 0, Eq (1.1) reduces to a viscous
Burgers’ equation [2]. Equation (1.1) is derived by the degenerate pseudo-parabolic equation [3]

ut = (uα + uβux + ε
2uκ(uγut)x)x, (1.4)

where α, β, κ, γ are nonnegative constants. The derivative term {uκ(uγut)x}x represents a dynamic cap-
illary pressure relation instead of a usual static one [4]. Equation (1.4) is a model of one-dimensional
unsaturated groundwater flow.

Here, u denotes the water saturation. We refer to [5] for a detailed explanation of the model.
Equation (1.1) is also viewed as a simplified edition of the Benjamin-Bona-Mahony-Burgers (BBM-
Burgers) equation, or a viscous regularization of the original BBM model for the long wave propagation
[6]. The problem (1.1)–(1.3) has the following conservation laws

Q(t) =
∫ L

0
u(x, t)dx = Q(0), t > 0, (1.5)

E(t) =
∫ L

0

[
u2(x, t) + ε2u2

x(x, t)
]
dx + 2µ

∫ t

0

∫ L

0
u2

x(x, s)dxds = E(0), t > 0. (1.6)

Based on (1.6), by a simple calculation, the exact solution satisfies

max { ∥u∥, ε∥ux∥, ε∥u∥∞ } ≤ c0,

where c0 =
(
1 +

√
L

2

)√
E(0).

Numerical and theoretical research for solving (1.1)–(1.3) have been extensively carried out. For
instance, Koroche [7] employed the the upwind approach and Lax-Friedrichs to obtain the solution
of In-thick Burgers’ equation. Rashid et al. [8] employed the Chebyshev-Legendre pseudo-spectral
method for solving coupled viscous Burgers’ equations, and the leapfrog scheme was used in time
direction. Qiu al. [9] constructed the fifth-order weighted essentially non-oscillatory schemes based on
Hermite polynomials for solving one dimensional non-linear hyperbolic conservation law systems and
presented numerical experiments for the two dimensional Burgers’ equation. Lara et al. [10] proposed
accelerate high order discontinuous Galerkin methods using Neural Networks. The methodology and
bounds are examined for a variety of meshes, polynomial orders, and viscosity values for the 1D
viscous Burgers’ equation. Pavani et al. [11] used the natural transform decomposition method to
obtain the analytical solution of the time fractional BBM-Burger equation. Li et al. [12] established
and proved the existence of global weak solutions for a generalized BBM-Burgers equation. Wang et al.
[13] introduced a linearized second-order energy-stable fully discrete scheme and a super convergence
analysis for the nonlinear BBM-Burgers equation by the finite element method. Mohebbi et al. [14]
investigated the solitary wave solution of nonlinear BBM-Burgers equation by a high order linear finite
difference scheme.
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Zhang et al. [15] developed a linearized fourth-order conservative compact scheme for the BBMB-
Burgers’ equation. Shi et al. [16] investigated a time two-grid algorithm to get the numerical solution
of nonlinear generalized viscous Burgers’ equation. Li et al. [17] used the backward Euler method
and a semi-discrete approach to approximate the Burgers-type equation. Mao et al. [18] derived a
fourth-order compact difference schemes for Rosenau equation by the double reduction order method
and the bilinear compact operator. It offers an effective method for solving nonlinear equations. Cuesta
et al. [19] analyzed the boundary value problem and long-time behavior of the pseudo-parabolic Burg-
ers’ equation. Wang et al. [20] proposed fourth-order three-point compact operator for the nonlinear
convection term. They adopted the classical viscous Burgers’ equation as an example and established
the conservative fourth-order implicit compact difference scheme based on the reduction order method.
The compact difference scheme enables higher accuracy in solving equations with fewer grid points.
Therefore, using the compact operators to construct high-order schemes has received increasing atten-
tion and application [21–29].

Numerical solutions for the pseudo-parabolic equations have garnered widespread attention. For
instance, Benabbes et al. [30] provided the theoretical analysis of an inverse problem governed by a
time-fractional pseudo-parabolic equation. Moreover, Ilhan et al. [31] constructed a family of trav-
elling wave solutions for obtaining hyperbolic function solutions. Di et al. [32] established the well-
posedness of the regularized solution and gave the error estimate for the nonlinear fractional pseudo-
parabolic equation. Nghia et al. [33] considered the pseudo-parabolic equation with Caputo-Fabrizio
fractional derivative and gave the formula of mild solution. Abreu et al. [34] derived the error es-
timates for the nonlinear pseudo-parabolic equations basedon Jacobi polynomials. Jayachandran et
al. [35] adopted the Faedo-Galerkin method to the pseudo-parabolic partial differential equation with
logarithmic nonlinearity, and they analyzed the global existence and blowup of solutions.

To the best of our knowledge, the study of high-order difference schemes for Eq (1.1) is scarce.
The main challenge is the treatment of the nonlinear term uux, as well as the error estimation of the
numerical scheme. Inspired by the researchers in [15] and [20], we construct an implicit compact
difference scheme based on the three–point fourth-order compact operator for the pseudo-parabolic
Burgers’ equation. The main contribution of this paper is summarized as follows:

• A fourth-order compact difference scheme is derived for the pseudo-parabolic Burgers’ equation.
• The pointwise error estimate (L∞-estimate) of a fourth-order compact difference scheme is proved

by the energy method [36, 37] for the pseudo-parabolic Burgers’ equation.
• Numerical stability, unique solvability, and conservation are obtained for the high-order difference

scheme of the pseudo-parabolic Burgers’ equation.

In particular, our numerical scheme for the special cases reduces to several other ones in this existing
paper (see e.g., [38, 39]).

The remainder of the paper is organized as follows. In Section 2, we introduce the necessary
notations and present some useful lemmas. A compact difference scheme is derived in Section 3 using
the reduction order method and the recent proposed compact difference operator. In Section 4, we
establish the key results of the paper, including the conservation invariants, boundedness, uniqueness
of the solution, stability, and convergence of the scheme. In Section 4.4, we present several numerical
experiments to validate the theoretical findings, followed by a conclusion in Section 5.

Throughout the paper, we assume that the exact solution u(x, t) satisfies u(x, t) ∈ C6,3([0, L]×[0,T ]
)
.
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2. Notations and lemmas

In this section, we introduce some essential notations and lemmas. We begin by dividing the domain
[0, L] × [0,T ]. For two given positive integers, M and N, let h = L/M, τ = T/N. Additionally, denote
xi = ih, 0 ≤ i ≤ M, tk = kτ, 0 ≤ k ≤ N;Vh = { v | v = {vi}, vi+M = vi }. For any grid function u, v ∈ Vh,
we introduce

vk+ 1
2

i =
1
2

(vk
i + vk+1

i ), δtv
k+ 1

2
i =

1
τ

(vk+1
i − vk

i ), δxvk
i+ 1

2
=

1
h

(vk
i+1 − vk

i ),

∆xvk
i =

1
2h

(vk
i+1 − vk

i−1), δ2
xv

k
i =

1
h

(δxvk
i+ 1

2
− δxvk

i− 1
2
), ψ(u, v)i =

1
3
[
ui∆xvi + ∆x(uv)i

]
.

Moreover, we introduce the discrete inner products and norms (semi-norm)

(u, v) = h
M∑

i=1

uivi, ⟨u, v⟩ = h
M∑

i=1

(δxui+ 1
2
)(δxvi+ 1

2
),

∥u∥ =
√

(u, u), |u|1 =
√
⟨u, u⟩, ∥u∥∞ = max

1≤i≤M
|ui|.

The following lemmas play important roles in the numerical analysis later, and we collect them here.

Lemma 1. [15, 40] For any grid functions u, v ∈ Vh, we have

∥v∥∞ ≤

√
L

2
|v|1, ∥v∥ ≤

L
√

6
|v|1, (u, δ2

xv) = −⟨u, v⟩,
(
ψ(u, v), v

)
= 0.

Lemma 2. [40] For any grid function v ∈ Vh and arbitrary ξ > 0, we have

|v|1 ≤
2
h
∥v∥, ∥v∥2∞ ≤ ξ|v|

2
1 +

(1
ξ
+

1
L

)
∥v∥2.

Lemma 3. [20] Let g(x) ∈ C5[xi−1, xi+1] and G(x) = g′′(x), we have

g(xi)g′(xi) = ψ(g, g)i −
h2

2
ψ(G, g)i + O(h4).

Lemma 4. [15, 18] For any grid functions u, v ∈ Vh and S ∈ Vh satisfying

vk+ 1
2

i = δ2
xu

k+ 1
2

i −
h2

12
δ2

xv
k+ 1

2
i + S k+ 1

2
i , 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1, (2.1)

we have the following results:

(I)

(vk+ 1
2 , uk+ 1

2 ) = −|uk+ 1
2 |21 −

h2

12
∥vk+ 1

2 ∥2 +
h4

144
|vk+ 1

2 |21 +
h2

12
(S k+ 1

2 , vk+ 1
2 ) + (S k+ 1

2 , uk+ 1
2 ), (2.2)

(vk+ 1
2 , uk+ 1

2 ) ≤ −|uk+ 1
2 |21 −

h2

18
∥vk+ 1

2 ∥2 +
h2

12
(S k+ 1

2 , vk+ 1
2 ) + (S k+ 1

2 , uk+ 1
2 ), (2.3)

(δtvk+ 1
2 , uk+ 1

2 ) = −
1
2τ

(|uk+1|21 − |u
k|21) −

h2

24τ
(∥vk+1∥2 − ∥vk∥2) +

h4

288τ
(|vk+1|21 − |v

k|21)

+ (δtS k+ 1
2 , uk+ 1

2 ) +
h2

12
(δtvk+ 1

2 , S k+ 1
2 ). (2.4)
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(II)

|uk+ 1
2 |21 ≤ ∥u

k+ 1
2 ∥(∥vk+ 1

2 ∥ + ∥S k+ 1
2 ∥),

h2

12
∥vk+ 1

2 ∥2 ≤
4
5
∥uk+ 1

2 ∥ +
h2

5
∥S k+ 1

2 ∥, (2.5)

∥vk+ 1
2 ∥2 ≤

18
h2 |u

k+ 1
2 |21 +

9
2
∥S k+ 1

2 ∥2. (2.6)

Proof. The result in (2.2)–(2.3) has been described in [15], and (2.5) has been proven in [18], we only
need to only prove (2.4) and (2.6). Using the definition of the operator, we have

(δtvk+ 1
2 , uk+ 1

2 ) =
(
δt(δ2

xu
k+ 1

2 −
h2

12
δ2

xv
k+ 1

2 + S k+ 1
2 ), uk+ 1

2
)

= −
1
2τ

(|uk+1|21 − |u
k|21) −

h2

12

(
δtvk+ 1

2 , vk+ 1
2 +

h2

12
δ2

xv
k+ 1

2−S k+ 1
2
)
+ (δtS k+ 1

2 , uk+ 1
2 )

= −
1
2τ

(|uk+1|21 − |u
k|21) −

h2

24τ
(∥vk+1∥2 − ∥vk∥2) +

h4

288τ
(|vk+1|21 − |v

k|21)

+ (δtS k+ 1
2 , uk+ 1

2 )+
h2

12
(δtvk+ 1

2 , S k+ 1
2 ).

Taking the inner product of (2.1) with vk+ 1
2 , we have

∥vk+ 1
2 ∥2 = (δ2

xu
k+ 1

2 , vk+ 1
2 ) −

h2

12
(δ2

xv
k+ 1

2 , vk+ 1
2 ) + (S k+ 1

2 , vk+ 1
2 )

≤ ∥δ2
xu

k+ 1
2 ∥ · ∥vk+ 1

2 ∥ +
h2

12
|vk+ 1

2 |21 + ∥S
k+ 1

2 ∥ · ∥vk+ 1
2 ∥

≤
1
6
∥vk+ 1

2 ∥2 +
3
2
∥δ2

xu
k+ 1

2 ∥2 +
1
3
∥vk+ 1

2 ∥2 +
1
6
∥vk+ 1

2 ∥2 +
3
2
∥S k+ 1

2 ∥2

≤
2
3
∥vk+ 1

2 ∥2 +
6
h2 |u

k+ 1
2 |21 +

3
2
∥S k+ 1

2 ∥2.

Therefore, the result (2.6) is obtained. □

Remark 1. [18] Denote 1 = (1, 1, · · · , 1)T ∈ Vh. If S = 0 in (2.1), then we further have(
ψ(u, u), 1

)
= 0,

(
ψ(v, u), 1

)
= 0.

3. Construction of the compact difference scheme

Let v = uxx, then the problem (1.1) is equivalent to
ut = µv + γuux + ε

2vt, 0 < x < L, 0 < t ≤ T, (3.1)
v = uxx, 0 < x < L, 0 < t ≤ T, (3.2)
u(x, 0) = φ(x), 0 ≤ x ≤ L, (3.3)
u(x, t) = u(x + L, t), 0 ≤ x ≤ L, 0 < t ≤ T. (3.4)

According to (3.2) and (3.4), it is easy to know that

v(x, t) = v(x + L, t), 0 ≤ x ≤ L, 0 < t ≤ T. (3.5)
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Define the grid functions U =
{
Uk

i | 1 ≤ i ≤ M, 0 ≤ k ≤ N
}

with Uk
i = u(xi, tk), V = {Vk

i | 1 ≤ i ≤
M, 0 ≤ k ≤ N } with Vk

i = v(xi, tk). Considering (3.1) at the point (xi, tk+ 1
2
) and (3.2) at the point (xi, tk),

respectively, we have
ut(xi, tk+ 1

2
) = µv(xi, tk+ 1

2
) + γu(xi, tk+ 1

2
)ux(xi, tk+ 1

2
) + ε2vt(xi, tk+ 1

2
),

1 ≤ i ≤ M, 0 ≤ k ≤ N − 1,
v(xi, tk) = uxx(xi, tk), 1 ≤ i ≤ M, 0 ≤ k ≤ N.

Using the Taylor expansion and Lemma 3, we have
δtU

k+ 1
2

i = µVk+ 1
2

i + γ
(
ψ(Uk+ 1

2 ,Uk+ 1
2 )i −

h2

2
ψ(Vk+ 1

2 ,Uk+ 1
2 )i

)
+ε2δtV

k+ 1
2

i + Pk+ 1
2

i , 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1, (3.6)

Vk
i = δ

2
xU

k
i −

h2

12
δ2

xV
k
i + Qk

i , 1 ≤ i ≤ M, 0 ≤ k ≤ N.

Noticing the initial-boundary value conditions (3.3)–(3.5), we have{
U0

i = φ(xi), 1 ≤ i ≤ M; (3.7)
Uk

i = Uk
i+M, Vk

i = Vk
i+M, 1 ≤ i ≤ M, 1 ≤ k ≤ N. (3.8)

There is a positive constant c1 such that the local truncation errors satisfy
|Pk+ 1

2
i | ≤ c1(τ2 + h4), 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1,
|Qk

i | ≤ c1h4, 1 ≤ i ≤ M, 0 ≤ k ≤ N,

|δtQ
k+ 1

2
i | ≤ c1(τ2 + h4), 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1.

Omitting the local truncation error terms in (3.6) and combining them with (3.7) and (3.8), the differ-
ence scheme for (3.1)–(3.5) as follows

δtu
k+ 1

2
i = µvk+ 1

2
i + γ

(
ψ(uk+ 1

2 , uk+ 1
2 )i −

h2

2
ψ(vk+ 1

2 , uk+ 1
2 )i

)
+ ε2δtv

k+ 1
2

i ,

1 ≤ i ≤ M, 0 ≤ k ≤ N − 1, (3.9)

vk
i = δ

2
xu

k
i −

h2

12
δ2

xv
k
i , 1 ≤ i ≤ M, 0 ≤ k ≤ N, (3.10)

u0
i = φ(xi), 1 ≤ i ≤ M, (3.11)

uk
i = uk

i+M, vk
i = vk

i+M, 1 ≤ i ≤ M, 1 ≤ k ≤ N. (3.12)

Remark 2. As we see from the difference equations (3.9) and (3.10), only three points for each of them
are utilized to generate fourth-order accuracy for the nonlinear pseudo-parabolic Burgers’ equation
without using additional boundary message. This is the reason we call this scheme the compact dif-
ference scheme. In addition, a fast iterative algorithm can be constructed, as shown in the numerical
part in Section 4.4.
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4. Numerical analysis

4.1. Conservation and boundedness

Theorem 1. Let { uk
i , vk

i | 1 ≤ i ≤ M, 0 ≤ k ≤ N} be the solution of (3.9)–(3.12). Denote

Qk = (uk, 1).

Then, we have

Qk = Q0, 0 ≤ k ≤ N.

Proof. Taking an inner product of (3.9) with 1, we have

(δtuk+ 1
2 , 1) = µ(vk+ 1

2 , 1) + γ
(
ψ(uk+ 1

2 , uk+ 1
2 ) −

h2

2
ψ(vk+ 1

2 , uk+ 1
2 ), 1

)
+ ε2(δtvk+ 1

2 , 1),

0 ≤ k ≤ N − 1.

By using Remark 1 in Lemma 4, the equality above deduces to

(uk+1, 1) − (uk, 1) = 0,

namely
Qk+1 = Qk, 0 ≤ k ≤ N − 1.

□

Theorem 2. Let { uk
i , vk

i | 1 ≤ i ≤ M, 0 ≤ k ≤ N } be the solution of (3.9)–(3.12). Then it holds that

Ek = E0, 1 ≤ k ≤ N,

where

Ek =∥uk∥2 + ε2|uk|21 +
ε2h2

12
∥vk∥2 −

ε2h4

144
|vk|21

+ 2τµ
( k−1∑

l=0

|ul+ 1
2 |21 +

h2

12

k−1∑
l=0

∥vl+ 1
2 ∥2 −

h4

144

k−1∑
l=0

|vl+ 1
2 |21

)
.

Proof. Taking the inner product of (3.9) with uk+ 1
2 , and applying Lemma 1, we have

(δtuk+ 1
2 , uk+ 1

2 ) = µ(vk+ 1
2 , uk+ 1

2 ) + ε2(δtvk+ 1
2 , uk+ 1

2 ).

With the help of (2.2) and (2.4) in Lemma 4, the equality above deduces to

1
2τ

(∥uk+1∥2 − ∥uk∥2) = µ
(
− |uk+ 1

2 |21 −
h2

12
∥vk+ 1

2 ∥2 +
h4

144
|vk+ 1

2 |21

)
−
ε2

2τ
(
(|uk+1|21 − |u

k|21) +
h2

12
(∥vk+1∥2 − ∥vk∥2) −

h4

144
(|vk+1|21 − |v

k|21)
)
.
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Replacing the superscript k with l and summing over l from 0 to k − 1, we have

(
∥uk∥2 + ε2|uk|21 +

ε2h2

12
∥vk∥2 −

ε2h4

144
|vk|21

)
−

(
∥u0∥2 + ε2|u0|21 +

ε2h2

12
∥v0∥2 −

ε2h4

144
|v0|21

)
+ 2τµ

( k−1∑
l=0

|ul+ 1
2 |21 +

h2

12

k−1∑
l=0

∥vl+ 1
2 ∥2 −

h4

144

k−1∑
l=0

|vl+ 1
2 |21

)
= 0,

which implies that
Ek = E0, 1 ≤ k ≤ N.

□

Remark 3. Combining Lemma 1 with Theorem 2, it is easy to know that there is a positive constant c2

such that

∥uk∥ ≤ c2, ε|uk|1 ≤ c2, ε∥uk∥∞ ≤ c2, 1 ≤ k ≤ N. (4.1)

4.2. Existence and uniqueness

Next, we recall the Browder theorem and consider the unique solvability of (3.9)–(3.12).

Lemma 5 (Browder theorem [41]). Let (H, (·, ·)) be a finite dimensional inner product space, ∥ · ∥ be
the associated norm, and Π : H → H be a continuous operator. Assume

∃α > 0, ∀z ∈ H, ∥z∥ = α, ℜ
(
Π(z), z

)
≥ 0.

Then there exists a z∗ ∈ H satisfying ∥z∗∥ ≤ α such that Π(z∗) = 0.

Theorem 3. The difference scheme (3.9)–(3.12) has a solution at least.

Proof. Denote
uk = (u1, u2, · · · , uM) , vk = (v1, v2, · · · , vM) , 0 ≤ k ≤ N.

It is easy to know that u0 has been determined by (3.11). From (3.10) and (3.11), we can get v0

by computing a system of linear equations as its coefficient matrix is strictly diagonally dominant.
Suppose that { uk, vk } has been determined, then we may regard { uk+ 1

2 , vk+ 1
2 } as unknowns . Obviously,

uk+1
i = 2uk+ 1

2
i − uk

i , vk+1
i = 2vk+ 1

2
i − vk

i , 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1.

Denote
Xi = uk+ 1

2
i , Yi = vk+ 1

2
i , 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1.

Then the difference scheme (3.9)–(3.10) can be rewritten as
2
τ

(Xi − uk
i ) − µYi − γ

(
ψ(X, X)i −

h2

2
ψ(Y, X)i

)
−

2
τ
ε2(Yi − vk

i ) = 0,

1 ≤ i ≤ M, 0 ≤ k ≤ N, (4.2)

Yi = δ
2
xXi −

h2

12
δ2

xYi, 1 ≤ i ≤ M. (4.3)
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Define an operator Π onVh:

Π(Xi) =
2
τ

(Xi − uk
i ) − µYi − γ

(
ψ(X, X)i −

h2

2
ψ(Y, X)i

)
−

2
τ
ε2(Yi − vk

i ), 1 ≤ i ≤ M, 0 ≤ k ≤ N.

Taking an inner product of Π(X) with X, we have

(Π(X), X) =
2
τ

(
∥X∥2 − (uk, X)

)
− µ(Y, X) −

2
τ
ε2((Y, X) − (vk, X)

)
. (4.4)

In combination of the technique from (2.2) in Lemma 4 and the Cauchy-Schwartz inequality, we have

(δxY, δxX) = (δx(δ2
xX −

h2

12
δ2

xY), δxX)

= −∥δ2
xX∥2 +

h2

12
(δ2

xY, δ
2
xX)

= −∥δ2
xX∥2 +

h2

12
(δ2

xY,Y +
h2

12
δ2

xY)

= −∥δ2
xX∥2 −

h2

12
∥δxY∥2 +

h4

144
∥δ2

xY∥
2

and

(δxuk, δxX) ≤ ∥δxuk∥ · ∥δxX∥ ≤
1
4
∥δxuk∥2 + ∥δxX∥2 =

1
4
∥δxuk∥2 + |X|21.

Correspondingly,

−(δxuk, δxX) ≥ −
1
4
∥δxuk∥2 − |X|21.

Then

−(Y, X) + (vk, X) = −
(
δ2

xX −
h2

12
δ2

xY, X
)
+

(
δ2

xu
k −

h2

12
δ2

xv
k, X

)
= |X|21 − (δxuk, δxX) −

h2

12
(
(δxY, δxX) + (δ2

xv
k, X)

)
≥ −

1
4
∥δxuk∥2 +

h2

12

(
∥δ2

xX∥2 +
h2

12
∥δxY∥2 −

h4

144
∥δ2

xY∥
2 − (δ2

xv
k, X)

)
≥ −

1
4
∥δxuk∥2 +

h2

12

( h2

12
∥δxY∥2 −

h4

144
∥δ2

xY∥
2 −

1
4
∥vk∥2

)
≥ −

1
4
∥δxuk∥2 −

h2

48
∥vk∥2,

and
∥X∥2 − (uk, X) ≥ ∥X∥2 −

1
2

(∥uk∥2 + ∥X∥2) ≥
1
2

(∥X∥2 − ∥uk∥2).

Substituting the equality above into (4.4) and according to (2.3) in Lemma 4, we have

(Π(X), X) ≥
1
τ

(∥X∥2 − ∥uk∥2) +
2ε2

τ

(
−

1
4
∥δxuk∥2 −

h2

48
∥vk∥2

)
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≥
1
τ

(
∥X∥2 − ∥uk∥2 −

ε2

2
∥δxuk∥2 −

ε2h2

24
∥vk∥2

)
.

Thus, when ∥X∥ = αk, where αk =

√
∥uk∥2 + ε2

2 ∥δxuk∥2 + ε2h2

24 ∥v
k∥2, then (Π(X), X) ≥ 0. By Lemma 5,

there exists a X∗ ∈ Vh satisfying ∥X∗∥ ≤ αk such that Π(X∗) = 0. Consequently, the difference scheme
(3.9)–(3.12) exists at least a solution uk+1 = 2X∗ − uk. Observing, when (X∗1, X

∗
2, · · · , X

∗
M) is known,

(Y∗1 ,Y
∗
2 , · · · ,Y

∗
M) can be determined by (4.3) uniquely. Thus, we know vk+1

i = 2Y∗i − vk
i , 1 ≤ i ≤ M

exists. □

Now we are going to verify the uniqueness of the solution of the difference scheme. We have the
following result.

Theorem 4. When γ = 0, the solution of the difference scheme (3.9)–(3.12) is uniquely solvable for
any temporal step-size; When γ , 0 and τ ≤ min

{
4L

c2 |γ|(L+1) ,
2ε2

3c2 |γ|(2L+1)

}
, the solution of the difference

scheme (3.9)–(3.12) is uniquely solvable.

Proof. According to Theorem 3, we just need to prove that (4.2)–(4.3) has a unique solution. Suppose
that both {u(1), v(1)} ∈ Vh and {u(2), v(2)} ∈ Vh are the solutions of (4.2)–(4.3), respectively. Let

ui = u(1)
i − u(2)

i , vi = v(1)
i − v(2)

i , 1 ≤ i ≤ M.

Then we have

2
τ

ui − µvi − γ
(
ψ(u(1), u(1))i − ψ(u(2), u(2))i

)
+
γh2

2
(
ψ(v(1), u(1))i − ψ(v(2), u(2))i

)
−

2ε2

τ
vi = 0, 1 ≤ i ≤ M, (4.5)

vi = δ
2
xui −

h2

12
δ2

xvi, 1 ≤ i ≤ M. (4.6)

Taking an inner product of (4.5) with u, we have

2
τ
∥u∥2 − µ(v, u) − γ

(
ψ(u(1), u(1)) − ψ(u(2), u(2)), u

)
+
γh2

2
(
ψ(v(1), u(1)) − ψ(v(2), u(2)), u

)
−

2ε2

τ
(v, u) = 0.

With the application of Lemma 2 and (2.3) in Lemma 4, it follow from the equality above that

2
τ
∥u∥2 +

(
µ +

2ε2

τ

)(
|u|21 +

h2

18
∥v∥2

)
≤γ

(
ψ(u(1), u(1)) − ψ(u(2), u(2)), u

)
−
γh2

2

(
ψ(v(1), u(1)) − ψ(v(2), u(2)), u

)
. (4.7)

By the definition of ψ(·, ·) and (4.1), we have

−
h2

2
(
ψ(v(1), u(1)) − ψ(v(2), u(2)), u

)
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= −
h2

2
(
ψ(v(1), u(1)) − ψ(v(1) − v, u(1) − u), u

)
= −

h2

2
(
ψ(v, u(1)), u

)
= −

h3

6

M∑
i=1

[
vi∆xu

(1)
i + ∆x(vu(1))i

]
ui =

h3

6

M∑
i=1

[
u(1)

i ∆x(uv)i + (vu(1))i∆xui

]
=

h3

6

M∑
i=1

[
u(1)

i ·
1

2h
(ui+1vi+1 − ui−1vi−1) + (vu(1))i∆xui

]
=

h3

6

M∑
i=1

[
u(1)

i ·
1

2h
(vi+1(ui+1 − ui) + ui(vi+1 − vi−1) + vi−1(ui − ui−1)) + (vu(1))i∆xui

]
=

h3

6

M∑
i=1

[
u(1)

i

(
ui∆xvi +

1
2

vi+1δxui+ 1
2
+

1
2

vi−1δxui− 1
2

)
+ (vu(1))i∆xui

]
≤

c2h2

6
(|v|1 · ∥u∥∞ + 2∥v∥∞ · |u|1).

Using the Cauchy-Schwarz inequality, Lemmas 1 and 2, we have

−
h2

2
(
ψ(v(1), u(1)) − ψ(v(2), u(2)), u

)
≤

c2

6

(h4

4
|v|21 + ∥u∥

2
∞

)
+

c2

3

(
h4∥v∥2∞ +

1
4
|u|21

)
≤

c2

24
(L + 2)|u|21 +

c2h2

6
(1 + 2L)∥v∥2. (4.8)

Similarly, we have (
ψ(u(1), u(1)) − ψ(u(2), u(2)), u

)
=

(
ψ(u(1), u(1)) − ψ(u(1) − u, u(1) − u), u

)
=

(
ψ(u, u(1)), u

)
=

h
3

M∑
i=1

[
ui∆xu

(1)
i + ∆x(uu(1))i

]
ui = −

h
3

M∑
i=1

[
u(1)

i ∆x(uu)i + (uu(1))i∆xui

]
= −

h
3

M∑
i=1

[
u(1)

i

(
ui∆xui +

1
2

ui+1δxui+ 1
2
+

1
2

ui−1δxui− 1
2

)
+ (uu(1))i∆xui

]
≤ c2|u|1 · ∥u∥∞ ≤

c2

2
(∥u∥2∞ + |u|

2
1) ≤

c2

2

(
1 +

1
L

)
∥u∥2 + c2|u|21. (4.9)

Substituting (4.8) and (4.9) into (4.7), we can obtain

2
τ
∥u∥2 +

(
µ +

2ε2

τ

)
|u|21 +

h2

18

(
µ +

2ε2

τ

)
∥v∥2

≤
c2|γ|

2L
(L + 1)∥u∥2 +

c2|γ|

24
(L + 26)|u|21 +

c2h2|γ|

6
(2L + 1)∥v∥2.

When τ ≤ min{ 4L
c2 |γ|(L+1) ,

2ε2

3c2 |γ|(2L+1) }, we have ui = 0, 1 ≤ i ≤ M. □
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4.3. Convergence and stability

Let h0 > 0 and denote

c3 = max
(x,t)∈[0,L]×[0,T ]

{ |u(x, t)|, |ux(x, t)| } , c4 = 3 + c3|γ| +
3c2

3γ
2h2

0

4µ
+

3c2
3γ

2

µ
,

c5 = c2
1LT

(
1 + µ2 + ε4 +

3µh2
0

16
+
ε2h2

0

12

)
+

13
12
ε2h2

0c2
1L, c6 =

√
3
2

c5e
3
2 c4T ,

and error functions

ek
i = Uk

i − uk
i , f k

i = Vk
i − vk

i , 1 ≤ i ≤ M, 1 ≤ k ≤ N,

we have the following convergence results.

Theorem 5. Let { u(x, t), v(x, t) } be the solution of (3.1)–(3.5) and { uk
i , vk

i | 0 ≤ i ≤ M, 0 ≤ k ≤ N } be
the solution of the difference scheme (3.9)–(3.12). When c4τ ≤

1
3 and h ≤ h0 , we have

∥ek∥ ≤ c6(τ2 + h4), ε|ek|1 ≤ c6(τ2 + h4), ε∥ek∥∞ ≤
c6
√

L
2

(τ2 + h4), 0 ≤ k ≤ N.

Proof. Subtracting (3.9)–(3.12) from (3.6)–(3.8), we can get an error system

δte
k+ 1

2
i = µ f k+ 1

2
i + γ

(
ψ(Uk+ 1

2 ,Uk+ 1
2 )i − ψ(uk+ 1

2 , uk+ 1
2 )i

)
−
γh2

2
(
ψ(Vk+ 1

2 ,Uk+ 1
2 )i − ψ(vk+ 1

2 , uk+ 1
2 )i

)
+ε2δt f k+ 1

2
i + Pk+ 1

2
i , 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1, (4.10)

f k
i = δ

2
xe

k
i −

h2

12
δ2

x f k
i + Qk

i , 1 ≤ i ≤ M, 0 ≤ k ≤ N, (4.11)

e0
i = 0, 1 ≤ i ≤ M, (4.12)

ek
i = ek

i+M, f k
i = f k

i+M, 1 ≤ i ≤ M, 1 ≤ k ≤ N. (4.13)

Taking an inner product of (4.10) with ek+ 1
2 , we have

(δtek+ 1
2 , ek+ 1

2 ) = µ( f k+ 1
2 , ek+ 1

2 ) + γ(ψ(Uk+ 1
2 ,Uk+ 1

2 ) − ψ(uk+ 1
2 , uk+ 1

2 ), ek+ 1
2 )

−
γh2

2
(ψ(Vk+ 1

2 ,Uk+ 1
2 ) − ψ(vk+ 1

2 , uk+ 1
2 ), ek+ 1

2 ) + ε2(δt f k+ 1
2 , ek+ 1

2 ) + (Pk+ 1
2 , ek+ 1

2 ). (4.14)

Applying (2.3) in Lemma 4, we have

( f k+ 1
2 , ek+ 1

2 ) ≤ −|ek+ 1
2 |21 −

h2

18
|| f k+ 1

2 ||2 +
h2

12
(Qk+ 1

2 , f k+ 1
2 ) + (Qk+ 1

2 , ek+ 1
2 ). (4.15)

Similar to the derivation in (4.8) and (4.9), we have(
ψ(Uk+ 1

2 ,Uk+ 1
2 ) − ψ(uk+ 1

2 , uk+ 1
2 ), ek+ 1

2
)

=
(
ψ(ek+ 1

2 ,Uk+ 1
2 ), ek+ 1

2
)

=
h
3

M∑
i=1

[
ek+ 1

2
i ∆xU

k+ 1
2

i + ∆x(ek+ 1
2 Uk+ 1

2 )i

]
ek+ 1

2
i
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=
h
3

M∑
i=1

[
(ek+ 1

2
i )2∆xU

k+ 1
2

i − ek+ 1
2

i Uk+ 1
2

i ∆xe
k+ 1

2
i

]
=

h
3

M∑
i=1

(ek+ 1
2

i )2∆xU
k+ 1

2
i +

h
6

M∑
i=1

Uk+ 1
2

i+1 − Uk+ 1
2

i

h
ek+ 1

2
i ek+ 1

2
i+1

≤
c3

2
∥ek+ 1

2 ∥2 (4.16)

and

−
(
ψ(Vk+ 1

2 ,Uk+ 1
2 ) − ψ(vk+ 1

2 , uk+ 1
2 ), ek+ 1

2
)

= −
(
ψ( f k+ 1

2 ,Uk+ 1
2 ), ek+ 1

2
)
= −

h
3

M∑
i=1

[
f k+ 1

2
i ∆xU

k+ 1
2

i + ∆x( f k+ 1
2 Uk+ 1

2 )i

]
ek+ 1

2
i

= −
h
3

M∑
i=1

f k+ 1
2

i ek+ 1
2

i ∆xU
k+ 1

2
i +

h
3

M∑
i=1

f k+ 1
2

i Uk+ 1
2

i ∆xe
k+ 1

2
i

≤
1
3

c3|| f k+ 1
2 || · ||ek+ 1

2 || +
1
3

c3|| f k+ 1
2 || · ||∆xek+ 1

2 ||. (4.17)

Substituting (4.15)–(4.17) into (4.14), and using (2.3)–(2.4) in Lemma 4, we obtain

1
2τ

(∥ek+1∥2 − ∥ek∥2)

≤ µ
(
− |ek+ 1

2 |21 −
h2

18
|| f k+ 1

2 ||2 +
h2

12
(Qk+ 1

2 , f k+ 1
2 ) + (Qk+ 1

2 , ek+ 1
2 )
)

+
1
2

c3|γ| · ∥ek+ 1
2 ∥2 +

c3h2|γ|

6

(
|| f k+ 1

2 || · ||ek+ 1
2 || + || f k+ 1

2 || · ||∆xek+ 1
2 ||

)
−
ε2

2τ

(
|ek+1|21 − |e

k|21 +
h2

12
(∥ f k+1∥2 − ∥ f k∥2) −

h4

144
(| f k+1|21 − | f

k|21) − 2τ(δtQk+ 1
2 , ek+ 1

2 )
)

+
ε2h2

12
(δt f k+ 1

2 ,Qk+ 1
2 ) + (Pk+ 1

2 , ek+ 1
2 ).

Then, we have

∥ek+1∥2 − ∥ek∥2 + ε2
(
|ek+1|21 − |e

k|21 +
h2

12
(∥ f k+1∥2 − ∥ f k∥2) −

h4

144
(| f k+1|21 − | f

k|21)
)

≤ − 2µτ|ek+ 1
2 |21 −

µτh2

9
|| f k+ 1

2 ||2 +
µτh2

6
(Qk+ 1

2 , f k+ 1
2 ) + 2µτ(Qk+ 1

2 , ek+ 1
2 )

+ c3τ|γ| · ∥ek+ 1
2 ∥2 +

c3τh2|γ|

3
|| f k+ 1

2 || · ||ek+ 1
2 || +

c3τh2|γ|

3
|| f k+ 1

2 || · ||∆xek+ 1
2 ||

+ 2τε2(δtQk+ 1
2 , ek+ 1

2 ) + 2τ(Pk+ 1
2 , ek+ 1

2 ) +
τε2h2

6
(δt f k+ 1

2 ,Qk+ 1
2 ).

Using Cauchy-Schwartz inequality , we can rearrange the inequality above into the following form

∥ek+1∥2 − ∥ek∥2 + ε2(|ek+1|21 − |e
k|21) +

ε2h2

12

[(
∥ f k+1∥2 −

h2

12
| f k+1|21

)
−

(
∥ f k∥2 −

h2

12
| f k|21

)]
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≤ − 2µτ|ek+ 1
2 |21 −

µτh2

9
|| f k+ 1

2 ||2 +
µτh2

6
∥Qk+ 1

2 ∥ · ∥ f k+ 1
2 ∥ + 2µτ∥Qk+ 1

2 ∥ · ∥ek+ 1
2 ∥

+ c3τ|γ| · ∥ek+ 1
2 ∥2 +

c3|γ|τh2

3
|| f k+ 1

2 || · ||ek+ 1
2 || +

c3|γ|τh2

3
|| f k+ 1

2 || · ||∆xek+ 1
2 ||

+ 2τε2∥δtQk+ 1
2 ∥ · ∥ek+ 1

2 ∥ + 2τ∥Pk+ 1
2 ∥ · ∥ek+ 1

2 ∥ +
τε2h2

6
(δt f k+ 1

2 ,Qk+ 1
2 )

≤ − 2µτ|ek+ 1
2 |21 −

µτh2

9
|| f k+ 1

2 ||2 +
3µτh2

16
∥Qk+ 1

2 ∥2 +
µτh2

27
∥ f k+ 1

2 ∥2 + µ2τ∥Qk+ 1
2 ∥2 + τ∥ek+ 1

2 ∥2

+ c3|γ|τ∥ek+ 1
2 ∥2 +

µτh2

27
|| f k+ 1

2 ||2 +
3c2

3γ
2τh2

4µ
||ek+ 1

2 ||2 +
µτh2

27
|| f k+ 1

2 ||2 +
3c2

3γ
2τ

µ
∥ek+ 1

2 ∥2

+ τε4∥δtQk+ 1
2 ∥2 + τ∥ek+ 1

2 ∥2 + τ∥Pk+ 1
2 ∥2 + τ∥ek+ 1

2 ∥2 +
τε2h2

6
(δt f k+ 1

2 ,Qk+ 1
2 )

≤τ
(3
2
+

c3|γ|

2
+

3c2
3γ

2h2

8µ
+

3c2
3γ

2

2µ

)
(∥ek+1∥2 + ∥ek∥2) + τ

(
µ2 +

3µh2

16

)
∥Qk+ 1

2 ∥2

+ τε4∥δtQk+ 1
2 ∥2 + τ∥Pk+ 1

2 ∥2 +
τε2h2

6
(δt f k+ 1

2 ,Qk+ 1
2 ).

Replacing the superscript k with l and summing over l from 0 to k, we get

∥ek+1∥2 + ε2|ek+1|21 +
ε2h2

12

(
∥ f k+1∥2 −

h2

12
| f k+1|21

)
−
ε2h2

12

(
∥ f 0∥2 −

h2

12
| f 0|21

)
≤τ

(3
2
+

c3|γ|

2
+

3c2
3γ

2h2

8µ
+

3c2
3γ

2

2µ

) k∑
l=0

(∥el+1∥2 + ∥el∥2) + τ(k + 1)
(
µ2 +

3µh2

16

)
Lc2

1h8

+ τε4(k + 1)Lc2
1(τ2 + h4)2 + τ(k + 1)Lc2

1(τ2 + h4)2 +
τε2h2

6

k∑
l=0

(δt f l+ 1
2 ,Ql+ 1

2 ), 0 ≤ k ≤ N − 1.

(4.18)

For the last item on the right-hand side of (4.18), we have

k∑
l=0

(δt f l+ 1
2 ,Ql+ 1

2 ) =
1
τ

[ k∑
l=0

( f l+1,Ql+ 1
2 ) −

k∑
l=0

( f l,Ql+ 1
2 )
]

=
1
τ

[
( f k+1,Qk+ 1

2 ) − ( f 0,Q
1
2 )
]
−

k∑
l=1

( f l, δtQl)

≤
1
τ

(1
6
∥ f k+1∥2 +

3
2
∥Qk+ 1

2 ∥2
)
+

1
2τ

(∥ f 0∥2 + ∥Q
1
2 ∥2) +

1
2

k∑
l=1

(∥ f l∥2 + ∥δtQl∥2). (4.19)

Substituting (4.19) into (4.18) and using Lemma 2, we get

∥ek+1∥2 + ε2|ek+1|21 +
ε2h2

18
∥ f k+1∥2

≤
ε2h2

12

(
∥ f 0∥2 −

h2

12
| f 0|21

)
+ 2τ

(3
2
+

c3|γ|

2
+

3c2
3γ

2h2

8µ
+

3c2
3γ

2

2µ

) k∑
l=0

∥el+1∥2
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+ τ
(
µ2 +

3µh2

16

)
(k + 1)Lc2

1h8 + τε4(k + 1)Lc2
1(τ2 + h4)2 + τ(k + 1)Lc2

1(τ2 + h4)2

+
τε2h2

6

[1
2

k∑
l=1

∥ f l∥2 +
1
2

kLc2
1(τ2 + h4)2 +

1
τ

(1
6
∥ f k+1∥2 +

3
2

Lc2
1h8

)
+

1
2τ

(∥ f 0∥2 + Lc2
1h8)

]
.

We can rearrange the inequality above into the following form

∥ek+1∥2 + ε2|ek+1|21 +
ε2h2

36
∥ f k+1∥2

≤τ
(
3 + c3|γ| +

3c2
3γ

2h2

4µ
+

3c2
3γ

2

µ

)[ k∑
l=0

(
∥el∥2 + ε2|el|21 +

ε2h2

36
∥ f l∥2

)
+ ∥ek+1∥2

]
+
ε2h2

12
∥ f 0∥2 + τ

(
µ2 +

3µh2

16

)
(k + 1)Lc2

1h8 + τε4(k + 1)Lc2
1(τ2 + h4)2 + τ(k + 1)Lc2

1(τ2 + h4)2

+
τε2h2

12
kLc2

1(τ2 + h4)2 +
ε2h2

4
Lc2

1h8 +
ε2h2

12
∥ f 0∥2 +

ε2h2

12
Lc2

1h8. (4.20)

Denote

Fk = ∥ek∥2 + ε2|ek|21 +
ε2h2

36
∥ f k∥2, 1 ≤ k ≤ N.

In combination of (2.6) in Lemma 4 with (4.12), we have

ε2h2

12
∥ f 0∥2 ≤

3ε2h2

8
∥Q0∥2 ≤

3
8

c2
1ε

2h10L. (4.21)

Substituting (4.21) into (4.20), when h ≤ h0 and c4τ ≤
1
3 , (4.20) can be rewritten as

Fk+1 ≤ τc4

k∑
l=0

F l + τc4Fk+1 + c5(τ2 + h4)2,

which implies that

Fk+1 ≤
3
2

c4τ

k∑
l=0

F l +
3
2

c5(τ2 + h4)2.

According to the Gronwall inequality, we have

Fk+1 ≤
3
2

c5e
3
2 c4T (τ2 + h4)2 = c2

6(τ2 + h4)2, 0 ≤ k ≤ N − 1.

Thus, it holds that

∥ek∥ ≤ c6(τ2 + h4), ε|ek|1 ≤ c6(τ2 + h4), ε∥ek∥∞ ≤
c6
√

L
2

(τ2 + h4), 0 ≤ k ≤ N.

□
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Below, we consider the stability of the difference scheme (3.9)–(3.12). Suppose that { ũk
i , ṽk

i | 1 ≤
i ≤ M, 0 ≤ k ≤ N } is the solution of

δtũ
k+ 1

2
i = µṽk+ 1

2
i + γ

(
ψ(ũk+ 1

2 , ũk+ 1
2 )i −

h2

2
ψ(ṽk+ 1

2 , ũk+ 1
2 )i

)
+ ε2δtṽ

k+ 1
2

i ,

1 ≤ i ≤ M, 0 ≤ k ≤ N − 1,

ṽk
i = δ

2
xũ

k
i −

h2

12
δ2

xṽ
k
i , 1 ≤ i ≤ M, 0 ≤ k ≤ N, (4.22)

ũ0
i = φ(xi) + r(xi), 1 ≤ i ≤ M,

ũk
i = ũk

i+M, ṽk
i = ṽk

i+M, 1 ≤ i ≤ M, 1 ≤ k ≤ N.

Denote
ξk

i = ũk
i − uk

i , ηk
i = ṽk

i − vk
i , 1 ≤ i ≤ M, 0 ≤ k ≤ N.

Subtracting (3.9)–(3.12) from (4.22), we obtain the perturbation equation as follows

δtξ
k+ 1

2
i =µη

k+ 1
2

i + γ
[
ψ(ũk+ 1

2 , ũk+ 1
2 )i − ψ(uk+ 1

2 , uk+ 1
2 )i

]
−
γh2

2
[
ψ(ṽk+ 1

2 , ũk+ 1
2 )i − ψ(vk+ 1

2 , uk+ 1
2 )i

]
+ ε2δtη

k+ 1
2

i , 1 ≤ i ≤ M, 0 ≤ k ≤ N − 1,
(4.23)

ηk
i = δ

2
xξ

k
i −

h2

12
δ2

xη
k
i , 1 ≤ i ≤ M, 0 ≤ k ≤ N, (4.24)

ξ0
i = r(xi), 1 ≤ i ≤ M, (4.25)
ξk

i = ξ
k
i+M, ηk

i = η
k
i+M, 1 ≤ i ≤ M, 1 ≤ k ≤ N. (4.26)

Theorem 6. Let { ξk
i , η

k
i | 1 ≤ i ≤ M, 0 ≤ k ≤ N } be the solution of (4.23)–(4.26). When c4τ ≤

1
3 and

h ≤ h0, we have

∥ξk∥ ≤ c7|r|1, ε|ξk|1 ≤ c7|r|1, ε∥ξk∥∞ ≤
c7
√

L
2
|r|1,

where c7 =
1
2

√
e

3
2 c4T

(
L2 + 15ε2

)
.

Proof. Taking an inner product of (4.23) with ξk+ 1
2 , we have

(δtξ
k+ 1

2 , ξk+ 1
2 ) = µ(ηk+ 1

2 , ξk+ 1
2 ) + γ

(
ψ(ũk+ 1

2 , ũk+ 1
2 ) − ψ(uk+ 1

2 , uk+ 1
2 ), ξk+ 1

2
)

−
γh2

2
(
ψ(ṽk+ 1

2 , ũk+ 1
2 ) − ψ(vk+ 1

2 , uk+ 1
2 ), ξk+ 1

2
)
+ ε2(δtη

k+ 1
2 , ξk+ 1

2 ).

Similar to the analysis technique in Theorem 5, we obtain

∥ξk+1∥2 − ∥ξk∥2 + ε2(|ξk+1|21 − |ξ
k|21) +

ε2h2

12

[(
∥ηk+1∥2 −

h2

12
|ηk+1|21

)
−

(
∥ηk∥2 −

h2

12
|ηk|21

)]
≤ −

µτh2

9
||ηk+ 1

2 ||2 + c3τ|γ| · ∥ξ
k+ 1

2 ∥2 +
c3τh2|γ|

3
||ηk+ 1

2 || · ||ξk+ 1
2 || +

c3τh2|γ|

3
||ηk+ 1

2 || · ||∆xξ
k+ 1

2 ||

≤c3τ|γ| · ||ξ
k+ 1

2 ||2 +
c2

3τh2γ2

2µ
||ξk+ 1

2 ||2 +
2c2

3τγ
2

µ
∥ξk+ 1

2 ∥2

≤τ
(c3|γ|

2
+

c2
3γ

2h2

4µ
+

c2
3γ

2

µ

)
(∥ξk+1∥2 + ∥ξk∥2).
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Replacing the superscript k with l and summing over l from 0 to k, we get

∥ξk+1∥2 + ε2|ξk+1|21 +
ε2h2

12

(
∥ηk+1∥2 −

h2

12
|ηk+1|21

)
− ∥ξ0∥2 − ε2|ξ0|21 −

ε2h2

12

(
∥η0∥2 −

h2

12
|η0|21

)
≤2τ

(c3|γ|

2
+

c2
3γ

2h2

4µ
+

c2
3γ

2

µ

)( k∑
l=0

∥ξl∥2 + ∥ξk+1∥2
)
.

Using Lemma 2 and when h ≤ h0, we can rearrange the inequality above into the following form

∥ξk+1∥2 + ε2|ξk+1|21 +
ε2h2

18
∥ηk+1∥2

≤τ
(
c3|γ| +

c2
3γ

2h2

2µ
+

2c2
3γ

2

µ

)( k∑
l=0

∥ξl∥2 + ∥ξk+1∥2
)
+ ∥ξ0∥2 + ε2|ξ0|21 +

ε2h2

12
∥η0∥2

≤τc4

( k∑
l=0

∥ξl∥2 + ∥ξk+1∥2
)
+ ∥ξ0∥2 + ε2|ξ0|21 +

ε2h2

12
∥η0∥2. (4.27)

Denote

F̃k = ∥ξk∥2 + ε2|ξk|21 +
ε2h2

18
∥ηk∥2, 0 ≤ k ≤ N.

Combining (2.6) in Lemma 4 with (4.25), we have

ε2h2

12
∥η0∥2 ≤

3ε2

2
|ξ0|21 =

3ε2

2
|r|21. (4.28)

Substituting (4.28) into (4.27), (4.27) can be rewritten as

∥ξk+1∥2 + ε2|ξk+1|21 +
ε2h2

18
∥ηk+1∥2 ≤ τc4

( k∑
l=0

∥ξl∥2 + ∥ξk+1∥2
)
+

L2

6
|r|21 + ε

2|r|21 +
3ε2

2
|r|21.

Then, we have

(1 − c4τ)F̃k+1 ≤ τc4

k∑
l=0

F̃ l +
(5ε2

2
+

L2

6

)
|r|21, 0 ≤ k ≤ N − 1.

According to the Gronwall inequality, when c4τ ≤
1
3 , we have

F̃k ≤ c2
7|r|

2
1, 0 ≤ k ≤ N,

where c7 =
1
2

√
e

3
2 c4T

(
L2 + 15ε2

)
.

Therefore, it holds that

∥ξk∥ ≤ c7|r|1, ε|ξk|1 ≤ c7|r|1, ε∥ξk∥∞ ≤
c7
√

L
2
|r|1.

□
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4.4. Numerical experiments

In this section, we perform numerical experiments to verify the effectiveness of the difference
scheme and the accuracy of the theoretical results. Before conducting the experiments, we first in-
troduce an algorithm for solving the nonlinear compact scheme. Denote

uk = (uk
1, u

k
2, · · · , u

k
M)T , νk = (vk

1, v
k
2, · · · , v

k
M)T , w = (w1,w2, · · · ,wM)T , z = (z1, z2, · · · , zM)T ,

where 0 ≤ k ≤ N. The algorithm of the compact difference scheme (3.9)–(3.12) can be described as
follows:

Step 1 Solve u0 and v0 based on (3.10) and (3.11).
Step 2 Suppose uk is known, the following linear system of equations will be used to approximate the

solution of the difference scheme (3.9)–(3.12), for 1 ≤ i ≤ M, we have

2
τ

(w(l+1)
i − uk

i ) = µz(l+1)
i + γ

[
ψ(w(l),w(l+1))i −

h2

2
ψ(z(l),w(l+1))i

]
+

2
τ
ε2(z(l+1)

i − νk
i ),

z(l)
i = δ

2
xw

(l)
i −

h2

12
δ2

xz
(l)
i ,

w(l)
i = w(l)

i+M, z(l)
i = z(l)

i+M,

until
max
1≤i≤M

|w(l+1)
i − w(l)

i | ≤ ϵ, l = 0, 1, 2, . . . .

Let
uk+1

i = 2w(l+1)
i − uk

i , vk+1
i = 2z(l+1)

i − vk
i , 0 ≤ i ≤ M.

In the following numerical experiments, we set the tolerance error ϵ = 1 × 10−12 for each iteration
unless otherwise specified.

When the exact solution is known, we define the discrete error in the L∞-norm as follows:

E∞(h, τ) = max
1≤i≤M, 0≤k≤N

|Uk
i − uk

i |,

where Uk
i and uk

i represent the analytical solution and the numerical solution, respectively. Addition-
ally, the convergence orders in space and time are defined as follows:

Ordh
∞ = log2

E∞ (2h, τ)
E∞ (h, τ)

, Ordτ∞ = log2
E∞ (h, 2τ)
E∞ (h, τ)

.

When the exact solution is unknown, we use a posteriori error estimation to verify the convergence
orders in space and time. For a sufficiently small h, we denote

F∞(h, τ) = max
1≤i≤M, 0≤k≤N

|uk
i (h, τ) − uk

2i(h/2, τ)|, Ordh
∞ = log2

F∞(2h, τ)
F∞(h, τ)

.

Similarly, for sufficiently small τ, we denote

G∞(h, τ) = max
1≤i≤M, 0≤k≤N

|uk
i (h, τ) − u2k

i (h, τ/2)|, Ordτ∞ = log2
G∞(h, 2τ)
G∞(h, τ)

.
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Example 1. We first consider the following equation
ut = uxx + uux + uxxt + f (x, t) , 0 < x < 2, 0 < t ≤ 1,
u (x, 0) = sin (πx) , 0 ≤ x ≤ 2,
u (0, t) = u (2, t) , 0 < t ≤ 1,

where
f (x, t) = et sin (πx) + 2π2et sin (πx) − πe2t sin (πx) cos(πx).

The initial condition is determined by the exact solution u (x, t) = et sin(πx) with the period L = 2 and
T = 1.

The numerical results are reported in Table 1 and Figure 1.
Table1, we progressively reduce the spatial step-size h half by half (h = 1/2, 1/4, 1/8, 1/16, 1/32)

while keeping the time step-size τ = 1/1000. Conversely, we gradually decrease the time step-size τ
half by half (τ = 1/4, 1/8, 1/16, 1/32, 1/64) while maintaining the spatial step-size h = 1/50.

As we can see, the spatial convergence order approaches to the four order approximately, and the
temporal convergence order approaches to two orders in the maximum norm, which are consistent with
our convergence results. Comparing our numerical results with those in [42] from Table 2, we find our
scheme is more efficient and accurate.

Table 1. Convergence orders versus numerical errors for the scheme (3.9)–(3.12) with re-
duced step-size under L = 2 and T = 1 .

τ = 1/1000 h = 1/50
h E∞(h, τ) Ordh

∞ τ E∞(h, τ) Ordτ∞
1/2 6.1769e-02 * 1/4 6.7342e-03 *
1/4 7.4321e-03 3.0550 1/8 1.6884e-03 1.9959
1/8 4.8805e-04 3.9287 1/16 4.2259e-04 1.9983
1/16 3.1790e-05 3.9404 1/32 1.0587e-04 1.9970
1/32 2.0894e-06 3.9274 1/64 2.6669e-05 1.9890

Table 2. Convergence orders versus numerical errors for the scheme [42] with reduced step-
size under L = 2 and T = 1.

τ = 1/1000 h = 1/200
h E∞(h, τ) Ordh

∞ τ E∞(h, τ) Ordτ∞
1/2 5.0747e-01 * 1/4 6.7850e-03 *
1/4 1.1891e-01 2.0935 1/8 1.7378e-03 1.9651
1/8 3.0838e-02 1.9471 1/16 4.7159e-04 1.8816
1/16 7.6531e-03 2.0106 1/32 1.5477e-04 1.6074
1/32 1.9208e-03 1.9943 1/64 7.5545e-05 1.0347

By observing the first subgraph in Figure 1, the evolutionary trend surface of the numerical solution
u(x, t) with τ = 1/1000, h = 1/50, L = 2 and T = 1 is illustrated. This figure successfully reflects
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the panorama of the exact solution. In order to verify the accuracy of the difference scheme (3.9)–
(3.12), we have drawn the numerical error surface in the second subgraph in Figure 1 with τ = 1/1000,
h = 1/50, L = 2 and T = 1.

We observe that the rates of the numerical error in the maximum norm approaches a fixed value,
which verifies that the difference scheme (3.9)–(3.12) is convergent. It took us 2.03 seconds to compute
the spatial order of accuracy and 0.37 seconds to determine the temporal order of accuracy.

Figure 1. The numerical solution u(x, t) and the numerical error surface |U(x, t) − u(x, t)|
with τ = 1/1000, h = 1/50, L = 2 and T = 1.

Example 2. We further consider the problem of the form
ut = uxx + uux + ε

2uxxt, −25 < x < 25, 0 < t ≤ T,

u (x, 0) =
1
2

sech
( x
4

)
, −25 ≤ x ≤ 25,

u (−25, t) = u (25, t) , 0 < t ≤ T,

where the exact solution is unavailable.

Case I ε = 1:
The numerical results are reported in Table 3 and Figure 2. The two discrete conservation laws of
the difference scheme (3.9)–(3.12) are reported in Table 4. In the following calculations, we set
T = 1. First, we fix the temporal step-size τ = 1/1000 and reduce the spatial step-size h half by
half (h = 50/11, 50/22, 50/44, 50/88). Second, we fix the spatial step-size h = 1/2, meanwhile,
reduce the temporal-step size τ half by half (τ = 1/2, 1/4, 1/8, 1/16).
As we can see, the spatial convergence order approaches to four orders, approximately, and the
temporal convergence order approaches to two orders in the maximum norm, which is consistent
with our convergence results. It took us 6.74 seconds to compute the spatial order of accuracy,
and 0.30 seconds to determine the temporal order of accuracy.
From Table 4, we can see that the discrete conservation laws in Theorems 1 and 2 are also satisfied.
In the first graph of Figure 2, we depict the evolutionary trend surface of the numerical solution
u(x, t) with τ = 1/1000, h = 1/2, L = 50 and T = 1, and this figure successfully reflects the
panorama of the exact solution.
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Table 3. Convergence orders versus numerical errors for the scheme (3.9)–(3.12) with re-
duced step sizes under L = 50 and T = 1.

τ = 1/1000 h = 1/2
h F∞(h, τ) Ordh

∞ τ G∞(h, τ) Ordτ∞
50/11 4.5583e-03 * 1/2 2.7427e-05 *
50/22 5.0140e-04 3.1845 1/4 6.8356e-06 2.0045
50/44 4.0505e-05 3.6298 1/8 1.7076e-06 2.0011
50/88 4.6251e-06 3.1305 1/16 4.2681e-07 2.0003

Figure 2. The numerical solutions u(x, t) with τ = 1/1000, h = 1/2, L = 50 (Left: ε = 1 and
T = 1; Right: ε = 0.1 and T = 10).

Table 4. The discrete conservation laws of the difference scheme (3.9)–(3.12) with reduced
step sizes under h = 1/2 and τ = 1/1000.

t Q E
0 6.267721589835858 2.041650615050223
0.125 6.267721589832776 2.041650615048104
0.250 6.267721589829613 2.041650615045897
0.375 6.267721589826562 2.041650615043805
0.500 6.267721589823495 2.041650615041712
0.625 6.267721589820407 2.041650615039603
0.750 6.267721589816996 2.041650615037288
0.875 6.267721589813823 2.041650615035165
1.000 6.267721589810754 2.041650615033137

When simulating a short duration of time T = 1, the impact of values ε = 1 and ε = 0.1 on the
numerical simulation is relatively small. Therefore, in the following Case II, we take ε = 0.1 and
T = 10 to observe the impact of ε on the numerical simulation situation.

Case II ε = 0.1:
The numerical results are reported in Table 5 and Figure 2. The two discrete conservation laws of
the difference scheme (3.9)–(3.12) are reported in Table 6.
First, we fix the temporal step-size τ = 1/1000 and reduce the spatial step-size h half by half
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(h = 25/3, 25/6, 25/12, 25/24). Second, we fix the spatial step-size h = 1/2 and reduce the
temporal step size τ half by half (τ = 1/2, 1/4, 1/8, 1/16).
As we can see, the spatial convergence order approaches to four orders, approximately, and the
temporal convergence order approaches to two orders in the maximum norm, which is consistent
with our convergence results. It took us 33.76 seconds to compute the spatial order of accuracy
and 0.33 seconds to determine the temporal order of accuracy.
In the second subgraph of Figure 2, we depict the evolutionary trend surface of the numerical
solution u(x, t) with τ = 1/1000, h = 1/2, L = 50 and T = 10. Compared with the first subgraph
of Figure 2, smaller ε amplifies sharper transitions and wave-like behavior, whereas the larger ε
makes the solution smoother.

Table 5. Convergence orders versus numerical errors for the scheme (3.9)–(3.12) with re-
duced step-sizes under L = 50 and T = 10.

τ = 1/1000 h = 1/2
h F∞(h, τ) Ordh

∞ τ G∞(h, τ) Ordτ∞
25/3 5.1657e-02 * 1/2 9.3665e-03 *
25/6 8.1492e-03 2.6642 1/4 2.6282e-03 1.8334
25/12 6.5306e-04 3.6414 1/8 5.8168e-04 2.1758
25/24 4.8822e-05 3.7416 1/16 1.3874e-04 2.0679

Table 6. The discrete conservation laws of the difference scheme (3.9)–(3.12) with reduced
step-sizes under h = 1/2 and τ = 1/1000.

t Q E
0 6.267721589835858 2.000401671877802
1.25 6.267721589837073 2.000401671878745
2.50 6.267721589838247 2.000401671879621
3.75 6.267721589839301 2.000401671880389
5.00 6.267721589840338 2.000401671881143
6.25 6.267721589840971 2.000401671881638
7.50 6.267721589841729 2.000401671882164
8.75 6.267721589842555 2.000401671882761
10.0 6.267721589843263 2.000401671883252

Example 3. In the last example, we consider the problem{
ut = uxx + uux + uxxt, 0 < x < 30, 0 < t ≤ 20,
u (0, t) = u (30, t) , 0 < t ≤ 20.

with the Maxwell initial conditions u (x, 0) = e−(x−7)2
, 0 ≤ x ≤ 30.

Figure 3 reflects the behavior of the solutions to the pseudo-parabolic Burgers’ equation. During the
propagation process, we observe that the pseudo-parabolic Burgers’ equation exhibits characteristics
of both diffusion and advection. As we can see, the peak gradually spreads out and flattens as time
progresses. Additionally, the solution moves to the right, indicating propagation direction.
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The numerical scheme ensures stability, convergence, and the preservation of physical properties,
which can be observed from the smooth transitions over time. This phenomenon indicates that the
numerical scheme preserves the physical properties, ensuring stability and convergence.

0 6 12 18 24 30
x
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0.5940
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0.9900
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Figure 3. The numerical solution u(x, t) with τ = 1/500, h = 3/10, L = 30 and T = 20.

In Figure 4, we observe that the pseudo-parabolic Burgers’ equation exhibits propagation charac-
teristics coupled with gradual damping.

From Table 7, we can see that the discrete conservation law agrees well with Theorems 1 and 2.
The value of Q remains almost constant throughout the simulation, which is crucial for maintaining
the physical integrity of the solution. Similarly, the phenomenon is suitable for the energy E, and these
results further verify the correctness and reliability of the high-order compact difference scheme.

5. Conclusions

We propose and analyze an implicit compact difference scheme for the pseudo-parabolic Burg-
ers’ equation, achieving second-order accuracy in time and fourth-order accuracy in space. Using the
energy method, we provide a rigorous numerical analysis of the scheme, proving the existence, unique-
ness, uniform boundedness, convergence, and stability of its solution. Finally, the theoretical results
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Figure 4. The numerical solution u(x, t) with τ = 1/500, h = 3/10, L = 30 and T = 20.

Table 7. The discrete conservation laws of the difference scheme (3.9)–(3.12) with reduced
step sizes under h = 3/10 and τ = 1/500.

t Q E
0 1.772453850905516 2.505978912117327
2.50 1.772453850935547 2.505978912141013
5.00 1.772453850964681 2.505978912152665
7.50 1.772453850994238 2.505978912161075
10.0 1.772453851021927 2.505978912167129
12.5 1.772453851052832 2.505978912173078
15.0 1.772453851083987 2.505978912178467
17.5 1.772453851115895 2.505978912183606
20.0 1.772453851148868 2.505978912188604

are validated through numerical experiments. The experimental results demonstrate that the proposed
scheme is highly accurate and effective, aligning with the theoretical predictions. As part of our ongo-
ing research [42–48], we aim to extend these techniques and approaches to other nonlocal or nonlinear
evolution equations [49–55].
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