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Abstract: Feature selection is a crucial data processing method used to reduce dataset dimensionality
while preserving key information. In this paper, we proposed a multi-strategy enhanced dung beetle
optimization algorithm (mDBO) that integrates multiple strategies to effectively address the feature
selection problem. First, a novel population initialization strategy based on a hybrid tent-sine map and
random opposition-based learning was proposed to generate initial population. This strategy yielded a
more uniform distribution of the initial population, significantly improving the quality of the population
distribution within the search space. Second, a new differential evolution mutation strategy with a
periodic retrospective adaptive mutation factor was proposed. This strategy effectively improved the
algorithm’s ability to jump out of the local optimal and explore potential candidate solutions. Third,
based on Padé approximation technology and the novel adaptive evolutionary boundary constraint
method, an innovative approximation strategy was proposed. The strategy was integrated into the
framework of the dung beetle optimizer, significantly improving the solution accuracy and population
quality of the algorithm. Finally, the binary version of the mDBO algorithm (bmDBO) was applied to
feature selection tasks. Experiments entailing CEC2017 benchmark functions and 17 datasets showed
that both mDBO and bmDBO outperformed other algorithms. The mDBO method outperformed other
algorithms in 11 of the 29 benchmark functions, ranked second in 8 functions, and achieved an average
rank of 1.62 in the Friedman ranking, securing the overall first place; the bmDBO method outperformed
in 12 of 17 datasets, achieving an average ranking of 1.35 in the Friedman ranking, securing the first
position.
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1. Introduction

Optimization technology has proven to be of immense practical value in the daily operations of
both industry and the scientific community. Over the past years, a plethora of innovative numerical
and computational methods have been developed to tackle optimization problems. The effectiveness
of an optimizer is largely determined by the search capability of its algorithm, which directly
influences its ability to accurately identify the optimal solution from numerous possibilities [1].
However, practical optimization problems often present challenges such as high dimensionality,
nonlinearity, and intricate parametric constraints. Consequently, traditional methods, such as
Newton’s method and integer programming, while theoretically capable of solving optimal solutions
for small-scale problems, become impractical for complex real-world scenarios due to their
considerable time and space requirements.

Optimization fundamentally involves identifying the optimal value of an objective function under
various constraints [2] and is extensively applied across fields such as mechanical design [3], path
planning [4], image segmentation [5], and deep learning [6]. For example, Li et al. [7] improved the
artificial rabbit optimization algorithm and applied it to multichannel signal denoising. Xiao et al. [8]
enhanced the snow melt optimization algorithm with multiple strategies and applied it to both global
optimization and practical engineering applications. Fei et al. [9] proposed a novelprojective model
(PM) basedsparse MEKLM (PM-SMEKLM) algorithm tolearna cross-domain transformation by PM
inway of theparameter-based TL, and then apply it to the neuroimaging-based CAD for brain
diseases. Ma and Li [10] introduced a U-Net algorithm with a supervised attention mechanism for
retinal vessel segmentation. Xiao and Guo [11] proposed an improved hybrid optimizer combining
AO and AVOA to overcome the limitations of individual algorithms, providing higher-quality
solutions to global optimization problems. These practical optimization problems frequently exhibit
characteristics, including complexity, high dimensionality, non-convexity, and nonlinearity [12].
Additionally, with the rapid advancements in data collection and storage technologies, vast amounts
of data have been accumulated across fields. However, these datasets often contain significant
amounts of redundant and irrelevant information. Thus, effectively removing noise from these large
datasets and selecting optimal feature combinations has emerged as a crucial research topic in the era
of big data. Given the multitude of features present in datasets, it is neither feasible nor time-efficient
to explore all possible feature combinations exhaustively. As a result, feature selection algorithms are
widely utilized to address this NP-hard problem [13].

Feature selection (FS) is a process aimed at identifying and retaining key features from an original
dataset while eliminating unnecessary, redundant, or noisy attributes based on predefined evaluation
criteria. This approach facilitates dimensionality reduction without compromising the integrity of the
original features, distinguishing it from feature extraction, which constructs new combinations of
features. FS is widely utilized in various fields, including text mining. The techniques for FS are
primarily categorized into three groups: filter, wrapper, and embedded methods.

The filter method assesses the significance of features based on their correlation with the target
variable. While this approach is straightforward and easy to implement, it may sometimes lack in
terms of classification accuracy. Common filter techniques include variance analysis, information
gain calculation, and correlation analysis [14]. In contrast, the wrapper method employs machine
learning models to iteratively evaluate subsets of features, seeking an optimal solution or meeting
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specific stopping criteria. This technique can enhance classification accuracy but typically incurs a
higher computational cost, especially when applied in conjunction with models such as K-nearest
neighbors (KNN) [15], support vector machines (SVM) [16], neural networks, or decision trees [17].
The embedded method integrates the feature selection process directly into the model training phase,
thereby optimizing time efficiency, although it may increase the computational burden on the model. It
is important to recognize that the effectiveness of various FS methods can vary across different datasets
and classification tasks. Therefore, a flexible application of multiple FS techniques can maximize their
respective advantages and significantly improve classification performance.

The rapid advancement of meta-heuristic algorithms [18] has significantly expanded the
application scope of intelligent optimization techniques in the field of FS. These algorithms, inspired
by natural phenomena and biological behavior patterns, have demonstrated remarkable effectiveness
across various optimization domains due to their straightforward model construction, ease of
implementation, and robust performance. However, the no free lunch (NFL) theorem [19] serves as a
reminder that no single algorithm is universally applicable to all optimization problems. This insight
drives researchers to continuously pursue algorithmic innovations to enhance the applicability of these
methods. In the FS domain, researchers have actively sought enhancements to address the limitations
of traditional algorithms, such as particle swarm optimization (PSO), particularly when dealing with
high-dimensional datasets. For instance, Song et al. [20] ingeniously integrated the principle of
mutual information into their bare-bones particle swarm optimization (BBPSO), significantly
improving classification performance when utilized alongside the KNN classifier. Similarly, Faris et
al. [21] developed the binary salp swarm algorithm (SSA), which enhances exploration capabilities by
introducing crossover operators and transfer functions. Emary et al. [22] presented a novel binary
grey wolf optimizer (GWO) method, achieving the binarization of continuous algorithms through the
application of an S-shaped transfer function, which was validated on multiple datasets, thereby
revitalizing the GWO approach. Zhao et al. [23] proposed a binary dandelion algorithm with
improved seeds and a chaotic population. Experimental results indicate that, in most cases, the SBDA
selects fewer features while achieving higher classification accuracy. Mafarja et al. [24] made strides
in this area by proposing two improved whale optimization algorithms (WOAs). Their validation on
UCI datasets, coupled with comparisons to other algorithms, demonstrated superior classification
performance. Researchers have also developed a plethora of hybrid optimization algorithms. For
example, Adamu et al. [25] introduced the enhanced chaotic crow search and particle swarm
optimization-based hybrid binary algorithm, which effectively integrates particle swarm optimization
with the crow search algorithm, utilizing opposition-based learning techniques. This approach
significantly expands the search space and enhances optimization efficiency through various chaotic
initialization methods, offering more diverse options for the FS field.

These innovative algorithms not only address the unique challenges of FS but also enhance
classification accuracy and optimization speed by incorporating novel strategies and technologies.
Notably, intelligent optimization algorithms have proven adept at solving combinatorial optimization
problems [26]. For instance, Alic and Subasi [27] successfully utilized genetic algorithms (GAs) to
extract key informative features for breast cancer diagnosis in 2017, leading to substantial
improvements in classification accuracy through the rotation forest model based on GAs. Despite
challenges such as insufficient accuracy and premature convergence associated with traditional
optimization algorithms, intelligent optimization methods employing enhanced strategies have
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emerged as a dominant force in the FS domain. Furthermore, significant progress has been made in
multi-objective feature selection methods, albeit often at higher computational costs. Overall, FS
methodologies based on evolutionary computation (EC) have garnered considerable attention [28] due
to their superior optimization capabilities. Various EC techniques, including particle swarm
optimization, binary arithmetic optimization [29], ant colony optimization [30], binary grasshopper
optimization [31], binary waterwheel plant optimization [32], and genetic programming [33], have
been extensively applied in FS and are closely integrated with filter, wrapper, and hybrid methods,
collectively driving the innovation and development of FS techniques.

Existing optimization algorithms also have certain limitations in the feature selection problem. For
instance, some algorithms may encounter high computational complexity when handling large-scale
datasets, leading to low efficiency. Additionally, many optimization algorithms are prone to getting
stuck in local optima, preventing them from finding the global optimum. During the feature selection
process, some algorithms may tend to select too many features, resulting in good performance on the
training set but overfitting on the test set. Furthermore, certain algorithms may have slow convergence
rates on high-dimensional datasets, making it difficult to find a satisfactory solution quickly.

The dung beetle optimization (DBO) [34] algorithm is an emerging meta-heuristic strategy that has
demonstrated significant optimization potential when applied to benchmark functions. However, it
faces several challenges, including local convergence and an imbalance between exploration and
exploitation capabilities. To address these issues, we propose an enhanced DBO framework that
integrates multiple strategies to improve its performance in both global optimization problems and
feature selection tasks. First, a novel population initialization strategy is introduced, combining
tent-sine mapping with random opposition-based learning to achieve a more uniform distribution of
the initial population. Second, a new differential evolution mutation strategy is proposed,
incorporating a periodic retrospective adaptive mutation factor to enhance the exploration of potential
solutions. Furthermore, an innovative approximation strategy is presented, leveraging Padé
approximation technology along with a novel adaptive evolutionary boundary constraint method,
aimed at optimizing population position updates and improving the accuracy of the algorithm’s
solutions. Finally, the binary version of the enhanced mDBO algorithm is applied to feature selection
tasks. The major contributions of this study are as follows:

(1) A novel population initialization strategy utilizing a hybrid tent-sine mapping combined with
Random Opposition-Based Learning (ROBL) is proposed to generate the initial population. This
approach promotes a more uniform distribution of the initial population, thereby enhancing the
overall quality of the population distribution within the search space.

(2) A novel differential evolution mutation strategy is proposed, which integrates a periodic
retrospective adaptive mutation factor. This strategy enhances the traditional foraging update process
by incorporating a dynamic differential evolution mechanism, which effectively improves the
algorithm’s ability to escape local optima and broadens the search space for potential candidate
solutions.

(3) An innovative approximation strategy is proposed that incorporates Padé approximation
techniques along with an adaptive evolutionary boundary constraint method. This strategy is
integrated into the framework of the dung beetle optimizer, leading to enhancements in solution
accuracy and population quality.

(4) A binary version of the mDBO (bmDBO) is introduced, which utilizes an S-shaped transfer
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function to transform the continuous solution space into discrete binary results.
(5) A comprehensive experimental design was employed, covering 29 standard mathematical test

functions and 17 classical datasets, to evaluate the robustness and efficiency of the proposed algorithm
in solving real-world problems.

The structure of this paper is organized as follows: In Section 2, we present the DBO model. In
Section 3, we introduce a hybrid version of DBO, named mDBO, and details its population
initialization strategy based on a hybrid tent-sine map and random opposition-based learning, the
periodic retrospective adaptive evolution strategy, and the Padé approximation strategy with an
adaptive evolutionary boundary constraint. In Section 4, we present numerical experiments and
analyze the results of mDBO in comparison with other optimization algorithms. In Section 5, mDBO
is applied to address the feature selection problem, demonstrating its competitive performance.
Finally, in Section 6, we conclude the paper.

2. Dung beetle optimizer

The DBO algorithm is a novel swarm intelligence optimization algorithm proposed by Xue and
Shen [34], inspierd by the natural behavior of dung beetles. The DBO algorithm seeks the optimal
solution by simulating the habits of dung beetles, such as rolling balls, dancing, reproducing, foraging,
and stealing. The basic dung beetle algorithm updates the population positions by simulating four
behaviors of dung beetles in nature (rolling, spawning, foraging, and stealing).

2.1. Rolling dung beetle

The rolling behavior of dung beetles is categorized into two modes: Obstacle-free and obstacle
mode. When a dung beetle advances without encountering any obstacles, it relies on celestial cues to
maintain a straight-line trajectory for the dung ball during its rolling. In this mode, when the dung
beetle rolls the ball, its position is updated in the manner described by Eq (2.1):

Xt+1
i = Xt

i + λ · k · X
t−1
i + b · |Xt

i − Xt
worst|, (2.1)

t represents the current iteration number, Xt
i represent the position of the dung beetle at the tth iteration,

k ∈ (0, 0.2] represents a constant value which indicates the deflection coefficient, b is a constant value
from the interval [0, 1], λ indicates whether the dung beetle has deviated from its original direction,
assigned as either −1 or 1, where 1 indicates no deviation, −1 indicates deviation from the original
direction, and Xt

worst represents the worst in the current population, and |Xt
i − Xt

worst| is used to simulate
the changes in light intensity.

In the natural world, when a dung beetle encounters an obstacle on its path, it will obtain a new
rolling direction through the behavior of dancing. To simulate this situation, the algorithm uses a
tangent function to simulate the dung beetle’s dance behavior to obtain a new direction of advance.
It should be noted that we only need to consider the values of the tangent function on the interval
[0,π]. Once the dung beetle successfully determines a new direction, it should continue to roll the ball
backward. The update of the dung beetle’s position becomes Eq (2.2).

Xt+1
i =

Xt
i + tan(θ) · |Xt

i − Xt−1
i | , θ , 0,π,π2 ,

Xt
i , θ = 0,π,π2 .

(2.2)
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2.2. Spawning dung beetle

In nature, female dung beetles consider the living environment for their larvae and roll their dung
balls to a safe and suitable place for the larvae to survive. They also reproduce offspring through the
egg balls laid. The activity range of dung beetles laying eggs is strictly limited to the safe area to
achieve local development of this area. Therefore, DBO has proposed a boundary restriction strategy
to imitate the area where female dung beetles lay eggs, which is defned by:

Lb∗ = max(X∗ · (1 − R), Lb),
Ub∗ = min(X∗ · (1 + R),Ub),

(2.3)

Lb∗ and Ub∗ represent the lower and upper bounds of the egg-laying area, respectively. X∗ is the
current local optimum, and R = 1 − t/Tmax, where Tmax denotes the maximum number of iterations.
Lb and Ub represent the lower and upper bounds of the optimization problem. Once the dung beetle
has determined the optimal spawning area, it selects the dung balls to lay eggs within this area. In the
original text, each spawning by a dung beetle is an update to the beetle’s position. The boundary range
of the spawning area is dynamically changing, mainly determined by the R value. This ensures the
search in the area where the current optimum is located while preventing falling into a local optimum
area. The position update of the spawning dung beetle is given by Eq (2.4).

Xt+1
i = X∗ + b1 · (Xt

i − Lb∗) + b2 · (Xt
i − Ub∗), (2.4)

where Xt+1
i represents the position of the ith larva at the tth iteration. b1 and b2 denote two independent

random vectors, which are 1×D random variables, where D signifies the dimension of the optimization
problem.

2.3. Foraging dung beetle

The foraging behavior of dung beetles primarily originates from the larvae. As the dung beetle
larvae develop into adults, they emerge from the ground to search for food. The foraging area for the
larvae is also dynamically updated, which can be mathematically represented as follows:

Lbb = max(Xb · (1 − R), Lb),
Ubb = min(Xb · (1 + R),Ub),

(2.5)

where Xb represents the global best position of the population. Lbb and Ubb define the lower and upper
bounds of the optimal foraging area for the dung beetle larvae, respectively. Therefore, the position
update for the dung beetle larvae can be described as follows:

Xt+1
i = Xt

i +C1 · (Xt
i − Lbb) +C2 · (Xt

i − Ubb), (2.6)

C1 is a random number that follows a normal distribution, and C2 is a random vector that belongs to
the interval (0,1).

2.4. Stealing dung beetle

In the natural world, within dung beetle populations, some dung beetles engage in the behavior of
stealing dung balls from others. To simulate this behavior, the original text uses the optimal global
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position Xb as the location of the contested dung ball. During the iterative process, the position
information of the stealing dung beetle is updated, with the position update illustrated by Eq (2.7).

Xt+1
i = Xb + Q · g · (|Xt

i − X∗| + |Xt
i − Xb|), (2.7)

g represents a random vector of size 1 × D, which is normally distributed, Q is a constant. Algorithm1
gives the pseudo code of DBO.

Algorithm 1 The framework of the DBO algorithm
Require: The maximum iteration Tmax, the size of the particle’s population N
Ensure: Optimal position Xb and its fitness value fb

1: Initialize the particle’s population i← 1, 2, · · · ,N and define its relevant parameters
2: while t ≤ Tmax do
3: for i = 1 to N of Rolling dung beetle do
4: η=rand(1)
5: if α ≤ 0.9 then
6: Update the position of the Rolling dung beetle using Eq (2.1)
7: else
8: Update the position of the Rolling dung beetle using Eq (2.2)
9: end if

10: end for
11: The value of the nonlinear convergence factor is calculated by R = 1 − t/Tmax

12: for i = 1 to N of Spawning dung beetle do
13: Update the position of the Spawning dung beetle using Eq (2.3) and Eq (2.4)
14: end for
15: for i = 1 to N of Foraging dung beetle do
16: Update the position of the Spawning dung beetle using Eq (2.5) and Eq (2.6)
17: end for
18: for i = 1 to N of Stealing dung beetle do
19: Update the position of the Rolling dung beetle using Eq (2.7)
20: end for
21: end while
22: Return Xb and its fitness value fb

3. The proposed mDBO algorithm

Although the DBO algorithm demonstrates rapid convergence speed and wide application in
solving optimization problems, surpassing many other intelligent optimization algorithms, it is prone
to challenges, including uneven distribution of the initial population, limited global search capacity,
and a tendency to become trapped in local optima. To better address these challenges, we propose a
series of improvement strategies.
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3.1. Population initialization strategy based on hybrid tent-sine map and random opposition-based
learning

In swarm intelligence algorithms, population initialization plays a critical role in determining both
the convergence rate and the quality of the final solution. In the absence of prior knowledge about
potential solutions, random initialization is commonly used to generate the initial population.
However, random initialization often results in population agents becoming trapped in local optima.
Chaotic maps, which generate chaotic sequences, offer distinct advantages over traditional random
initialization due to their excellent ergodicity and high randomness, facilitating the generation of more
diverse populations. Researchers [35, 36] have demonstrated that effective population initialization
can accelerate convergence and improve system performance. In the experimental Section 4.2.1,
population initialization plots based on common chaotic mappings, along with related analyses, are
provided. In some chaotic maps, the tent map has gained widespread attention due to its rich chaotic
properties and has been effectively applied to the population initialization stage of algorithms to
enhance their performance [37–39]. The definition of the tent map is given by Eq (3.1).

Pi+1 =

BkPi , Pi < 0.5,
Bk(1 − Pi) , Pi ≥ 0.5,

(3.1)

where Pi+1 represents the i + 1th mapped value, and Pi represents the ith mapped value. Bk is a
parameter, the range (0,4] [40]. However, bifurcation analysis and Lyapunov exponent analysis show
that the tent map has a limited chaotic range and nonuniform distribution of the variant density function
[41, 42]. In terms of chaotic characteristics, the sine map also exhibits similar limitations to the tent
map. The sine map is defined by Eq (3.2):

Pi+1 = Bk
sin(πPi)

4
. (3.2)

To address the aforementioned issues, Zhou et al. [41] integrated two one-dimensional chaotic maps,
the tent map and the sine map, to generate a new chaotic map, the tent-sine map (TSM), as defined by
Eq (3.3), as follows:

Pi+1 =


(
Bk

Pi

2
+ (4 − Bk)

sin(πPi)
4

)
mod 1 , Pi < 0.5,(

Bk
(1 − Pi)

2
+ (4 − Bk)

sin(πPi)
4

)
mod 1 , Pi ≥ 0.5,

(3.3)

where Bk is a parameter within the range (0,4], we follow Bisht et al.’s work [40] in which they set the
value of Bk as 3.999. Analysis shows that TSM exhibits excellent chaotic properties, including a wide
range of parameter settings and a uniformly distributed varying density function [40–42]. We
conducted 3000 iterations. The scatter plots of the three maps and random distribution are shown in
Figure 1. The results indicate that TSM yields a more uniform distribution. The TSM, in contrast to
the sine map, results in fewer individuals being positioned at the boundaries. Furthermore, when
compared to the internal distribution of the tent map, the TSM shows reduced overlap among
individuals. The initial distribution generated by the TSM leads to a greater degree of dispersion. This
enhances population diversity and minimizes the likelihood of convergence to local optima. In the
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DBO algorithm, replacing the original random initialization method with the tent-sine chaotic map
helps to distribute the population more evenly and enhances its diversity. The initialization method is
shown in Eq (3.4).

Xt
i = LBt

i + (UBt
i − LBt

i) · P
t
i, (3.4)

LBt
i and UBt

i represent the lower and upper bounds for the ith particle. The mDBO employs a hybrid
chaotic mapping optimization strategy for population initialization, replacing the simple random
initialization method used in the original algorithm, as shown in Eq (3.4). This innovative
initialization method significantly enhances the quality of the initial population distribution in the
search space, strengthening the exploration capabilities of the DBO algorithm during the global
search process, while markedly improving its convergence speed and accuracy in finding global
optimal solutions.

(a) Randomly distributed scatter plot (b) Tent mapping scatter plot

(c) Sine mapping scatter plot (d) Tent-sine mapping scatter plot

Figure 1. Comparison of scatter plot.
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(a) Randomly initialization population (b) Tent mapping initialization population

(c) Sine mapping initialization population (d) Tent-sine mapping initialization population

Figure 2. Population initialization plot.

Additionally, opposition-based learning (OL) is a powerful optimization tool proposed by
Tizhoosh [43], and the concept has been successfully applied in various metaheuristic
algorithms [44–46] to enhance convergence speed. Unlike traditional opposition-based learning
strategies, a new OL strategy, called random OL (ROBL), was proposed in [47]. In contrast to
conventional OL strategies, the opposition solutions described by random OL exhibit more
randomness in exploration. Therefore, random OL can effectively enhance population diversity and
help it escape local optima. ROBL [47] is a randomization process based on reverse learning,
characterized by adaptability and diversity. In swarm intelligence algorithms, particularly during the
initialization phase, ROBL can break the locality of the population through random perturbations,
thereby increasing the coverage of the search space. The experimental section in Section 4.2.2
presents relevant analysis based on common opposition-based learning. Therefore, considering the
aforementioned advantages of ROBL, this paper combines ROBL with TSM, enabling the population
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initialization to not only cover a broader solution space with better distribution characteristics but also
accelerate convergence speed. ROBL is applied to refine the chaotic population by determining the
opposite direction of each solution according to Eq (3.5). The fitness function for each solution in
both the chaotic population X and its opposite population OX is then computed. From the union of
these two populations, the best N solutions with the lowest fitness values are selected to form the
initial population.

OXt
i = LBt

i + UBt
i − rand · Xt

i , (3.5)

where LBt
i and UBt

i represent the lower and upper bounds for the ith particle, rand is an arbitrary value
within the interval [0,1]; OXt

i denotes the opposite solution, which compared to Eq (3.4), offers
sufficient random exploration. Therefore, Eq (3.5) can successfully enhance the diversity of the
population, help it avoid local optima, make the search method more flexible, and also expand the
search space of the DBO, thereby improving the quality of the initial population solutions.

Algorithm 2 Population initialization strategy based on hybrid tent-sine map and random opposition-
based learning
Require: N,LB,UB
Ensure: Xt

i
1: Generate a random P
2: for i = 1 to N do
3: if Pi < 0.5 then

4: Pi+1 =

(
Bk

Pi

2
+ (4 − Bk)

sin(πPi)
4

)
mod 1

5: else
6: Pi+1 =

(
Bk

(1 − Pi)
2

+ (4 − Bk)
sin(πPi)

4

)
mod 1

7: end if
8: end for
9: for i = 1 to N do

10: Xt
i = LBt

i + (UBt
i − LBt

i)P
t
i

11: OXt
i = LBt

i + UBt
i − randXt

i
12: if rand < z then
13: Xt

i = OXt
i

14: else
15: Xt

i = Xt
i

16: end if
17: end for
18: Return Xt

i

3.2. Differential evolution mutation strategy with periodic retrospective adaptive mutation factor

In 1995, Storn et al. [48] introduced an innovative algorithm known as differential evolution (DE),
which revitalized the optimization field with its unique core processes of mutation, crossover, and
selection. As an efficient stochastic search method, DE excels in solving a wide range of optimization
problems across various practical applications. In the DE algorithm, each search agent is referred to
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as a target vector. During the initialization phase, DE randomly generates all vectors within the search
domain. Subsequently, individuals are updated through mutation, crossover, and selection operations
until the termination conditions are met. The mutation operation perturbs a set of specified target
vectors to create new mutant vectors. The crossover operation combines these mutant vectors with
their corresponding target vectors to form new trial vectors. Finally, the selection operation evaluates
the objective function values of these trial and target vectors to determine which is superior, retaining
the better solution for the next generation. DE is frequently integrated with genetic variation methods,
effectively enhancing population diversity, mitigating premature convergence, and improving both
exploratory capabilities and convergence accuracy. We integrate the periodic retrospective adaptive
differential evolution (PRADE) process into the core framework of DBO, with the objective of
enhancing optimization performance. This integration enables a more extensive exploration of the
solution space, while improving the effectiveness and accuracy of the optimization results.

(1) Mutation process
The differential evolution mechanism enables the algorithm to generate mutated candidate

solutions through the application of mutation operators. For each target candidate solution, the
mutation operator is employed to create the corresponding mutated candidate solution. In this work,
an adaptive mutation operator with Periodic Retrospective is proposed, specifically designed for the
ith generation, as illustrated in Eq (3.6):

V t+1
i = Xt

i + F(Xt
r1 − Xt

r2)︸         ︷︷         ︸
part1

+ (1 − F)(Xt
best − Xt

i)︸                 ︷︷                 ︸
part2

, (3.6)

where V t+1
i denotes the mutated individual, Xt

r1 and Xt
r2 are randomly selected individuals, with the

condition that r1 , r2, and Xt
best indicates the best individual. F represents the periodic retrospective

adaptive mutation factor, and based on the inertia weight in Eq (3.7) [49], we have innovatively
constructed the periodic retrospective mutation factor Eq (3.8). Through the comparative experiments
in Section 4.2.3, the periodic retrospective mutation factor Eq (3.8) shows better performance
compared to the inertia weight. The expression for F is as follows:

F̃ = Fmin + (Fmax − Fmin)
(
1 −

t
Tmax

)
, (3.7)

F =

Fmin + (Fmax − Fmin)

1 −
t%

Tmax

Tt

Tmax

Tt

 H


(
1 −

t
Tmax

)
, (3.8)

t represents the current function evaluation, and Tmax denotes the maximum number of function
evaluations. The symbol % is used to indicate either the remainder or the modulo operation. Tt is a
variable used to determine the number of cycles, and extensive experiments were conducted over a
wide range of the parameter Tt, with the experimental results shown in Table 1. The table indicates
that when the parameter Tt is set to 10, most of the optimal values for the CEC2017 test functions are
achieved. Fmax and Fmin are the maximum and minimum mutation factors, respectively. fmean is the
average value of the fitness function, which is calculated from fmin and fmax. H is the adaptive factor,
with its value ranging between [0,1]. The expression for H is as follows:

H = 1 −
fmean − fmin

fmax − fmin + ϵ
. (3.9)
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Here, ϵ is a very small number introduced to prevent the denominator from becoming zero. In this
study, ϵ is taken as realmin.

It is widely recognized that a robust global search capability is crucial at the onset of iterative
optimization to explore a broad spectrum of possible solutions. At the end of iterative optimization, a
strong local search capability is needed to improve accuracy. In the early iterations of the algorithm, a
larger mutation scaling factor F leads to an increased contribution of the first part (part1) in Eq (3.6),
thereby exerting a significant influence on the algorithm’s behavior. Therefore, a larger mutation
scaling factor F leads to stronger global exploration. At this stage, in the proposed Eq (3.8), the
decrease in the mutation scaling factor F exhibits a dynamic periodicity, which can retrospectively
enhance the influence of the mutation scaling factor F. This method can further enhance the
algorithm’s global exploration capability during this stage, thereby effectively reducing the
probability of the algorithm missing effective potential candidate solutions. For later iterations, a
smaller mutation scaling factor F allows the algorithm to focus on the role of the second part (part2)
of the Eq (3.6), leading to stronger local exploitation capabilities. However, during later iterations, a
smaller mutation scaling factor F can result in poorer population diversity, causing the algorithm to
easily fall into local optima. Fortunately, at this stage, the mutation scaling F in Eq (3.8) of this work
has a dynamic periodicity, which can retrospectively and adaptively increase the value of the mutation
scaling factor F, thereby appropriately enhancing the role of the first part of the formula. This method
significantly improves the population’s ability to escape local optima. The values of F may vary
slightly with different parameter values, but the general trend and behavior are as shown in Figure 3.

Figure 3. Trend of F-value changes.

(2) Crossover process

After the mutation process concludes, the crossover individuals U t+1
i are obtained when the

previous individuals are replaced with mutated individuals with a specific crossover probability (CR).
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The crossover process is shown in Eq (3.10):

U t+1
i =

V t+1
i , rand(0, 1) ≤ CR or j = jrand,

Xt+1
i , otherwise,

(3.10)

where CR ∈ [0, 1] denotes the crossover probability. In this study, CR = 0.8, and how to reach this
value will be demonstrated later. Xi represents the contribution of the ith search agent. jrand is a random
integer within the range [1, 2, ...,Dim], which ensures that at least one individual undergoes mutation.

(3) Selection process

After the mutation and crossover processes are completed, a greedy criterion is applied to compare
the cross-seed U t+1

i with the original target seed Xt+1
i to select the seed with the better fitness value to

be carried into the next iteration. The model of the greedy criterion is as shown in Eq (3.11):

Xt+1
i =

U t+1
i , if f (U t+1

i )≤ f (Xt+1
i ),

Xt+1
i , otherwise.

(3.11)

The PRADE strategy enhances information exchange among individuals through mutation and
crossover operations, thereby expanding the search range and diversity of the population. This
effectively prevents the algorithm from stagnating prematurely and reduces the likelihood of
converging to local optima, thus improving convergence accuracy. This strategy plays a crucial role in
optimization algorithms by dynamically adjusting the search process, increasing the global search
capability and exploration efficiency of the algorithm, making it more efficient and accurate in finding
global optimal solutions. As demonstrated in the ablation experiments presented later in this paper,
this strategy contributes to a notable improvement in the performance of the original algorithm. The
specific process is shown in Algorithm 3.

3.3. Padé approximation strategy with adaptive evolutionary boundary constraint

3.3.1. Padé approximation strategy

Rational function approximation is essential in the field of nonlinear approximation due to its
favorable properties. These functions not only demonstrate superior approximation performance in
the vicinity of poles, but they also exhibit consistent convergence to a specified value as the
independent variable approaches infinity. This characteristic underscores the advantages and
reliability of rational function approximation in addressing problems that involve asymptotic
behavior.
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Table 1. Adjusting the parameters Tt.

Function Metric Tt = 7 Tt = 8 Tt = 9 Tt = 10 Tt = 11 Tt = 12

F1 mean 8.1122 × 103 5.8756 × 103 5.3932 × 103 4.5202 × 103 5.3976 × 103 6.9359 × 103

std 2.1706 × 107 1.3613 × 107 1.8285 × 107 1.2579 × 107 1.9904 × 107 2.6727 × 107

F3 mean 1.8721 × 103 5.7857 × 102 6.3211 × 102 3.2275 × 102 1.5326 × 103 4.8257 × 102

std 1.1319 × 107 3.2602 × 105 6.1607 × 105 1.7162 × 103 1.4683 × 107 2.4419 × 105

F4 mean 4.0648 × 102 4.1314 × 102 4.1695 × 102 4.0564 × 102 4.1085 × 102 4.1088 × 102

std 1.1220 × 101 5.3637 × 102 7.4073 × 102 8.4362 × 100 2.4994 × 102 5.3349 × 102

F5 mean 5.3420 × 102 5.3113 × 102 5.3482 × 102 5.3243 × 102 5.2723 × 102 5.3562 × 102

std 1.5674 × 102 1.1167 × 102 1.2814 × 102 1.7155 × 102 1.0460 × 102 5.4658 × 101

F6 mean 6.0698 × 102 6.0448 × 102 6.0502 × 102 6.0300 × 102 6.0639 × 102 6.0441 × 102

std 2.6418 × 101 1.9135 × 101 1.5327 × 101 6.9462 × 100 3.4406 × 101 7.1919 × 100

F7 mean 7.4720 × 102 7.4229 × 102 7.4307 × 102 7.4029 × 102 7.5053 × 102 7.4132 × 102

std 2.3223 × 102 4.0574 × 102 2.4143 × 102 4.9388 × 101 2.4722 × 102 9.9491 × 101

F8 mean 8.2432 × 102 8.3784 × 102 8.2361 × 102 8.2070 × 102 8.3362 × 102 8.2527 × 102

std 1.0317 × 102 6.6917 × 101 5.5423 × 101 7.7831 × 101 1.7264 × 102 1.0256 × 102

F9 mean 9.2849 × 102 9.4981 × 102 9.5679 × 102 9.3779 × 102 9.9337 × 102 9.5579 × 102

std 1.1026 × 103 1.3831 × 104 4.7782 × 103 2.5580 × 103 1.4509 × 104 3.2160 × 103

F10 mean 1.9452 × 103 1.8614 × 103 1.9615 × 103 1.8561 × 103 1.9830 × 103 1.9757 × 103

std 1.6901 × 105 1.2264 × 105 5.4902 × 104 1.1535 × 105 1.0999 × 105 9.0506 × 104

F11 mean 1.1282 × 103 1.1537 × 103 1.1524 × 103 1.1231 × 103 1.1534 × 103 1.1939 × 103

std 3.8222 × 102 4.6372 × 103 1.3911 × 103 5.0901 × 102 1.4892 × 103 1.1976 × 104

F12 mean 3.3812 × 104 2.2143 × 104 1.2329 × 104 1.9758 × 104 2.9559 × 104 1.3213 × 104

std 5.9414 × 108 3.2021 × 108 4.2051 × 107 2.9496 × 108 3.3627 × 108 1.7277 × 108

F13 mean 1.2474 × 104 1.3313 × 104 1.4572 × 104 8.8748 × 103 1.4134 × 104 1.2353 × 104

std 8.8279 × 107 1.2523 × 108 1.0816 × 108 8.2545 × 107 1.5836 × 108 9.3165 × 107

F14 mean 1.8822 × 103 1.5532 × 103 1.7199 × 103 1.7424 × 103 1.6285 × 103 2.1784 × 103

std 3.9884 × 105 1.6019 × 104 6.5933 × 104 1.7866 × 105 2.6420 × 104 7.8149 × 105

F15 mean 3.8809 × 103 2.4504 × 103 3.0488 × 103 3.1537 × 103 4.3804 × 103 4.1290 × 103

std 4.6433 × 106 5.6653 × 105 1.5017 × 106 2.9455 × 106 4.2111 × 107 3.9146 × 106

F16 mean 1.7740 × 103 1.7845 × 103 1.7999 × 103 1.7159 × 103 1.8204 × 103 1.7424 × 103

std 9.7586 × 103 1.3216 × 104 1.5667 × 104 1.3644 × 104 1.0792 × 104 1.2300 × 104

F17 mean 1.7675 × 103 1.7610 × 103 1.7668 × 103 1.7505 × 103 1.7735 × 103 1.7761 × 103

std 1.4619 × 103 4.5498 × 102 1.2293 × 103 2.7499 × 102 1.1710 × 103 2.7988 × 103

F18 mean 1.8055 × 104 1.9538 × 104 2.2831 × 104 1.3235 × 104 1.6057 × 104 1.7092 × 104

std 2.7112 × 108 1.6530 × 108 2.1217 × 108 1.3104 × 108 2.1120 × 108 1.2895 × 108

F19 mean 4.6859 × 103 4.7406 × 103 3.9579 × 103 3.4620 × 103 5.5067 × 103 4.6813 × 103

std 5.2842 × 107 1.6886 × 107 1.4383 × 107 1.0515 × 106 1.9581 × 107 8.5551 × 106

F20 mean 2.0842 × 103 2.1061 × 103 2.0645 × 103 2.1042 × 103 2.0766 × 103 2.1000 × 103

std 3.1397 × 103 7.7265 × 103 2.0963 × 103 3.0038 × 103 4.5279 × 103 4.9507 × 103

F21 mean 2.3254 × 103 2.2784 × 103 2.2970 × 103 2.2601 × 103 2.2808 × 103 2.2773 × 103

std 1.9762 × 103 4.1407 × 103 3.5777 × 103 5.1221 × 103 4.3997 × 103 4.0555 × 103

F22 mean 2.3103 × 103 2.3080 × 103 2.2985 × 103 2.3032 × 103 2.3053 × 103 2.3069 × 103

std 4.1776 × 102 1.2884 × 102 3.8443 × 102 9.6182 × 100 4.9593 × 101 1.6449 × 101

F23 mean 2.6314 × 103 2.6360 × 103 2.6407 × 103 2.6307 × 103 2.6374 × 103 2.6362 × 103

std 2.4638 × 102 9.0650 × 101 2.5108 × 102 1.3905 × 102 4.6866 × 102 2.8697 × 102

F24 mean 2.7747 × 103 2.7648 × 103 2.7470 × 103 2.7363 × 103 2.7759 × 103 2.7531 × 103

std 8.5927 × 101 2.4186 × 102 1.5691 × 103 5.8645 × 103 1.9120 × 102 3.0901 × 103

F25 mean 2.8991 × 103 2.8991 × 103 2.9381 × 103 2.9460 × 103 2.9409 × 103 2.9478 × 103

std 1.1781 × 104 1.8308 × 103 8.1615 × 102 3.3640 × 102 6.7308 × 102 3.4512 × 102

F26 mean 3.0564 × 103 3.0358 × 103 3.0566 × 103 2.9906 × 103 3.2910 × 103 3.1296 × 103

std 1.6563 × 104 2.9422 × 104 1.7513 × 104 7.8682 × 103 2.5443 × 105 1.1462 × 105

F27 mean 3.1019 × 103 3.1040 × 103 3.1019 × 103 3.1007 × 103 3.1023 × 103 3.1027 × 103

std 5.3855 × 101 2.3199 × 102 5.8394 × 101 4.7009 × 101 4.1858 × 101 4.2291 × 101

F28 mean 3.3443 × 103 3.3811 × 103 3.3267 × 103 3.2878 × 103 3.3505 × 103 3.3254 × 103

std 6.6638 × 103 1.0542 × 104 9.2670 × 103 7.3558 × 103 1.5448 × 104 1.0975 × 104

F29 mean 3.2671 × 103 3.2578 × 103 3.2479 × 103 3.2231 × 103 3.2543 × 103 3.2441 × 103

std 2.3999 × 103 4.0466 × 103 2.6586 × 103 1.9508 × 103 3.9782 × 103 2.4723 × 103

F30 mean 8.8219 × 105 4.7871 × 105 4.4451 × 105 4.0954 × 105 3.5397 × 105 8.3754 × 105

std 6.9906 × 1011 2.1046 × 1011 3.7081 × 1011 1.6362 × 1011 1.1999 × 1011 5.6646 × 1011
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Algorithm 3 Differential evolution mutation strategy with periodic retrospective adaptive mutation
factor
Require: Xt

i ,Tmax,Tt,Fmax,Fmin,Dim
Ensure: Xt+1

i
1: for i = pNum+bNum+1 to pNum+bNum+sNum do
2: Calculate Xt+1

i using Eq (2.6) and then calculate the fitness value f it(Xt+1
i )

3: end for
4: for i=pNum+bNum+1 to pNum+bNum+sNum do

5: F =

Fmin + (Fmax − Fmin)

1 −
t%

Tmax

Tt

Tmax

Tt

 H


(
1 −

t
Tmax

)

H = 1 −
fmean − fmin

fmax − fmin + ϵ
6: V t+1

i = Xt
i + F(Xt

r1 − Xt
r2) + (1 − F)(Xt

best − Xt
i)

7: for j = 1 to Dim do
8: if rand(0, 1) ≤ CR or j = jrand then
9: U t+1

i = V t+1
i

10: else
11: U t+1

i = Xt+1
i

12: end if
13: end for
14: if f (U t+1

i )≤ f (Xt+1
i ) then

15: Xt+1
i = U t+1

i
16: else
17: Xt+1

i = Xt+1
i

18: end if
19: end for
20: Return Xt+1

i

Padé approximation is a method of rational function approximation that is widely used in
numerical analysis and is theoretically applicable for approximating any function with a finite order of
continuous derivatives. Compared to truncated Taylor series, Padé approximations are often more
accurate, and even when Taylor series fail to converge, Padé approximations can be valid [50]. In our
approach, the application of Padé approximation effectively improves the distribution quality of the
solutions and enhances the accuracy of the algorithm. The reason for choosing Padé approximation is
its favorable convergence properties and relatively low computational complexity, especially when
handling nonlinear and complex problems, where it can provide more precise approximations. The
core advantage of Padé approximation lies in its strong adaptability to initial conditions and
perturbations. Even in cases with uncertain or complex boundary conditions, Padé approximation
maintains good numerical stability. Vazquez-Leal and his colleagues [51] proposed a method that
directly employs the Padé approximation to derive approximate solutions for nonlinear differential
equations. This method demonstrates both high precision and convenience, underscoring its
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considerable potential for addressing a range of complex problems. Andrianov and Shatrov [52]
investigated the application of the Padé approximation in boundary layer aerodynamics and heat
transfer, focusing on the transformation of asymptotic expansions into rational or fractional-order
functions. They utilized the Padé approximation to examine the external asymptotics of viscous gas
boundary layer issues. Additionally, Xu and his team [53] developed a novel concentration
overpotential parameterization model within the P2D framework, based on a simplified partial
differential equation (PDE) for liquid phase diffusion. This model achieves a new analytical solution
for the liquid phase diffusion PDE under enhanced boundary conditions, grounded in the principle of
mass conservation as applied through the Padé approximation.

Padé approximation is a versatile and highly effective rational function approximation method that
starts from the power series. Suppose

T (z) =
∞∑

i=0

cizi. (3.12)

It is a given formal power series, suppose

Hm = {P|P(z) =
m∑

i=0

cizi, z, ci ∈ C
1},

Rm,n = {R = P/Q|P ∈ Hm,Q ∈ Hn\{0}}.

(3.13)

If the rational function P/Q ∈ Rm,n, satisfies

T (z) −
P(z)
Q(z)

= O(zm+n+1),

Q(0) = 1.
(3.14)

Then, P/Q is referred to as the Padé approximant of T (z) in Rm,n, denoted as [m/n].

P(z) = p0 + p1x + · · · + pmxm,

Q(z) = q0 + q1x + · · · + qnxn.
(3.15)

Padé approximation utilizes rational functions to approximate a target function, frequently yielding
more accurate results than truncated Taylor series [50]. When the degrees of the numerator and
denominator are equal or closely matched, Padé approximation exhibits optimal convergence
properties, indicating that the error decreases rapidly as the degree of approximation increases. The
computational process of Padé approximation is straightforward, as it does not require complex
numerical integration or differentiation, thus enabling efficient handling of large-scale data. These
characteristics make rational functions an effective alternative to traditional polynomials. In this
study, we propose a novel Padé approximation strategy to enhance the search performance of the
DBO algorithm. In optimization problems, the Padé approximation strategy can be employed to
leverage information from the current solution to approximate and assess the behavior of the objective
function. This approach predicts the function’s shape within the region of interest, providing valuable
insights to the algorithm and helping to uncover more promising candidate solutions, thus reducing
unnecessary searches. During the search process, three adjacent solutions are selected, and based on
these points, a rational approximation function is constructed that passes through them. By solving a

Electronic Research Archive Volume 33, Issue 3, 1693–1762.



1710

system of linear equations, the coefficients of the function are determined, yielding the expression of
the approximation function. Subsequently, the derivative of the resulting rational function is
computed to identify its stationary points, which may correspond to potential extreme values of the
function. Suppose two extreme points are found, where one is the minimum point and the other is the
maximum point. The minimum point is considered the most likely candidate for the optimal solution.
However, the maximum point should not be disregarded, as it could assist in escaping local optima.
Both points are potentially valuable solutions. Under the constraints of the boundary conditions, these
two new solutions are compared, and the better solution is then compared with the best solution from
the initial set of three solutions to update the optimal solution. This innovative Padé approximation
strategy is integrated into the DBO algorithm, significantly improving the population quality and
solution accuracy, especially in solving complex optimization problems. We adopt the following form
of Padé approximation:

T (X) =
a1 + a2X
1 + a3X2 , (3.16)

where a1, a2, and a3 are real number parameters. Let T (X) be the Padé approximation function of f (X)
at the three adjacent points Xi, Xi+1, Xi+2, and the three equations are as follows:

T (Xi) =
a1 + a2Xi

1 + a3X2
i

= f (Xi),

T (Xi+1) =
a1 + a2Xi+1

1 + a3X2
i+1

= f (Xi+1),

T (Xi+2) =
a1 + a2Xi+2

1 + a3X2
i+2

= f (Xi+2).

(3.17)

The three corresponding coefficients are determined by solving the linear system of Eq (3.17),
resulting in:

a1 =
(X2

i − X2
i+2)Xi+1 f (Xi) f (Xi+2) + (X2

i+1 − X2
i )Xi+2 f (Xi) f (Xi+1) + (X2

i+2 − X2
i+1)Xi f (Xi+1) f (Xi+2)

(Xi+1 − Xi+2)X2
i f (Xi) + (Xi+2 − Xi)X2

i+1(Xi+1) + (Xi − Xi+1)X2
i+2 f (Xi+2)

,

(3.18)

a2 =
(X2

i − X2
i+1) f (Xi) f (Xi+1) + (X2

i+2 − X2
i ) f (Xi) f (Xi+2) + (X2

i+1 − X2
i+2) f (Xi+1) f (Xi+2)

(Xi+1 − Xi+2)X2
i f (Xi) + (Xi+2 − Xi)X2

i+1 f (Xi+1) + (Xi − Xi+1)X2
i+2 f (Xi+2)

, (3.19)

a3 =
(Xi+1 − Xi) f (Xi+2) + (Xi+2 − Xi+1) f (Xi) + (Xi − xi+2) f (Xi+1)

(Xi+1 − Xi+2)X2
i f (Xi) + (Xi+2 − Xi)X2

i+1 f (Xi+1) + (Xi − Xi+1)X2
i+2 f (Xi+2)

. (3.20)

By combining Eqs (3.18)–(3.20) and considering the stationary points of the rational function T (X),
the potential extreme points of the approximation function T (X) are obtained as:

X∗ = −
a1

a2
±

√
a2

1

a2
2

+
1
a3
. (3.21)

To ensure the validity of Eq (3.21), it is necessary to determine the sign of a2
1

a2
2
+ 1

a3
. Under the

condition that a2
1

a2
2
+ 1

a3
is non-negative, the value of X∗ is obtained. In this case, a greedy approach is

used to compare the fitness values of these two X∗ with the fitness value of the current best dung
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beetle, and the best one is selected to enter the next generation. When a2
1

a2
2
+ 1

a3
is negative, the current

best dung beetle remains as the optimal solution. The Padé approximation strategy assists the DBO
algorithm in making fine adjustments within the search space during the optimization process, thereby
improving both the population quality and search accuracy. During the execution of the Padé
approximation strategy, some potential solutions may exceed the defined problem boundaries, which
is an unacceptable outcome. To address this issue, we propose a novel adaptive evolutionary boundary
constraint handling method. The details of this method are discussed in Section 3.3.2.

3.3.2. Adaptive evolutionary boundary constraint

In 2012, Gandomi and Yang [54] introduced an innovative strategy called evolutionary boundary
constraint handling (EBCH), which focuses on reintroducing particles that exceed the defined
boundaries back into the feasible search space. This method has garnered significant attention due to
its ease of integration with swarm intelligence and evolution-based optimization algorithms, thereby
enhancing their performance. The application of EBCH across various optimization algorithms is
documented in the works of Gandomi and Kashani [55] and Gandomi et al. [56, 57]. In conclusion,
when a variable exceeds a defined boundary, the fitness function assigns a specific value to that
solution, ensuring it cannot surpass its predecessors and preventing its selection for the subsequent
generation. In minimization problems, an infinite value is typically employed to accomplish this,
ensuring that solutions that violate constraints are deprioritized. This approach not only upholds the
integrity of the optimization process but also facilitates progress towards identifying feasible and
improved solutions.

In the evolutionary algorithm proposed by Gandomi and Yang [54], boundary constraint handling
is achieved through a specific strategy: when a variable exceeds its predefined limits, it is replaced by
a randomly generated value that lies between the current limits and the corresponding variable value
of the best solution found thus far. This approach leverages the most recent solutions and
continuously updated information from the search space to generate new candidate solutions.
Building on prior research and acknowledging the need to enhance efficiency at various stages of the
algorithm, it is essential to establish a more effective balance between exploration and exploitation,
this paper presents a novel boundary method that focuses on exploration during the early stages and
shifts towards exploitation in the later stages. Specifically, this strategy prioritizes global exploration
during the initial phase, facilitating the identification of more promising regions. In this study, we
define the update process for managing evolutionary boundary constraints as follows:

f (Xi → X∗i ) =

P(t, k) · LBi + (1 − P(t, k)) · Xb
i , Xi < LBi,

P(t, k) · UBi + (1 − P(t, k)) · Xb
i , Xi > UBi,

(3.22)

where Xb
i is the relevant component of the global best solution, UBi and LBi are the upper and lower

bounds of the search space, respectively, and P(t, k) is a nonlinear function with its function value
ranging between 0 and 1. The definition of P(t, k) is shown in Eq (3.23).

P(t, k) =
1 − sin

π2 ·
(

t
Tmax

)k , (3.23)

where t denotes the current iteration count, while Tmax indicates the maximum number of iterations.
Additionally, k is defined as a parameter.
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In this study, a dynamic nonlinear function is employed to define P(t, k), with its variation trend
illustrated in Figure 4. In the early stages of the search, the focus is on exploration, resulting in a
gradual decrease of the function curve. This approach facilitates the expansion of the search range
and enhances population diversity during initial iterations. As the search progresses to the middle
and later stages, the focus shifts to exploitation, leading to a more rapid decrease in the curve. This
transition enables the algorithm to efficiently guide individuals toward the global optimal solution,
thereby enhancing both the global search capability and convergence speed. This strategy establishes a
pattern in which P(t, k) decreases slowly at first during the iterations, followed by a rapid decrease, and
ultimately stabilizes. This method enhances the balance between local exploration and global search
throughout the optimization process, thereby reducing the risk of converging to a local optimum.

Figure 4. The plot of P value variation with k = 4.

The Padé approximation strategy plays a critical role in enhancing algorithm performance. This
strategy leads to notable improvements in solution accuracy and population quality within the
algorithm. In addition, the greedy strategy intelligently filters and retains individuals located between
the current individual and the potential optimal solution Xi in each iteration. This process equips the
algorithm with enhanced search and optimization capabilities. This is further illustrated in Eq (3.24):Xt+1

i = Xt
i , f (Xt

i)≤ f (X∗),
Xt+1

i = X∗ , f (Xt
i)> f (X∗),

(3.24)

where t denotes the tth generation of the dung beetle population. After applying the Padé
approximation strategy to DBO, the overall quality of the population is significantly enhanced. This
not only improves the adaptability of each individual but also endows the population as a whole with
greater survival and reproductive capabilities when facing environmental challenges. Based on the
Padé approximation technique and a new adaptive evolutionary boundary constraint method, we
propose an innovative approximation strategy. When integrated into the DBO framework, this
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strategy not only significantly improves the solution accuracy and population quality but also provides
effective assistance in balancing exploration and exploitation. The corresponding pseudocode is
provided in Algorithm 4.

Algorithm 4 Padé approximation strategy with adaptive evolutionary boundary constraint

Require: Xt
i

Ensure: Xt+1
i

1: for i=pNum+bNum+sNum+1 to N do
2: Calculate Xt+1

i, j using Eq (2.7) and then calculate the fitness value f it(Xt+1
i, j )

3: end for
4: for i=pNum+bNum+sNum+1 to N do
5: Select two agents Xi+1 and Xi+2, which surround Xi

6: Obtain a1, a2, and a3 according to Eqs (3.18)–(3.20)

7: if
a2

1

a2
2

+
1
a3
≥ 0 then

8: Obtained from Eq (3.21), G(i) = −
a1

a2
+

√
a2

1

a2
2

+
1
a3

, g(i) = −
a1

a2
−

√
a2

1

a2
2

+
1
a3

9: Determine the boundaries based on Eqs (3.22) and (3.23), and obtain the final G(i) and g(i)
10: Tag1 = f it(G(i)),Tag2 = f it(g(i))
11: if Tag1 < Tag2 then
12: Tag = Tag1,G(i) = G(i)
13: else
14: Tag = Tag2,G(i) = g(i)
15: end if
16: if Tag < f it(i) then
17: Xt+1

i, j = G(i), f it(i) = Tag
18: end if
19: else
20: Xt+1

i, j = Xt+1
i, j

21: end if
22: end for
23: Return Xt+1

i, j

3.4. The framework of mDBO

In this study, the enhancements to the DBO algorithm are primarily presented in three aspects:
First, a novel population initialization strategy is proposed, which combines the hybrid tent-sine map
with ROBL to generate the initial population. This approach replaces the random value generation
process used in the original algorithm and results in a more uniform distribution of the initial
population, thereby improving the quality of the population distribution within the search space.
Second, a new differential evolution mutation strategy is introduced, incorporating a periodic
retrospective adaptive mutation factor. This strategy effectively mitigates the risk of premature
convergence, reduces the likelihood of getting trapped in local minima, and enhances the exploration
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of the solution space. Finally, a strategy based on Padé approximation techniques and an adaptive
evolutionary boundary constraint method is proposed to improve the quality and accuracy of the
solutions across the population. By integrating these three strategies, we developed the mDBO. The
implementation process of the mDBO algorithm is outlined in Algorithm 5 and illustrated in Figure 5.

Algorithm 5 The framework of the mDBO algorithm
Require: The maximum iteration Tmax,the size of the population N, Crossover Probability CR, Global

optimal solution Xbest

Ensure: Optimal position Xb and its fitness value fb

1: Initialize the population by Algorithm 2, and define its relevant parameters
2: while t ≤ Tmax do
3: for i = 1 to N do
4: Update the position of the Dung beetle by Algorithm 1
5: end for
6: for i=pNum+bNum+1 to pNum+bNum+sNum do
7: Update the position of the Dung beetle by Algorithm 3
8: end for
9: for i=pNum+bNum+sNum+1 to N do

10: Update the position of the Dung beetle by Algorithm 4
11: end for
12: Generate optimal individuals Xb and calculate fitness values fb

13: if f (Xb)< f (Xbest) then
14: Output the optimal position Xb

15: else
16: Output the optimal position Xbest

17: end if
18: t = t + 1
19: end while
20: Return the best position and the best fitness

3.5. Binary mDBO for feature selection

In this section, we propose a binary adaptation of the technique that employs classifiers to assess
the objective function and utilizes transfer functions to convert continuous outcomes into binary results
(0,1). The effectiveness of the proposed approach will be validated through its application to real-world
feature selection tasks, with evaluations based on publicly accessible datasets.

As discussed, FS is a preprocessing technique designed to eliminate unnecessary, noisy, and
redundant variables from datasets. The primary objective of FS is to identify and select an optimal
subset of features that streamlines data processing, reduces computational costs, and improves the
classification performance of models. In this context, the bmDBO serves as an FS wrapper technique
grounded in meta-heuristic methods. It utilizes classifiers to assess its predefined objective fitness
function.
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Start

Initialize parameters of DBO

Evaluate the fitness value

Population initialization

Update the Rolling Dung Beetle
using Equation (2.1)and (2.2)

Update the Spawning dung beetles
using Equation (2.3) and(2.4)

Update Foraging Dung Beetles
using the Differential Evolution

strategy

Update Stealing Dung Beetles
using the Pade approximation

strategy

Evaluate the population if t<Tmax

Initialize the population
through hybrid chaotic

mapping

End

No

Yes

Random Opposition-
Based Learning

Return the best position
and the best fitness

Adaptive Evolutionary
Boundary Constraint Handling

Upgrade parameter F and H
using Equation (3.8) and(3.9)

Figure 5. Flowchart of the proposed mDBO algorithm.
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3.5.1. Fitness function

The first step in FS involves defining an objective function, often referred to in the literature as
a fitness function or cost function. FS aims to achieve a dual objective: Maximizing classification
accuracy while minimizing the number of selected features. Given that FS tasks are typically framed
as minimization problems, we utilize the classification error rate in the objective function instead of
accuracy, as outlined by Cinar [58]. Accordingly, the objective function for this optimization model is
expressed as follows:

Fitness = α · error + (1 − α) ·
N

NP
, (3.25)

where, we consider a weighting parameter α ∈ (0, 1), where α and (1 − α) denote their respective
contributions. The term error refers to the error rate, defined as the ratio of misclassified instances to
the total number of instances. This rate is evaluated using a learning classifier, such as KNN, SVM, or
naive bayes. For our wrapper-based FS method, we employ the KNNs algorithm as the classification
tool and utilize k-fold cross-validation to partition the dataset into training and testing sets. Let N
represent the number of selected features, while NP denotes the total number of features in the original
dataset. In this paper, α is 0.99.

3.5.2. KNNs

The KNN algorithm is a straightforward and efficient machine learning method widely utilized
for classification tasks. It has demonstrated remarkable success across various fields, including text
analysis, image recognition, audio analysis, and video processing. Due to its intuitive nature and
ease of implementation, KNN is often the preferred choice for numerous data science projects. The
algorithm’s core mechanism involves searching the training dataset for the k closest data points to a
new data point and classifying the new point based on the dominant class among these k neighbors.
The performance of the KNN algorithm is influenced by several factors, particularly the choice of
distance metric and the selection of the k value. Euclidean distance is the most commonly used metric
and is calculated using a specific formula; however, other metrics can also be applied. The k value
serves as a hyperparameter that determines the number of neighbors to consider when classifying new
data points. The KNN classifier is frequently employed in the literature for classification tasks due
to its simplicity, efficiency, and robustness to noisy data [59–61]. In practical applications, Euclidean
distance and k = 5 are often used as default settings for KNN due to their relatively low computational
complexity and ease of use.

d =

√√
n∑

k=1

(y j − yi, j)2, (3.26)

d in Eq (3.26) represents the Euclidean distance.

3.5.3. Transfer function

The feature selection problem is fundamentally a discrete (binary) optimization task, which can be
effectively addressed using discrete element algorithms to identify the optimal subset of features. In
the context of intelligent algorithms, a transfer function is necessary to convert continuous solution
values into binary representations. Two commonly employed transfer functions for binary mapping in
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the literature are the S-shaped and V-shaped transfer functions. In this study, we utilize the S-shaped
transfer function proposed in [62], which aims to strike an effective balance between minimizing error
rates and achieving rapid convergence of solutions. This transfer function is specifically defined
in Eq (3.27).

S igmoid(xt+1
i ) =

1
1 + exp(−3(xt+1

i − 0.5))
, (3.27)

xt+1
i represents the position vector of the ith dung beetle at the t + 1th iteration. Consequently, the

update of the position within the binary space is expressed as follows:

xt+1
i =

0 , p < S igmoid(xt+1
i ),

1 , otherwise,
(3.28)

where p represents the transition probability, which is defined within the interval (0,1).

3.6. Complexity analysis

3.6.1. Time complexity

The time complexity is a crucial metric for assessing algorithm performance and computational
cost. The time complexity of DBO is (O( f (D) × D)), where f (D) represents the time required for
evaluating the fitness function and D denotes the data dimension. The time complexity analysis for
mDBO is as follows:

(1) Let N represent the number of dung beetle individuals, t1 the time for initializing population
parameters, and t2 the time for generating chaotic values for each dimension using hybrid chaotic
mapping. The time complexity O1 is O1 = O(t1 + N × ( f (D) + t2 × D)).

(2) Let t3 represent the time required to generate opposite solutions for each dimension. The time
complexity O2 for the random opposition-based learning method is O2 = O(N × t3 × D).

(3) The position update formula for spawning dung beetles in the improved algorithm remains
unchanged, so the time complexity O3 is the same as that of the original algorithm.

(4) Let N f represent the proportion of foraging dung beetles, and t4 the time required to update the
position for each dimension. The time complexity O4 for the foraging dung beetle update method,
incorporating the periodic retrospective adaptive differential evolution strategy, is O4 = O(N f × N ×
t4 × D).

(5) Let Nt represent the proportion of Stealing dung beetles, and t5 the time required to update the
position for each dimension. The time complexity O5 for the Stealing dung beetle update method,
which utilizes the Padé approximation strategy and adaptive evolutionary boundary constraint strategy,
is O5 = O(Nt × N × t5 × D).

Therefore, the total time complexity O′ for mDBO is O′ = O1 + itermax × (O2 + O3 + O4 + O5) =
O( f (D) × D).

This shows that both mDBO and DBO share the same time complexity, indicating that the
performance improvements achieved by mDBO do not incur additional computational cost in terms of
time complexity.
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3.6.2. Space complexity

Regarding space complexity, the memory requirements for mDBO depend on the dimension size
and the number of search agents, which are determined during the initialization phase. Therefore, the
space complexity of mDBO is O(N × D), where N is the population size and D is the dimensionality
of the problem.

4. Experimental I: Solving benchmark functions

4.1. Benchmark functions

In this study, the performance of the mDBO algorithm is assessed by comparing it with eight
benchmark algorithms, through several test functions for evaluation. These test functions are sourced
from CEC2017 [63], with detailed descriptions provided in Table 2. The comparative algorithms
include nine well-known metaheuristic algorithms: Whale optimizer (WOA) [64], sine cosine
algorithm (SCA) [65], particle swarm optimizer (PSO) [66], GWO [67], Harris Hawks optimization
(HHO) [68], arithmetic optimization algorithm (AOA) [69], butterfly optimization algorithm
(BOA) [70], DE [48], DBO, LSHADE [71], and LSHADE_SPACMA [72]. Figure 6 presents the
two-dimensional representations of several test functions employed in this study to evaluate the
performance of the DBO algorithm. All experimental designs, including data preprocessing and
analysis, are conducted using the 64-bit version of MATLAB 2023a. The experiments are performed
on a system with an AMD Ryzen 5 processor, a CPU clock speed of 2.10 GHz, 8.00 GB of RAM, a
256 GB solid-state drive, and the Windows 10 Education operating system.

4.2. Strategy comparison

4.2.1. Chaos map comparison

To analyze the impact of different chaos maps on population distribution during the initialization
phase, we employ several common chaos map methods [36], including the logistic map, the sine map,
the tent map, the Singer map, the Chebyshev map, and the cubic map. A comparative analysis is
conducted using scatter plots and population distribution maps. By examining the population
distributions generated by each map, we assess their diversity and uniformity within the global
search space.

Figures 7 and 8 illustrate the scatter plots and population distribution maps generated by each
chaos map method, respectively. From the figures, it can be observed that different chaos maps have
distinct effects on the population initialization phase. Both the sine and logistic maps show strong
clustering in certain areas, which may result in the formation of concentrated regions during
initialization, thereby reducing the diversity of the search space. This phenomenon could affect the
early-stage search performance of optimization algorithms. The population distributions generated by
the Singer, Chebyshev, and cubic maps appear more random with uneven density, showing
concentrated or sparse areas in some regions. The tent map exhibits a relatively uniform distribution,
effectively expanding across the search space and avoiding excessive concentration in any specific
region. Relatively speaking, the tent map outperforms the others. Additionally, as discussed
in Section 3.1, tent-sine offers advantages over both tent and sine in terms of population distribution
and diversity.
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Table 2. Benchmark test functions.
Type No. Function Fmin

Unimodal Functions F1 Shifted and Rotated Bent Cigar Function 100
F3 Shifted and Rotated Zakharov Function 300

Simple Multimodal Functions

F4 Shifted and Rotated Rosenbrock’s Function 400
F5 Shifted and Rotated Rastrigin’s Function 500
F6 Shifted and Rotated Expanded Scaffer’s F6 Function 600
F7 Shifted and Rotated Lunacek Bi−Rastrigin Function 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
F9 Shifted and Rotated Levy Function 900
F10 Shifted and Rotated Schwefel’s Function 1000

Hybrid Functions

F11 Hybrid Function 1 (N=3) 1100
F12 Hybrid Function 2 (N = 3) 1200
F13 Hybrid Function 3 (N = 3) 1300
F14 Hybrid Function 4 (N = 4) 1400
F15 Hybrid Function 5 (N = 4) 1500
F16 Hybrid Function 6 (N = 4) 1600
F17 Hybrid Function 7 (N = 5) 1700
F18 Hybrid Function 8 (N = 5) 1800
F19 Hybrid Function 9 (N = 5) 1900
F20 Hybrid Function 10 (N=6) 2000

Composition Functions

F21 Composition Function 1 (N=3) 2100
F22 Composition Function 2 (N = 3) 2200
F23 Composition Function 3 (N = 4) 2300
F24 Composition Function 4 (N = 4) 2400
F25 Composition Function 5 (N = 5) 2500
F26 Composition Function 6 (N = 5) 2600
F27 Composition Function 7 (N = 6) 2700
F87 Composition Function 8 (N = 6) 2800
F29 Composition Function 9 (N = 3) 2900
F30 Composition Function 10 (N = 3) 3000

Search range: [−100, 100]D

4.2.2. A comparison of ROBL, QRBL, and DOL

To validate the effectiveness of ROBL, we conduct comparative experiments between ROBL and
otherOBL strategies, such as quasi-oppositional learning (QRBL) [73] and dynamic opposite learning
(DOL) [74]. The experimental results are shown in Tables 3 and 4 and Figure 9.

As shown in Tables 3 and 4, and Figure 9, the ROBL-based algorithm outperforms other
algorithms for most of the 29 benchmark functions and achieves the overall first rank, further
validating the performance advantages of ROBL.

4.2.3. Comparison of differential mutation factors

Inspired by the inertia weight in Eq (3.7) [49], two improvements were proposed based on it: one
is the adaptive parameter H in Eq (3.9), and the other is periodic retrospective factor in Eq (3.8).
A periodic retrospective adaptive factor was constructed, and its effectiveness was verified through
experimental comparisons.
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(a) F3 (b) F5 (c) F9 (d) F11

(e) F14 (f) F18 (g) F21 (h) F29

Figure 6. 2-D Versions of benchmark test functions.

(a) Logistic (b) Sine (c) Tent

(d) Singer (e) Chebyshev (f) Cubic

Figure 7. Chaos mapping scatter plot.
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(a) Logistic (b) Sine (c) Tent

(d) Singer (e) Chebyshev (f) Cubic

Figure 8. Initial population distribution chart.

Figure 9. Comparison chart of different opposition learning.

As shown in Table 5 and Figure 10, PRADBO represents the algorithm using the periodic
retrospective adaptive factor from Eq (3.8), while ADBO refers to the algorithm using the factor from
Eq (3.7). the algorithm using the periodic retrospective adaptive strategy outperforms most functions
across the 29 benchmark problems, ranking first overall. This further validates the performance
advantage of the periodic retrospective adaptive strategy and demonstrates that the periodic
retrospective adaptive factor F is more effective than the factor in Eq (3.7).
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Table 3. Comparison of different opposition learning.

Function Metric ROBLDBO QRBLDBO DOLDBO

F1 mean 1.5924 × 104 9.9494 × 105 4.0538 × 106

std 1.6743 × 109 2.7665 × 1013 2.3891 × 1014

1 2 3

F3 mean 3.2499 × 102 4.1929 × 102 9.2207 × 102

std 2.7121 × 103 1.1578 × 105 9.9985 × 105

1 2 3

F4 mean 4.3317 × 102 4.2280 × 102 4.4067 × 102

std 2.8018 × 103 1.1873 × 103 2.5965 × 103

2 1 3

F5 mean 5.3655 × 102 5.3533 × 102 5.4405 × 102

std 2.2982 × 102 1.4090 × 102 1.1116 × 102

2 1 3

F6 mean 6.0770 × 102 6.1055 × 102 6.1192 × 102

std 3.4715 × 101 5.4999 × 101 9.1900 × 101

1 2 3

F7 mean 7.4543 × 102 7.5055 × 102 7.4811 × 102

std 2.9523 × 102 2.8009 × 102 3.2386 × 102

1 3 2

F8 mean 8.2588 × 102 8.2712 × 102 8.3338 × 102

std 6.5180 × 101 8.7109 × 101 1.9092 × 102

1 2 3

F9 mean 1.0156 × 103 9.7525 × 102 9.8535 × 102

std 2.1721 × 104 1.1966 × 104 1.9094 × 104

3 1 2

F10 mean 1.8227 × 103 2.0425 × 103 1.9484 × 103

std 9.0637 × 104 1.2731 × 105 1.0769 × 105

1 3 2

F11 mean 1.1799 × 103 1.2052 × 103 1.2699 × 103

std 6.8788 × 103 8.5462 × 103 2.3557 × 104

1 2 3

F12 mean 1.3000 × 106 2.0038 × 106 4.3396 × 106

std 1.1759 × 1013 3.5220 × 1013 3.6814 × 1013

1 2 3

F13 mean 1.8648 × 104 1.1046 × 104 1.8912 × 104

std 3.6610 × 108 7.4937 × 107 1.8283 × 108

2 1 3

F14 mean 1.9709 × 103 2.2999 × 103 2.2619 × 103

std 4.2683 × 105 1.5684 × 106 7.6642 × 105

1 3 2

F15 mean 2.9825 × 103 3.4918 × 103 9.3039 × 103

std 5.3144 × 106 4.2138 × 106 1.1433 × 108

1 2 3

F16 mean 1.7870 × 103 1.8370 × 103 1.7796 × 103

std 2.3363 × 104 1.6778 × 104 2.5137 × 104

2 3 1

F17 mean 1.7710 × 103 1.7644 × 103 1.7760 × 103

std 9.4105 × 102 1.1195 × 103 1.5521 × 103

2 1 3
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Table 4. Comparison of different opposition learning.

Function Metric ROBLDBO QRBLDBO DOLDBO

F18 mean 1.8646 × 104 2.1905 × 104 3.2793 × 104

std 1.8612 × 108 2.7939 × 108 3.3732 × 108

1 2 3

F19 mean 9.5766 × 103 1.1649 × 104 3.0471 × 104

std 2.4385 × 108 3.0868 × 108 4.7091 × 109

1 2 3

F20 mean 2.1018 × 103 2.1262 × 103 2.1255 × 103

std 3.1826 × 103 4.2548 × 103 5.4996 × 103

1 3 2

F21 mean 2.2256 × 103 2.2422 × 103 2.2340 × 103

std 2.2740 × 103 3.1389 × 103 2.5703 × 103

1 3 2

F22 mean 2.3116 × 103 2.3087 × 103 2.3052 × 103

std 6.4436 × 101 2.7428 × 101 4.1417 × 102

3 2 1

F23 mean 2.6492 × 103 2.6512 × 103 2.6523 × 103

std 3.9880 × 102 3.2423 × 102 5.3914 × 102

1 2 3

F24 mean 2.7086 × 103 2.6688 × 103 2.7200 × 103

std 1.6068 × 104 1.5899 × 104 9.2810 × 103

2 1 3

F25 mean 2.9308 × 103 2.9389 × 103 2.9440 × 103

std 5.9283 × 102 3.4060 × 102 6.7638 × 102

1 2 3

F26 mean 2.9904 × 103 3.0686 × 103 3.1638 × 103

std 2.8680 × 104 9.1005 × 104 8.7369 × 104

1 2 3

F27 mean 3.1144 × 103 3.1105 × 103 3.1163 × 103

std 3.5914 × 102 5.2002 × 102 7.3854 × 102

2 1 3

F28 mean 3.3250 × 103 3.3343 × 103 3.4048 × 103

std 9.1794 × 103 1.0625 × 104 2.1199 × 104

1 2 3

F29 mean 3.2446 × 103 3.2617 × 103 3.2715 × 103

std 3.9858 × 103 3.4351 × 103 7.8141 × 103

1 2 3

F30 mean 5.3148 × 105 6.1626 × 105 7.1576 × 105

std 6.7176 × 1011 4.3819 × 1011 7.3114 × 1011

1 2 3
Avg. rank 1.39 1.96 2.64

Overall rank 1 2 3
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Table 5. Comparison of differential mutation factors.
Function Metric PRADBO ADBO Function Metric PRADBO ADBO

F1 mean 4.2589 × 103 5.8979 × 103
F17 mean 1.7884 × 103 1.7715 × 103

std 1.7527 × 107 1.7585 × 107 std 2.2323 × 103 1.4012 × 103

1 2 2 1

F3 mean 7.3854 × 102 1.1037 × 103
F18 mean 1.5027 × 104 1.5917 × 104

std 3.4461 × 106 6.5719 × 106 std 2.8351 × 108 1.6650 × 108

1 2 1 2

F4 mean 4.1973 × 102 4.2138 × 102
F19 mean 3.6553 × 103 4.7179 × 103

std 1.3111 × 103 9.3775 × 102 std 1.8244 × 107 1.9666 × 107

1 2 1 2

F5 mean 5.3305 × 102 5.3433 × 102
F20 mean 2.0968 × 103 2.0778 × 103

std 1.7758 × 102 1.8578 × 102 std 5.1168 × 103 2.6363 × 103

1 2 2 1

F6 mean 6.0682 × 102 6.0810 × 102
F21 mean 2.2703 × 103 2.2804 × 103

std 3.4087 × 101 7.4083 × 101 std 3.9652 × 103 4.6421 × 103

1 2 1 2

F7 mean 7.4371 × 102 7.4584 × 102
F22 mean 2.2998 × 103 2.3090 × 103

std 3.2103 × 102 1.8591 × 102 std 3.9630 × 102 1.7782 × 102

1 2 1 2

F8 mean 8.2915 × 102 8.2851 × 102
F23 mean 2.6334 × 103 2.6342 × 103

std 1.4096 × 102 1.7518 × 102 std 1.3139 × 102 1.5788 × 102

2 1 1 2

F9 mean 9.4522 × 102 9.9008 × 102
F24 mean 2.7123 × 103 2.7570 × 103

std 2.4964 × 103 1.9269 × 104 std 1.0128 × 104 3.3880 × 103

1 2 1 2

F10 mean 1.9590 × 103 1.9414 × 103
F25 mean 2.9395 × 103 2.9396 × 103

std 8.9112 × 104 9.9167 × 104 std 1.1497 × 103 6.7220 × 102

2 1 1 2

F11 mean 1.1391 × 103 1.1732 × 103
F26 mean 3.1210 × 103 3.1328 × 103

std 1.9566 × 103 1.0478 × 104 std 7.7317 × 104 1.2599 × 105

1 2 1 2

F12 mean 2.0206 × 104 2.9191 × 105
F27 mean 3.1019 × 103 3.0997 × 103

std 3.3909 × 108 2.2240 × 1012 std 6.4453 × 101 5.0040 × 101

1 2 2 1

F13 mean 9.5628 × 103 1.5008 × 104
F28 mean 3.3113 × 103 3.3242 × 103

std 1.0601 × 108 1.6210 × 108 std 9.1137 × 103 7.6950 × 103

1 2 1 2

F14 mean 1.7370 × 103 1.7657 × 103
F29 mean 3.2339 × 103 3.2557 × 103

std 2.5852 × 105 2.6291 × 105 std 4.1540 × 103 4.0233 × 103

1 2 1 2

F15 mean 3.6298 × 103 3.3469 × 103
F30 mean 4.4287 × 105 3.9121 × 105

std 9.5706 × 106 6.0534 × 106 std 3.1382 × 1011 2.8234 × 1011

2 1 2 1

F16 mean 1.7476 × 103 1.7380 × 103 Avg. rank 1.28 1.72
std 1.0704 × 104 7.0219 × 103 Overall rank 1 2

2 1
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Figure 10. The comparison of parameter F.

4.3. Parameter settings

The parameter settings for the comparative algorithms are presented in Table 6. To ensure fairness
in the experiments, an initial population size of 30 and a maximum of 500 iterations were used for
all algorithms. To mitigate any experimental bias, the evaluation criteria include the average and
standard deviation of the solution results, with each of the eight comparative algorithms and the mDBO
algorithm being independently executed 30 times on each test function.

Table 6. Parameter values of algorithms.
Algorithm Parameters values
WOA a2 ∈ (0, 2), r3 ∈ [0, 1], l ∈ [−1, 1]
SCA α = 2
PSO V = (−6, 6),C1 = C2 = 2,w = (0.2, 0.9)
GWO α is decreasing linearly from 2 to 0
HHO q ∈ [0, 1], r4.r5, r6, r7 ∈ [0, 1], E0 ∈ [−1, 1], u1, v1[0, 1]
DBO k = 0.1, λ = 0.1, b = 0.3, S = 0.5
AOA α = 5, µ = 0.499
BOA c = 0.01, p = 0.8
DE F = 0.5,CR = 0.8
LSHADE NPinit = 18,D,NPmin = 4, P = 0.11, ∥A∥ = 2.6,H = 6
LSHADE_SPACMA NPinit = 18,D,NPmin = 4, P = 0.11, ∥A∥ = 1.4,H = 5, δ = 0.5, L_rate = 0.8

The proposed mDBO algorithm features three key control parameters that must be optimally tuned
to achieve peak performance: Fmin, CR, and k. Parameter Fmin ensures that the mutation factor F
maintains a minimum value, thereby preventing the algorithm from becoming overly conservative
during the search process and avoiding weak mutation operations that could lead to premature
convergence on local optima. The crossover probability CR in DE ranges from 0 to 1 and is essential
for enhancing the search accuracy of mDBO. The scaling factor k is critical for obtaining an optimal
P that adjusts the boundaries, thus enabling a broader set of solutions. We performed extensive

Electronic Research Archive Volume 33, Issue 3, 1693–1762.



1726

experiments across ranges for Fmin, CR, and k. The results of these experiments, conducted over 30
independent runs of the mDBO algorithm on 30 ten-dimensional CEC2017 functions, are presented in
Tables 7–12. The CEC2017 suite comprises 29 single-objective test functions, classified as follows:
F1 and F3 are unimodal functions; F4 to F10 are simple multimodal functions; F11 to F20 are
mixed-type functions; and F21 to F30 are composite functions. Due to uncontrollable factors
encountered during the experiments, we were unable to obtain experimental data for function F2, and
consequently, no experimental research was conducted for this function.

Table 7. Adjusting the parameters Fmin , CR, and k of mDBO.

F Type (CR, k, Fmin)
(0.8,3,0) (0.8,3,0.1) (0.8,3,0.2) (0.8,4,0) (0.8,4,0.1) (0.8,4,0.2)

F1 mean 4.9010 × 103 4.1102 × 103 5.1503 × 103 4.8420 × 103 5.3186 × 103 3.5626 × 103

std 1.5142 × 107 1.8438 × 107 2.2259 × 107 1.3613 × 107 1.7863 × 107 9.9009 × 106

8 4 9 6 10 2

F3 mean 4.0209 × 102 3.2982 × 102 6.6577 × 102 3.8963 × 102 3.1670 × 102 8.6298 × 102

std 1.7302 × 105 1.0178 × 104 3.7558 × 106 1.5934 × 105 3.0988 × 103 6.7839 × 106

6 2 10 5 1 11

F4 mean 4.1373 × 102 4.1244 × 102 4.1310 × 102 4.0769 × 102 4.1326 × 102 4.1151 × 102

std 5.3282 × 102 4.3227 × 102 5.1582 × 102 1.9435 × 102 7.4818 × 102 4.2163 × 102

10 7 8 1 9 4

F5 mean 5.2894 × 102 5.3031 × 102 5.3054 × 102 5.3033 × 102 5.3346 × 102 5.2703 × 102

std 1.2902 × 102 1.3010 × 102 1.4780 × 102 2.4325 × 102 1.6903 × 102 1.6419 × 102

4 6 8 7 12 2

F6 mean 6.0284 × 102 6.0355 × 102 6.0325 × 102 6.0429 × 102 6.0235 × 102 6.0378 × 102

std 1.6401 × 101 1.4362 × 101 1.6775 × 101 2.9547 × 101 1.1610 × 101 2.1280 × 101

5 7 6 11 2 8

F7 mean 7.3796 × 102 7.3905 × 102 7.3434 × 102 7.4027 × 102 7.3694 × 102 7.4219 × 102

std 1.2700 × 102 1.3549 × 102 1.4201 × 102 1.0922 × 102 1.1659 × 102 1.0035 × 102

7 8 1 10 5 12

F8 mean 8.2607 × 102 8.2505 × 102 8.2363 × 102 8.2331 × 102 8.2540 × 102 8.2614 × 102

std 3.8558 × 101 4.8858 × 101 7.5256 × 101 6.2295 × 101 6.5463 × 101 1.0150 × 102

11 9 6 5 10 12

F9 mean 9.6687 × 102 9.3606 × 102 9.4504 × 102 9.4908 × 102 9.4750 × 102 9.6682 × 102

std 1.1345 × 104 4.4185 × 103 6.4358 × 103 6.9472 × 103 4.7380 × 103 8.5638 × 103

11 2 5 8 7 10

F10 mean 1.7389 × 103 1.9758 × 103 1.8798 × 103 1.9683 × 103 1.9484 × 103 1.8741 × 103

std 7.2374 × 104 6.5120 × 104 9.4515 × 104 1.0553 × 105 8.0215 × 104 1.1089 × 105

1 12 3 11 9 2

F11 mean 1.1260 × 103 1.1289 × 103 1.1511 × 103 1.1477 × 103 1.1408 × 103 1.1533 × 103

std 5.4787 × 102 3.6480 × 102 7.0745 × 103 6.5061 × 103 4.1637 × 103 7.8085 × 103

1 2 9 7 4 11

F12 mean 2.9188 × 105 5.8531 × 105 4.5276 × 105 1.3670 × 104 1.3601 × 105 3.4648 × 105

std 2.2313 × 1012 4.2809 × 1012 2.9498 × 1012 6.4613 × 107 4.0679 × 1011 1.5830 × 1012

6 12 9 1 3 7

F13 mean 1.2472 × 104 1.1221 × 104 1.2327 × 104 1.1920 × 104 1.0586 × 104 1.0606 × 104

std 1.1973 × 108 6.2646 × 107 1.3813 × 108 1.0670 × 108 7.0414 × 107 9.0204 × 107

9 5 8 7 3 4

F14 mean 1.6701 × 103 1.7099 × 103 1.6306 × 103 1.6806 × 103 1.7091 × 103 1.8318 × 103

std 1.4177 × 105 1.9805 × 105 2.9736 × 104 1.4740 × 105 1.8908 × 105 3.7225 × 105

4 8 1 5 7 10

The experimental results are shown in Tables 7–12. From these tables, it is evident that when the
hyperparameters Fmin are set to 0, CR is set to 0.8, and k is set to 4, the mDBO algorithm performs
excellently across several CEC2017 benchmark functions, particularly achieving optimal mean values
on functions F4, F12, F20, F21, F23, F24, F25, F27, and F28. These results demonstrate that, under
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Table 8. Adjusting the parameters Fmin , CR, and k of mDBO.

F Type (CR, k, Fmin)
(0.8,3,0) (0.8,3,0.1) (0.8,3,0.2) (0.8,4,0) (0.8,4,0.1) (0.8,4,0.2)

F15 mean 2.8206 × 103 3.6982 × 103 2.1200 × 103 3.0343 × 103 2.5797 × 103 2.7264 × 103

std 3.4755 × 106 3.1989 × 107 2.3318 × 105 7.3910 × 106 1.2672 × 106 4.9043 × 106

10 12 1 11 4 8

F16 mean 1.7345 × 103 1.7468 × 103 1.7655 × 103 1.7616 × 103 1.7816 × 103 1.7896 × 103

std 1.4273 × 104 1.1863 × 104 1.9078 × 104 1.7870 × 104 1.8373 × 104 1.8536 × 104

1 3 7 6 10 11

F17 mean 1.7622 × 103 1.7578 × 103 1.7488 × 103 1.7596 × 103 1.7631 × 103 1.7595 × 103

std 1.1455 × 103 1.2316 × 103 4.1359 × 102 1.2448 × 103 9.4164 × 102 1.1788 × 103

11 5 1 9 12 8

F18 mean 1.6053 × 104 1.6845 × 104 1.9842 × 104 1.3271 × 104 1.5547 × 104 1.3046 × 104

std 1.8348 × 108 1.9570 × 108 2.5641 × 108 1.1385 × 108 2.0925 × 108 1.6785 × 108

7 9 12 2 6 1

F19 mean 4.3128 × 103 6.6362 × 103 4.2931 × 103 5.4589 × 103 4.9344 × 103 5.5921 × 103

std 1.2468 × 107 5.2119 × 107 6.1751 × 106 2.4042 × 107 2.3095 × 107 3.5445 × 107

5 12 4 9 8 10

F20 mean 2.0987 × 103 2.0824 × 103 2.0725 × 103 2.0660 × 103 2.0881 × 103 2.0923 × 103

std 4.6594 × 103 3.3644 × 103 3.4166 × 103 2.2940 × 103 4.7326 × 103 4.8410 × 103

11 7 4 1 8 10

F21 mean 2.2911 × 103 2.2789 × 103 2.2848 × 103 2.2582 × 103 2.2696 × 103 2.2621 × 103

std 3.8594 × 103 3.8584 × 103 4.0228 × 103 3.8567 × 103 4.1166 × 103 4.7402 × 103

11 6 8 1 3 2

F22 mean 2.3052 × 103 2.3057 × 103 2.3052 × 103 2.3080 × 103 2.3067 × 103 2.3069 × 103

std 1.3638 × 101 1.1900 × 102 5.5049 × 101 8.7597 × 101 8.1196 × 101 2.7246 × 101

4 7 5 12 9 10

F23 mean 2.6370 × 103 2.6413 × 103 2.6362 × 103 2.6356 × 103 2.6384 × 103 2.6405 × 103

std 1.4575 × 102 2.9394 × 102 1.5844 × 102 1.5494 × 102 1.7241 × 102 2.3786 × 102

3 12 2 1 6 10

F24 mean 2.7399 × 103 2.7290 × 103 2.7329 × 103 2.6935 × 103 2.7560 × 103 2.7142 × 103

std 7.2952 × 103 9.6582 × 103 6.7682 × 103 1.3558 × 104 3.5176 × 103 1.0560 × 104

10 6 7 1 12 2

F25 mean 2.9381 × 103 2.9318 × 103 2.9219 × 103 2.9100 × 103 2.9354 × 103 2.9383 × 103

std 5.7007 × 102 8.5526 × 102 4.1908 × 103 7.5092 × 103 4.4811 × 102 7.6467 × 102

9 5 3 1 8 10

F26 mean 3.0195 × 103 3.0533 × 103 3.0041 × 103 3.0036 × 103 2.9931 × 103 3.0236 × 103

std 6.2962 × 104 2.2488 × 104 1.9532 × 104 1.6141 × 104 1.1247 × 104 2.3375 × 104

10 12 6 5 3 11

F27 mean 3.1013 × 103 3.1004 × 103 3.1024 × 103 3.0989 × 103 3.1012 × 103 3.1020 × 103

std 8.9415 × 101 4.0949 × 101 1.7357 × 102 3.8199 × 101 5.9927 × 101 4.4907 × 101

7 5 10 1 6 9

Table 9. Adjusting the parameters Fmin , CR, and k of mDBO.

F Type (CR, k, Fmin)
(0.8,3,0) (0.8,3,0.1) (0.8,3,0.2) (0.8,4,0) (0.8,4,0.1) (0.8,4,0.2)

F28 mean 3.2943 × 103 3.3165 × 103 3.2900 × 103 3.2849 × 103 3.3099 × 103 3.3241 × 103

std 1.5826 × 104 9.2487 × 103 9.5967 × 103 8.7752 × 103 1.0568 × 104 1.4911 × 104

5 9 4 1 8 11

F29 mean 3.2358 × 103 3.2719 × 103 3.2690 × 103 3.2304 × 103 3.2404 × 103 3.2141 × 103

std 4.2795 × 103 4.6953 × 103 5.3692 × 103 3.1722 × 103 3.8359 × 103 2.5371 × 103

5 12 11 3 6 1

F30 mean 5.5342 × 105 3.5688 × 105 5.5578 × 105 5.4300 × 105 7.0202 × 105 4.8740 × 105

std 1.2234 × 1012 2.5686 × 1011 2.6883 × 1011 3.8727 × 1011 1.3000 × 1012 7.0985 × 1011

9 2 10 7 12 5
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Table 10. Adjusting the parameters Fmin, CR, and k of mDBO.

F Type (CR, k, Fmin)
(0.9,3,0) (0.9,3,0.1) (0.9,3,0.2) (0.9,4,0) (0.9,4,0.1) (0.9,4,0.2)

F1 mean 3.4989 × 103 4.1101 × 103 4.5607 × 103 5.7720 × 103 5.4229 × 103 4.8554 × 103

std 1.3572 × 107 1.6736 × 107 1.5480 × 107 1.7715 × 107 2.1267 × 107 2.2801 × 107

1 3 5 12 11 7

F3 mean 3.7994 × 102 9.9641 × 102 6.1714 × 102 4.3509 × 102 3.6824 × 102 5.9219 × 102

std 1.6674 × 105 1.2894 × 107 2.4640 × 106 4.0009 × 105 6.3014 × 104 2.3777 × 106

4 12 9 7 3 8

F4 mean 4.1103 × 102 4.1198 × 102 4.1210 × 102 4.1392 × 102 4.0780 × 102 4.1643 × 102

std 3.6379 × 102 3.7241 × 102 3.5862 × 102 4.9825 × 102 1.0013 × 102 7.5598 × 102

3 5 6 11 2 12

F5 mean 5.3075 × 102 5.2525 × 102 5.3118 × 102 5.2837 × 102 5.3190 × 102 5.2993 × 102

std 1.6232 × 102 1.3597 × 102 1.9518 × 102 1.5200 × 102 2.6645 × 102 1.5253 × 102

9 1 10 3 11 5

F6 mean 6.0206 × 102 6.0253 × 102 6.0400 × 102 6.0399 × 102 6.0454 × 102 6.0276 × 102

std 1.2052 × 101 1.2469 × 101 3.6164 × 101 4.9816 × 101 3.3860 × 101 2.3116 × 101

1 3 10 9 12 4

F7 mean 7.3607 × 102 7.3634 × 102 7.3943 × 102 7.3768 × 102 7.3648 × 102 7.4143 × 102

std 1.8249 × 102 1.1958 × 102 1.7408 × 102 9.0678 × 101 1.0949 × 102 1.4135 × 102

2 3 9 6 4 11

F8 mean 8.2262 × 102 8.2408 × 102 8.2409 × 102 8.2224 × 102 8.2124 × 102 8.2175 × 102

std 9.5029 × 101 9.6003 × 101 6.5796 × 101 9.2580 × 101 5.1979 × 101 7.4384 × 101

4 7 8 3 1 2

F9 mean 9.4512 × 102 9.3661 × 102 9.2880 × 102 9.6728 × 102 9.3758 × 102 9.4992 × 102

std 4.5627 × 103 2.6105 × 103 1.5545 × 103 1.1691 × 104 3.7155 × 103 3.6086 × 103

6 3 1 12 4 9

F10 mean 1.9001 × 103 1.9079 × 103 1.9024 × 103 1.8839 × 103 1.9551 × 103 1.9139 × 103

std 8.8106 × 104 1.3627 × 105 6.4491 × 104 9.2317 × 104 1.0434 × 105 1.0628 × 105

5 7 6 4 10 8

F11 mean 1.1512 × 103 1.1455 × 103 1.1371 × 103 1.1549 × 103 1.1480 × 103 1.1461 × 103

std 9.1894 × 103 5.4094 × 103 3.1273 × 103 8.5569 × 103 5.0966 × 103 4.7523 × 103

10 5 3 12 8 6

F12 mean 1.7937 × 105 4.5228 × 105 5.6505 × 105 1.6459 × 104 2.8660 × 105 5.6291 × 105

std 8.2720 × 1011 2.9466 × 1012 4.3237 × 1012 4.0577 × 108 2.2290 × 1012 4.3257 × 1012

4 8 11 2 5 10

F13 mean 1.0253 × 104 1.6473 × 104 1.4550 × 104 9.0526 × 103 1.1572 × 104 1.3416 × 104

std 9.3341 × 107 1.3159 × 108 1.2072 × 108 6.9535 × 107 1.0518 × 108 1.1915 × 108

2 12 11 1 6 10

F14 mean 1.6826 × 103 1.8362 × 103 1.7284 × 103 1.6626 × 103 1.8409 × 103 1.6431 × 103

std 1.6708 × 105 2.6464 × 105 1.3914 × 105 5.0269 × 104 3.4653 × 105 1.3818 × 105

6 11 9 3 12 2
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Table 11. Adjusting the parameters Fmin, CR, and k of mDBO.

F Type (CR, k, Fmin)
(0.9,3,0) (0.9,3,0.1) (0.9,3,0.2) (0.9,4,0) (0.9,4,0.1) (0.9,4,0.2)

F15 mean 2.8049 × 103 2.7162 × 103 2.3915 × 103 2.7150 × 103 2.4522 × 103 2.6008 × 103

std 1.5816 × 106 2.8779 × 106 1.9089 × 106 1.6134 × 106 1.0041 × 106 1.5656 × 106

9 7 2 6 3 5

F16 mean 1.7702 × 103 1.7446 × 103 1.7978 × 103 1.7601 × 103 1.7805 × 103 1.7469 × 103

std 1.9485 × 104 1.5957 × 104 1.4430 × 104 1.2963 × 104 1.9354 × 104 1.4892 × 104

8 2 12 5 9 4

F17 mean 1.7602 × 103 1.7590 × 103 1.7548 × 103 1.7593 × 103 1.7569 × 103 1.7490 × 103

std 1.2502 × 103 1.3058 × 103 9.9834 × 102 8.6165 × 102 7.4687 × 102 7.4711 × 102

10 6 3 7 4 2

F18 mean 1.4326 × 104 1.7434 × 104 1.4171 × 104 1.7387 × 104 1.6363 × 104 1.3956 × 104

std 2.4093 × 108 1.7412 × 108 1.4572 × 108 2.4286 × 108 1.9160 × 108 1.2474 × 108

5 11 4 10 8 3

F19 mean 3.5826 × 103 6.1194 × 103 4.4673 × 103 4.8179 × 103 3.9334 × 103 4.0505 × 103

std 6.5887 × 106 4.6357 × 107 1.1556 × 107 2.3329 × 107 1.1613 × 107 1.7045 × 107

1 11 6 7 2 3

F20 mean 2.0691 × 103 2.0691 × 103 2.0903 × 103 2.0742 × 103 2.1006 × 103 2.0756 × 103

std 3.4469 × 103 2.7723 × 103 3.3432 × 103 4.0442 × 103 5.5333 × 103 2.5197 × 103

2 3 9 5 12 6

F21 mean 2.2776 × 103 2.2701 × 103 2.2811 × 103 2.2848 × 103 2.2929 × 103 2.2855 × 103

std 4.2217 × 103 4.5235 × 103 3.8789 × 103 3.8412 × 103 3.6058 × 103 4.2232 × 103

5 4 7 9 12 10

F22 mean 2.3047 × 103 2.3030 × 103 2.3053 × 103 2.2970 × 103 2.3058 × 103 2.3069 × 103

std 5.3247 × 101 1.3414 × 102 1.6501 × 101 5.8811 × 102 1.8973 × 101 9.2737 × 101

3 2 6 1 8 11

F23 mean 2.6412 × 103 2.6401 × 103 2.6394 × 103 2.6395 × 103 2.6384 × 103 2.6373 × 103

std 3.0875 × 102 2.4657 × 102 1.3591 × 102 2.5869 × 102 3.3210 × 102 1.6076 × 102

11 9 7 8 5 4

F24 mean 2.7213 × 103 2.7482 × 103 2.7233 × 103 2.7282 × 103 2.7361 × 103 2.7358 × 103

std 9.4670 × 103 6.1684 × 103 1.0491 × 104 9.6473 × 103 8.0617 × 103 7.5765 × 103

3 11 4 5 9 8

F25 mean 2.9434 × 103 2.9324 × 103 2.9322 × 103 2.9225 × 103 2.9147 × 103 2.9391 × 103

std 5.7937 × 102 6.1779 × 102 5.3206 × 102 4.1430 × 103 4.1599 × 103 6.9200 × 102

12 7 6 4 2 11

F26 mean 3.0131 × 103 3.0003 × 103 3.0041 × 103 2.9725 × 103 2.9831 × 103 3.0155 × 103

std 1.9661 × 104 1.8508 × 104 1.9059 × 104 1.6773 × 104 2.7434 × 104 2.8042 × 104

8 4 7 1 2 9

F27 mean 3.1014 × 103 3.1002 × 103 3.1000 × 103 3.1081 × 103 3.1034 × 103 3.0992 × 103

std 1.2188 × 102 7.8473 × 101 2.5213 × 101 5.3786 × 102 1.8389 × 102 2.2062 × 101

8 4 3 12 11 2

Table 12. Adjusting the parameters Fmin, CR, and k of mDBO.

F Type (CR, k, Fmin)
(0.9,3,0) (0.9,3,0.1) (0.9,3,0.2) (0.9,4,0) (0.9,4,0.1) (0.9,4,0.2)

F28 mean 3.3076 × 103 3.3383 × 103 3.3023 × 103 3.3208 × 103 3.2878 × 103 3.2887 × 103

std 1.4063 × 104 9.4229 × 103 1.3444 × 104 1.1854 × 104 1.0362 × 104 1.2737 × 104

7 12 6 10 2 3

F29 mean 3.2636 × 103 3.2612 × 103 3.2449 × 103 3.2355 × 103 3.2574 × 103 3.2287 × 103

std 5.9821 × 103 4.7098 × 103 5.0638 × 103 5.5056 × 103 4.8487 × 103 3.4887 × 103

10 9 7 4 8 2

F30 mean 4.5316 × 105 5.7595 × 105 3.4976 × 105 4.8910 × 105 3.5884 × 105 5.4746 × 105

std 2.7814 × 1011 3.7877 × 1011 2.8156 × 1011 2.1879 × 1011 3.7710 × 1011 3.1246 × 1011

4 11 1 6 3 8
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this parameter configuration, mDBO effectively solves the optimization problem and yields improved
results, showcasing strong global optimization capabilities. Specifically, Fmin set to 0 indicates that
the algorithm uses a lower mutation strength during the search process, while CR set to 0.8 provides a
higher crossover probability, thereby facilitating the generation of diverse solutions. Additionally, k =
4 suggests that the selected neighborhood size strikes a good balance between global and local search
in the selection process. Given the favorable performance of these parameters on the aforementioned
test functions, we opt to retain this fixed parameter setting as Fmin = 0, CR = 0.8, and k = 4 in
subsequent experiments to ensure stability and reproducibility of the results.

4.4. Qualitative evaluation

In this section, a quantitative evaluation of the proposed mDBO is conducted through three
experiments, analyzing its convergence behavior, population diversity, and the balance between
exploration and exploitation.

4.4.1. Behavior analysis

To evaluate the performance of mDBO in solving different test functions, the convergence curves
of mDBO are obtained. The results are shown in Figure 11. The convergence curves illustrate the
accelerated degradation of fitness values across all test functions. This behavior indicates that the
proposed mDBO algorithm can improve candidate solutions and find promising solutions before half
of the iterations.

(a) F1 (b) F7 (c) F15

(d) F20 (e) F24 (f) F30

Figure 11. The mDBO convergence curve.
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4.4.2. Population diversity analysis

The proposed strategy enables the mDBO algorithm to escape the trap of local optima and reduces
the risk of stagnation. To analyze the impact of the proposed strategy on the performance of the
mDBO algorithm, the population diversity is calculated using the moment of inertia Ic, as shown
in Eq (4.1) [75]. The Ic represents the dispersion of the population relative to its mass center c at
each iteration, and is computed using Eq (4.2), where the parameter Xt

id denotes the value of the d-th
dimension of the i-th individual at iteration t.

Ic(t) =

√√
N∑

i=1

D∑
d=1

(Xt
id −Ct

d)2, (4.1)

cd(t) =
1
D

N∑
i=1

Xt
id. (4.2)

In Figure 12, the population diversity of the mDBO algorithm is tracked using Eq (4.1), with test
functions including unimodal, multimodal, hybrid, and composite functions. From the curve, it can be
observed that the diversity measure Ic fluctuates significantly from the initial value. In the early stages
of evolution, the population diversity is typically high due to the large differences between individuals.
As iterations progress, the algorithm gradually selects superior individuals, leading to a concentration
of genes or traits within the population, resulting in a decrease in diversity. The plotted results show
a diversity maintenance phase, where the proposed strategy proves effective in maintaining individual
diversity. Therefore, mDBO is capable of preserving population diversity in the mature phase of the
evolutionary search process, preventing premature convergence, exploring new regions of the search
space, and thus demonstrating great potential in finding the optimal solution.

(a) F3 (b) F4 (c) F7

(d) F13 (e) F19 (f) F28

Figure 12. Population diversity of the mDBO algorithm.
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4.4.3. Exploration and exploitation analysis

The strong effect of exploration increases the distance between individuals, while the strong effect
of exploitation decreases the distance among the population during the search process. Therefore,
the balance between exploration and exploitation ensures the avoidance of premature convergence
and the loss of diversity. The percentages of exploration and exploitation are calculated using Eqs
(4.3) and (4.4) [76]. In these equations, parameter Div(t) represents the dimension-wise diversity
measure [76, 77], which is computed using Eq (4.5) to indicate the increase or decrease of distance
between individuals during the search process. Divmax refers to the maximum diversity across all
iterations, and parameter Xid represents the position of the i-th individual in dimension d. The effects
of exploration and exploitation are evaluated in unimodal, multimodal, hybrid, and composition test
functions. The resulting data are plotted in Figure 13, where the percentage indicates the level of
exploration and exploitation for the population during the evolution process.

Exploration(t) =
Div(t)

DIVmax
× 100, (4.3)

Exploitation(t) =
|Div(t) − Divmax|

Divmax
× 100, (4.4)

Div(t) =
1
D

D∑
d=1

1
N

N∑
i=1

|median(Xd(t)) − Xid(t)| . (4.5)

(a) F1 (b) F5 (c) F10

(d) F11 (e) F12 (f) F25

Figure 13. Exploration and exploitation behavior analysis of the mDBO algorithm.

In the process of algorithm optimization, the balance between exploration and exploitation is
crucial. As shown in Figure 13, during the early stages, the algorithm explores the solution space with
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a higher exploration rate to discover diverse solutions. As iterations progress, the exploration rate
gradually decreases, while the exploitation rate increases, and the algorithm begins to focus more on
refining the solutions found.

4.5. Ablation experiment

The mDBO framework incorporates three distinct strategies into the foundational DBO algorithm.
Three improved strategies are introduced in DBO, namely: Chaos-based opposition learning strategy
(CRO), dynamic retrospective adaptive differential mutation strategy (PRADE), and Padé
approximation and adaptive evolutionary boundary constraint strategy (PAAEBC). Table 13 presents
the variants of DBO in the ablation experiment, where 1 indicates that the strategy has been added,
and 0 indicates that the strategy has not been added. To assess the effectiveness of this approach,
ablation experiments are conducted for each of the three strategies. The results of these experiments
are detailed in Tables 14 and 15 and Figure 14.

Table 13. Variants of DBO in ablation experiments.
Algorithms CRO PRADE PAAEBC
DBO 0 0 0
CDBO 1 0 0
DDBO 0 1 0
PDBO 0 0 1
mDBO 1 1 1

The results presented in Tables 14 and 15 indicate that mDBO outperforms CDBO for 20 benchmark
functions, exceeds DDBO for 21 functions, and surpasses PDBO for 24 functions. Conversely, CDBO
outperforms DBO for 24 benchmark functions, DDBO exceeds DBO for 26 functions, and PDBO
surpasses DBO for 24 functions. In the context of unimodal functions (F1 and F3), CDBO and DDBO
demonstrate superior performance compared to PDBO. For multimodal functions (F4 to F10), PDBO
shows the highest effectiveness, suggesting that the pade approximation strategy is beneficial for this
class of functions. In the case of hybrid functions (F11 to F20), CDBO exhibits the most pronounced
effect, indicating the efficacy of the chaos-based opposition-based learning strategy. For composition
functions (F21 to F30), DDBO demonstrates the strongest impact, highlighting the advantages of the
dynamic retrospective adaptive differential mutation strategy in this context. Overall, the experimental
results show that all DBO variants, incorporating individual strategies, exhibit significant performance
improvements over the standard DBO, with mDBO emerging as the most effective variant.

4.6. Statistical results analysis

In this section, we present a comprehensive quantitative analysis of the optimization capabilities of
the proposed mDBO algorithm. We conduct 30 independent runs for each of the ten-dimensional test
functions (F1 to F30) using the mDBO algorithm, alongside nine established intelligent algorithms:
WOA, SCA, PSO, GWO, HHO, AOA, BOA, DE, DBO, LSHADE, and LSHADE_SPACMA. The
statistical data collected from these experiments are meticulously organized in Tables 16–19 and Figure
15. The last three rows of the tables feature symbols “+”, “=”, and “−”, which indicate that the
proposed method outperforms, is comparable to, or underperforms relative to the other algorithms,
respectively. Furthermore, the tables present the average and final rankings for all algorithms included
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Table 14. Comparison results of different DBO variants.
F Type mDBO CDBO DDBO PDBO DBO

F1 mean 4.0151 × 103 5.6590 × 103 5.0656 × 103 4.9190 × 103 7.2274 × 105

std 1.5028 × 107 1.3131 × 107 1.6576 × 107 1.4059 × 107 9.8979 × 1012

1 4 3 2 5

F3 mean 3.0402 × 102 3.6949 × 102 5.4869 × 102 6.5734 × 102 5.8088 × 102

std 7.8624 × 101 7.2916 × 104 1.9646 × 105 9.9017 × 105 1.5816 × 105

1 2 3 5 4

F4 mean 4.0822 × 102 4.1053 × 102 4.1506 × 102 4.2123 × 102 4.3732 × 102

std 2.9596 × 102 4.2037 × 102 4.8862 × 102 1.1659 × 103 1.9228 × 103

1 2 3 4 5

F5 mean 5.2809 × 102 5.3403 × 102 5.3385 × 102 5.3132 × 102 5.4101 × 102

std 1.4399 × 102 1.6499 × 102 1.9844 × 102 1.6660 × 102 1.8678 × 102

1 4 3 2 5

F6 mean 6.0412 × 102 6.0834 × 102 6.0723 × 102 6.0414 × 102 6.1193 × 102

std 1.7939 × 101 6.3318 × 101 4.6160 × 101 2.5885 × 101 6.5646 × 101

1 4 3 2 5

F7 mean 7.3903 × 102 7.4980 × 102 7.4278 × 102 7.4005 × 102 7.4693 × 102

std 2.0406 × 102 2.2915 × 102 3.2510 × 102 1.4149 × 102 4.3974 × 102

1 5 3 2 4

F8 mean 8.2532 × 102 8.2687 × 102 8.2834 × 102 8.2887 × 102 8.3592 × 102

std 9.7939 × 101 7.5604 × 101 1.7489 × 102 1.7033 × 102 1.6376 × 102

1 2 3 4 5

F9 mean 9.3782 × 102 9.6100 × 102 9.7430 × 102 9.6843 × 102 9.8164 × 102

std 3.1985 × 103 6.0940 × 103 1.2375 × 104 1.6415 × 104 8.9017 × 103

1 2 4 3 5

F10 mean 2.0288 × 103 1.9817 × 103 1.8870 × 103 1.8574 × 103 2.1127 × 103

std 9.3686 × 104 1.2561 × 105 1.4586 × 105 9.6889 × 104 7.5340 × 104

4 3 2 1 5

F11 mean 1.1492 × 103 1.1566 × 103 1.1473 × 103 1.1477 × 103 1.2520 × 103

std 3.9519 × 103 4.8361 × 103 2.8706 × 103 2.6669 × 103 1.7806 × 104

3 4 1 2 5

F12 mean 1.6133 × 104 4.5646 × 105 5.6317 × 105 5.6674 × 105 2.2173 × 106

std 2.0858 × 108 2.9696 × 1012 4.3245 × 1012 4.3188 × 1012 1.3802 × 1013

1 2 3 4 5

F13 mean 1.1479 × 104 1.0253 × 104 1.3566 × 104 1.3759 × 104 1.4771 × 104

std 6.9548 × 107 1.0764 × 108 1.1918 × 108 1.3479 × 108 1.3512 × 108

2 1 3 4 5

F14 mean 1.6698 × 103 1.6803 × 103 1.8371 × 103 1.8354 × 103 1.9694 × 103

std 4.3283 × 104 1.6086 × 105 3.7208 × 105 2.0932 × 105 5.2379 × 105

1 2 4 3 5

F15 mean 2.9685 × 103 2.3226 × 103 3.1348 × 103 3.2995 × 103 4.6039 × 103

std 1.4048 × 106 1.2053 × 106 3.0868 × 106 3.9377 × 106 3.2058 × 107

2 1 3 4 5

F16 mean 1.7453 × 103 1.7337 × 103 1.7223 × 103 1.7650 × 103 1.8064 × 103

std 1.7604 × 104 1.8927 × 104 9.3227 × 103 2.0006 × 104 1.3478 × 104

3 2 1 4 5

F17 mean 1.7589 × 103 1.7736 × 103 1.7635 × 103 1.7869 × 103 1.7910 × 103

std 6.8539 × 102 1.3468 × 103 1.2513 × 103 2.3545 × 103 2.3285 × 103

1 3 2 4 5
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Table 15. Comparison results of different DBO variants.
F Type mDBO CDBO DDBO PDBO DBO

F18 mean 1.5044 × 104 1.4947 × 104 1.3933 × 104 1.6328 × 104 2.4579 × 104

std 1.7380 × 108 1.9474 × 108 1.4152 × 108 2.3849 × 108 2.5829 × 108

3 2 1 4 5

F19 mean 5.4835 × 103 5.3592 × 103 5.1333 × 103 4.2590 × 103 9.4305 × 103

std 4.9692 × 107 3.9768 × 107 4.3710 × 107 3.1635 × 107 1.3207 × 108

4 3 2 1 5

F20 mean 2.0695 × 103 2.0780 × 103 2.0883 × 103 2.0797 × 103 2.0998 × 103

std 3.3404 × 103 5.8792 × 103 3.7676 × 103 2.8449 × 103 5.0822 × 103

1 2 4 3 5

F21 mean 2.2781 × 103 2.2789 × 103 2.2868 × 103 2.2977 × 103 2.2208 × 103

std 4.1732 × 103 4.4939 × 103 4.1807 × 103 3.9820 × 103 1.2751 × 103

2 3 4 5 1

F22 mean 2.3060 × 103 2.3053 × 103 2.3023 × 103 2.3015 × 103 2.3091 × 103

std 2.2743 × 102 1.6838 × 101 2.6147 × 102 1.5947 × 102 3.3667 × 101

4 3 2 1 5

F23 mean 2.6363 × 103 2.6351 × 103 2.6321 × 103 2.6376 × 103 2.6448 × 103

std 2.1618 × 102 1.6293 × 102 1.6775 × 102 1.7771 × 102 1.9188 × 102

3 2 1 4 5

F24 mean 2.7040 × 103 2.7202 × 103 2.7621 × 103 2.7407 × 103 2.7344 × 103

std 1.2200 × 104 9.9252 × 103 2.6250 × 103 6.4097 × 103 6.6527 × 103

1 2 5 4 3

F25 mean 2.9333 × 103 2.9363 × 103 2.9411 × 103 2.9284 × 103 2.9342 × 103

std 5.4438 × 102 6.3833 × 102 8.4327 × 102 6.8985 × 102 4.0947 × 103

2 4 5 1 3

F26 mean 3.0164 × 103 3.0810 × 103 3.0512 × 103 3.0337 × 103 3.1028 × 103

std 5.1650 × 104 5.1252 × 104 7.1225 × 104 1.8342 × 104 3.3958 × 104

1 4 3 2 5

F27 mean 3.1013 × 103 3.1061 × 103 3.1028 × 103 3.1045 × 103 3.1043 × 103

std 4.3282 × 101 4.7293 × 102 1.5881 × 102 2.0371 × 102 1.3389 × 102

1 5 2 4 3

F28 mean 3.2780 × 103 3.3233 × 103 3.3353 × 103 3.3003 × 103 3.3441 × 103

std 1.1377 × 104 1.5049 × 104 1.6816 × 104 1.3849 × 104 1.1018 × 104

1 3 4 2 5

F29 mean 3.2380 × 103 3.2877 × 103 3.2488 × 103 3.2554 × 103 3.2527 × 103

std 4.8295 × 103 6.7508 × 103 4.6284 × 103 5.5444 × 103 4.3175 × 103

1 5 2 4 3

F30 mean 4.6651 × 105 2.2673 × 105 4.5411 × 105 7.6241 × 105 1.1384 × 106

std 7.7540 × 1011 1.1362 × 1011 2.1224 × 1011 9.4741 × 1011 1.4732 × 1012

3 1 2 4 5
Avg rank 1.79 2.83 2.79 3.07 4.52

Overal rank 1 3 2 4 5
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in this analysis.
After evaluating the unimodal functions F1 and F3, we found that compared to traditional DBO,

mDBO achieves significant improvements in both average fitness and standard deviation. mDBO not
only successfully identifies the global optimal solutions for these two test functions but also
outperforms all other algorithms in the comparison. Notably, the PSO algorithm exhibits excellent
performance on the F3 function, slightly surpassing mDBO in terms of average fitness. When applied
to simple multimodal functions (F4 to F10), mDBO generally outperforms other algorithms in terms
of both average fitness and standard deviation. However, for the F5, and F8 functions,
LSHADE_SPACMA performed best among all algorithms. This may be attributed to the adoption of
a quadratic interpolation strategy, which effectively balances the relationship between exploration and
exploitation. In tests involving hybrid benchmark functions (F11 to F20), mDBO excels in 5 of the 10
test functions. The remarkable global search capability of mDBO can be attributed to its hybrid
chaotic mapping strategy, which ensures a high-quality initial population, thereby conferring a
distinct advantage in the early iterations of the algorithm. When evaluating composite functions (F21
to F30), mDBO performs best for 6 of the 10 test functions. Although it does not achieve the highest
ranking on the remaining four functions, it consistently places second or third, further demonstrating
mDBO’s robust search capabilities in tackling complex optimization problems. This may be primarily
due to the enhanced performance of the DE strategy in avoiding premature convergence to local
optima. Furthermore, this method achieves a Friedman average ranking of 1.62, securing the top
position, closely followed by the LSHADE_SPACMA algorithm. Table 20 presents the average
runtime of different algorithms. Compared to other algorithms, the proposed algorithm shows a slight
increase in runtime; however, it achieves a significant improvement in accuracy, resulting in better
performance. Therefore, despite the additional computational overhead, the enhanced accuracy makes
this cost acceptable. Overall, the mDBO demonstrates a significantly stronger competitive advantage
for the CEC2017 benchmark suite.

Figure 14. Comparison results of different DBO variants Avg rank.

To evaluate the statistical significance of the simulation results for the proposed mDBO method
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Table 16. A comparison of different algorithms in solving benchmark functions.
Function Metric mDBO WOA SCA PSO GWO HHO

F1 mean 5.9830 × 103 6.0680 × 107 9.3749 × 108 1.0260 × 108 6.4487 × 107 1.4935 × 106

std 1.9664 × 107 7.3331 × 1015 1.0054 × 1017 1.6371 × 1017 1.7801 × 1016 1.4342 × 1012

2 6 9 8 7 4

F3 mean 4.7105 × 102 6.2869 × 103 2.4981 × 103 3.0065 × 102 3.3085 × 103 7.1312 × 102

std 4.2893 × 105 3.5071 × 107 1.4270 × 106 9.4727 × 10−1 7.7841 × 106 7.7209 × 104

2 10 6 1 7 3

F4 mean 4.0000 × 102 4.7636 × 102 4.5769 × 102 4.0018 × 102 4.0780 × 102 4.9382 × 102

std 4.4185 × 102 2.8773 × 103 4.8958 × 102 4.3018 × 102 2.9294 × 102 1.6587 × 103

1 7 6 2 5 8

F5 mean 5.1492 × 102 5.8300 × 102 5.5847 × 102 5.3582 × 102 5.1622 × 102 5.7876 × 102

std 1.0929 × 102 6.3636 × 102 1.2763 × 101 1.2643 × 102 3.4993 × 101 5.5369 × 102

2 11 7 5 4 10

F6 mean 6.0000 × 102 6.4541 × 102 6.1774 × 102 6.0000 × 102 6.0143 × 102 6.2976 × 102

std 8.2097 × 101 1.6445 × 102 3.9719 × 101 2.4873 × 10−7 1.2922 3.7760 × 102

1 11 7 1 5 9

F7 mean 7.1453 × 102 7.6719 × 102 7.7828 × 102 7.2873 × 102 7.4118 × 102 7.8524 × 102

std 9.8852 × 101 5.3015 × 102 1.3864 × 102 1.9533 × 101 5.2822 × 101 3.7965 × 102

1 7 8 3 5 10

F8 mean 8.0696 × 102 8.4606 × 102 8.4545 × 102 8.1492 × 102 8.2516 × 102 8.1699 × 102

std 1.0210 × 102 2.5278 × 102 1.1091 × 102 5.5419 × 101 3.5753 × 101 6.1848 × 101

2 9 8 3 6 4

F9 mean 9.0000 × 102 1.1749 × 103 1.0422 × 103 9.0000 × 102 9.0117 × 102 1.1329 × 103

std 1.1021 × 104 1.8815 × 105 2.5956 × 103 1.6496 × 10−13 1.5091 × 102 4.6552 × 104

1 9 7 1 5 8

F10 mean 1.1287 × 103 1.9809 × 103 2.6108 × 103 1.9928 × 103 1.6545 × 103 1.8648 × 103

std 1.6392 × 105 5.9407 × 104 5.6942 × 103 7.4046 × 104 1.1364 × 105 1.8030 × 105

1 6 10 7 4 5

F11 mean 1.1117 × 103 1.1572 × 103 1.2388 × 103 1.1135 × 103 1.1699 × 103 1.1929 × 103

std 3.4828 × 102 3.2314 × 103 5.3175 × 102 2.0315 × 102 3.0651 × 103 2.7237 × 102

2 5 9 3 6 7

F12 mean 6.1019 × 103 2.3647 × 105 1.3416 × 107 1.3233 × 104 7.1902 × 103 3.7228 × 106

std 1.4289 × 108 3.7592 × 1013 3.2679 × 1013 7.2045 × 107 6.9672 × 1011 1.0055 × 1013

1 6 10 4 2 7

F13 mean 9.5429 × 103 1.8746 × 104 7.3534 × 104 1.0962 × 104 1.4659 × 104 2.3247 × 104

std 8.9888 × 107 2.0509 × 108 8.2053 × 109 1.2400 × 108 2.3708 × 107 5.9259 × 108

3 10 12 4 9 11

F14 mean 1.4936 × 103 2.2571 × 103 2.5745 × 103 1.5550 × 103 1.5464 × 103 2.0563 × 103

std 2.7722 × 104 3.2324 × 106 1.5715 × 105 1.3967 × 106 2.3460 × 106 4.9974 × 104

3 10 12 6 5 9

F15 mean 2.2228 × 103 8.1827 × 106 5.6390 × 107 5.9624 × 103 5.1072 × 105 2.1888 × 105

std 9.9682 × 108 8.3300 × 1013 7.8407 × 1015 1.2840 × 108 1.8130 × 1012 4.3987 × 109

1 8 9 4 6 5

F16 mean 1.6019 × 103 1.9217 × 103 1.8322 × 103 1.9595 × 103 1.8804 × 103 1.7562 × 103

std 9.5137 × 103 3.1810 × 104 1.3157 × 104 1.8875 × 104 9.7285 × 103 2.5851 × 104

1 10 6 11 7 5

F17 mean 1.7060 × 103 1.7864 × 103 1.8101 × 103 1.7546 × 103 1.7526 × 103 1.8055 × 103

std 1.5321 × 103 3.4911 × 103 2.4389 × 102 2.5119 × 102 2.7267 × 102 1.6243 × 103

1 7 9 5 4 8
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Table 17. A comparison of different algorithms in solving benchmark functions.
Function Metric mDBO WOA SCA PSO GWO HHO

F18 mean 2.5288 × 103 1.2687 × 104 4.7095 × 105 8.1018 × 103 4.2539 × 104 3.7524 × 103

std 1.9006 × 108 1.4603 × 108 2.7838 × 1010 2.8407 × 108 1.9150 × 108 9.1356 × 107

3 7 11 6 8 5

F19 mean 2.0442 × 103 9.0014 × 104 1.4781 × 104 5.8505 × 103 2.1983 × 103 1.0012 × 104

std 2.9953 × 107 1.1696 × 109 1.3748 × 108 6.1337 × 106 1.8266 × 107 3.6725 × 107

3 12 9 6 4 7

F20 mean 2.0016 × 103 2.1334 × 103 2.1530 × 103 2.1297 × 103 2.0521 × 103 2.3096 × 103

std 6.0599 × 102 1.4069 × 104 3.1264 × 103 2.1846 × 103 1.6232 × 104 8.5374 × 103

1 7 9 6 4 12

F21 mean 2.2063 × 103 2.3564 × 103 2.2253 × 103 2.3225 × 103 2.3071 × 103 2.3850 × 103

std 3.4761 × 103 5.3132 × 103 5.3471 × 103 2.9730 × 103 8.6179 9.0067 × 103

1 10 4 8 7 12

F22 mean 2.3008 × 103 2.3241 × 103 2.3548 × 103 2.3487 × 103 2.3091 × 103 2.3100 × 103

std 1.5367 × 101 5.0379 × 105 2.6023 × 103 1.6782 × 105 7.0941 × 101 2.4169 × 101

1 7 9 8 4 5

F23 mean 2.6223 × 103 2.6648 × 103 2.6568 × 103 2.6431 × 103 2.6229 × 103 2.6646 × 103

std 7.0070 × 101 5.3789 × 102 4.0340 × 101 5.4175 × 102 1.2285 × 102 4.6013 × 102

2 10 7 5 3 9

F24 mean 2.6820 × 103 2.7769 × 103 2.7888 × 103 2.6538 × 103 2.7510 × 103 2.8284 × 103

std 1.9056 × 104 1.0759 × 102 8.0283 × 101 1.9711 × 104 6.5472 × 101 3.0033 × 103

2 8 9 1 6 11

F25 mean 2.9190 × 103 2.9596 × 103 2.9800 × 103 2.9269 × 103 2.9319 × 103 2.9193 × 103

std 7.4391 × 102 5.4819 × 102 3.3701 × 101 5.7310 × 102 2.4926 × 102 1.0317 × 104

1 8 9 4 6 2

F26 mean 2.8770 × 103 3.5214 × 103 3.1170 × 103 3.2580 × 103 3.5114 × 103 3.6097 × 103

std 3.2225 × 104 9.3681 × 105 1.7274 × 103 3.2049 × 105 3.0960 × 105 4.4288 × 105

1 10 5 7 9 11

F27 mean 3.0923 × 103 3.2184 × 103 3.1025 × 103 3.0976 × 103 3.1056 × 103 3.1081 × 103

std 4.8263 × 101 3.4885 × 103 9.0634 8.3882 × 102 2.5841 × 101 2.4612 × 103

2 11 5 4 6 7

F28 mean 3.1883 × 103 3.1901 × 103 3.3295 × 103 3.3838 × 103 3.4029 × 103 3.5267 × 103

std 4.9551 × 104 2.2896 × 104 5.5565 × 103 7.6759 × 103 4.5755 × 101 2.6088 × 104

1 2 6 7 8 12

F29 mean 3.1415 × 103 3.2618 × 103 3.3225 × 103 3.1886 × 103 3.1527 × 103 3.4866 × 103

std 8.3463 × 103 2.4339 × 103 4.2984 × 103 9.5113 × 102 1.1813 × 103 2.3560 × 104

1 6 8 4 2 11

F30 mean 7.8147 × 103 9.0791 × 105 3.0734 × 106 2.7188 × 104 3.7176 × 104 2.3251 × 106

std 1.6203 × 1011 9.8223 × 1011 1.4798 × 1012 2.6606 × 1012 3.0456 × 1011 3.6345 × 1011

3 7 10 4 5 9
Paired rank +\=\− − 29/0/0 29/0/0 25/2/2 29/0/0 29/0/0

Avg. rank 1.62 8.17 8.14 4.76 5.48 7.79
Overall rank 1 9 8 4 5 7
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Table 18. A comparison of different algorithms in solving benchmark functions.
Function Metric AOA BOA DE DBO LSHADE LSHADE_SPACMA

F1 mean 7.0685 × 109 6.7460 × 109 2.4561 × 109 2.3211 × 106 2.7844 × 104 1.0000 × 102

std 7.1302 × 1018 9.3630 × 1018 1.1356 × 1018 8.1983 × 1013 4.9720 × 109 6.6771 × 10−8

12 11 10 5 3 1

F3 mean 5.4842 × 103 9.9005 × 103 3.9036 × 104 9.7402 × 102 4.7442 × 103 1.5556 × 103

std 3.2265 × 106 6.0830 × 106 1.4895 × 108 2.2598 × 106 2.1950 × 107 1.1565 × 107

9 11 12 4 8 5

F4 mean 8.3545 × 102 1.9510 × 103 5.0949 × 102 5.1260 × 102 4.0358 × 102 4.0024 × 102

std 3.8490 × 104 3.3001 × 105 6.9764 × 103 2.8143 × 103 2.2020 1.8397 × 10−2

11 12 9 10 4 3

F5 mean 5.7058 × 102 5.8961 × 102 5.7617 × 102 5.5224 × 102 5.1542 × 102 5.0327 × 102

std 1.8773 × 101 8.5899 × 101 5.2894 × 101 1.6111 × 102 1.0757 × 102 1.5438
8 12 9 6 3 1

F6 mean 6.1889 × 102 6.4798 × 102 6.4135 × 102 6.1264 × 102 6.0001 × 102 6.0008 × 102

std 6.3491 × 101 4.7401 × 101 2.8158 × 101 2.4556 × 101 1.1155 × 10−4 1.0914 × 10−3

8 12 10 6 3 4

F7 mean 7.8299 × 102 8.0521 × 102 8.5162 × 102 7.3765 × 102 7.4466 × 102 7.1466 × 102

std 2.2834 × 102 6.6414 × 101 2.0078 × 102 5.8889 × 101 9.2006 × 101 1.1255 × 101

9 11 12 4 6 2

F8 mean 8.5093 × 102 8.4289 × 102 8.8154 × 102 8.5894 × 102 8.2292 × 102 8.0630 × 102

std 8.0949 × 101 1.8840 × 101 1.6222 × 102 1.6272 × 102 1.5607 × 101 1.1391 × 101

10 7 12 11 5 1

F9 mean 1.2093 × 103 1.5195 × 103 2.0063 × 103 9.0509 × 102 9.0000 × 102 9.0000 × 102

std 3.4668 × 104 3.6381 × 104 5.9519 × 105 3.9915 × 104 2.7536 × 10−5 1.6031 × 10−3

10 11 12 6 1 1

F10 mean 2.2416 × 103 2.4785 × 103 2.7927 × 103 1.5871 × 103 2.8391 × 103 1.1503 × 103

std 3.4085 × 104 3.9971 × 104 5.4974 × 104 7.8338 × 104 1.2848 × 105 4.0489 × 104

8 9 11 3 12 2

F11 mean 1.5253 × 103 1.6659 × 103 1.6138 × 103 1.2194 × 103 1.1197 × 103 1.1020 × 103

std 2.7897 × 105 2.6490 × 104 1.1005 × 105 5.7012 × 103 4.2563 × 101 1.9337
10 12 11 8 4 1

F12 mean 3.9273 × 106 7.6091 × 107 1.5098 × 108 4.9633 × 106 1.7551 × 104 9.6215 × 103

std 7.3636 × 1014 5.3368 × 1015 1.0509 × 1016 1.2391 × 1013 1.5596 × 1010 1.2996 × 107

8 11 12 9 5 3

F13 mean 1.4378 × 104 1.3423 × 105 1.3081 × 106 1.1291 × 104 1.4358 × 103 1.3217 × 103

std 2.1282 × 107 1.6068 × 1010 1.3093 × 1012 1.6890 × 108 5.7221 × 104 3.6856 × 102

8 7 6 5 2 1

F14 mean 1.5432 × 103 2.3131 × 103 1.6894 × 104 1.7796 × 103 1.4257 × 103 1.4220 × 103

std 5.8954 × 103 3.5040 × 105 3.7145 × 107 4.4141 × 104 1.1240 × 101 8.5869 × 101

4 11 7 8 2 1

F15 mean 9.9404 × 107 7.3127 × 107 2.8179 × 108 5.4715 × 103 8.8211 × 105 4.2803 × 103

std 7.8709 × 1016 3.8759 × 1016 1.4387 × 1017 1.0824 × 1013 1.6010 × 1011 1.0848 × 106

11 10 12 3 7 2

F16 mean 1.6538 × 103 1.9050 × 103 1.9645 × 103 1.9175 × 103 1.6134 × 103 1.6032 × 103

std 1.8874 × 104 5.6388 × 103 4.3812 × 104 2.0797 × 104 4.6773 × 102 1.6650
4 8 12 9 3 2

F17 mean 1.8622 × 103 1.8241 × 103 1.8466 × 103 1.7832 × 103 1.7322 × 103 1.7111 × 103

std 9.7869 × 102 5.4547 × 102 2.3069 × 103 2.8934 × 103 3.1865 × 101 5.1725 × 101

12 10 11 6 3 2
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Table 19. A comparison of different algorithms in solving benchmark functions.
Function Metric AOA BOA DE DBO LSHADE LSHADE_SPACMA

F18 mean 1.1879 × 105 2.3989 × 106 9.3960 × 105 2.9466 × 103 1.8370 × 103 1.9244 × 103

std 1.8019 × 1014 1.4310 × 1012 7.1484 × 1012 2.1176 × 108 3.3961 × 101 1.5445 × 103

9 10 12 4 1 2

F19 mean 1.2649 × 104 6.0892 × 104 3.9509 × 104 5.6610 × 103 1.9016 × 103 1.9011 × 103

std 2.0266 × 108 7.6105 × 1010 1.1141 × 1010 1.1908 × 107 2.2162 × 100 1.2741 × 103

8 11 10 5 2 1

F20 mean 2.1447 × 103 2.1168 × 103 2.2327 × 103 2.1823 × 103 2.0211 × 103 2.0035 × 103

std 4.5367 × 102 2.6284 × 103 6.0275 × 102 5.0733 × 103 2.2428 × 10−1 6.6985 × 101

8 5 11 10 3 2

F21 mean 2.2751 × 103 2.2123 × 103 2.3847 × 103 2.2154 × 103 2.3272 × 103 2.3064 × 103

std 3.5537 × 103 1.5235 × 102 5.0672 × 101 2.1209 × 102 8.0671 × 101 2.1668 × 103

5 2 11 3 9 6

F22 mean 2.8376 × 103 2.3811 × 103 2.5990 × 103 2.3120 × 103 2.3021 × 103 2.3012 × 103

std 3.3572 × 104 3.7237 × 103 1.3465 × 104 3.9777 × 101 7.3032 × 10−1 2.5032 × 10−1

12 10 11 6 3 2

F23 mean 2.7203 × 103 2.6618 × 103 2.6830 × 103 2.6433 × 103 2.6362 × 103 2.6070 × 103

std 1.1179 × 102 3.2718 × 102 6.1070 × 101 4.8438 × 101 6.9366 × 101 7.3553 × 10−1

12 8 11 6 4 1

F24 mean 2.8460 × 103 2.6962 × 103 2.7983 × 103 2.7057 × 103 2.7564 × 103 2.7382 × 103

std 1.3690 × 103 8.4326 × 103 7.9795 × 101 6.5491 × 103 1.8418 × 102 4.3491
12 3 10 4 7 5

F25 mean 3.1454 × 103 3.5777 × 103 3.1220 × 103 2.9265 × 103 2.9298 × 103 2.9357 × 103

std 1.0907 × 104 5.0451 × 104 6.6673 × 103 7.7418 × 102 4.7535 × 102 4.0833 × 102

11 12 10 3 5 7

F26 mean 3.4452 × 103 3.2354 × 103 3.6720 × 103 3.1023 × 103 2.9352 × 103 2.9186 × 103

std 1.1306 × 105 5.2268 × 104 6.5760 × 104 8.9596 × 103 2.0497 × 103 1.7293 × 103

8 6 12 4 3 2

F27 mean 3.2212 × 103 3.1188 × 103 3.1365 × 103 3.1162 × 103 3.0739 × 103 3.0972 × 103

std 2.7274 × 102 6.2799 × 102 1.8776 × 102 7.1363 × 101 6.1082 × 101 8.5967
12 9 10 8 1 3

F28 mean 3.3000 × 103 3.4268 × 103 3.4991 × 103 3.4119 × 103 3.2725 × 103 3.2185 × 103

std 6.5701 × 104 3.9019 × 104 3.9135 × 103 1.5440 × 104 1.5312 × 101 1.8561 × 104

5 10 11 9 4 3

F29 mean 3.3471 × 103 3.3572 × 103 3.4962 × 103 3.3028 × 103 3.2498 × 103 3.1836 × 103

std 1.5572 × 103 1.2516 × 103 9.9096 × 103 7.6504 × 103 1.3627 × 103 3.1805 × 102

9 10 12 7 5 3

F30 mean 1.2257 × 106 9.5690 × 106 6.5465 × 106 2.7014 × 105 3.3118 × 103 4.4055 × 103

std 2.3923 × 1012 2.5390 × 1012 2.1162 × 1013 1.4269 × 1011 1.6210 × 105 1.8826 × 105

8 12 11 6 1 2
Paired rank +\=\− 29/0/0 29/0/0 29/0/0 29/0/0 22/1/6 18/1/10

Avg. rank 9.00 9.41 10.69 6.14 4.10 2.45
Overall rank 10 11 12 6 3 2
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Figure 15. A comparison of algorithms in solving benchmark functions Avg rank.

relative to other algorithms, a non-parametric paired Wilcoxon rank-sum test is conducted. This test is
used to assess whether there are significant differences between the two algorithms. The p-values
obtained from the Wilcoxon rank-sum test, performed at the 5% significance level, are provided in
Table 21. A p-value less than 0.05 indicates a statistically significant difference between the two
algorithms. The results presented in the table show that almost most of the p-values are below 0.05,
suggesting that the proposed mDBO method statistically outperforms the other algorithms in
comparison. Overall, the performance of mDBO in the comparative tests supports its effectiveness in
terms of development and exploration, confirming the utility of the three mechanisms introduced in
this study.

4.7. Convergence behavior analysis

In the CEC2017 benchmark tests, the convergence speed and accuracy of algorithms such as
mDBO, WOA, SCA, PSO, GWO, HHO, AOA, BOA, DE, DBO, LSHADE, and LSHADE_SPACMA
are illustrated in Figures 16 and 17. Analysis of these curves reveals that mDBO outperforms the
other algorithms in terms of convergence speed, displaying minimal fluctuations and high stability.
This performance indicates not only a faster approach to optimal solutions but also a significant
improvement in efficiency and robustness when addressing complex problems. Moreover, mDBO
demonstrates a rapid convergence trend from the beginning of most test problems and continually
enhances its search capability as iterations progress. This accelerating convergence trend suggests that
mDBO optimizes its search strategy throughout the iterative process, enabling it to quickly hone in on
higher-quality solutions. This progressively improving search capability ensures that mDBO not only
converges rapidly but also consistently enhances the quality of its solutions in tackling complex
optimization challenges.

Analysis of Figures 16 and 17 reveals that mDBO consistently converges to the optimal solution
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(a) F1 (b) F3 (c) F4

(d) F5 (e) F6 (f) F7

(g) F8 (h) F9 (i) F10

(j) F11 (k) F12 (l) F13

(m) F14 (n) F15 (o) F16

Figure 16. Comparison of convergence curves.

Electronic Research Archive Volume 33, Issue 3, 1693–1762.



1745

(a) F17 (b) F18 (c) F19

(d) F20 (e) F21 (f) F22

(g) F23 (h) F24 (i) F25

(j) F26 (k) F27 (l) F28

(m) F29 (n) F30

Figure 17. Comparison of convergence curves.
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within 500 consecutive iterations across most test cases, exhibiting minimal stagnation. This
performance underscores its exceptional exploration and exploitation capabilities. In the context of
unimodal functions (F1 and F3), mDBO demonstrates significant improvements in both convergence
accuracy and speed compared to DBO, outperforming other optimization algorithms in these respects.
For multimodal functions (F4 to F10), mDBO maintains a remarkably high convergence rate and
effectively demonstrates the ability to evade local optima. Moreover, among these seven functions,
mDBO achieves the highest convergence precision in five cases. LSHADE_SPACMA displays
competitive performance on F5. Regarding hybrid functions (F11 to F20), mDBO quickly converges
to the optimal position during the initial iterations, highlighting its robust convergence performance.
Among these ten functions, mDBO achieves the highest convergence precision, with the exceptions of
F12, F14, F18, and F20. In terms of composition functions (F21 to F30), mDBO effectively
transitions from the exploration phase to the exploitation phase, outperforming its competitors to
varying degrees in both convergence accuracy and speed.

5. Experimental II: Feature selection

5.1. Data acquisition and preprocessing

We select several standard datasets from the UCI Machine Learning Repository. Tab 22 briefly
describes these datasets, including the dataset name, number of samples, number of features, and
number of category labels. We employ a newly proposed FS method aimed at identifying and
selecting key features that contribute to improving classification accuracy. These datasets contain
potential patterns that aid in feature selection and classification analysis. Each dataset consists of
varying numbers of records (samples or observations) and attributes (features or variables), which are
crucial for achieving the research objectives.

Table 22. Description of the dataset.
Dataset Number of samples Number of features Number of category labels
Breastcancer 699 9 2
BreastEW 596 30 2
Congress 435 16 2
Dermatology 366 34 6
Diabets 768 8 2
Exactly 1000 13 2
Glass 214 9 7
HeartEW 269 14 2
ionosphere 351 34 2
Sonar 208 60 2
Tic-tac-toe 958 9 2
Vehicule 846 18 4
Vote 300 16 2
Vowel 901 10 2
WDBC 569 31 2
Wine 178 13 2
Zoo 101 16 7

The collected datasets are carefully examined for missing values and outliers, as these factors can
adversely affect the performance of distance-based machine learning models, such as the KNN
algorithm. A thorough analysis of the dataset structure is conducted to classify the variables as either
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categorical or numerical. In classification tasks, input variables typically need to be numerical, while
the target variable is treated as a categorical factor. To address the presence of NaN values and
non-numeric items, we employ various statistical strategies, including data imputation, exclusion, and
variable transformation. Prior to inputting the data into the algorithm, we apply standardization
techniques to datasets with large numerical ranges, ensuring that the algorithm can evaluate different
features on a consistent scale. Additionally, we utilize a 10-fold cross-validation method for model
training and testing, allocating 80% of the data for training and 20% for testing. Throughout this
process, we fine-tune the parameters to minimize the loss function, using the test set to evaluate the
model’s accuracy and overall performance.

5.2. Statistical results and discussion

To assess the performance of the newly developed bmDBO in FS tasks, we conduct experiments
on 17 benchmark datasets, with the results presented in Table 23 to Table 26 and Figure 19. To
validate the effectiveness of bmDBO, we compare it against several wrapper-based feature selection
algorithms, which serve as baseline methods. The comparison reveals that bmDBO exhibits
substantial effectiveness in addressing feature selection challenges. In this study, we utilize nine
state-of-the-art alternative algorithms for comparison, including: The binary particle swarm
optimization (bPSO) [78], the binary genetic algorithm (bGA), the binary differential evolution
(bDE) [79], the binary black chimpanzee optimization algorithm (bBOA) [70], the binary grey wolf
optimizer (bGWO) [80], the binary whale optimization algorithm (bWOA) [24], the binary ant colony
optimization (bACO) [81], the binary Harris Hawks optimization (bHHO) [82], and the original
binary dung beetle optimizer (bDBO). Throughout the experiments, we adhere to the default
parameter settings outlined in the relevant literature for these algorithms, ensuring a fair comparison.

Table 23 presents the statistical results of optimal fitness values, with the best outcomes under each
evaluation criterion highlighted in bold. Over 30 independent runs, the bmDBO algorithm identifies
the most effective feature subsets in 12 of 17 datasets, representing a significant proportion of
66.67%. This finding is compelling and underscores the bmDBO algorithm’s robust capability to
discover high-precision solutions amidst numerous combinations, aligning with its outstanding
performance in benchmark tests. In comparison, the bPSO, bACO, and bHHO algorithms achieve
effectiveness rankings of 58.82%, 64.71%, and 58.82%, respectively, across the same 17 datasets,
indicating their competency in feature selection tasks. However, bmDBO’s superior performance
distinguishes it as a highly competitive method for addressing other feature selection challenges. In
terms of average fitness rankings, bmDBO leads with a score of 1.41, followed closely by bPSO at
2.29. The remaining algorithms are ranked from third to tenth as follows: bACO (2.65), bHHO
(2.82), bDE (4.18), bDBO (4.24), bGA (4.29), bWPA (7.71), bBOA (8.59), and bGWO (8.71).

Table 24 presents the average number of features selected across 30 computational runs for the
bmDBO algorithm and several competing methods. The algorithms’ performance in selecting the
smallest feature subsets from standard datasets is evaluated and ranked for each dataset. The overall
ranking of feature subset sizes is obtained by averaging the rankings across the candidate algorithms.
Notably, all algorithms effectively reduce the dimensionality of the datasets. While the bGWO and
bWOA algorithms demonstrate relatively lower classification accuracy, they perform well in terms
of dimensionality reduction. The bmDBO algorithm ranks fifth in feature subset size but achieves
the highest ranking for accuracy, highlighting the improved DBO algorithm’s capability to balance
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classification accuracy and dimensionality reduction effectively.
Furthermore, we assess the classification accuracy and F1 score for the feature subsets selected

by each algorithm to further validate their effectiveness in identifying key features. Tables 25 and 26
present detailed average accuracy and F1 score data for each algorithm, respectively, utilizing the
KNN classification method with (k = 5) and the 10-fold cross-validation approach. It is noteworthy
that higher numerical values reflect better performance for each algorithm, with the optimal values
highlighted in bold. A comparative analysis of the data in these tables clearly demonstrates that our
proposed method outperforms the others.

As shown in Table 25 and Figure 18, the bmDBO algorithm exhibits superior performance in
terms of average accuracy across 15 of 17 datasets. In comparison, the bACO and bHHO algorithms
outperform others in 12 datasets each, while the bPSO and bDE algorithms excel in 11 and 8 datasets,
respectively. The bGA and original DBO algorithm (designated as bDBO) demonstrate good
performance in 7 and 6 datasets, respectively. The bWOA algorithm achieves better results in 4
datasets, whereas the bGWO and bBOA algorithms excel in only one dataset each. Overall, the
bmDBO algorithm consistently ranks highest for average accuracy compared to the other methods,
illustrating its robust capability to identify key features that enhance model accuracy, even when its
feature subset size is not the smallest among competing algorithms. For example, in the Congress
dataset, the bWOA algorithm selects the smallest average feature subset size (4.6), while bmDBO has
a size of 6.4; nevertheless, bmDBO achieves a higher average accuracy of 98.62%, compared to
bWOA’s 97.93%. In another instance, the Sonar dataset demonstrates that while bGWO selects an
average of 10.4 features, bmDBO’s count is 13.8, though their respective average accuracies are
91.22% and 98.05%, highlighting the superiority of the newly proposed bmDBO method. The
observed trends are consistent across multiple datasets. Significantly, in all cases where bmDBO
produces the smallest average feature subset size, it also achieves the highest average accuracy. This
demonstrates that the proposed algorithm effectively strikes a balance between enhancing accuracy
and reducing feature subset size.

Based on the analysis of data presented in Table 26, the bmDBO algorithm demonstrates superior
performance compared to other algorithms. Evaluated using the F1 score, bmDBO outperforms in 12
of 17 datasets and overall achieves the highest F1 score. In comparison, the bPSO, bACO, and bHHO
algorithms attain optimal F1 scores in 8, 10, and 10 datasets, respectively, while bGA and bDE excel
in 7 datasets each. Additionally, the bDBO algorithm performs best in 6 datasets, whereas bWOA and
bGWO achieve their highest scores in 4 and 2 datasets, respectively. The bBOA algorithm reaches the
highest score in only 1 dataset. Considering the average performance rankings across all datasets, our
optimized method, which effectively selects key features from large datasets to achieve high accuracy,
emerges as the ideal choice. Specifically, bmDBO ranks first with an average F1 score of 1.35. The
remaining algorithms are ranked in descending order: bPSO (2.18), bACO (2.18), bHHO (2.35), bGA
(3.47), bDE (3.71), bDBO (5.06), bWOA (6.47), bGWO (7.47), and bBOA (8.41).
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Figure 18. The average accuracy of the feature subsets obtained by the new algorithm
compared to other algorithms.
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The findings from experiment two conclusively demonstrate that the newly introduced bmDBO
algorithm is an effective optimizer specifically designed for real-world FS problems. The exceptional
performance of bmDBO can be attributed to its ability to achieve an optimal balance between
exploration and exploitation. This characteristic enables the algorithm to efficiently navigate through
potential solution spaces in search of optimal subsets. Given bmDBO’s impressive capabilities in
feature selection, it is expected to deliver favorable results when applied to complex optimization
models, including those related to path planning and parameter tuning.

Figure 19. Radar chart comparing different algorithms on all datasets.

6. Conclusions and future work

In this paper, we introduce a multi-strategy integrated Dung Beetle Optimization algorithm,
designated as mDBO, which enhances the original DBO algorithm. mDBO incorporates three key
strategies. First, a novel population initialization method is introduced, which integrates a hybrid
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tent-sine mapping with ROBL to generate a more uniformly distributed initial population, thereby
enhancing the quality of population distribution within the search space. Subsequently, a new
differential evolution mutation strategy is proposed that incorporates a periodic retrospective adaptive
mutation factor. This strategy improves the traditional foraging update process by employing a
dynamic differential evolution mechanism, which effectively enhances the algorithm’s ability to
escape local optima and expands the search space for potential candidate solutions. Additionally, an
innovative approximation strategy based on Padé approximation techniques and an adaptive
evolutionary boundary constraint method is designed and integrated into the framework of the dung
beetle optimizer, significantly improving the solution accuracy and overall quality of the population.
Following this, a transformation function is employed to convert the optimized DBO algorithm into a
binary format, resulting in the enhanced bmDBO algorithm. The bmDBO algorithm is then applied to
feature selection tasks. In the experimental phase, in experiment 1, we conduct a comprehensive
evaluation of the mDBO algorithm’s performance in solving global optimization problems using the
CEC2017 benchmark test functions. In experiment 2, we further investigate the effectiveness of the
bmDBO algorithm in feature selection tasks across 17 well-known datasets. Comparisons with
existing algorithms in the literature indicate that both mDBO and bmDBO algorithms exhibit
significant performance advantages. The results from both experiments substantiate these findings.
Although the Padé approximation strategy can significantly enhance the population quality and
convergence accuracy of algorithms, it may incur additional computational costs. Therefore, the
design and optimization of approximation strategies will be a key focus of future research. In this
study, mDBO is primarily applied to single-objective optimization problems. While its structure and
strategy offer certain extensibility, its application to multi-objective optimization problems requires
further validation and research. In future work, we will further design and optimize improvement
strategies for the algorithm, including the Padé approximation strategy, to enhance the overall
performance of the algorithm. We will also explore the application of the mDBO algorithm to
multi-objective optimization problems and attempt to apply it to fields such as control scheduling,
image analysis, and industrial modeling.
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