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Abstract: In this study, we investigate the existence of at least one solution and the existence
of an infinite number of solutions for a discrete fractional boundary value problem. Requiring an
algebraic condition on the nonlinear term for small values of the parameter, and requiring an additional
asymptotical behavior of the potential at zero, we investigate the existence of at least one nontrivial
solution for the problem. Moreover, under suitable assumptions on the oscillatory behavior of the
nonlinearity at infinity, for exact collections of the parameter, we discuss the existence of a sequence
of solutions for the problem. We also present some examples that illustrate the applicability of the
main results.
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1. Introduction

In this paper, we discuss certain discrete fractional boundary value problems in the form
L1 Vi(eVom(0))) + Vi (L Vi) + 0, (W(0) = Af(L,v(0), € €1, L], ')
v(0) =w(L+1) =0, !

where 1 < p < oo, @ € (0,1), 4 > 0, 1, V] and ,V{ are the right and left discrete nabla fractional
difference operators, f : [1, L]y, X R — R is continuous, and ¢, stands for the operator that is defined
in the usual way by ¢,(s) = |s|"?s.

In this paper, we want to utilize a version of Ricceri’s variational principle as given in [1]. We
build the energy functional and we take some assumptions on the nonlinear term to get a functional
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that satisfies the conditions in the key theorem. In fact, by first requiring a simple algebraic inequality
condition on the nonlinear term for small values of the parameter and requiring an additional
asymptotical behavior of the potential at zero if f(£,0) = 0, the existence of one nontrivial solution is
achieved. Moreover, we deduce the existence of solutions for small positive values of the parameter
such that the corresponding solutions have smaller and smaller energies as the parameter goes to zero.
Then, under an appropriate oscillating behavior of the nonlinear term, we discuss the existence of an
unbounded sequence of solutions. We give exact collections for the parameter for each results, which
cannot be found in other works in the literature related to these types of discrete problems.

As is well known, fractional differential equations (FDEs) are valuable tools when modeling many
phenomena in various areas of science and engineering. We refer to [2—8] and the references therein
for a range of applications of FDEs in control, electrochemistry, viscoelasticity, electromagneticity,
porous media, and other fields. Classical tools that have been employed in the study of nonlinear FDEs
(see [9-11] and their references) include fixed point theory, monotone iterative methods, coincidence
theory, and the upper and lower solutions method.

Thanks to their wide range of applications in many fields such as science, economics, ecology,
neural networks, cybernetics, etc., nonlinear difference equations have been studied extensively for
the last 50 years. In addition, boundary value problems involving difference equations have received a
lot of attention, see, e.g., [12-15] and references therein. Difference equations subjected to many
different kinds of boundary conditions have also been extensively studied by using various
techniques. A popular technique has been to use variational methods [16—18]. In the last few years,
many researchers have investigated nonlinear problems of this type through various approaches.
Moreover, such boundary value problems for ordinary differential equations, difference equations, and
dynamic equations on time scales have been studied extensively, but there are only a few papers
dealing with fractional boundary value problems, besides [19-21], especially for discrete fractional
boundary value problems involving Caputo fractional difference operators. For example, Lv [22], by
using the fixed point theorem of Schaefer, under certain nonlinear growth assumptions, obtained the
existence of solutions to a discrete fractional boundary value problem. Furthermore, in [23,24], some
existence and multiplicity results for (p,g)-Laplacian problems were considered. For example,
in [23], by using suitable variational arguments and Ljusternik—Schnirelmann category theory, the
multiplicity and concentration of positive solutions for (p, g)-Laplacian problems were obtained.

In view of the facts presented above, in the current study, we discuss the existence of at least
one solution to the boundary value problem (Pﬁ'), as well as the existence of an infinite number of
solutions of (P§ ). Our primary tool is [1, Theorem 2.1], which is a more precise variant of the famous
variational principle of Ricceri [25]. In Theorem 9 below, we show that, subject to certain assumptions,
the boundary value problem (Pﬁ) possesses at least one nontrivial solution. We also offer Example 17,
where all hypotheses of our Theorem 9 are satisfied. We present a series of remarks concerning our
results. Moreover, under suitable assumptions of the oscillatory behavior at infinity of the nonlinearity,
we investigate the existence of an infinite number of solutions for the boundary value problem (Pfl-).
We prove the existence of a definite interval about A, in which the boundary value problem (Pf ) admits
a sequence of solutions, which is unbounded in the space V, to be introduced later (Theorem 18).
We present an example that illustrates Theorem 20 (see Example 21). Moreover, some corollaries
of Theorem 18 are offered. Under different assumptions, we ensure the existence of a sequence of
pairwise different solutions that strongly converges to zero (see Theorem 26).
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The paper is set up as follows. In Section 2, we remind the reader of some basic definitions and our
main tool. In Sections 3 and 4, we state and prove our main results.

2. Preliminaries

The key argument in our results is the next version of the variational principle by Ricceri [25,
Theorem 2.1], as presented in [1].

Theorem 1. Suppose that X is a reflexive real Banach space. Assume that ®,¥ : X — R are Gdteaux-
differentiable functionals such that ¥ is sequentially weakly upper semicontinuous, and ® is strongly
continuous, sequentially weakly lower semicontinuous, and coercive. For every r > infy @, let us put

( ) inf supve(l)‘l(—oo,r) lP(V) - \P(V)
r) =
¢ ved1(—co,r) r— o)
and
0 := liminf o(r), ¢ := liminf ¢(r).

r—(infy ®)*
One then has the following.
1
(a) For every r > infx ® and each A € ((), ?), the restriction of the functional I, = ® — AY to
o(r

®1(] = oo, 1) possesses a global minimum, and this global minimum is a critical point, i.e., a
local minimum, of 1, in X.

1
(b) If 0 < 6 < oo, then, forall A € (O, 5) either

(by) I possesses a global minimum, or
(by) foralln €N, I, has a critical point u,, and

lim ®(v,) = oo.

1
(¢) If 0 < 0 < oo, then, forall A € (O, (_5)’ either

(c1) @ possesses a global minimum, which is a local minimum of I,, or
(c2) a sequence of pairwise different critical points of I, exists, and this sequence converges
weakly to a global minimum of ®.

We refer to [9, 26-28], in which Theorem 1 was applied successfully in order to prove the
existence of at least one nontrivial solution for certain boundary value problems, and [29-33], in
which Theorem 1 has been successfully employed in order to prove the existence of an infinite
number of solutions for certain boundary value problems.

In this section, we present several foundational definitions, notations, and results that are used in
the remainder of this paper.

Definition 2 (see [34]). (i) For m € N, the m rising factorial of ¢ is defined as
m—1
= ]e+n, =1
k=0
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(i) Forre R\ {...,-2,-1,0} and @ € R, the « rising function is increasing on N, and
- I+ -
A GelO )
I'(2)

Definition 3 (see [34]). For f defined on N,_; N ,,1N, a < b, @ € (0, 1), the left Caputo discrete
fractional nabla difference operator is given by

(Eveif)© = Zng(s)(f PN (LEN,), (1)

F(l @)

the right Caputo discrete fractional nabla difference operator is given by

IGE Z( AP = pO) ™ (£ €N, )

Hl @)

the left Riemann discrete fractional nabla difference operator is given by

NI

1 : =
e Z FS)(E = p(s)

- —
S vem DA = p(s) T (L eN,),

the right Riemann discrete fractional nabla difference operator is given by

(51V60) O = p= -0 Z(f(s))(s —p(O)™"

F(l

b _
= @ ;(f(s))(s —p(O) T (L),

where p(£) = € — 1 is the backward jump operator.

Example 4. Let us give an example concerning Definition 3. Consider f : N,_; N ,,; N — R defined
by f(£) = 1. For this f, from (1) and (2), we have

VY 1=5,V91=0, £eN,N,N. (3)
The relations among the right and left Riemann and Caputo nabla fractional difference operators are
o o (C—a+1)"
(FViif)© = (Vi f) O = =~ fa= 1. 4)
o o b+1-0°
(7 V21) O = (. VEr) O - b+ 1 5)
Thus, by (3)—(5), we have
b+1-0" (—a+1)"

R Vel = 1=

Il-a) > V" Td-a °
With respect to the domains of the various fractional-type difference operators, we observe
the following:

fENaﬂbN.
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(1) The nabla left fractional operator (V¢ maps functions defined on ,_;N to functions defined on ,N.
(i1) The nabla right fractional operator ,,;V{ maps functions defined on ,,|N to functions defined
on ,N.

One can show that for @ — 0, we have ,/V¢_, f(£) — f({) and for @ — 1, we have /V_, f(£) — Vf(0).
We note that the Caputo and Riemann nabla fractional difference operators for 0 < @ < 1 coincide
when f vanishes at the end points, i.e., f(a—-1) = 0 = f(b + 1) (see (4), (5), and [2]). So, for
convenience, for the remainder of this paper, we use the symbol ,V¢_, instead of %Vg_l or ?V;"_l and
p+1V§ instead of &, V¥ or §, VY.

Now we present the discrete fractional summation by parts formula.

Theorem 5 (see [35, Theorem 4.4]). For f,g : N, N ,N —- R, a < b, and a € (0, 1), the formulas

b b
DOV O = ) O (VN O
{=a

l{=a
and
b b
D OGO = D 8O (V5 £(0)
t=a t=a
hold.

In order to give the variational formulation of the boundary value problem (Pfl’), let us introduce the
finite L-dimensional Banach space

V={:[0,L+1]y, »R: v0)=v(L+1)=0},

which is equipped with the norm

L 2
Ivll = [Z |v<€>|2) :
(=1
According to the definition of the norm, the following lemma is obvious.

Lemma 6. For all @ € (0, 1) and for all v € V, we have

Vllo = max  [v(6)] < [v]l. (6)
¢e[1,LTy,

For every v € V, we define the functionals ® and ¥ as

1< RS
o0 =5 2 [ OF +[aVin O + - 3 mor (7)
=1 =1
and .
W) = ) FEv0), 8)
=1
and we put

L(v) = O() — A¥Y(v).
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Definition 7. A (weak) solution of (Pﬁ ) is defined to be any function v € V such that

L
D AV O (V5 (O + (1a VEV) (O (1 VEP) (O}

=1

L L
+ D MOP OO = A ) FEVOO =0 (9)
=1 =1

for every 7V € V.

Note that since V is a finite-dimensional space, every weak solution is a usual solution of the
boundary value problem (PJ;).

Lemma 8. Letv € V. Then v is a critical point of 1, in ‘V if and only if v solves (P'/’:).

Proof. First assume that v € V is a critical point of 7,. Then, for any ¥ € V, (9) holds. Bearing in mind
that ¥ € V is arbitrary, we get

L1 V¢ (Vo)) + (Vi (L VEW(O)) + (O () = Af (€, v(£)) = 0

for all £ € [1, L]n. Therefore, v solves (Pﬁ'). Since v was chosen arbitrarily, we deduce that all critical
points of the functional 7, in V solve (Pﬁ). Conversely, if v solves (Pﬁ), then, by reversing the above
steps, the proof is completed.

Put
F(,¢) = ff(f, x)dx forall (€,&) €[l, L]y, XR.
0

3. Existence of one solution

The following is our main result concerning the existence of a solution of (P‘;).

Theorem 9. Assume that f(£,0) = 0 and

QP
sup — S = (10)
>0 (L )
Z max F((, x)

and there are discrete intervals D = [1, L]y, € [1, L]y, and B = [1, L]y, C [1, L], with Ly, L, > 2,

such that
essinfrep F((,6)

lim su
cot
and
.. essinfeep F(L, &)
lim inf -
é—0* |£1P
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Then, for every

(L+ 1) ov
e A =10, sup ,
P >0 L
Z max F(¢, x)
= [x|<6

the boundary value problem (P'g ) admits at least one nontrivial solution v, € V.

Proof. Our goal is to apply Theorem 1 to (Pﬁ). We utilize the functionals @ and ¥ as introduced in (7)
and (8), respectively. Let us demonstrate that ® and ¥ meet the required assumptions of Theorem 1.
As V is embedded compactly in (CO([1, Ll]y,),R), we know that ¥ is Gateaux-differentiable, and its
Gateaux derivative W' (v) € V* at v € V is given by

L
PW) = Y FEVE)RE)
(=1

for each ¥ € V, and V¥ is sequentially weakly upper semicontinuous. Furthermore, @ is also Gateaux-
differentiable, and its Gateaux derivative at v € V is the functional ®’(v) € V* given by

L
' (v)(¥) = Z {(eVov(0) (Vo7(0)) + (1 VEv() (141 V7(0))}
=1
L

+ D MO0

t=1

for every ¥ € V. Furthermore, by the definition of ®, we observe that it is sequentially weakly lower
semicontinuous and strongly continuous. Now, in light of (7), for each v € V, we obtain

P(p=2)

1 1 -
—(L+1)"7 |plIP < ®v) < 2L+ DIV + =(L + 1)27]7||v||”. (11)
p p

By employing the left inequality of (11), we get

lim ®(v) = oo.

lIvll—c0

In other words, ® is coercive. Using (10), there is 6 > 0 with

or
L > £ P=2 "
max F (¢, x) @+
<o
=1
Put p(p=2)
L+1) + _
ri= (ChV o7,
p

From the way @ is defined and considering (6), (7), and (11), since r > 0, we have
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O l(—co,r)={veV: OW) < r

clvev: r<—L _tclvew: i< —2
(L+ 1) L+ 1)
=fvev: ML <,
which implies
L L
sup Y(v) = sup Z F(,v(0) < max F (£, x).

D(v)<r dW)<r =y =1 |xI<6

By considering these computations, as 0 € ®~!(—oc0, ) and ®(0) = P(0) = 0, we get

(SUPye1 (oo Y (V) — () < SUPcart e ¥(v)

— inf
() 176(1)‘111}—00,}’) r— o) - r
L
max F(¢, x)
< p =1 |x|<6
L+ D) or
Hence, we put
. (LD 0
A= sup —
)4 6>0
max F(¢, x)
= [x|<6

1
At this point, thanks to Theorem 1, for each 4 € (0, 1*) C (O, ﬁ)’ Theorem 1 shows that 7, possesses
o(r

at least one critical point (local minimum) v; € ®~!(—oco, 7). We show that v, cannot be the trivial
function. Let us prove

. Y()
1m Ssu = 00
||v||_>o+p D(v)

Due to our required conditions at zero, we can find a sequence {&,} C R* that converges to zero, and
{ > 0 and « with

(12)

. essinfyep F({,&)
lim =00
k—c0 |ExlP

and
esgs})an(f, &) > klé)P, £€[0,/7].

Let [1, Ls]y, C [1, Ly]w,, where Lz > 2, and let ¥ € V be such that

(i) 9(6) € [0, 1] forall £ € [1, L},
(ii) #(¢) = 1 e R forall £ € [1, Ls]y,,
(iii) 9(€) = O forall £ € [L; + 1, L]y,
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Therefore, we fix an arbitrary ¥ > 0 and > 0 with

nLy+x Y WO

(=L3+1

YL+ D

Y <

Thus, there is ny € N with &" < ¢ and
ess ian F(C, &) = niéal

for all n > ny. Next, for all n > ny, using 0 < &,9(£) < ¢ for all large enough n, by (11), we get

L3 L

DIFEEN+ D FLEND)
Y v) =1 (=L3+1
DET) D7)

L
nLs+x ) WO
€:L3+1
> >Y.

2—
L+ D[P
Since Y can be as large as we desire, we conclude that

o WED)
im — = 00,
n—o O(£,V)

which implies (12). Thus, we have a sequence {v,} C <V that converges strongly to zero,
v, € O (-0, 1), and

L(w,) = Bv,) — 2¥(,) < 0.
Since v, is a global minimum of the restriction of I, to ®~'(—o0, r), we get
I,(vy) <0, (13)
and thus v, is not trivial. The proof is complete.

Some comments are given next.

Remark 10. In Theorem 9, we sought for the critical points of I,, a functional that is intrinsically
connected to the boundary value problem (Pﬁ). We observe that, in a general case, I, may not be
bounded in V. To see this, consider, for instance, the situation when f(£) = 1 + &~! for each ¢ € R,
where y > p. Letv € V' \ {0} and u € R. We then find

L
Li(v) =®(uv) = 2 > Fuv(0))
=1

2 2 M Zr w
<2uL(L + DIVIIP + —(L + D= WP + ALyl = A L|v|]” — —oo
p Y

as u — oo. Thus, [36, (I,) in Theorem 2.2] is not satisfied. Therefore, we are unable to use direct
minimization to find the critical points of I,.
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Remark 11. Note that I, is not coercive. To see this, let s € (p, o) and define F by F(£) = |€]* for each
EeR. LetveV)\{0}and u € R. We then find

L
Li(v) =®(uv) = 2 > Fuv(0))
(=1
2 2 Iup 2p K K
<UPL(L + DIVP + =L+ DT |WIIP = 4 L]l — —oo
p
as U — —oo.

Remark 12. If, in Theorem 9, f satisfies f(¢,x) > 0 for almost every (£, x) € [1, L]y, X R, then (10)
assumes the simpler form

91’
sup S (14)
L P2
>0 (L + ]) 7
D F&.0
=1
Moreover, if the assumption
. or D
lim sup i > 5
f—oo (L+1)
D R, )
=1
is satisfied, then (14) automatically holds.
Remark 13. From (13), we can directly see that
0,223 A Li(vy) (15)

is indeed a negative map. Furthermore, we have

lim ||v,]| = 0.
A-07

Indeed, by considering that @ is coercive and that for 4 € (0, 1*), the solution v, € DO !(—o0,7), we
have the existence of £ > 0 with [|v,|| < L for every A € (0, 1*). Next, it is also easy to see that M > 0
exists with

L
> FEraOWaE)

t=1

< M|vall £ ML (16)

for each A € (0, 2). Since v, is a critical point of I,, I'(vy)(¥) = 0 for any ¥ € V and each 4 € (0, 1%).
In particular, I (v)(va) = 0, i.e.,

L
' (va)(va) = A Z JEva©)va(f) (17)
=1

for every A € (0, A*). Then, since
0<(L+ D" MIP < &)y,
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by using (17), it is concluded that

r(p=2)
)

0<(L+1) 7 [p]f <®W)Wvy)

L
<A fEvaOWa0)
t=1

for all 2 € (0, 27). If we now let 4 — 0%, by (16), then we get lim,_,o+ |[v,]| = 0. One has
lim [[v;|lec = 0.
150+

Finally, we prove that

/1 i IA(VA) (18)
decreases strictly in (0, 4*). We observe that for all v € V, we have
()
L) = a( ;V) _ lP(v)). (19)

Now, let 0 < 4; < A, < A" and let v,,, v,, be the global minima of the functional I,, restricted to
O(—o0,r) fori = 1,2. Moreover, let

m,, :(q)(/lv”") —\P(vﬂ,.)): inf (q)f —\P(v))

i ve®1(—00,r)

1

for i = 1,2. Obviously, (15), in connection with (19) and A4 > 0, yields
my, <0 for i=1,2.

In addition,
my, < my,, (20)

because 0 < A4; < A,. Then, by observing (19)—(20) and as 0 < 4; < 4,, we get
[,(Vy,) = lamy, < omy, < Aimy, = 1 (Vy,),

so that (18) decreases strictly for A € (0, 4*). Since A < A* is arbitrary, we see that (18) indeed decreases
strictly in (0, 1%).
Remark 14. We note that Theorem 9 represents a bifurcation result in the sense that (0, 0) belongs to
the closure of

{(v2.4) € V' x (0. 00) : v, is a nontrivial solution of (P})}

in V X R. To observe this, by Remark 13, we get
lval 0 as A4 - 0.
Therefore, there are sequences {v;} in V and {4;} in R (here, v; = v,) with
A4 —0" and vl —0
as j — oo. In addition, we want to emphasize that because
(0,2%) 3 A= Li(vy)
is a strictly decreasing map, for all A;, 4, € (0, 4%) such that 4; # A5, the solutions v,, and v,, ensured

by Remark 13 are distinct.
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Remark 15. Under the assumption that f > 0, the solution that is ensured by Theorem 9 is nonnegative.
To observe this, suppose that v, is a nontrivial solution of (Pﬁ ). Assume that

A={e[l,L]y, :vo(£) <0} 0
has positive measure. Put ¥(¢) = min{0, vo(€)} for each ¢ € [1, L]y,. We obtain v € V and

Z {(zVSVo(f)) (zVSW)) + (L+1V?Vo(5)) (ZVS\:’(@)}

L
=1

L L
+ " WO 2RO = A D FEvo()F(E) = 0.
=1 =1

Thus, from our imposed data sign assumptions, we have

0 <(L+ D™l < 3 {(Tevo(O) + (L Viva(0) ] + Y (O
A A
=1 (L vo(O)vo(0) < 0.
A

Hence, vy = 0 in A, which is impossible.
The next result concerns a particular case of the previously presented results, in which the function
f depends only on the second variable, considering the nonautonomous case of the problem.

Theorem 16. Let f : R — R be nonnegative with f(0) = 0. Let F(¢) = fog f(x)dx for all x € R.
Assume that

F©) _
im = o0
£-0+ .fp
Then, for every
L+D"5
de 0,( ) * sup ,
Lp -0 F(0)

the boundary value problem

L1V (Vo)) + V5 (1 Vi (VD)) + 0, (v(0)) = Af(W(£)), € € [1, L,
v0)=v(L+1)=0,

possesses at least one nontrivial solution v, € V satisfying
lim [[v,l| = 0,
A-0*

and the real function

1 L 1 L L
-3 Z {|(€V8V) ({’)|2 + (21 V) (€)|2} + = Z = /12 FOu(0))
¢=1 p (=1 =1

p(p=2)

L+1) 4 6°
is negative and decreases strictly in |0, E+D * SUPpo —— |
Lp F()
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Finally, we present the following example to illustrate Theorem 16.

Example 17. Let p = 4 and L = 2. We consider the problem

{wé (V5 000D + T GV; (O + ¢a0(0) = Af(0), L (1,2, on

v(0) =v(3) =0,

where
(&) = 34&° + 2tan(€) sec’(é) + €, £€R.

By simple computations, we have
Fé) =& +sec’ (@ +ef -2, ¢€eR.

We see that all assumptions of Theorem 16 are satisfied, and this implies that the boundary value

9
problem (21), for each 4 € (0, §)’ admits at least one nontrivial solution v, € V such that
lim [[v,y]| = 0,
A-0*
and the real function

1 2
1 — =
%2;{

2
+

(vor)©

(viv)@

2 1 2 2
} + 7 2, MOl =) Fo0)
=1 =1

9
is negative and strictly decreasing in (O, g)

4. Existence of an infinite number of solutions

Put
L
D F.)
=1

£ o=
<r<1—a>>2;|€

Our main result concerning the existence of infinitely many solutions of (P{) is as follows.

B% = lim sup

E—o00

2 2
L L
p

Theorem 18. Assume that two sequences {a,} and {b,} exist with

lim b, = oo
such that
2 L P Pp=2)
a —2 La, (L+1) 3
— e+ < b? forall neN, (A)
(1 - a))? ;' [+ p 4 1
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L L
Z 1|1|12sz(€, 1) — Z F(,ay,)
[S n
A = lim = = < B (A2)

p(p=2)

"L+ )T 2 I
| e T
p T - ) 4 p

I 1
In this case, forall A € (@, %) the boundary value problem (Pﬁ) possesses an unbounded sequence
of solutions.

Proof. Our aim is to employ Theorem 1. We utilize the functionals @ and ¥ as introduced in (7)
and (8), respectively. Therefore, we observe that the regularity assumptions on @ and ¥, as required
in Theorem 1, are satisfied. Hence v € V is a solution of (Pﬁ) if and only if v is a critical point of the
function /,. Put

L+ )
= EPD T foral e
p
We see that r,, > O for all n € N. From the way ® is defined and in light of (6), (8), and (11), for each

r, > 0, we have

O l(—co, 1) ={veV: OW) <r,)

clvev: r<s—22 _tclyew: < —22
p(p=2) p(p=2)
L+ 1)~ (L+1) 7

={veV: VL <},

oo — n

which implies
L

L
sup W(v) = sup » (L) < Y max F((, ).
=1 "

Dd(v)<ry, D)<y, =1

Now, for each n € N, we define

U(f) — ay lf te [17L]N07
0 if €€{0,L+1}.

Clearly, v € V. Since v vanishes at the end points (that is, ¥(0) = 0 = v(L + 1)), its Riemann and
Caputo fractional differences coincide. Hence, for any ¢ € N; N N, we have

WAL+1-0)77
(700 = (¥70) 0 = (720) 0 = S5 L0
and B
2 (07
(300 = (5930) 0 = (V) 0 = 20
Thus,
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= . . 1 &
o) = Zl {I(N v) (f)l (1 V20) (f)lz} . ; WO
1 4,0 ez +1- o , La,
1 T -a) T -a) D

2 P
a, La,

2
ST a))22|£ |+|(L+1—€) " + ;

—2 Ld’

a, —a
‘(r<1—a>)2;|€ [+

We have

L L
¥() = ) FEu0) = ) Ft,a,).
=1 =1

In addition, from (A,), we have ®(v,) < r,. Thus, for all large enough values of n, we obtain

sup YY) -Y®©)

ved~ ! (—c0,ry)

n) = inf
o) = anf o= 00

sup W) - ZF({’ u(0))

ved=1(~c0,r,)

d)(v)

sup YY) - ) F({,ay)
oy Z ¢ (22)

lf(p 2)
(L + ) [ @ 0 Lag]
ey A B D N [ I
P (T(1 - a))? ; P

L L
Z max F(, x) - ; F(C,ay)

< (p=2)
(L+ 1)

a’ Lo La’)
— | —l ¢ z
P [(m—a))z;l' [+ ]

Hence, due to (A;), we get
v < lim ¢(r,) < A% < co.

Now, we can verify that /, is unbounded from below. First, assume that 8% = co. Accordingly, fix N
such that

cz SN—p L
VT LT,
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and let ¢, > 0 for all n € N such that ¢,, —» o0 as n — oo and

L
Z F(,c,) >N forall neN.

=1

For each n € N, define
yu(€) =c, forall ¢€e€/[l,L]y,.

Thus, y, € V and

2 L P
c —2 Lc
Oy, = —2—— > | + ==,
T - 0P ;' P
Therefore,
2 L p L
c —2 Lc
L) =—2—— 3T + =2 -2 F(t, )
00 =T 2

c? =2 L
Taay 2T W

1
that is, lim,,_,o, 1;(y,) = —oo. Next, suppose B> < co. As A > B we can find € > 0 with e < B~ —

Z.
Thus, again letting ¢, > O for all n € N such that ¢, — oo as n — oo and
L
ZF(K,cn)>B°°—8 forall neN,
=1
as argued above, and by letting y, € V as before, we obtain
2 L p L
c —2 Lc
L) =—=———= ) || +— -1 ) F(l,c))
! (r<1—a>)2;| | P ;
2 L p
c —2 Lc
<—" Y+ —= - AB” -¢).
T —a>)2;| [+3
Therefore, lim,, ., I,(y,) = —co. Hence, in either case, I, is not bounded from below. This completes

the proof.

Remark 19. If {a,} and {b,} are real sequences such that lim, ., b, = co and such that (A;) from
Theorem 18 is satisfied, then, assuming that A,, = 0 and B~ = oo, Theorem 18 ensures that for each
A > 0, the boundary value problem (P{) admits an infinite number of solutions.

Theorem 20. Assume that

L L
max F (¢, F(¢,
) max F¢.x) ; (3
lim inf ———— < lim sup - : (Az)

§—o0 (L+1) 7 o0 2 L. P
T - ) & P
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In this case, for all

L
& =2, L&Y _
T(1 - a)? 2T+ = e,
=1 p p g
/‘l e b L b

L
Y Ft¢) max F(¢, x)
=1

<
L i<

the boundary value problem (P];) possesses an unbounded sequence of solutions.

Proof. We pick b, > 0 for all n € N with b, — oo as n — oo and

L L
E max F(¢, x) E max F(¢, x)
|x|<by, [xl<é
. L=l =]
lim - = liminf —
N— 00 p(p=2) E—00 r(p=2)
(L+1) 4 P (L+1) % p
p n p 3

Now, as ®(0) = ¥(0) = 0, we may take a, = 0 for all n € N in (22), and then the conclusion follows
from Theorem 1.
Now, we present an example that illustrates Theorem 20.

Example 21. Let p = 4 and L = 3. We consider the boundary value problem

{N} (V50000 + V3 GV, (O + a(0(0) = Af((O), £ {1,2,3), o3

v(0) =v(4) =0,
where
if x € (—00,0],
fo=3 ., \ .
4x° + 4x° sin(mwe*) + nx*e* cos(mer)) if x € (0,0).

Some computation yields

if x € (-00,0],
Fo=4{, .
x*(1 + sin(re®)) if x € (0, ).
Since
3
max F(x)
=
llgglf 64—54 =0
and
3
D FE)
lim sup - 6:13 ; T = 8,
>0 T
—f Z 2 + Si
(T(1/2))? & 4

we clearly see that all assumptions of Theorem 20 are satisfied, and then (23), for every 1 € (é, oo),
has an unbounded sequence of solutions in {v : [0,4]y, — R : v(0) = v(4) = 0}.
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Here, we point out several simple corollaries of our main results.

Corollary 22. Suppose that there are real sequences {a,} and {b,} with b, — oo as n — oo and such
that (Ay) from Theorem 18 holds, A, < 1, and B, > 1. Then, the boundary value problem

(P))

L+1 V5 (Vg(0)) + Vi (L Vi) + ¢, (v(6)) = f(€,v(6)), € €[1, Ly,
viO)=v(L+1)=0

possesses an unbounded sequence of solutions.

Corollary 23. Suppose B, > 1 and

L
Z max F({, x)
=1

Spre
lim inf — <1.
S N
PR

Then the boundary value problem (P') possesses an unbounded sequence of solutions.

Corollary 24. Suppose that there are real sequences {a,} and {b,} with b, — oo as n — oo and such
that (A,) from Theorem 18 holds, f, € C([1, L]y, X R,R), and

Fi(t,x) = f ) f(L,EAE forall (€,x) € [0, Ly, X R.
0

Moreover, assume

L L
max F (€, x) — F¢,a,
‘;M%1<> ;;n )

lim < (As)

n—oo p(p=2

L
(L+1) 7 )bﬁ B Cli Z |€$|2 N Laﬁ
z T -a) & »

and

L
P
lim sup El = oo, (As)

é—oo £ S Lgr
<nvﬂwzyf|+p

Then, for all f; € C([1, L]y, X R,R), by writing

F:(¢, x) = fxf,-(f,f)df forall (€,x)€[l,L]y, xR
0

for2 < i <n, such that
max{supF,-(f,.f) :2<i< n} <0
£eR

and
Fi(g’ é‘:) .

&

min {lign inf 2<i< n} > —00,
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for all

1
1€10, ,
L L
max F (¢, x) — F¢,a,
{ZM 1(6,) ; (6 a,)
lim —~

L
(L+1)p(p4 )b,’j B d% Z |£$|2 N Laff
’ (T(1 - )P & P
the boundary value problem

{LHV?(NS(V(@)) + Vi Vi) + 0,(v(0) = Afi(£,v(0)), € €1, Ll 24)

vO)=v(L+1)=0

has an unbounded sequence of solutions.

Proof. Put F((,¢) = Z Fi(€, &) for (£,€6) € [1, L]y, X R. (A4), along with

i=1

min {lim inf

E—00

Fih.&) S 2<i< n} > —oo,
é':2

ensures

L n L
D F) Z Fi(6,€)
=1 (=1

lim sup ’ - = lim sup = oo.

& L —2 Eo00
f a
T - )y ;' (F(l @))? ;

Moreover, Assumption (Ay), together with the condition

E—o00

max(supF,-(f,g-’) :2<iL n) <0,

£eR

implies

Electronic Research Archive Volume 33, Issue 3, 1541-1565.



1560

L L
Z max F(¢, x) — Z F(, o,)
i = |xI<by, =

n—eo p(p=2)

L
w2y (5 Sep, Lok
’ T - ) & P

[x|<by,
< lim < 00,

n—oo 2

_ L
7 e — a, Z |€$|2 + La;,
’ (T - ) & P

Hence, an application of Theorem 18 completes the proof.

L
max F, (£, x) — Z Fi(,ay)
=1

Corollary 25. Let f; € C([1, L]y, X R, R) and put

Fi(t,x) = f ) (6, forall (€,x) € [1, Ly, XR.
0

Assume that

lim inf — =1 < 00
§oo0 (+1)
P
and
L
D Fit)
lim sup 5 = n = oo.
§—o0 & —2 L&
-2 Y+ =
T - a)? ;' [+

Then, for all f; € C([1, LIy, X R,R), by writing

F:(¢,x) = fxf,-(f,f)df forall (€,x)€[l,L]y, xR
0

for2 < i< n, such that

max{supFi({’,f) :2<i< n} <0
£eR

and

min < lim inf e

E—00
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for all

1
1€]0, )
L
Z max F(¢, x)
£ e
lim inf —
§oo0 (L+]) "7 év

p
the boundary value problem (24) has an unbounded sequence of solutions.

Now put

L
D FEo
B = limsup cl

£50 2 L P
é:: Z |€—a|2 + ﬁ
(1 - a)? & P
With a proof similar to the proof of Theorem 18, but this time using Theorem 1 (c¢) instead of Theorem 1
(b), we can establish the next result. The proof is similar to the proof of Theorem 18, but here we have

areal sequence {e,} which tends to zero at co constructing r, because in Theorem 1 (c) for 6, it requires
r — (infxy @)* instead of in Theorem 1 (b) for 6, it requires r — oo.

Theorem 26. Suppose that there are real sequences {d,} and {e,} with lim,_,., e, = 0 such that

p(p=2)

’ el forevery neN, (Ag)

d? Lo Ld' L+ 1)
N 2 o
(1 - a)? ; T+ P

L L
D max F(l,x) = ) F(l.d,)
A° = lim el =

n—oo p(p=2) d2 L o L dP
(L+1) 3 ef — n 2Z|€_a2+ n
’ T - )P & P

< B, (A7)

Then, for each
. 1 1
A€ (A3, 44) with Az := @ and A4 := %O,
the boundary value problem (Pf:) possesses a sequence of pairwise different solutions that strongly
converges to 0 in V.

Theorem 27. Suppose

L L
max F (¢, x F(¢,
s 2,7
hg (1){1f = < lim sup . (Ag)
: (L+1) "3

L
e 0 & P, L&
’ <r<1—a>>z,§|f [+
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Then, for each

1 1
e i , n ,
D Fo max F((, x)
lim sup - el - liér:n (i)Pf - M
h (F(lf ) o+ 25 e
=1

the boundary value problem (Pﬁ) has a sequence of pairwise different solutions that converges strongly

toQinV.

Remark 28. By employing Theorem 26, we may obtain results that are similar to Remark 19 and
Corollaries 22-25.

5. Conclusions

In this paper, we investigated the existence of one and of infinitely many solutions for a class of
discrete fractional boundary value problems. As a matter of fact, by demanding an algebraic condition
on the nonlinear term for small values of the parameter and requiring an additional asymptotical
behavior of the potential at zero, we obtain the existence of at least one nontrivial solution for the
problem. Moreover, under suitable assumptions on the oscillatory behavior at infinity of the
nonlinearity, for exact collections of the parameter, we get the existence of a sequence of solutions for
the problem. The main results improve and extend recent results from the literature. We also
presented some examples that illustrate the applicability of the main results. The main technique of
the proofs involves variational methods and critical point theorems for smooth functionals.
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