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Abstract: In this study, we investigate the existence of at least one solution and the existence
of an infinite number of solutions for a discrete fractional boundary value problem. Requiring an
algebraic condition on the nonlinear term for small values of the parameter, and requiring an additional
asymptotical behavior of the potential at zero, we investigate the existence of at least one nontrivial
solution for the problem. Moreover, under suitable assumptions on the oscillatory behavior of the
nonlinearity at infinity, for exact collections of the parameter, we discuss the existence of a sequence
of solutions for the problem. We also present some examples that illustrate the applicability of the
main results.
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1. Introduction

In this paper, we discuss certain discrete fractional boundary value problems in the formL+1∇
α
ℓ (ℓ∇

α
0 (v(ℓ))) + ℓ∇α0 (L+1∇

α
ℓ (v(ℓ))) + φp(v(ℓ)) = λ f (ℓ, v(ℓ)), ℓ ∈ [1, L]N0 ,

v(0) = v(L + 1) = 0,
(P f
λ)

where 1 < p < ∞, α ∈ (0, 1), λ > 0, L+1∇
α
ℓ and ℓ∇α0 are the right and left discrete nabla fractional

difference operators, f : [1, L]N0 × R → R is continuous, and φp stands for the operator that is defined
in the usual way by φp(s) = |s|p−2s.

In this paper, we want to utilize a version of Ricceri’s variational principle as given in [1]. We
build the energy functional and we take some assumptions on the nonlinear term to get a functional
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that satisfies the conditions in the key theorem. In fact, by first requiring a simple algebraic inequality
condition on the nonlinear term for small values of the parameter and requiring an additional
asymptotical behavior of the potential at zero if f (ℓ, 0) = 0, the existence of one nontrivial solution is
achieved. Moreover, we deduce the existence of solutions for small positive values of the parameter
such that the corresponding solutions have smaller and smaller energies as the parameter goes to zero.
Then, under an appropriate oscillating behavior of the nonlinear term, we discuss the existence of an
unbounded sequence of solutions. We give exact collections for the parameter for each results, which
cannot be found in other works in the literature related to these types of discrete problems.

As is well known, fractional differential equations (FDEs) are valuable tools when modeling many
phenomena in various areas of science and engineering. We refer to [2–8] and the references therein
for a range of applications of FDEs in control, electrochemistry, viscoelasticity, electromagneticity,
porous media, and other fields. Classical tools that have been employed in the study of nonlinear FDEs
(see [9–11] and their references) include fixed point theory, monotone iterative methods, coincidence
theory, and the upper and lower solutions method.

Thanks to their wide range of applications in many fields such as science, economics, ecology,
neural networks, cybernetics, etc., nonlinear difference equations have been studied extensively for
the last 50 years. In addition, boundary value problems involving difference equations have received a
lot of attention, see, e.g., [12–15] and references therein. Difference equations subjected to many
different kinds of boundary conditions have also been extensively studied by using various
techniques. A popular technique has been to use variational methods [16–18]. In the last few years,
many researchers have investigated nonlinear problems of this type through various approaches.
Moreover, such boundary value problems for ordinary differential equations, difference equations, and
dynamic equations on time scales have been studied extensively, but there are only a few papers
dealing with fractional boundary value problems, besides [19–21], especially for discrete fractional
boundary value problems involving Caputo fractional difference operators. For example, Lv [22], by
using the fixed point theorem of Schaefer, under certain nonlinear growth assumptions, obtained the
existence of solutions to a discrete fractional boundary value problem. Furthermore, in [23, 24], some
existence and multiplicity results for (p, q)-Laplacian problems were considered. For example,
in [23], by using suitable variational arguments and Ljusternik–Schnirelmann category theory, the
multiplicity and concentration of positive solutions for (p, q)-Laplacian problems were obtained.

In view of the facts presented above, in the current study, we discuss the existence of at least
one solution to the boundary value problem (P f

λ), as well as the existence of an infinite number of
solutions of (P f

λ). Our primary tool is [1, Theorem 2.1], which is a more precise variant of the famous
variational principle of Ricceri [25]. In Theorem 9 below, we show that, subject to certain assumptions,
the boundary value problem (P f

λ) possesses at least one nontrivial solution. We also offer Example 17,
where all hypotheses of our Theorem 9 are satisfied. We present a series of remarks concerning our
results. Moreover, under suitable assumptions of the oscillatory behavior at infinity of the nonlinearity,
we investigate the existence of an infinite number of solutions for the boundary value problem (P f

λ).
We prove the existence of a definite interval about λ, in which the boundary value problem (P f

λ) admits
a sequence of solutions, which is unbounded in the space V, to be introduced later (Theorem 18).
We present an example that illustrates Theorem 20 (see Example 21). Moreover, some corollaries
of Theorem 18 are offered. Under different assumptions, we ensure the existence of a sequence of
pairwise different solutions that strongly converges to zero (see Theorem 26).
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The paper is set up as follows. In Section 2, we remind the reader of some basic definitions and our
main tool. In Sections 3 and 4, we state and prove our main results.

2. Preliminaries

The key argument in our results is the next version of the variational principle by Ricceri [25,
Theorem 2.1], as presented in [1].

Theorem 1. Suppose that X is a reflexive real Banach space. Assume that Φ,Ψ : X → R are Gâteaux-
differentiable functionals such that Ψ is sequentially weakly upper semicontinuous, and Φ is strongly
continuous, sequentially weakly lower semicontinuous, and coercive. For every r > infX Φ, let us put

φ(r) := inf
v∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r)Ψ(v) − Ψ(v)

r − Φ(v)

and
θ := lim inf

r→∞
φ(r), δ := lim inf

r→(infX Φ)+
φ(r).

One then has the following.

(a) For every r > infX Φ and each λ ∈
(
0,

1
φ(r)

)
, the restriction of the functional Iλ = Φ − λΨ to

Φ−1(] − ∞, r[) possesses a global minimum, and this global minimum is a critical point, i.e., a
local minimum, of Iλ in X.

(b) If 0 < θ < ∞, then, for all λ ∈
(
0,

1
θ

)
, either

(b1) Iλ possesses a global minimum, or
(b2) for all n ∈ N, Iλ has a critical point un, and

lim
n→∞
Φ(vn) = ∞.

(c) If 0 < δ < ∞, then, for all λ ∈
(
0,

1
δ

)
, either

(c1) Φ possesses a global minimum, which is a local minimum of Iλ, or
(c2) a sequence of pairwise different critical points of Iλ exists, and this sequence converges

weakly to a global minimum of Φ.

We refer to [9, 26–28], in which Theorem 1 was applied successfully in order to prove the
existence of at least one nontrivial solution for certain boundary value problems, and [29–33], in
which Theorem 1 has been successfully employed in order to prove the existence of an infinite
number of solutions for certain boundary value problems.

In this section, we present several foundational definitions, notations, and results that are used in
the remainder of this paper.

Definition 2 (see [34]). (i) For m ∈ N, the m rising factorial of t is defined as

tm =

m−1∏
k=0

(t + k), t0 = 1.
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(ii) For t ∈ R \ {. . . ,−2,−1, 0} and α ∈ R, the α rising function is increasing on N0 and

tα =
Γ(t + α)
Γ(t)

, 0α = 0.

Definition 3 (see [34]). For f defined on Na−1 ∩ b+1N, a < b, α ∈ (0, 1), the left Caputo discrete
fractional nabla difference operator is given by(

C
ℓ ∇
α
a−1 f

)
(ℓ) =

1
Γ(1 − α)

ℓ∑
s=a

∇s f (s)(ℓ − ρ(s))−α (ℓ ∈ Na), (1)

the right Caputo discrete fractional nabla difference operator is given by(
C
b+1∇

α
ℓ f

)
(ℓ) =

1
Γ(1 − α)

b∑
s=ℓ

(−∆s f )(s)(s − ρ(ℓ))−α (ℓ ∈ bN), (2)

the left Riemann discrete fractional nabla difference operator is given by(
R
ℓ ∇
α
a−1 f

)
(ℓ) =

1
Γ(1 − α)

∇ℓ

ℓ∑
s=a

f (s)(ℓ − ρ(s))−α

=
1
Γ(−α)

ℓ∑
s=a

f (s)(ℓ − ρ(s))−α−1 (ℓ ∈ Na),

the right Riemann discrete fractional nabla difference operator is given by(
R
b+1∇

α
ℓ f

)
(ℓ) =

1
Γ(1 − α)

(−∆ℓ)
b∑

s=ℓ

( f (s))(s − ρ(ℓ))−α

=
1
Γ(−α)

b∑
s=ℓ

( f (s))(s − ρ(ℓ))−α−1 (ℓ ∈ bN),

where ρ(ℓ) = ℓ − 1 is the backward jump operator.

Example 4. Let us give an example concerning Definition 3. Consider f : Na−1 ∩ b+1N → R defined
by f (ℓ) ≡ 1. For this f , from (1) and (2), we have

C
ℓ ∇
α
a−11 = C

b+1∇
α
ℓ 1 = 0, ℓ ∈ Na ∩ bN. (3)

The relations among the right and left Riemann and Caputo nabla fractional difference operators are(
C
ℓ ∇
α
a−1 f

)
(ℓ) =

(
R
ℓ ∇
α
a−1 f

)
(ℓ) −

(ℓ − a + 1)−α

Γ(1 − α)
f (a − 1), (4)(

C
b+1∇

α
ℓ f

)
(ℓ) =

(
R
b+1∇

α
ℓ f

)
(ℓ) −

(b + 1 − ℓ)−α

Γ(1 − α)
f (b + 1). (5)

Thus, by (3)–(5), we have

R
b+1∇

α
ℓ 1 =

(b + 1 − ℓ)−α

Γ(1 − α)
, R

ℓ ∇
α
a−11 =

(ℓ − a + 1)−α

Γ(1 − α)
, ℓ ∈ Na ∩ bN.

With respect to the domains of the various fractional-type difference operators, we observe
the following:
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(i) The nabla left fractional operator ℓ∇αa−1 maps functions defined on a−1N to functions defined on aN.
(ii) The nabla right fractional operator b+1∇

α
ℓ maps functions defined on b+1N to functions defined

on bN.

One can show that for α → 0, we have ℓ∇αa−1 f (ℓ) → f (ℓ) and for α → 1, we have ℓ∇αa−1 f (ℓ) → ∇ f (ℓ).
We note that the Caputo and Riemann nabla fractional difference operators for 0 < α < 1 coincide
when f vanishes at the end points, i.e., f (a − 1) = 0 = f (b + 1) (see (4), (5), and [2]). So, for
convenience, for the remainder of this paper, we use the symbol ℓ∇αa−1 instead of C

ℓ ∇
α
a−1 or R

ℓ ∇
α
a−1 and

b+1∇
α
ℓ instead of C

b+1∇
α
ℓ or R

b+1∇
α
ℓ .

Now we present the discrete fractional summation by parts formula.

Theorem 5 (see [35, Theorem 4.4]). For f , g : Na ∩ bN→ R, a < b, and α ∈ (0, 1), the formulas

b∑
ℓ=a

f (ℓ)
(
ℓ∇
α
a−1g

)
(ℓ) =

b∑
ℓ=a

g(ℓ)
(

b+1∇
α
ℓ f

)
(ℓ)

and
b∑
ℓ=a

f (ℓ)
(

b+1∇
α
ℓ g

)
(ℓ) =

b∑
ℓ=a

g(ℓ)
(
ℓ∇
α
a−1 f

(
ℓ)

hold.

In order to give the variational formulation of the boundary value problem (P f
λ), let us introduce the

finite L-dimensional Banach space

V =
{
v : [0, L + 1]N0 → R : v(0) = v(L + 1) = 0

}
,

which is equipped with the norm

∥v∥ =

 L∑
ℓ=1

|v(ℓ)|2


1
2

.

According to the definition of the norm, the following lemma is obvious.

Lemma 6. For all α ∈ (0, 1) and for all v ∈ V, we have

∥v∥∞ = max
ℓ∈[1,L]N0

|v(ℓ)| ≤ ∥v∥. (6)

For every v ∈ V, we define the functionals Φ and Ψ as

Φ(v) =
1
2

L∑
ℓ=1

∣∣∣(ℓ∇α0v
)

(ℓ)
∣∣∣2 + ∣∣∣(L+1∇

α
ℓ v

)
(ℓ)

∣∣∣2 + 1
p

L∑
ℓ=1

|v(ℓ)|p (7)

and

Ψ(v) =
L∑
ℓ=1

F(ℓ, v(ℓ)), (8)

and we put
Iλ(v) = Φ(v) − λΨ(v).
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Definition 7. A (weak) solution of (P f
λ) is defined to be any function v ∈ V such that

L∑
ℓ=1

{(
ℓ∇
α
0v

)
(ℓ)

(
ℓ∇
α
0 ṽ

)
(ℓ) +

(
L+1∇

α
ℓ v

)
(ℓ)

(
L+1∇

α
ℓ ṽ

)
(ℓ)

}
+

L∑
ℓ=1

|v(ℓ)|p−2v(ℓ)ṽ(ℓ) − λ
L∑
ℓ=1

f (ℓ, v(ℓ))ṽ(ℓ) = 0 (9)

for every ṽ ∈ V.

Note that since V is a finite-dimensional space, every weak solution is a usual solution of the
boundary value problem (P f

λ).

Lemma 8. Let v ∈ V. Then v is a critical point of Iλ inV if and only if v solves (P f
λ).

Proof. First assume that v ∈ V is a critical point of Iλ. Then, for any ṽ ∈ V, (9) holds. Bearing in mind
that ṽ ∈ V is arbitrary, we get

L+1∇
α
ℓ

(
ℓ∇
α
0 (v(ℓ))

)
+ ℓ∇

α
0
(

L+1∇
α
ℓ (v(ℓ))

)
+ |v(ℓ)|p−1v(ℓ) − λ f (ℓ, v(ℓ)) = 0

for all ℓ ∈ [1, L]N. Therefore, v solves (P f
λ). Since v was chosen arbitrarily, we deduce that all critical

points of the functional Iλ in V solve (P f
λ). Conversely, if v solves (P f

λ), then, by reversing the above
steps, the proof is completed.

Put

F(ℓ, ξ) =
∫ ξ

0
f (ℓ, x)dx for all (ℓ, ξ) ∈ [1, L]N0 × R.

3. Existence of one solution

The following is our main result concerning the existence of a solution of (P f
λ).

Theorem 9. Assume that f (ℓ, 0) = 0 and

sup
θ>0

θp

L∑
ℓ=1

max
|x|≤θ

F(ℓ, x)

>
p

(L + 1)
p(p−2)

4

(10)

and there are discrete intervals D = [1, L1]N0 ⊆ [1, L]N0 and B = [1, L2]N0 ⊂ [1, L1]N0 with L1, L2 ≥ 2,
such that

lim sup
ξ→0+

ess infℓ∈B F(ℓ, ξ)
|ξ|p

= ∞

and

lim inf
ξ→0+

ess infℓ∈D F(ℓ, ξ)
|ξ|p

> −∞.
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Then, for every

λ ∈ Λ :=


0,

(L + 1)
p(p−2)

4

p
sup
θ>0

θp

L∑
ℓ=1

max
|x|≤θ

F(ℓ, x)


,

the boundary value problem (P f
λ) admits at least one nontrivial solution vλ ∈ V.

Proof. Our goal is to apply Theorem 1 to (P f
λ). We utilize the functionals Φ and Ψ as introduced in (7)

and (8), respectively. Let us demonstrate that Φ and Ψ meet the required assumptions of Theorem 1.
As V is embedded compactly in (C0([1, L]N0),R), we know that Ψ is Gâteaux-differentiable, and its
Gâteaux derivative Ψ′(v) ∈ V∗ at v ∈ V is given by

Ψ′(v)(v) =
L∑
ℓ=1

f (ℓ, v(ℓ))ṽ(ℓ)

for each ṽ ∈ V, and Ψ is sequentially weakly upper semicontinuous. Furthermore, Φ is also Gâteaux-
differentiable, and its Gâteaux derivative at v ∈ V is the functional Φ′(v) ∈ V∗ given by

Φ′(v)(ṽ) =
L∑
ℓ=1

{(
ℓ∇
α
0v(ℓ)

) (
ℓ∇
α
0 ṽ(ℓ)

)
+

(
L+1∇

α
ℓ v(ℓ)

) (
L+1∇

α
ℓ ṽ(ℓ)

)}
+

L∑
ℓ=1

|v(ℓ)|p−2v(ℓ)ṽ(ℓ)

for every ṽ ∈ V. Furthermore, by the definition of Φ, we observe that it is sequentially weakly lower
semicontinuous and strongly continuous. Now, in light of (7), for each v ∈ V, we obtain

1
p

(L + 1)
p(p−2)

4 ∥v∥p ≤ Φ(v) ≤ 2L(L + 1)∥v∥2 +
1
p

(L + 1)
2−p

2 ∥v∥p. (11)

By employing the left inequality of (11), we get

lim
∥v∥→∞

Φ(v) = ∞.

In other words, Φ is coercive. Using (10), there is θ̄ > 0 with

θ̄p

L∑
ℓ=1

max
|x|≤θ̄

F(ℓ, x)

>
p

(L + 1)
p(p−2)

4

.

Put

r :=
(L + 1)

p(p−2)
4

p
θ̄p.

From the way Φ is defined and considering (6), (7), and (11), since r > 0, we have
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Φ−1(−∞, r) = {v ∈ V : Φ(v) < r}

⊆

v ∈ V : ∥v∥p ≤
pr

(L + 1)
p(p−2)

4

 ⊆
v ∈ V : ∥v∥p∞ ≤

pr

(L + 1)
p(p−2)

4


=

{
v ∈ V : ∥v∥p∞ ≤ θ̄

p
}
,

which implies

sup
Φ(v)<r

Ψ(v) = sup
Φ(v)<r

L∑
ℓ=1

F(ℓ, v(ℓ)) ≤
L∑
ℓ=1

max
|x|≤θ̄

F(ℓ, x).

By considering these computations, as 0 ∈ Φ−1(−∞, r) and Φ(0) = Ψ(0) = 0, we get

φ(r) = inf
ṽ∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r)Ψ(v)) − Ψ(ṽ)

r − Φ(ṽ)
≤

supv∈Φ−1(−∞,r)Ψ(v)

r

≤
p

(L + 1)
p(p−2)

4

L∑
ℓ=1

max
|x|≤θ̄

F(ℓ, x)

θ̄p
.

Hence, we put

λ∗ =
(L + 1)

p(p−2)
4

p
sup
θ>0

θp

L∑
ℓ=1

max
|x|≤θ

F(ℓ, x)

.

At this point, thanks to Theorem 1, for each λ ∈ (0, λ∗) ⊆
(
0,

1
φ(r)

)
, Theorem 1 shows that Iλ possesses

at least one critical point (local minimum) vλ ∈ Φ−1(−∞, r). We show that vλ cannot be the trivial
function. Let us prove

lim sup
∥v∥→0+

Ψ(v)
Φ(v)

= ∞. (12)

Due to our required conditions at zero, we can find a sequence {ξk} ⊂ R+ that converges to zero, and
ζ > 0 and κ with

lim
k→∞

ess infℓ∈B F(ℓ, ξk)
|ξk|p

= ∞

and
ess inf
ℓ∈D

F(ℓ, ξ) ≥ κ|ξ|p, ξ ∈ [0, ζ].

Let [1, L3]N0 ⊂ [1, L2]N0 , where L3 ≥ 2, and let ṽ ∈ V be such that

(i) ṽ(ℓ) ∈ [0, 1] for all ℓ ∈ [1, L]N0 ,
(ii) ṽ(ℓ) = 1 ∈ R for all ℓ ∈ [1, L3]N0 ,

(iii) ṽ(ℓ) = 0 for all ℓ ∈ [L1 + 1, L]N0 .
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Therefore, we fix an arbitrary Y > 0 and η > 0 with

Y <

ηL3 + κ

L∑
ℓ=L3+1

|ṽ(ℓ)|p

1
p (L + 1)

2−p
2 ∥ṽ∥p

.

Thus, there is n0 ∈ N with εn < ζ and

ess inf
ℓ∈B

F(ℓ, ξn) ≥ η|ξn|p

for all n > n0. Next, for all n > n0, using 0 ≤ ξnṽ(ℓ) < ζ for all large enough n, by (11), we get

Ψ(ξnṽ)
Φ(ξnṽ)

=

L3∑
ℓ=1

F(ℓ, ξn) +
L∑

ℓ=L3+1

F(ℓ, ξnṽ(ℓ))

Φ(ξnṽ)

>

ηL3 + κ

L∑
ℓ=L3+1

|ṽ(ℓ)|p

1
p (L + 1)

2−p
2 ∥ṽ∥p

> Y.

Since Y can be as large as we desire, we conclude that

lim
n→∞

Ψ(ξnṽ)
Φ(ξnṽ)

= ∞,

which implies (12). Thus, we have a sequence {υn} ⊂ V that converges strongly to zero,
υn ∈ Φ

−1(−∞, r), and
Iλ(υn) = Φ(υn) − λΨ(υn) < 0.

Since vλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), we get

Iλ(vλ) < 0, (13)

and thus vλ is not trivial. The proof is complete.

Some comments are given next.
Remark 10. In Theorem 9, we sought for the critical points of Iλ, a functional that is intrinsically
connected to the boundary value problem (P f

λ). We observe that, in a general case, Iλ may not be
bounded in V. To see this, consider, for instance, the situation when f (ξ) = 1 + ξγ−1 for each ξ ∈ R,
where γ > p. Let v ∈ V \ {0} and µ ∈ R. We then find

Iλ(µv) =Φ(µv) − λ
L∑
ℓ=1

F(µv(ℓ))

≤2µ2L(L + 1)∥v∥2 +
µp

p
(L + 1)

2−p
2 ∥v∥p + λµL∥v∥ − λ

µγ

γ
L∥v∥γ → −∞

as µ → ∞. Thus, [36, (I2) in Theorem 2.2] is not satisfied. Therefore, we are unable to use direct
minimization to find the critical points of Iλ.
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Remark 11. Note that Iλ is not coercive. To see this, let s ∈ (p,∞) and define F by F(ξ) = |ξ|s for each
ξ ∈ R. Let v ∈ V \ {0} and µ ∈ R. We then find

Iλ(µv) =Φ(µv) − λ
L∑
ℓ=1

F(µv(ℓ))

≤2µ2L(L + 1)∥v∥2 +
µp

p
(L + 1)

2−p
2 ∥v∥p − λµsL∥v∥s → −∞

as µ→ −∞.

Remark 12. If, in Theorem 9, f satisfies f (ℓ, x) ≥ 0 for almost every (ℓ, x) ∈ [1, L]N0 × R, then (10)
assumes the simpler form

sup
θ>0

θp

L∑
ℓ=1

F(ℓ, θ)

>
p

(L + 1)
p(p−2)

4

. (14)

Moreover, if the assumption

lim sup
θ→∞

θp

L∑
ℓ=1

F(ℓ, θ)

>
p

(L + 1)
p(p−2)

4

is satisfied, then (14) automatically holds.

Remark 13. From (13), we can directly see that

(0, λ∗) ∋ λ 7→ Iλ(vλ) (15)

is indeed a negative map. Furthermore, we have

lim
λ→0+
∥vλ∥ = 0.

Indeed, by considering that Φ is coercive and that for λ ∈ (0, λ∗), the solution vλ ∈ Φ−1(−∞, r), we
have the existence of L > 0 with ∥vλ∥ ≤ L for every λ ∈ (0, λ∗). Next, it is also easy to see thatM > 0
exists with ∣∣∣∣∣∣∣

L∑
ℓ=1

f (ℓ, vλ(ℓ))vλ(ℓ)

∣∣∣∣∣∣∣ ≤ M∥vλ∥ ≤ ML (16)

for each λ ∈ (0, λ∗). Since vλ is a critical point of Iλ, I′λ(vλ)(ṽ) = 0 for any ṽ ∈ V and each λ ∈ (0, λ∗).
In particular, I′λ(vλ)(vλ) = 0, i.e.,

Φ′(vλ)(vλ) = λ
L∑
ℓ=1

f (ℓ, vλ(ℓ))vλ(ℓ) (17)

for every λ ∈ (0, λ∗). Then, since

0 ≤ (L + 1)
p(p−2)

4 ∥v∥p ≤ Φ′(vλ)(vλ),
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by using (17), it is concluded that

0 ≤ (L + 1)
p(p−2)

4 ∥v∥p ≤ Φ′(vλ)(vλ)

≤ λ

L∑
ℓ=1

f (ℓ, vλ(ℓ))vλ(ℓ)

for all λ ∈ (0, λ∗). If we now let λ→ 0+, by (16), then we get limλ→0+ ∥vλ∥ = 0. One has

lim
λ→0+
∥vλ∥∞ = 0.

Finally, we prove that
λ 7→ Iλ(vλ) (18)

decreases strictly in (0, λ∗). We observe that for all v ∈ V, we have

Iλ(v) = λ
(
Φ(v)
λ
− Ψ(v)

)
. (19)

Now, let 0 < λ1 < λ2 < λ
∗ and let vλ1 , vλ2 be the global minima of the functional Iλi restricted to

Φ(−∞, r) for i = 1, 2. Moreover, let

mλi =

(
Φ(vλi)
λi
− Ψ(vλi)

)
= inf

ṽ∈Φ−1(−∞,r)

(
Φ(ṽ)
λi
− Ψ(ṽ)

)
for i = 1, 2. Obviously, (15), in connection with (19) and λ > 0, yields

mλi < 0 for i = 1, 2.

In addition,
mλ2 ≤ mλ1 , (20)

because 0 < λ1 < λ2. Then, by observing (19)–(20) and as 0 < λ1 < λ2, we get

Iλ2(v̄λ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(v̄λ1),

so that (18) decreases strictly for λ ∈ (0, λ∗). Since λ < λ∗ is arbitrary, we see that (18) indeed decreases
strictly in (0, λ∗).
Remark 14. We note that Theorem 9 represents a bifurcation result in the sense that (0, 0) belongs to
the closure of {

(vλ, λ) ∈ V × (0,∞) : vλ is a nontrivial solution of (P f
λ)
}

inV × R. To observe this, by Remark 13, we get

∥vλ∥ → 0 as λ→ 0.

Therefore, there are sequences {v j} inV and {λi} in R+ (here, v j = vλ) with

λi → 0+ and ∥v j∥ → 0

as j→ ∞. In addition, we want to emphasize that because

(0, λ∗) ∋ λ 7→ Iλ(vλ)

is a strictly decreasing map, for all λ1, λ2 ∈ (0, λ∗) such that λ1 , λ2, the solutions v̄λ1 and v̄λ2 ensured
by Remark 13 are distinct.
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Remark 15. Under the assumption that f ≥ 0, the solution that is ensured by Theorem 9 is nonnegative.
To observe this, suppose that v0 is a nontrivial solution of (P f

λ). Assume that

A =
{
ℓ ∈ [1, L]N0 : v0(ℓ) < 0

}
, ∅

has positive measure. Put ¯̃v(ℓ) = min{0, v0(ℓ)} for each ℓ ∈ [1, L]N0 . We obtain ¯̃v ∈ V and

L∑
ℓ=1

{(
ℓ∇
α
0v0(ℓ)

) (
ℓ∇
α
0

¯̃v(ℓ)
)
+

(
L+1∇

α
ℓ v0(ℓ)

) (
ℓ∇
α
0

¯̃v(ℓ)
)}
+

L∑
ℓ=1

|v0(ℓ)|p−2v0(ℓ)¯̃v(ℓ) − λ
L∑
ℓ=1

f (ℓ, v0(ℓ))¯̃v(ℓ) = 0.

Thus, from our imposed data sign assumptions, we have

0 ≤(L + 1)
p(p−2)

4 ∥v∥p
A
≤

∑
A

{(
ℓ∇
α
0v0(ℓ)

)2
+

(
L+1∇

α
ℓ v0(ℓ)

)2
}
+

∑
A

|v0(ℓ)|p

=λ
∑
A

f (ℓ, v0(ℓ))v0(ℓ) ≤ 0.

Hence, v0 = 0 inA, which is impossible.

The next result concerns a particular case of the previously presented results, in which the function
f depends only on the second variable, considering the nonautonomous case of the problem.

Theorem 16. Let f : R → R be nonnegative with f (0) = 0. Let F(ξ) =
∫ ξ

0
f (x)dx for all x ∈ R.

Assume that
lim
ξ→0+

F(ξ)
ξp = ∞.

Then, for every

λ ∈

0, (L + 1)
p(p−2)

4

Lp
sup
θ>0

θp

F(θ)

 ,
the boundary value problemL+1∇

α
ℓ (ℓ∇

α
0 (v(ℓ))) + ℓ∇α0 (L+1∇

α
ℓ (v(ℓ))) + φp(v(ℓ)) = λ f (v(ℓ)), ℓ ∈ [1, L]N0 ,

v(0) = v(L + 1) = 0,

possesses at least one nontrivial solution vλ ∈ V satisfying

lim
λ→0+
∥vλ∥ = 0,

and the real function

λ→
1
2

L∑
ℓ=1

{∣∣∣(ℓ∇α0v
)

(ℓ)
∣∣∣2 + ∣∣∣(L+1∇

α
ℓ v

)
(ℓ)

∣∣∣2} + 1
p

L∑
ℓ=1

|v(ℓ)|p − λ
L∑
ℓ=1

F(v(ℓ))

is negative and decreases strictly in

0, (L + 1)
p(p−2)

4

Lp
supθ>0

θp

F(θ)

.
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Finally, we present the following example to illustrate Theorem 16.

Example 17. Let p = 4 and L = 2. We consider the problem3∇
1
2
ℓ (ℓ∇

1
2
0 (v(ℓ))) + ℓ∇

1
2
0 (3∇

1
2
ℓ (v(ℓ))) + φ4(v(ℓ)) = λ f (v(ℓ)), ℓ ∈ {1, 2},

v(0) = v(3) = 0,
(21)

where
f (ξ) = 34ξ3 + 2 tan(ξ) sec2(ξ) + eξ, ξ ∈ R.

By simple computations, we have

F(ξ) = ξ4 + sec2(ξ) + eξ − 2, ξ ∈ R.

We see that all assumptions of Theorem 16 are satisfied, and this implies that the boundary value

problem (21), for each λ ∈
(
0,

9
8

)
, admits at least one nontrivial solution vλ ∈ V such that

lim
λ→0+
∥vλ∥ = 0,

and the real function

λ→
1
2

2∑
ℓ=1

{∣∣∣∣∣(ℓ∇ 1
2
0 v

)
(ℓ)

∣∣∣∣∣2 + ∣∣∣∣∣(3∇
1
2
ℓ v

)
(ℓ)

∣∣∣∣∣2} + 1
4

2∑
ℓ=1

|v(ℓ)|4 − λ
2∑
ℓ=1

F(v(ℓ))

is negative and strictly decreasing in
(
0,

9
8

)
.

4. Existence of an infinite number of solutions

Put

B∞ = lim sup
ξ→∞

L∑
ℓ=1

F(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

.

Our main result concerning the existence of infinitely many solutions of (P f
λ) is as follows.

Theorem 18. Assume that two sequences {an} and {bn} exist with

lim
n→∞

bn = ∞

such that

a2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p
<

(L + 1)
p(p−2)

4

p
bp

n for all n ∈ N, (A1)
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A∞ = lim
n→∞

L∑
ℓ=1

max
|t|≤bn

F(ℓ, t) −
L∑
ℓ=1

F(ℓ, an)

(L + 1)
p(p−2)

4

p
bp

n −

 a2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p


< B∞. (A2)

In this case, for all λ ∈
(

1
B∞
,

1
A∞

)
, the boundary value problem (P f

λ) possesses an unbounded sequence

of solutions.

Proof. Our aim is to employ Theorem 1. We utilize the functionals Φ and Ψ as introduced in (7)
and (8), respectively. Therefore, we observe that the regularity assumptions on Φ and Ψ, as required
in Theorem 1, are satisfied. Hence v ∈ V is a solution of (P f

λ) if and only if v is a critical point of the
function Iλ. Put

rn =
(L + 1)

p(p−2)
4

p
bp

n for all n ∈ N.

We see that rn > 0 for all n ∈ N. From the way Φ is defined and in light of (6), (8), and (11), for each
rn > 0, we have

Φ−1(−∞, rn) = {v ∈ V : Φ(v) < rn}

⊆

v ∈ V : ∥v∥p ≤
prn

(L + 1)
p(p−2)

4

 ⊆
v ∈ V : ∥v∥p∞ ≤

prn

(L + 1)
p(p−2)

4


=

{
v ∈ V : ∥v∥p∞ ≤ bp

n
}
,

which implies

sup
Φ(v)<rn

Ψ(v) = sup
Φ(v)<rn

L∑
ℓ=1

F(ℓ, v(ℓ)) ≤
L∑
ℓ=1

max
|x|≤bn

F(ℓ, x).

Now, for each n ∈ N, we define

υ(ℓ) =

an if ℓ ∈ [1, L]N0 ,

0 if ℓ ∈ {0, L + 1}.

Clearly, υ ∈ V. Since υ vanishes at the end points (that is, υ(0) = 0 = υ(L + 1)), its Riemann and
Caputo fractional differences coincide. Hence, for any ℓ ∈ N1 ∩ LN, we have

(
L+1∇

α
ℓ υ

)
(ℓ) =

(
R
L+1∇

α
ℓ υ

)
(ℓ) =

(
C
L+1∇

α
ℓ υ

)
(ℓ) =

an(L + 1 − ℓ)−α

Γ(1 − α)

and (
ℓ∇
α
0υ

)
(ℓ) =

(
R
ℓ ∇
α
0υ

)
(ℓ) =

(
C
ℓ ∇
α
0υ

)
(ℓ) =

an(ℓ)−α

Γ(1 − α)
.

Thus,
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Φ(υ) =
1
2

L∑
ℓ=1

{∣∣∣(ℓ∇α0υ) (ℓ)
∣∣∣2 + ∣∣∣(L+1∇

α
ℓ υ

)
(ℓ)

∣∣∣2} + 1
p

L∑
ℓ=1

|υ(ℓ)|p

=
1
2

L∑
ℓ=1


∣∣∣∣∣∣ an(ℓ)−α

Γ(1 − α)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣an(L + 1 − ℓ)−α

Γ(1 − α)

∣∣∣∣∣∣
2 + Lap

n

p

=
a2

n

2(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + ∣∣∣(L + 1 − ℓ)−α
∣∣∣2 + Lap

n

p

=
a2

n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p
.

We have

Ψ(υ) =
L∑
ℓ=1

F(ℓ, υ(ℓ)) =
L∑
ℓ=1

F(ℓ, an).

In addition, from (A1), we have Φ(υn) < rn. Thus, for all large enough values of n, we obtain

φ(rn) = inf
ṽ∈Φ−1(−∞,rn)

sup
v∈Φ−1(−∞,rℓ)

Ψ(v) − Ψ(ṽ)

rn − Φ(ṽ)

≤

sup
v∈Φ−1(−∞,rn)

Ψ(v) −
L∑
ℓ=1

F(ℓ, υ(ℓ))

rn − Φ(υ)

=

sup
v∈Φ−1(−∞,rn)

Ψ(v) −
L∑
ℓ=1

F(ℓ, an)

(L + 1)
p(p−2)

4

p
bp

n −

 a2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p



≤

L∑
ℓ=1

max
|x|≤bn

F(ℓ, x) −
L∑
ℓ=1

F(ℓ, an)

(L + 1)
p(p−2)

4

p
bp

n −

 a2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p


.

(22)

Hence, due to (A2), we get
γ ≤ lim

n→∞
φ(rn) ≤ A∞ < ∞.

Now, we can verify that Iλ is unbounded from below. First, assume that B∞ = ∞. Accordingly, fix N
such that

N <
c2

n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lcp
n

p

Electronic Research Archive Volume 33, Issue 3, 1541–1565.



1556

and let cn > 0 for all n ∈ N such that cn → ∞ as n→ ∞ and

L∑
ℓ=1

F(ℓ, cn) > N for all n ∈ N.

For each n ∈ N, define
yn(ℓ) = cn for all ℓ ∈ [1, L]N0 .

Thus, yn ∈ V and

Φ(yn) =
c2

n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lcp
n

p
.

Therefore,

Iλ(yn) =
c2

n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lcp
n

p
− λ

L∑
ℓ=1

F(ℓ, cn)

<
c2

n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lcp
n

p
− λN,

that is, limn→∞ Iλ(yn) = −∞. Next, suppose B∞ < ∞. As λ >
1
B∞

, we can find ε > 0 with ε < B∞ −
1
λ

.
Thus, again letting cn > 0 for all n ∈ N such that cn → ∞ as n→ ∞ and

L∑
ℓ=1

F(ℓ, cn) > B∞ − ε for all n ∈ N,

as argued above, and by letting yn ∈ V as before, we obtain

Iλ(yn) =
c2

n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lcp
n

p
− λ

L∑
ℓ=1

F(ℓ, cn)

<
c2

n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lcp
n

p
− λ(B∞ − ε).

Therefore, limn→∞ Iλ(yn) = −∞. Hence, in either case, Iλ is not bounded from below. This completes
the proof.

Remark 19. If {an} and {bn} are real sequences such that limn→∞ bn = ∞ and such that (A1) from
Theorem 18 is satisfied, then, assuming that A∞ = 0 and B∞ = ∞, Theorem 18 ensures that for each
λ > 0, the boundary value problem (P f

λ) admits an infinite number of solutions.

Theorem 20. Assume that

lim inf
ξ→∞

L∑
ℓ=1

max
|x|≤ξ

F(ℓ, x)

(L+1)
p(p−2)

4

p ξp

< lim sup
ξ→∞

L∑
ℓ=1

F(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

. (A3)

Electronic Research Archive Volume 33, Issue 3, 1541–1565.



1557

In this case, for all

λ ∈


ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p
L∑
ℓ=1

F(ℓ, ξ)

,

(L+1)
p(p−2)

4

p ξp

L∑
ℓ=1

max
|x|≤ξ

F(ℓ, x)


,

the boundary value problem (P f
λ) possesses an unbounded sequence of solutions.

Proof. We pick bn > 0 for all n ∈ N with bn → ∞ as n→ ∞ and

lim
n→∞

L∑
ℓ=1

max
|x|≤bn

F(ℓ, x)

(L+1)
p(p−2)

4

p bp
n

= lim inf
ξ→∞

L∑
ℓ=1

max
|x|≤ξ

F(ℓ, x)

(L+1)
p(p−2)

4

p ξp

.

Now, as Φ(0) = Ψ(0) = 0, we may take an = 0 for all n ∈ N in (22), and then the conclusion follows
from Theorem 1.

Now, we present an example that illustrates Theorem 20.

Example 21. Let p = 4 and L = 3. We consider the boundary value problem4∇
1
2
ℓ (ℓ∇

1
2
0 (v(ℓ))) + ℓ∇

1
2
0 (4∇

1
2
ℓ (v(ℓ))) + φ4(v(ℓ)) = λ f (v(ℓ)), ℓ ∈ {1, 2, 3},

v(0) = v(4) = 0,
(23)

where

f (x) =

0 if x ∈ (−∞, 0],
4x3 + 4x3 sin(πex) + πx4ex cos(πex)) if x ∈ (0,∞).

Some computation yields

F(x) =

0 if x ∈ (−∞, 0],
x4(1 + sin(πex)) if x ∈ (0,∞).

Since

lim inf
ξ→∞

3∑
ℓ=1

max
|x|≤ξ

F(x)

64ξ4 = 0

and

lim sup
ξ→∞

3∑
ℓ=1

F(ξ)

ξ2

(Γ(1/2))2

3∑
ℓ=1

∣∣∣∣∣ℓ− 1
2

∣∣∣∣∣2 + 3ξ4

4

= 8,

we clearly see that all assumptions of Theorem 20 are satisfied, and then (23), for every λ ∈
(

1
8 ,∞

)
,

has an unbounded sequence of solutions in
{
v : [0, 4]N0 → R : v(0) = v(4) = 0

}
.
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Here, we point out several simple corollaries of our main results.

Corollary 22. Suppose that there are real sequences {an} and {bn} with bn → ∞ as n → ∞ and such
that (A1) from Theorem 18 holds,A∞ < 1, and B∞ > 1. Then, the boundary value problemL+1∇

α
ℓ (ℓ∇

α
0 (v(ℓ))) + ℓ∇α0 (L+1∇

α
ℓ (v(ℓ))) + φp(v(ℓ)) = f (ℓ, v(ℓ)), ℓ ∈ [1, L]N0 ,

v(0) = v(L + 1) = 0
(P f )

possesses an unbounded sequence of solutions.

Corollary 23. Suppose B∞ > 1 and

lim inf
ξ→∞

L∑
ℓ=1

max
|x|≤ξ

F(ℓ, x)

(L+1)
p(p−2)

4

p ξp

< 1.

Then the boundary value problem (P f ) possesses an unbounded sequence of solutions.

Corollary 24. Suppose that there are real sequences {an} and {bn} with bn → ∞ as n → ∞ and such
that (A1) from Theorem 18 holds, f1 ∈ C([1, L]N0 × R,R), and

F1(ℓ, x) =
∫ x

0
f1(ℓ, ξ)dξ for all (ℓ, x) ∈ [0, L]N0 × R.

Moreover, assume

lim
n→∞

L∑
ℓ=1

max
|x|≤bn

F1(ℓ, x) −
L∑
ℓ=1

F1(ℓ, an)

(L+1)
p(p−2)

4

p bp
n −

 a2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p


< ∞ (A4)

and

lim sup
ξ→∞

L∑
ℓ=1

F1(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

= ∞. (A5)

Then, for all fi ∈ C([1, L]N0 × R,R), by writing

Fi(ℓ, x) =
∫ x

0
fi(ℓ, ξ)dξ for all (ℓ, x) ∈ [1, L]N0 × R

for 2 ≤ i ≤ n, such that

max
{

sup
ξ∈R

Fi(ℓ, ξ) : 2 ≤ i ≤ n
}
≤ 0

and

min
{

lim inf
ξ→∞

Fi(ℓ, ξ)
ξ2 : 2 ≤ i ≤ n

}
> −∞,
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for all

λ ∈



0,
1

lim
n→∞

L∑
ℓ=1

max
|x|≤bn

F1(ℓ, x) −
L∑
ℓ=1

F1(ℓ, an)

(L+1)
p(p−2)

4

p bp
n −

 a2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p





,

the boundary value problemL+1∇
α
ℓ (ℓ∇

α
0 (v(ℓ))) + ℓ∇α0 (L+1∇

α
ℓ (v(ℓ))) + φp(v(ℓ)) = λ fi(ℓ, v(ℓ)), ℓ ∈ [1, L]N0 ,

v(0) = v(L + 1) = 0
(24)

has an unbounded sequence of solutions.

Proof. Put F(ℓ, ξ) =
n∑

i=1

Fi(ℓ, ξ) for (ℓ, ξ) ∈ [1, L]N0 × R. (A4), along with

min
{

lim inf
ξ→∞

Fi(ℓ, ξ)
ξ2 : 2 ≤ i ≤ n

}
> −∞,

ensures

lim sup
ξ→∞

L∑
ℓ=1

F(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

= lim sup
ξ→∞

n∑
i=1

L∑
ℓ=1

Fi(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

= ∞.

Moreover, Assumption (A4), together with the condition

max
(
sup
ξ∈R

Fi(ℓ, ξ) : 2 ≤ i ≤ n
)
≤ 0,

implies
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lim
n→∞

L∑
ℓ=1

max
|x|≤bn

F(ℓ, x) −
L∑
ℓ=1

F(ℓ, σn)

(L+1)
p(p−2)

4

p bp
n −

 σ2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lσp
n

p



≤ lim
n→∞

L∑
ℓ=1

max
|x|≤bn

F1(ℓ, x) −
L∑
ℓ=1

F1(ℓ, an)

(L+1)
p(p−2)

4

p bp
n −

 a2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lap
n

p


< ∞.

Hence, an application of Theorem 18 completes the proof.

Corollary 25. Let f1 ∈ C([1, L]N0 × R,R) and put

F1(ℓ, x) =
∫ x

0
f1(ℓ, ξ)dξ for all (ℓ, x) ∈ [1, L]N0 × R.

Assume that

lim inf
ξ→∞

L∑
ℓ=1

max
|x|≤σ(ξ)

F1(ℓ, x)

(L+1)
p(p−2)

4

p ξp

< ∞

and

lim sup
ξ→∞

L∑
ℓ=1

F1(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

= ∞.

Then, for all fi ∈ C([1, L]N0 × R,R), by writing

Fi(ℓ, x) =
∫ x

0
fi(ℓ, ξ)dξ for all (ℓ, x) ∈ [1, L]N0 × R

for 2 ≤ i ≤ n, such that

max
{

sup
ξ∈R

Fi(ℓ, ξ) : 2 ≤ i ≤ n
}
≤ 0

and

min
{

lim inf
ξ→∞

Fi(ℓ, ξ)
ξp : 2 ≤ i ≤ n

}
> −∞,
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for all

λ ∈


0,

1

lim inf
ξ→∞

L∑
ℓ=1

max
|x|≤ξ

F(ℓ, x)

(L+1)
p(p−2)

4

p ξp


,

the boundary value problem (24) has an unbounded sequence of solutions.

Now put

B0 = lim sup
ξ→0

L∑
ℓ=1

F(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

.

With a proof similar to the proof of Theorem 18, but this time using Theorem 1 (c) instead of Theorem 1
(b), we can establish the next result. The proof is similar to the proof of Theorem 18, but here we have
a real sequence {en} which tends to zero at∞ constructing r, because in Theorem 1 (c) for δ, it requires
r → (infX Φ)+ instead of in Theorem 1 (b) for θ, it requires r → ∞.

Theorem 26. Suppose that there are real sequences {dn} and {en} with limn→∞ en = 0 such that

d2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Ldp
n

p
<

(L + 1)
p(p−2)

4

p
ep

n for every n ∈ N, (A6)

A0 = lim
n→∞

L∑
ℓ=1

max
|x|≤en

F(ℓ, x) −
L∑
ℓ=1

F(ℓ, dn)

(L+1)
p(p−2)

4

p ep
n −

d2
n

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Ldp
n

p

< B0. (A7)

Then, for each

λ ∈ (λ3, λ4) with λ3 :=
1
B0 and λ4 :=

1
A0
,

the boundary value problem (P f
λ) possesses a sequence of pairwise different solutions that strongly

converges to 0 inV.

Theorem 27. Suppose

lim inf
ξ→0+

L∑
ℓ=1

max
|x|≤ξ

F(ℓ, x)

(L+1)
p(p−2)

4

p ξp

< lim sup
ξ→0

L∑
ℓ=1

F(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

. (A8)
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Then, for each

λ ∈



1

lim sup
ξ→0

L∑
ℓ=1

F(ℓ, ξ)

ξ2

(Γ(1 − α))2

L∑
ℓ=1

∣∣∣ℓ−α∣∣∣2 + Lξp

p

,
1

lim inf
ξ→0+

L∑
ℓ=1

max
|x|≤ξ

F(ℓ, x)

(L+1)
p(p−2)

4

p ξp



,

the boundary value problem (P f
λ) has a sequence of pairwise different solutions that converges strongly

to 0 inV.

Remark 28. By employing Theorem 26, we may obtain results that are similar to Remark 19 and
Corollaries 22–25.

5. Conclusions

In this paper, we investigated the existence of one and of infinitely many solutions for a class of
discrete fractional boundary value problems. As a matter of fact, by demanding an algebraic condition
on the nonlinear term for small values of the parameter and requiring an additional asymptotical
behavior of the potential at zero, we obtain the existence of at least one nontrivial solution for the
problem. Moreover, under suitable assumptions on the oscillatory behavior at infinity of the
nonlinearity, for exact collections of the parameter, we get the existence of a sequence of solutions for
the problem. The main results improve and extend recent results from the literature. We also
presented some examples that illustrate the applicability of the main results. The main technique of
the proofs involves variational methods and critical point theorems for smooth functionals.
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