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Abstract: In this study, the numerical solution of a two-dimensional coupled Burgers’ equation is
investigated by the barycentric interpolation collocation method. The spatial-temporal domain of the
equation is made discrete by employing barycentric interpolation, and a corresponding differentiation
matrix based on this interpolation technique is constructed. The effectiveness and high accuracy of the
proposed method are demonstrated for solving the two-dimensional coupled Burgers’ equation.
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1. Introduction

Nonlinear partial differential equations are widely encountered in various scientific and engineering
fields, including mathematical biology, plasma physics, chemical physics, and fluid dynamics.
Burgers’ equation, a prominent partial differential equation, is extensively utilized in modeling viscous
fluid flow, shock waves, shallow water waves, and traffic flow, etc. [1,2]. It also serves a benchmark in
testing various numerical algorithms. The resolution of this equation is crucial for the development
of mathematical models and achieving a comprehensive understanding of physical phenomena.
Numerous mathematicians and researchers are exploring a variety of methods, including not only
numerical techniques [3, 4], such as the differential quadrature method [5] and the finite-difference
method [6], but also analytical approaches [7–10], such as the decomposition method [11] and the
homotopy perturbation method [12], to deepen their understanding of the dynamics and behavior of
the model. For example, Kumar and Pandit [4] introduced a composite numerical format for solving
the one-dimensional (1D) coupled Burgers’ equation by finite difference methods and Haar wavelets.
Soliman [7] applied the variational iteration method to derive accurate solutions for both the Burgers’
equation and the coupled Burgers’ equation, while Kaya [11] obtained exact solutions for the coupled
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Burgers’ equation through the Adomian decomposition method. The coupled Burgers’ equation is
often used to simulate various coupled transport phenomena. However, due to its nonlinear nature,
analytical solution for the coupled Burgers’ equation can not be obtained easily. As a result, numerical
solutions for this type of equation remain a vital method for investigating its dynamic behavior.

In this paper, we examine a two-dimensional (2D) coupled nonlinear Burgers’ equation [13, 14] ut + uux + vuy − r(uxx + uyy) = 0,

vt + uvx + vvy − r(vxx + vyy) = 0,
(1.1)

where qt = ∂q/∂t, qx = ∂q/∂x, qy = ∂q/∂y, qxx = ∂
2q/∂x2, and qyy = ∂

2q/∂y2 (q = u, v). Furthermore,
the variables u and v denote the velocity components that require determination, and r = 1/R, where R
is the Reynolds number. The initial conditions of Eq (1.1) is denoted as

u(x, y, 0) = f0(x, y), v(x, y, 0) = g0(x, y), (x, y) ∈ D,

where D = [a, b] × [c, d], f0, g0 are given functions. In addition, the boundary conditions of Eq (1.1)
are denoted as

u(x, y, t) = f (x, y, t), v(x, y, t) = g(x, y, t), x, y ∈ ∂D,

where t > 0, ∂D denotes the boundary of region D, and f , g are all known functions. This
coupled viscous Burgers’ equation offers an intuitive and straightforward model for investigating the
sedimentation or scaling volume concentration evolution of two types of particles in fluid suspensions
or colloids under the influence of gravitational forces.

The analysis of a coupled Burgers’ equation is instrumental in elucidating the convection–diffusion
phenomenon, which is influenced by the viscosity coefficients associated with the nonlinear convection
and diffusion terms. Hopf [15] and Cole [16] have demonstrated that the 1D Burgers’ equation can
be effectively addressed by transforming it into a linear homogeneous heat equation, with solutions
represented through Fourier series. In [17], the exact solution of the 2D coupled Burgers’ equation
could generally be obtained only under specific initial and boundary conditions. Furthermore, the
inclusion of nonlinear convection terms and viscous parameters complicates the numerical analysis
of the viscous Burgers’ equation, making it a consistently challenging task. In the past few years,
several significant numerical approaches have been developed for the coupled Burgers’ equations.
For instance, Chai and Ouyang [18] explored methods for reducing shock oscillations, including
the streamline upwind/Petrov-Galerkin method and other related techniques. The authors of [19]
introduced a weak Galerkin finite element method for solving the 2D coupled Burgers’ equation. A
novel fourth-order compact difference scheme is proposed in [20], along with its application to solving
the mixed-type time-fractional Burgers’ equation. The work in [21] presented a new numerical method
for addressing the coupled Burgers’ equation, utilizing the collocation finite element method with
cubic trigonometric and quintic B-splines as approximation functions. The performance and accuracy
of this method are demonstrated through the calculation of the error norms L2 and L∞. Another
study [22] examined the application of the RBF-QR method in obtaining numerical solutions for the 1D
coupled viscous Burgers’ equation. Lastly, Park et al. [23] developed an algorithm designed to reduce
the computational cost associated with the backward semi-Lagrangian method (BSLM) for solving
nonlinear convection-diffusion equations.
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In recent years, the barycentric interpolation method has gained prominence due to its robust
node adaptability and excellent numerical stability for both special and equidistant node distributions.
Consequently, a substantial body of literature has employed this method to address various numerical
challenges. Notable applications include Volterra integro-differential equations [24], nonlinear high-
dimensional Fredholm integral equations [25], the heat conduction equation [26], plane elasticity
problems [27], and semi-infinite domain problems [28], and so on. Furthermore, Li and Wang [29]
and Wang and Li [30] have successfully applied the barycentric interpolation method to a wide range
of practical engineering issues, including dynamic diffusion problems, vibration problems, and beam
structural mechanics, as documented in their monographs.

The high computational efficiency, numerical stability, flexibility, and ease of implementation of
the barycentric interpolation collocation method have been demonstrated. When appropriate nodes,
such as Chebyshev nodes, are selected, it produces highly accurate results. Some researchers have
extended the method to address 1D Burgers’ equations and modified Burgers’ equations [30, 31].
However, the numerical analysis and solutions for 2D coupled Burgers’ equations remain relatively
limited. Therefore, in this article, we aim to apply the barycentric interpolation collocation method to
solve 2D coupled Burgers’ equations, with the goal of further exploring its effectiveness and feasibility
in numerically solving such coupled equations.

The primary objective of this paper was to develop a novel differential matrix scheme for the 2D
coupled Burgers’ equation. A direct linearization approach is employed to address the nonlinear terms,
and a barycentric interpolation method is introduced to resolve the differentiation matrix formulation
for this coupled Burgers’ equation. The computational results are compared with analytical solutions
across various values of the Reynolds number R in selected examples. The validity and feasibility of
this method are demonstrated through several illustrative cases.

The following sections are organized as follows: Section 2 presents the application of the
barycentric interpolation method to develop the numerical scheme for the coupled Burgers’ equation.
The validity and feasibility of this method are demonstrated through several illustrative examples in
Section 3. Finally, Section 4 offers conclusions and outlines potential directions for future research.

2. The numerical scheme for the 2D coupled Burgers’ equations

In this section, we utilize the barycentric interpolation method to aid in the resolution of the
differentiation matrix formulation for the 2D coupled Burgers’ equations.

2.1. Linearization for the 2D coupled Burgers’ equation

In the following, the direct linearization method is used to transform the 2D coupled Burgers’
equation into a linear equation. Namely, the initial value of nonlinear term uux + vuy and uvx + vvy is
changed to u(0)ux + v(0)uy and u(0)vx + v(0)vy. In this case, we have

∂u
∂t + u(0) ∂u

∂x + v(0) ∂u
∂y − r(∂

2u
∂x2 +

∂2u
∂y2 ) = 0,

∂v
∂t + u(0) ∂v

∂x + v(0) ∂v
∂y − r( ∂

2v
∂x2 +

∂2v
∂y2 ) = 0.

(2.1)

By substituting u(0) and v(0) into Eq (2.1), we can calculate u and v, denoting them as u(1) and v(1). Thus,
by substituting u(1) and v(1) as the new u(0) and v(0) in Eq (2.1), we can compute new values for u and v,
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which we denote as u(2) and v(2). Similarly, by substituting u(s−1) and v(s−1) in Eq (2.1), we can calculate
new values for u and v, denoted as u(s) and v(s), respectively. Thus, given the iterative representation
u → u(s), u(0) → u(s−1), v → v(s), and v(0) → v(s−1) (s ∈ N+ represents the number of iterations), we can
construct a direct linearization scheme for Eq (2.1)

∂(u(s))
∂t + u(s−1) ∂(u(s))

∂x + v(s−1) ∂(u(s))
∂y − r(∂

2(u(s))
∂x2 +

∂2(u(s))
∂y2 ) = 0,

∂(v(s))
∂t + u(s−1) ∂(v(s))

∂x + v(s−1) ∂(v(s))
∂y − r(∂

2(v(s))
∂x2 +

∂2(v(s))
∂y2 ) = 0.

(2.2)

Here, u(s−1) and v(s−1) denote the values of u and v after the s−1 iterations, while ∂(u
(s))
∂t and ∂(v

(s))
∂t represent

the partial derivatives of u and v with respect to t after s iterations, respectively. Similarly, ∂(u
(s))
∂x and

∂(v(s))
∂x represent the partial derivatives of u and v with respect to x after s iterations, ∂(u

(s))
∂y and ∂(v(s))

∂y

represent the partial derivatives of u and v with respect to y after s iterations, ∂
2(u(s))
∂x2 and ∂

2(v(s))
∂x2 represent

the second-order partial derivatives of u and v with respect to x after s iterations, and ∂2(u(s))
∂y2 , ∂

2(v(s))
∂y2

represent the second-order partial derivatives of u and v with respect to y after s iterations, respectively.

2.2. Barycentric interpolation method

A barycentric interpolation function can be employed to deduce the approximate function of u(x)
for a set of m distinct interpolation nodes xi, i = 1, 2, · · · ,m, i.e.,

um(x) =
m∑

i=1

li(x)u(xi) :=
m∑

i=1

li(x)ui, (2.3)

and

li(x) =
ωi

x − xi
/

m∑
k=1

ωk

x − xk
, i = 1, 2, · · · ,m,

is the interpolation basis function with the interpolation weight [29, 30]

ωi =
∑
s∈Ji

(−1)s
s+d∗∏

g=s,g,i

(
1

xi − xg
), i = 1, 2, · · · ,m, (2.4)

and Ji = {s ∈ Ix : i − d∗ ≤ s ≤ i}, 0 ≤ d∗ ≤ m, Ix = {0, 1, 2, · · · ,m}, so the barycentric rational
interpolation is constructed. In the following discussion, the variable d∗ in the x, y, and t directions is
denoted as d∗x, d

∗
y and d∗t , respectively. For the other case

ωi = 1/
∏
i,g

(xi − xg), i = 1, 2, · · · ,m, (2.5)

we get the barycentric Lagrange interpolation. By observing the weights, we can notice their direct
association with dispersed nodes. The weights provided are applicable to any node distribution. If
commonly used node distributions such as equispaced nodes or Chebyshev nodes are selected, the
computation of the barycentric weights becomes simpler. The equidistant nodes is

xi = a +
i − 1
m − 1

(b − a), i = 1, 2, · · · ,m,
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and its weight function is ωi = (−1)m−i−1Ci−1
m−1, and Ci−1

m−1 =
(m−1)!

(m−i)!(i−1)! . The Chebyshev nodes is

xi = cos
(i − 1)π
m − 1

, i = 1, 2, · · · ,m,

and we then find that its weight function is

ωi = (−1)iδi, δi =

 1
2 , i = 1 or m

1, ortherwise
.

It is also worth noting that the Chebyshev nodes in the interval of −1 to 1 can be transformed to any
interval from a to b through a linear transformation x̃ = b−a

2 x + b+a
2 .

Solving differential equations requires the derivatives of Eq (2.3). The p-th derivative at xi is
expressed as follows:

u(p)
m (x) =

m∑
i=1

l(p)
i (x)ui, p = 0, 1, 2, · · · , (2.6)

where the first-order derivative value and p-th-order derivative value of li(x) at the h-th interpolation
node are [29, 30]

C(1)
h := l′i(xh) =


ωi/ωh
xh−xi
, h , i

−
m∑

i=1,i,h
l′i(xh), h = i

,

C(p)
h := l(p)

i (xh) =


p(l(p−1)

i (xh)l′i(xh) − l(p−1)
i (xh)
xh−xi

), h , i, p ≥ 2

−
m∑

i=1,i,h
l(p)
i (xh), h = i, p ≥ 2

.

Going a step further, if we substitute the discrete interpolation node xh, h = 1, 2, · · · ,m into Eq (2.3),
we can obtain the discrete form as follows:

u(p)(xh) =
m∑

i=1

l(p)
i (xh)ui, h = 1, 2, · · · ,m. (2.7)

Furthermore, the matrix forms of Eq (2.7) can be expressed as

u(p) = C(p)u, (2.8)

where u = [u1, u2, · · · , um]T , u(p) = [u(p)
1 , u

(p)
2 , · · · , u

(p)
m ]T and

C(p) =


l(p)
1 (x1) l(p)

2 (x1) · · · l(p)
m (x1)

l(p)
1 (x2) l(p)

2 (x2) · · · l(p)
m (x2)

...
...

. . .
...

l(p)
1 (xm) l(p)

2 (xm) · · · l(p)
m (xm)

 . (2.9)

In addition, C(0) = Im, and Im is an m-th-order identity matrix. The detailed derivation process of
Eq (2.8) can be seen in [29].
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2.3. Differential matrices for the coupled Burgers’ equation

In the following, we illustrate the process of establishing the differential matrix for the 2D coupled
Burgers’ equation. Let us consider the functions u(x, y, t) and v(x, y, t) defined in a spatial-temporal
domain [a, b]× [c, d]× (0,T ]. The spatial-temporal domain is divided by m× n× l interpolation nodes,
and the divisions of interpolation nodes in different directions are represented as

x : a = x1 < x2 < · · · < xm = b;
y : c = y1 < y2 < · · · < yn = d;

t : 0 = t1 < t2 < · · · < tl = T.

These interpolation nodes (xi, y j, tk) across the entire computing area [a, b] × [c, d] × (0,T ] can be
uniform or non-uniform collocation points.

Making use of the barycentric interpolation function, we obtained the approximation function for
u(x, y, t) and v(x, y, t), which are expressed as

umnl(x, y, t) =
m∑

i=1

n∑
j=1

l∑
k=1

luxi(x)luy j(y)lutk(t)ui jk, (2.10)

vmnl(x, y, t) =
m∑

i=1

n∑
j=1

l∑
k=1

lvxi(x)lvy j(y)lvtk(t)vi jk, (2.11)

where the symbols ui jk and vi jk represent the function values u(xi, y j, tk) and v(xi, y j, tk), respectively.
Additionally, the symbols lqxi(x), lqy j(y), and lqtk(t) (q = u, v) stand for the barycentric interpolation
basis functions in the directions of x, y, and t, respectively, and the representations of lqxi(x), lqy j(y),
and lqtk(t) (q = u, v) are as follows:

lqxi(x) =
ωxi

x − xi
/

m∑
h=1

ωxh

x − xh
, i = 1, 2, · · · ,m,

lqy j(y) =
ωy j

y − y j
/

n∑
h=1

ωyh

y − yh
, j = 1, 2, · · · , n,

lqtk(t) =
ωtk

t − tk
/

l∑
h=1

ωth

t − th
, t = 1, 2, · · · , l,

where ωxi , ωy j , and ωtk are the corresponding weight functions.
Furthermore, we can derive the (p1+ p2+ p3)-order partial derivative values of u(x, y, t) and v(x, y, t)

at the interpolation nodes {(xi, y j, tk), i = 1, 2, · · · ,m; j = 1, 2, · · · , n; k = 1, 2, · · · , l} and present
them as

u(p1+p2+p3)(xi, y j, tk) =
m∑

i=1

n∑
j=1

l∑
k=1

l(p1)
uxi

(xi)l(p2)
uy j

(y j)l
(p3)
utk (tk)ui jk, (2.12)

v(p1+p2+p3)(xi, y j, tk) =
m∑

i=1

n∑
j=1

l∑
k=1

l(p1)
vxi

(xi)l(p2)
vy j

(y j)l
(p3)
vtk (tk)vi jk. (2.13)

Electronic Research Archive Volume 33, Issue 3, 1490–1509.



1496

Thus, Eqs (2.12) and (2.13) can be expressed in matrix form as

u(p1+p2+p3) = C(p100)
u ⊗ C(0p20)

u ⊗ C(00p3)
u u := D(p1 p2 p3)

u u, (2.14)

v(p1+p2+p3) = C(p100)
v ⊗ C(0p20)

v ⊗ C(00p3)
v v := D(p1 p2 p3)

v v, (2.15)

where ⊗ denotes the Kronecher product of the matrix; C(p100)
q , C(0p20)

q , and C(00p3)
q (q = u, v) are

differential matrices corresponding to x, y, and t, respectively. Their expressions are

C(p100)
q =


l(p1)
qx1 (x1) l(p1)

qx2 (x1) · · · l(p1)
qxm (x1)

l(p1)
qx1 (x2) l(p1)

qx2 (x2) · · · l(p1)
qxm (x2)

...
...

. . .
...

l(p1)
qx1 (xm) l(p1)

qx2 (xm) · · · l(p1)
qxm (xm)

 , (2.16)

C(0p20)
q =


l(p2)
qy1 (y1) l(p2)

qy2 (y1) · · · l(p2)
qyn (y1)

l(p2)
qy1 (y2) l(p2)

qy2 (y2) · · · l(p2)
qyn (y2)

...
...

. . .
...

l(p2)
qy1 (yn) l(p2)

qy2 (yn) · · · l(p2)
qyn (yn)

 , (2.17)

C(00p3)
q =


l(p1)
qt1 (t1) l(p1)

qt2 (t1) · · · l(p1)
qtl (t1)

l(p1)
qt1 (t2) l(p1)

qt2 (t2) · · · l(p1)
qtl (t2)

...
...

. . .
...

l(p1)
qt1 (tl) l(p1)

qt2 (tl) · · · l(p1)
qtl (tl)

 . (2.18)

We thus obtain the matrix C(p100)
q ⊗ C(0p20)

q ⊗ C(00p3)
q of the order (m × n × l) × (m × n × l). In addition,

for x, C(000)
q = Im; for y, C(000)

q = In; for t, C(000)
q = Il, and Im, In, and Il are all identity matrices.

Going a step further, Eq (2.2) can be written in the format of a barycentric interpolation differential
matrixD(001)

u u(s) + diag(u(s−1))D(100)
u u(s) + diag(v(s−1))D(010)

u u(s) − r(D(200)
u + D(020)

u )u(s) = 0,
D(001)

v v(s) + diag(u(s−1))D(100)
v v(s) + diag(v(s−1))D(010)

v v(s) − r(D(200)
v + D(020)

v )v(s) = 0,
(2.19)

where, D(001)
q = Im⊗ In⊗C(001)

q , D(100)
q = C(100)

q ⊗ In⊗ Il, D(010)
q = Im⊗C(010)

q ⊗ Il, D(200)
q = C(200)

q ⊗ In⊗ Il,
D(020)

q = Im⊗C(020)
q ⊗ Il, q = u, v, and 0 is a zero column vector. In this case, Eq (2.19) can be expressed

as a block matrix expression, i.e.,[
A11 O
O A22

] [
u(s)

v(s)

]
=

[
0
0

]
, s = 1, 2, 3, · · · . (2.20)

where,
A11 = D(001)

u + diag(u(s−1))D(100)
u + diag(v(s−1))D(010)

u − r(D(200)
u + D(020)

u ),

A22 = D(001)
v + diag(u(s−1))D(100)

v + diag(v(s−1))D(010)
v − r(D(200)

v + D(020)
v ),

and O is a zero matrix.
Typically, the replacement method and the addition method are frequently utilized for the

implementation of the initial-boundary conditions, as detailed in [30]. In this article, we employ
the replacement method to tackle the initial and boundary conditions. After applying the boundary
conditions to Eq (2.20), numerical computations can begin by setting an initial condition of s = 1 on
the left side of Eq (2.20). As a result, the numerical solutions u(s) and v(s) can be computed iteratively.
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3. Numerical experiments and discussion

In this section, we present a series of computational experiments designed to demonstrate the
accuracy and effectiveness of the proposed methodology.

Within this context, we define the subsequent error standards Ep
q∞ , Ep

qr, (q = u, v), (p = L,R) to
illustrate the accuracy of the proposed methodology, i.e., the error norms

Ep
u∞ = ∥u

e − uc∥∞ = max
k
|ue

k − uc
k|, Ep

ur =
∥ue − uc∥∞

∥ue∥∞
,

Ep
v∞ = ∥v

e − vc∥∞ = max
k
|ve

k − vc
k|, Ep

vr =
∥ve − vc∥∞

∥ve∥∞
.

Among these, qc and qe denotes the numerical and analytical solutions, respectively, and q = u, v.
Specifically, the parameter p is defined as L in relation to barycentric Lagrange interpolation and as
R in relation to barycentric rational interpolation. In all subsequent tables, we denote the absolute
error under equidistant nodes and Chebyshev nodes as Epd

q∞ and Epc
q∞, respectively, where q = u, v and

p = L,R. Similarly, the relative error under equidistant nodes and Chebyshev nodes is represented as
Epd

qr and Epc
qr , respectively, with the same definitions for q and p.

Example 1. Eq (1.1) with exact solutions

u(x, y, t) = −2r
2π cos(2πx) sin(πy) exp(−5π2rt)
sin(2πx) sin(πy) exp(−5π2rt) + 2

,

v(x, y, t) = −2r
π sin(2πx) cos(πy) exp(−5π2rt)

sin(2πx) sin(πy) exp(−5π2rt) + 2
,

(x, y) ∈ [0, 1]× [0, 1], t ≥ 0 is under consideration in this example, and its initial–boundary conditions
can be established on the basis of the exact solution.

In Example 1, the numerical solutions obtained from the Chebyshev and equidistant node
calculations are illustrated in Figures 1 and 2. Furthermore, we present the error distribution calculated
by barycentric interpolation, with the parameters set to m = n = l = 18, R = 1000, t = 1, and
d∗x = d∗y = d∗t = 6 in Figures 3 and 4. The variations in the absolute and relative errors associated
with equidistant nodes and Chebyshev nodes, determined using different quantities of nodes, are
summarized in Tables 1–4. Additionally, Table 5 offers a comprehensive overview of the errors
calculated for Chebyshev nodes under varying values of R with m = n = l = 18, d∗x = d∗y = d∗t = 6, and
t = 1. This example illustrates that our algorithm maintains a high level of computational accuracy,
even for larger values of R.
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(a) Chebyshev nodes with respect to u (b) Chebyshev nodes with respect to v

(c) equidistant nodes with respect to u (d) equidistant nodes with respect to v

Figure 1. The numerical solutions calculated by the barycentric Lagrange interpolation with
m = n = l = 18 , R = 1000, and t = 1 for Example 1.

(a) Chebyshev nodes with respect to u (b) Chebyshev nodes with respect to v

(c) equidistant nodes with respect to u (d) equidistant nodes with respect to v

Figure 2. The numerical solutions calculated by the barycentric rational interpolation with
m = n = l = 18, R = 1000, t = 1, and d∗x = d∗y = d∗t = 6 for Example 1.
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(a) Chebyshev nodes with respect to u (b) Chebyshev nodes with respect to v

(c) equidistant nodes with respect to u (d) equidistant nodes with respect to v

Figure 3. The error distribution calculated by the barycentric Lagrange interpolation with
m = n = l = 18 , R = 1000, and t = 1 for Example 1.

(a) Chebyshev nodes with respect to u (b) Chebyshev nodes with respect to v

(c) equidistant nodes with respect to u (d) equidistant nodes with respect to v

Figure 4. The error distribution calculated by the barycentric rational interpolation with
m = n = l = 18 , R = 1000, and t = 1 for Example 1.
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Table 1. Errors of u calculated using the barycentric Lagrange collocation methods with
R = 1000 for Example 1.

m, n, l ELc
u∞ ELc

ur ELd
u∞ ELd

ur

3 4.5802 × 10−5 1.0831 × 10−2 1.9745 × 10−4 3.8122 × 10−2

6 1.2615 × 10−4 1.8616 × 10−2 6.6265 × 10−4 1.1080 × 10−1

9 3.1096 × 10−5 4.8138 × 10−3 9.2192 × 10−4 1.3987 × 10−1

12 1.4204 × 10−5 2.0962 × 10−3 1.6105 × 10−3 2.3695 × 10−1

15 4.3054 × 10−6 6.4973 × 10−4 2.2737 × 10−3 3.3789 × 10−1

Table 2. Errors of v calculated using the barycentric Lagrange collocation methods with
R = 1000 for Example 1.

m, n, l ELc
v∞ ELc

vr ELd
v∞ ELd

vr

3 1.3031 × 10−4 4.0889 × 10−2 7.9112 × 10−5 3.0549 × 10−2

6 3.2023 × 10−5 9.8617 × 10−3 5.3732 × 10−5 1.9021 × 10−2

9 1.0720 × 10−5 3.1844 × 10−3 5.2997 × 10−5 1.6081 × 10−2

12 2.7465 × 10−6 8.0844 × 10−4 6.3429 × 10−5 1.8664 × 10−2

15 5.5838 × 10−7 1.6428 × 10−4 8.1760 × 10−5 2.4300 × 10−2

Table 3. Errors of u calculated using the barycentric rational collocation methods with
R = 1000 for Example 1.

m, n, l ERc
u∞ Co ERc

ur ERd
u∞ ERd

ur

6 1.2615 × 10−4 - 1.8616 × 10−2 6.6265 × 10−4 1.1080 × 10−1

9 3.1330 × 10−5 3.44 4.8500 × 10−3 5.0975 × 10−5 7.7339 × 10−2

12 1.6498 × 10−5 2.23 2.4347 × 10−3 5.8910 × 10−5 8.6673 × 10−3

15 9.6679 × 10−6 2.40 1.4590 × 10−3 8.8309 × 10−5 1.3123 × 10−2

18 1.6033 × 10−6 9.85 2.3616 × 10−4 1.1085 × 10−5 1.6514 × 10−3

Table 4. Errors of v calculated using the barycentric rational collocation methods with
R = 1000 for Example 1.

m, n, l ERc
v∞ ERc

vr Time ERd
v∞ ERd

vr Time
6 3.2023 × 10−5 9.8617 × 10−3 0.20s 5.3732 × 10−5 1.9021 × 10−2 0.27s
9 1.0595 × 10−5 3.1473 × 10−3 0.84s 1.8742 × 10−5 5.6869 × 10−3 1.02s
12 6.8583 × 10−6 2.0187 × 10−3 4.47s 3.9817 × 10−5 1.1716 × 10−2 4.68s
15 6.5547 × 10−7 1.9285 × 10−4 18.60s 2.8833 × 10−6 8.5696 × 10−4 15.79s
18 1.4502 × 10−7 4.2773 × 10−5 87.00s 2.2777 × 10−6 6.8380 × 10−4 58.78s
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Table 5. Errors of u, v calculated using the barycentric rational collocation methods at t = 1
with m = n = l = 18, d∗x = d∗y = d∗t = 6, and different valsues of R for Example 1.

R ELc
u∞ ELc

v∞ ERc
u∞ ERc

v∞

10 6.4443 × 10−8 3.2138 × 10−9 4.5280 × 10−8 1.4181 × 10−8

50 2.2821 × 10−7 1.8697 × 10−8 1.9123 × 10−6 3.3280 × 10−7

100 1.2155 × 10−6 6.0399 × 10−8 7.2169 × 10−6 8.2106 × 10−7

1000 1.3332 × 10−6 1.1720 × 10−7 1.6033 × 10−6 1.4502 × 10−7

2000 2.9127 × 10−6 1.7987 × 10−7 4.7928 × 10−7 4.5517 × 10−8

5000 9.8039 × 10−8 1.7777 × 10−8 8.4328 × 10−8 8.3866 × 10−9

10000 2.6571 × 10−8 8.1309 × 10−9 2.1664 × 10−8 2.2004 × 10−9

Additionally, to quantitatively assess the convergence order (Co) of the numerical scheme, the
formula Co = log Ei

Ei+1
/log hi

hi+1
is applied to analyze the data presented in Table 3, where Ei represents

the numerical error for the i-th mesh resolution, and hi denotes the maximum stride length of the
partition corresponding to the variables in the i-th mesh. The results indicate that the calculation of this
method is convergent. The CPU times are also given in Table 4, which represent the computational
efficiency of this method, and the results indicate that the computational cost of this method is lower
than that of other methods.

Example 2. We consider Eq (1.1) with exact conditions

u(x, y, t) = 0.25[3 − (1 + exp((−4x + 4y − t)/(32r)))−1],

v(x, y, t) = 0.25[3 + (1 + exp((−4x + 4y − t)/(32r)))−1],

(x, y) ∈ [0, 1] × [0, 1] and t ≥ 0. Furthermore, the initial and boundary conditions are delineated in
accordance with the exact solutions.

The error distribution associated with the barycentric Lagrange collocation method, calculated using
Chebyshev nodes with the parameters m = n = l = 18 and varying values of R, is illustrated in
Figures 5–7 for Example 2. The numerical solutions obtained for R = 10, 20, 50, 200 demonstrate
a high degree of accuracy, making it challenging to differentiate between the exact solutions and the
numerical approximations in the figures, particularly in Figures 5 and 6. In this context, the proposed
algorithm exhibits effective performance for smaller values of R, as indicated by the numerical results.
However, its effectiveness appears to diminish for larger values of R. It is plausible that despite the
initial data being smooth, a solution shock may develop as time progresses. In the event of a solution
shock, it is possible to adjust the number of computational nodes to manage the shock and enhance
the accuracy of the algorithm. To further illustrate the accuracy, the numerical and exact solutions for
R = 500 at t = 1 , with (x, y) ∈ [0, 0.5] × [0, 0.5], are presented in Figure 8.
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Figure 5. Comparison between the numerical and exact solutions at t = 1 with R = 20 and
D : [0, 1] × [0, 1] for Example 2.

Figure 6. Comparison between the numerical and exact solutions at t = 1 with R = 200 and
D : [0, 1] × [0, 1] for Example 2.

Example 3. Here, the 2D Burgers’ equation [14]

vt + v(vx + vy) = r(vxx + vyy) (3.1)

is considered with the exact condition

v(x, y, t) = [1 + exp((x + y − t)/(2r))]−1, (x, y) ∈ [0, 2] × [0, 2], t ≥ 0.

Similarly, the initial condition and boundary conditions are all specified by the given exact solution.
We can bring in a complementary function u(x, y, t) = v(x, y, t), which can transform Eq (3.1) with only
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a single equation and a single unknown function v(x, y, t) into a coupled Burgers’ equation, analogous
to Eq (1.1), and then apply the method proposed in this paper. The corresponding differential matrices
of Burgers’ equation (3.1) can be expressed as

[D(001)
v + diag(v(s−1))(D(100)

v + D(010)
v ) − r(D(200)

v + D(020)
v )]v(s) = 0, s = 1, 2, 3, · · · . (3.2)

Figure 7. Comparison between the numerical and exact solutions at t = 1 with R = 500 and
D : [0, 1] × [0, 1] for Example 2.

Figure 8. Comparison between the numerical and exact solutions at t = 1 with R = 500 and
D : [0, 0.5] × [0, 0.5] for Example 2.
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(a) R = 10 (b) R = 20

(c) R = 40 (d) R = 50

Figure 9. Comparison between the numerical and exact solutions at t = 1 with different R
and D : [0, 2] × [0, 2] for Example 3.

(a) t = 1 (b) t = 1.5

(c) t = 2 (d) t = 2.5

Figure 10. Comparison between the numerical and exact solutions at different t with R = 10
and D : [0, 2] × [0, 2] for Example 3.

The numerical results obtained through the barycentric rational interpolation method, utilizing
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various values of R, are presented in Figure 9. As R increases, the solutions exhibit steeper gradients.
For example, when R = 40, 50, the numerical solutions illustrated in Figure 9(c),(d) exhibit steeper
gradients compared with those shown in Figure 9(a),(b). Additionally, the region where the error
exceeds 10−3 is confined to a small area near the line defined by x + y = t. To further elucidate the
long-term behavior of this scheme, we present the numerical solutions and the corresponding errors
for various values of t in Figure 10. It is apparent that the region characterized by a steep slope shifts
as t increases, reflecting the behavior of the exact solutions depicted in Figure 11.

Figure 11. The exact solutions at t = 1, 1.5, 2, 2.5 with R = 10 and D : [0, 2] × [0, 2] for
Example 3.

(a) R = 50 (b) R = 100

(c) R = 500 (d) R = 1000

Figure 12. The error distribution calculated by the barycentric rational interpolation at t = 1
with m = n = l = 10, d∗x = d∗y = d∗t = 6 for Example 4.
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Example 4. We consider the Eq (3.1) with the exact solution [32]

v(x, y, t) =
2rπ sin(πx + πy) exp(−2rπ2t)
2 + cos(πx + πy) exp(−2rπ2t)

over a domain (x, y) ∈ [0, 1] × [0, 1] and t ≥ 0, with the initial and boundary conditions specified by
the given exact solution.

In contrast to Example 3, the present example demonstrates that even when the value of R is
relatively large and the number of computing nodes is configured to m = n = l = 8, the computational
accuracy of this method remains consistently stable, achieving an accuracy level of up to 10 × 10−6.
To facilitate a clearer understanding of the differences between the numerical and exact solutions, we
present both the exact and numerical solutions for R = 50, 100, 500, 1000 at t = 1 in Figure 12. It is
evident that, despite the relatively large value of R, the solutions remain smooth and devoid of shocks.
The minimal discrepancies observed between the exact and numerical solutions further underscore the
high accuracy of the method.

4. Conclusions

This paper presents an efficient methodology for the numerical solution of a 2D coupled Burgers’
equation. Specifically, the barycentric interpolation collocation method is employed to approximate the
unknown function, while a specially constructed differential matrix is utilized to derive the numerical
solution of the 2D coupled Burgers’ equation. The results from numerical experiments demonstrate the
effectiveness and accuracy of the proposed scheme in solving various instances of Burgers’ equations.
Furthermore, it is shown that the current algorithm can yield satisfactory numerical results for larger
parameter values of R, specifically for R ≥ 1000. It is important to acknowledge that the method
proposed in this article has certain limitations and challenges when calculating the coupled equations
in irregular regions. In the future, we will continue to explore the application of this method for
solving the equations defined in these irregular regions and will conduct further theoretical analyses
of coupled equations, including convergence analysis. Additionally, we plan to extend this method to
tackle equations that have not been investigated in other fields, as well as coupled equations of other
different categories.
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