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Abstract: In this paper, we study the privacy-preserving distributed optimization problem on directed
graphs, aiming to minimize the sum of all agents’ cost functions and protect the sensitive information.
In the distributed optimization problem of directed graphs, agents need to exchange information with
their neighbors to obtain the optimal solution, and this situation may lead to the leakage of privacy
information. By using the state decomposition method, the algorithm ensures that the sensitive infor-
mation of the agent will not be obtained by attackers. Before each iteration, each agent decomposes
their initial state into two sub-states, one sub-state for normal information exchange with other agents,
and the other sub-state is only known to itself and invisible to the outside world. Unlike traditional
optimization algorithms applied to directed graphs, instead of using the push-sum algorithm, we in-
troduce the external input, which can reduce the number of communications between agents and save
communication resources. We prove that in this case, the algorithm can converge to the optimal solu-
tion of the distributed optimization problem. Finally, a numerical simulation is conducted to illustrate
the effectiveness of the proposed method.
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1. Introduction

Distributed optimization, as a core technology for solving large-scale problems in networked sys-
tems, has received widespread attention in recent years. By decomposing the global problem into local
sub-problems of each agent and achieving the overall optimal solution by coordination, its algorithm
design includes gradient descent, dual decomposition technology, and the alternating direction multi-
plier method (ADMM). These methods have been successfully applied in fields such as smart grids,
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communication networks, and machine learning due to their excellent parallelism and convergence
[1–3]. In addition, in order to adapt to dynamic environments, researchers have proposed dynamic con-
sistency optimization methods to cope with changes in network topology and data distribution [4,5]. At
the same time, the scalability and security issues of distributed optimization in large-scale computing
have also become the focus of research [6, 7].

Distributed optimization is widely applied, especially in fields such as energy, machine learning,
healthcare, and communications. In smart grids, it optimizes energy management by distributed re-
source allocation and load scheduling, improving system’s efficiency and resilience [8–11]. In machine
learning, distributed optimization provides parallelization support for large-scale model training, sig-
nificantly improves computing efficiency, and especially shows great potential in the field of federated
learning [12–14]. In addition, medical imaging and diagnostics have also benefited from the intro-
duction of distributed optimization technologies that not only improve data processing capabilities but
also ensure the security of patients’ data with privacy-preserving algorithms [15, 16]. In the field of
the Internet of Things (IoT), distributed optimization technology is widely used in resource allocation
and dynamic routing decisions, providing strong support for efficient communication [17, 18]. The
study of [19] alleviates the network congestion and bandwidth utilization issues caused by the qual-
ity of service queuing mechanism and denial of service attacks by introducing new compression rules,
and develops an intelligent trigger controller supervised by the mini-batch machine learning algorithm.
These application examples fully demonstrate that distributed optimization has wide applicability and
strong theoretical support.

However, the communication characteristics of distributed optimization bring significant privacy
risks, especially in scenarios involving sensitive data such as medical, financial, and user behavior mod-
eling. Differential privacy technology effectively improves the anonymity of data by injecting noise
during the optimization process while minimizing the impact on the model’s performance [20,21]. Ex-
isting research has proven that using differential privacy mechanisms in distributed optimization can
significantly reduce the risk of data leakage while maintaining computational efficiency [22, 23]. The
authors of [24] designed a distributed algorithm based on the direction and state perturbation. This
algorithm achieves differential privacy by perturbing the state variables and directions with attenuated
Laplacian noise. The authors of [25] proposed a new algorithm for decentralized non-convex opti-
mization. This algorithm can simultaneously achieve strict differential privacy and the avoidance of
saddle points/maxima. Some studies also combine local differential privacy and global differential pri-
vacy methods to further optimize the privacy protection effect [26–28]. However, the added noise may
prevent the agents from converging to an exact solution. Homomorphic encryption technology ensures
the security of the entire optimization process by allowing calculations to be performed directly on
encrypted data [29, 30]. The authors of [31] proposed a privacy-preserving decentralized optimization
method based on the alternating direction method of multipliers and partial homomorphic encryption
technology. The authors of [32] proposed a new algorithm through homomorphic encryption technol-
ogy. This algorithm can achieve secure multi-party computation with complete correctness. Compared
with differential privacy, homomorphic encryption has unique advantages in high-security scenarios,
but has the problem of higher computational cost.

In addition to the two methods above, [33] developed a new privacy protection method, namely
state decomposition. The main idea of the state decomposition method is to decompose the state of
each agent into an actual state and a virtual state. The actual state interacts with other agents normally
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to exchange information, while the virtual state is unknown to the outside world, thereby protecting the
real data of the agent from being accessed. This method has been widely used in the field of privacy
protection; for example, [34] proposed a state decomposition method that can privately achieve average
consensus without any trustworthy neighbor agents. Moreover, [35] proposed a privacy-preserving
push-sum method for directed networks. However, when using the push-sum algorithm, each agent
needs to maintain two state values, which will increase the communication overhead. In this paper, on
the basis of the state decomposition method, we study the privacy-preserving distributed optimization
problem on a directed graph. The contributions of this paper are summarized as follows.

1) The privacy-preserving algorithm is proposed, which is based on state decomposition for the
distributed optimization problem on a directed graph. In this algorithm, the initial state of each agent
is decomposed into two sub-states: the actual state and the virtual state. The actual state is used for
information exchange between agents, while the virtual state is only used for internal information
exchange and is unknown to the outside world.

2) Many existing distributed optimization algorithms applied to directed graphs use the push-sum
algorithm. They decompose the state of the agent into two states for iteration, and finally take the ratio
of these two states as the true value. The problem with this is that it will increase the communication
burden of the system, so we did not use the push-sum algorithm, but introduced external input during
the iteration process.

3) We also demonstrate that the algorithm can protect the private information of agents from being
obtained by malicious external eavesdroppers or honest but curious neighbors.

The remaining part of this paper is structured as follows. Section 2 presents some preliminaries.
Section 3 is our main results, where the algorithm is proposed and the proof is given. In Section 4, a
numerical example is illustrated. Finally, a brief conclusion is given in Section 5.

Notations: Let 1d and 0d be the d-dimensional all-one vector and all-zero vector, respectively. Rd

is the set of d-dimensional real numbers. Id and Od denote the d × d-demensional identity matrix and
all-zero matrix, respectively. Given a matrix X, the element located at the i-th row and j-th column of
the matrix is represented by Xi j. We use the notation ρ(A) to stand for the spectral radius of matrix A.
A matrix A is referred to as row-stochastic or column-stochastic when the sum of all elements in each
row or each column amounts to 1, and all the entries of A are non-negative. The symbol ⊗ represents
the Kronecker product, while ∥·∥2 represents the ℓ2-norm.

2. Preliminaries

2.1. Graphs

We consider a directed graph G = (V,E, A) which comprises n agents. Here, V = {1, 2, . . . , n}
stands for the set of agents and E ⊂ V×V represents the set of edges. The adjacency matrix A =

[
ai j

]
indicates the coupling weights, where ai j > 0 if there is an edge from i to j, that is, (i, j) ∈ E, and
ai j = 0 otherwise. When we use ( j, i) ∈ E, it implies that there is a communication link enabling
agent i to transmit information to Agent j. The agents capable of directly sending information to
Agent i are referred to as the in-neighbors of Agent i, and the collection of such agents is denoted as
N−i = { j ∈ V|(i, j) ∈ E}. Likewise, the agents that can directly receive messages from agent i are called
the out-neighbors of Agent i, and the set of these agents is denoted as N+i = { j ∈ V|(i, j) ∈ E}.
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2.2. Problem formulation

Consider an optimization issue within a multiagent system that consists of n agents. Every single
agent possesses a private cost function fi, and this function is known solely to Agent i. The common
objective of all the agents involved is to minimize a global objective function

min
x∈Rd

n∑
i=1

fi(x), (2.1)

where x is the global decision variable.
The subsequent assumptions concerning the objective function and the graph are provided, which

will be utilized for deriving the main results.

Assumption 1. (Connectivity): The directed graph G is strongly connected.

Assumption 2. (Strong convexity): The global objective function, f , is µ-strongly convex, i.e.,

f (x) ⩾ f (y) + ∇ f (y)T (x − y) +
µ

2
∥x − y∥22 ,

for any x and y ∈ Rd, where µ > 0.

Given Assumption 2, Problem (2.1) possesses a sole optimal solution, x∗ ∈ Rd.

Assumption 3. (Smoothness): The gradient of each fi is L-Lipschitz continuous, i.e., for any x and
y ∈ Rd,

∥∇ fi (x) − ∇ fi (y)∥2 ⩽ L∥x − y∥2.

2.3. State decomposition method

(a) Before state decomposition (b) After state decomposition

Figure 1. State decomposition method.
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The state decomposition method was initially proposed in [33]. The core concept of this method is
to decompose the initial state xi,0 of each agent into two sub-states, denoted xαi,0 and xβi,0 respectively,
as shown in Figure 1. The values of the sub-states xαi,0 and xβi,0 can be any real numbers, yet they must
satisfy the equation xαi,0 + xβi,0 = 2xi,0. After decomposition, the sub-state xαi,0 assumes the role that the
original state xi,0 played in the interactions among agents. The other sub-state xβi,0 does not engage
in the information exchange among neighboring agents. Instead, it only communicates with xαi,0. For
instance, consider Agent i in Figure 1(b). In the interactions between agents, xαi behaves exactly like
xi, while xβi is hidden from all agents except Agent i, even though it has an impact on the evolution of
xαi .

3. Main results

Within this part, we put forward a privacy-preserving algorithm for directed graphs via state de-
composition and external input. In addition, we also provide the convergence analysis and privacy
analysis.

3.1. Privacy-preserving algorithm

After the state decomposition, the update equation becomes
xαi,k+1 = aiixαi,k +

∑
j∈N−i

ai jxαj,k + αix
β
i,k,

xβi,k+1 = piix
β
i,k + βixαi,k,

(3.1)

The coupling weights between the two substates xαi,k and xβi,k are not symmetric. They are denoted
αi and βi respectively. The update weight for the substate xβi,k is designated as pii. The weight of the
outgoing link from Agent j to Agent i is represented by ai j.

Definition 1. [36] (Minimal polynomial of a matrix): For matrix P, its minimal polynomial is denoted
as Q(t), which is expressed as Q(t) = tD+1 +

∑D
i=0 ωiti. Here, Q(t) is a monic polynomial. It has the

minimum degree of D+ 1 and satisfies the condition that when we substitute the matrix P into Q(t), we
get Q(P) = 0n. In this polynomial, ωi represents the coefficients.

Definition 2. [36] (Minimal polynomial of a matrix pair): For the object [P, eT
i ], there is an associated

minimal polynomial, which we denote as Qi(t). It is given by the expression Qi(t) = tDi+1 +
∑Di

i=0 ωi, jti =

0, where the coefficients ωi, j belong to the set of real numbers R. This Qi(t) is a monic polynomial.
It has the minimum degree of Di + 1 and fulfills the condition that when we perform the operation
eT

i Qi(P), the result is 0.

On the basis of the analysis of [36], we let xα2k =
[
xαi,1, x

α
i,2, . . . , x

α
i,2k+1

]T
. In addition, we define the

Hankel matrix and the difference vectors as follows:

Γ
{(

xα2k
)T

}
≜


xαi,1 xαi,2 · · · xαi,k+1
xαi,2 xαi,3 · · · xαi,k+2
...

...
. . .

...

xαi,k+1 xαi,k+2 · · · xαi,2k+1

 ,
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x̄α2k ≜
[
xαi,2 − xαi,1, . . . , x

α
i,2k+2 − xαi,2k+1

]T
.

In [36], a distributed termination mechanism was put forward. This mechanism enables all agents
to reach an agreement on when to end their iterations, provided that they have all finished computing
the average. The specific steps are as follows.

1) When start the iteration (3.1), each Agent i simultaneously starts two counters, namely ci and
ri, both initialized to 0. The counter ci increases by one with each passing time step, which can be
expressed as ci,k+1 = ci,k + 1. The subsequent text will elaborate on how the counter ci is updated.

2) Simultaneously with the iteration (3.1), a max-consensus algorithm is also launched, which is
expressed as

θi,k+1 = max
i∈N−i ∪i

{max{θi,k, ci,k}}, (3.2)

with θi,0 = 0. After that, the update rule for ri is as follows:

ri,k+1 =

{
0, if θi,k+1 , θi,k,

ri,k + 1, otherwise.
(3.3)

3) Once the Hankel matrix Γ
{(

x̄αDi

)T
}

loses rank, Agent i records the value of counter ci at that

particular time step, which we denote as k0
i , and names it c0

i . In other words, c0
i is defined as ci[k0

i ].
Subsequently, Agent i halts the increment of the counter, i.e., for all k′ ⩾ k0

i , we have c[k′] = ci[k0
i ] = c0

i .
It should be noted that c0

i = 2(Di + 1) + 1.
4) Agent i is able to terminate the iteration (3.1) as soon as ri reaches the value of c0

i .
We now design Algorithms 1 and 2.

Algorithm 1 A privacy-preserving finite-time algorithm via state decomposition and external input
1: Initialization: Agent i ∈ V initializes the weight value of state variable xi, which needs to satisfy∑

j∈N−i ∪{i}
ai j + αi = 1 and pii + βi = 1.

2: if k = 0 then
3: Run the following iteration and (3.2)(uαi,k and uβi,k are the added external inputs, and their specific

values will be given later in the text), store the vector
(
x̄αDi

)T
, increase the value of the counter ci,k

and determine the value of the counter ri,k via (3.3).
xαi,k+1 =aii

(
xαi,k + uαi,k

)
+

∑
j∈N−i

ai j

(
xαj,k +uαi,k

)
+ αi

(
xβi,k + uβi,k

)
xβi,k+1 =pii

(
xβi,k + uβi,k

)
+ βi

(
xαi,k + uαi,k

) (3.4)

4: Expand the dimension of the Hankel matrix Γ
{(

x̄αDi

)T
}

continuously until reaching the value of k0
i ,

when it becomes rank-deficient. Once this happens, store the value c0
i = 2(Di + 1) + 1.

5: Keep performing iteration (3.4) until the iteration reaches step ki,t, at which point, ri(ki,t) = c0
i .

Then, save the value Dmax = (ki,t − 2Di − 2)/2 − 1.
6: else
7: Run (3.4) for kmax = Dmax + 2 steps.
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8: Calculate the average value as x̂ave
i =

∑n
i=1 xαi +

∑n
i=1 xβi

2n .
9: output: Agent i ∈ V outputs x̂ave

i .

Algorithm 2 A privacy-preserving finite-time based gradient descent (GD) algorithm
1: Initialization: Step size η, maximum optimization iteration number T , Agent i ∈ V initializes the

value xi(0), sets yi,0 = ∇ fi(xi,0), t = 0.
2: for t ⩽ T do
3: Take ∇ fi(xi,t) as the input to Algorithm 1 and obtain the output x̂ave

i . Then, define yi,t = x̂ave
i .

4: Calculate xi,t+1 with yi,t as follows:

xi,t+1 = āiixi,t +
∑
j∈N−i

āi jx j,t − ηyi,t, (3.5)

where A =
[
āi j

]
∈ Rn is row-stochastic.

5: output: Agent i ∈ V obtains the solution x∗.

3.2. Convergence analysis

In this part, we present the proof regarding the convergence and accuracy of Algorithms 1 and 2.
Let xαk = [xα1,k, x

α
2,k, . . . , x

α
n,k]

T be the state vector of sub-agent α, xβk = [xβ1,k, x
β
2,k, . . . , x

β
n,k]

T be the state
vector of sub-agent β, and x′k = [xα1,k, x

α
2,k, . . . , x

α
n,k, x

β
1,k, x

β
2,k, . . . , x

β
n,k]

T ∈ R2n be the overall state vector.
Then each Agent i sets two new auxiliary vectors, si,k = [si1,k, si2,k, . . . , si2n,k]T ∈ R2n, sn+i,k =

[sn+i1,k, sn+i2,k, . . . , sn+i2n,k]T ∈ R2n, with the initial state component si j,0 = 1 if i = j, 0 otherwise.
We choose the same evolution updating rule as Eq (3.1), in which case, the evolutions of these two
variables can be represented as shown below.

si,k+1 = aiisi,k +
∑
j∈N−i

ai js j,k(k) + αisn+i,k

sn+i,k+1 = piisn+i,k + βisi,k

(3.6)

The external input of Agent i is calculated as{
uαi,k = Fα

i,k − Fα
i,k−1

uβi,k = Fβ
i,k − Fβ

i,k−1

with:  Fα
i,k = xαi,0

(
1−2nsii,k

2nsii,k

)
Fβ

i,k = xβi,0
(

1−2nsii,k

2nsii,k

)
and Fα

i,−1 = 0, Fβ
i,−1 = 0.

We now use a lemma to illustrate the convergence of si,k and the specific convergence value.

Lemma 1. [37] Assume that the initial state variable si,0 = [si1,0, si2,0, . . . , si2n,0]T ∈ R2n with si j,0 = 1
if i = j; 0 otherwise. After updating by Eq (3.6), lim

k→∞
si,k = ψ = [ψ1, ψ2, . . . , ψ2n]T , where ψ is

the normalized left eigenvector of the matrix M =

[
M1 M2

M3 M4

]
, with M1 =

[
ai j

]
∈ Rn×n,M2 =
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diag(α1, α2, . . . , αn) ∈ Rn×n, M3 = diag(β1, β2, . . . , βn) ∈ Rn×n,M4 = diag(p11, p22, . . . , pnn) ∈ Rn×n.

And we have lim
k→∞

Mk = (ρ(M))k12nψ
T = 12Nψ

T .

We now use a lemma to illustrate the properties of uαi,k, u
β
i,k.

Lemma 2. [37] For the external inputs uαi,k, u
β
i,k in the system, we have

lim
k→∞

k∑
t=0

ul
i,t = lim

k→∞

k∑
t

(F l
i,t − F l

i,t−1) = lim
k→∞

F l
i,k =

xl
i,0

2nψi
− xl

i,0, l = α, β.

We write the iteration (3.4) in the form of matrices and vectors:

x′k+1 = M(x′k + uk), (3.7)

where uk = [uα1 , u
α
2 , . . . , u

α
N , u

β
1, u

β
2, . . . , u

β
n]T .

Moreover, Equation (3.5) can be rewritten as

xt+1 = Axt − ηyt, (3.8)

where xt =
[
x1,t, x2,t, . . . , xn,t

]T and yt =
[
y1,t, y2,t, . . . , yn,t

]T . Next, we give some necessary lemmas.

Lemma 3. [38] Given Assumption 1, the matrix A possesses a sole non-negative left eigenvector v
(corresponding to the eigenvalue 1) such that vT 1n = n.

Lemma 4. [38] Given Assumptions 1–3, a matrix norm ∥·∥A exists such that σA =
∥∥∥∥A − 1nuT

n

∥∥∥∥
A
< 1,

and σA can be made arbitrarily close to the spectral radius ρ(A − 1nµ
T

n ) < 1.

Now, we give Theorem 1.

Theorem 1. Given Assumptions 1–3, for each Agent i ∈ V,
1) The output of Algorithm 1 is precisely the average of the initial values of all agents. That is, for

every i ∈ V, x̂ave
i =

1
n

n∑
i=1

xi,0.

2) When 0 < η < 1
µ+L , where µ and L are as defined in Assumptions 2 and 3, respectively, Algorithm

2 converges linearly with respect to the number of optimization iterations to the global optimum, i.e.,
∥xt − 1n ⊗ x∗∥2 converges to 0 in a linear fashion.

Proof. (1) Expanding Eq (3.7), we have

x′k+1 =M(x′k + uk)
=M(M(x′k−1 + uk−1)) + Muk

= · · ·

=Mk+1x′0 + Mk+1u0 + Mku1 + · · · + M2uk−1 + Muk

=Mk+1x′0 +
k∑

t=0

Mk+1−tut.

(3.9)
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Let Fk = [Fα
1,k, F

α
2,k, . . . , F

α
N,k, F

β
1,k, F

β
2,k, . . . , F

β
N,k]

T . According to Lemmas 1, 2, we have

lim
k→∞

(M)k+1 = 12nψ
T =

[
ψT , ψT , . . . , ψT

]T
∈ R2n×2n, (3.10)

and

lim
k→∞

k∑
t=0

Mk+1−tut = lim
k→∞

k∑
t=0

ψT ut = ψ
T lim

k→∞
Fk

= ψT [
xα1,0

2nψ1
− xα1,0, . . . ,

xαn,0
2nψn

− xαn,0,
xβ1,0

2nψn+1
− xβ1,0, . . . ,

xβn,0
2nψ2n

− xβn,0]T .

(3.11)

On the basis of Eq (3.11), we can know that when k → ∞,
k∑

t=0
Mk+1−tut is a constant. We use C to

represent it, and thus we have

lim
k→∞

x′k+1 = lim
k→∞

Mk+1x′0 + lim
k→∞

k∑
t=0

Mk+1−tut =
[
ψT , ψT , . . . , ψT

]T
x′0 +C, i.e.

limk→∞



xα1,k+1
...

xαN,k+1

xβ1,k+1
...

xβN,k+1


=


ψ1 · · · ψ2n
...

...
...

ψ1 · · · ψ2n





xα1,0
...

xαn,0
xβ1,0
...

xβn,0


+C,

which can show that lim
k→∞

xαi,k+1 = lim
k→∞

xβi,k+1.
Therefore, we have

lim
k→∞

xαi,k+1 = lim
k→∞

xβi,k+1 = ψ
T x′0 − ψT lim

k→∞
Fk

=
xα1,0
2n
+ · · ·

xαn,0
2n
+

xβ1,0
2n
+ · · ·

xβn,0
2n

=
2(x1,0 + · · · + xn,0)

2n
=

1
n

n∑
i=1

xi,0.

(3.12)

We thus have

x̂ave
i =

∑n
i=1 xαi +

∑n
i=1 xβi

2n
=

1
n

n∑
i=1

xi,0. (3.13)

(2) We write xt = vT xt/n, yt =
1
n

∑n
i=1 ∇ f i

(
xi,t

)
and gt =

1
n

∑n
i=1 ∇ f i(xt). From the analysis above, we

know that at the time of iteration t, each agent can obtain the average gradient at time k via Algorithm
1, i.e., yi,t = ȳt, yt = 1nȳt. Hence, from the iteration (3.8), we can obtain

x̄t+1 − x∗ = x̄t − ηȳt − x∗ = x̄t − ηgt − x∗ − η(ȳt − gt),

xt+1 − 1n x̄t+1 = Axt − ηyt − 1n x̄t + η1nȳt = (A − 1nvT/n)(xt − 1n x̄t).
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If η < 1/(µ + L), we have

||x̄t+1 − x∗||2 ≤ (1 − ηµ)||x̄t − x∗||2 + η||ȳt − gt||

≤ (1 − ηµ)||x̄t − x∗||2 +
ηL
√

n
||xt − 1n x̄t||2.

(3.14)

Moreover, from the result of Lemma 4, we can obtain

||x̄t+1 − x∗||2 ≤ (1 − ηµ)||x̄t − x∗||2 +
ηqL
√

n
||xt − 1n x̄t||A.

Taking Vt = [||x̄t − x∗||2, ||xt − 1n x̄t||A]T , we have

Vt+1 ≤ PVt, (3.15)

where the transition matrix P =
(

1 − ηµ ηqL/
√

n
0 σA

)
.

Since 0 < 1 − ηµ < 1 and 0 < σA < 1, we can see that the spectral radius of P is strictly smaller
than 1 and therefore ||xt − 1n ⊗ x∗||2 converges to zero linearly. □

Remark 1. The algorithm we proposed can achieve the optimal solution to the distributed optimiza-
tion problem. It can be seen that, unlike the push-sum algorithm, where each agent needs to maintain
two states and exchange more information during the process of information exchange with neigh-
boring agents, our algorithm requires less information to be exchanged, which obviously reduces the
communication cost.

3.3. Privacy analysis

In this part, we provide a detailed privacy analysis of Algorithm 1 in terms of how it can resist
“attacks” from curious agents (in the network) and eavesdroppers (outside the network). First, we give
detailed descriptions of curious and eavesdropping attack models [25].

1) Honest-but-curious attacks refer to situations where one or more participating agents (whether
they collude or not) accurately adhere to every step of the protocol. Nevertheless, they are inquisitive
and gather all the received intermediate data with the intention of uncovering sensitive information
about other participating agents.

2) Eavesdropping attacks are carried out by an adversary who manages to gain access to the infor-
mation shared with other agents by infiltrating all the communication channels. Consequently, eaves-
droppers are aware of the network’s topology and all the data shared within the network. However, the
state variables that are not shared will not become known to them.

Similar to the analysis in [36], we define ∆IA(xp,i) = {x̄p,i|IA(0 : K)}; this set encompasses all the
possible states associated with xp,i when the information set accessible toA is IA(0 : K).

The diameter of ∆IA(xp,i) is defined as

Diam{∆IA(xp,i)} = sup
x̄p,i,x̄′p,i∈∆IA(xp,i)

|x̄p,i − x̄′p,i|,

where x̄p,i and x̄′p,i are two disparate states which are part of the set ∆IA(xp,i).
Now, we present Theorem 2 in the following paragraphs.
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Theorem 2. Given Assumption 1, for every Agent i ∈ V, the privacy of Agent i can be preserved under
Algorithm 1:

(1) For a set of honest-but-curious agents N , as long as at least one neighbor of Agent i is not in
the set N , the privacy information of Agent i can be protected from being obtained by the set N .

(2) For an eavesdropper R, if there is an edge εmi or ε ji that the eavesdropper R cannot eavesdrop
on, then the privacy information of Agent i can be protected from being obtained by the eavesdropper
R.

Proof. Since, under Algorithm 1, the maximum communication round equals k1, the information set
IN (0 : k1) and IR(0 : k1) denote all the information accessible to the adversary. From Algorithm 2, it
can be seen that the private information ∇ fi(xi,t),∀t ≥ 0 is regarded as the input of Algorithm 1. Thus,
it is enough to demonstrate that the privacy of the initial value xi,0 of Agent i can be preserved under
Algorithm 1.

(1) We use a method similar to that in [33] to prove that honest-but-curious neighbors cannot dis-
tinguish any changes in the neighbor’s initial value. More specifically, under the following initial
condition:

x̂αi,0 = xαi,0, x̂
β
i,0 = xβi,0 + 2∆,

x̂αm,0 = xαm,0, x̂
β
m,0 = xβm,0 − 2∆,

x̂αr,0 = xαr,0, x̂
β
r,0 = xβr,0.

(3.16)

We set the following weights:

âii = âii, âi j = ai j, âim = aim, α̂i =
αi(xβi,0 + uβi,0)

xβi,0 + uβi,0 + 2∆
,

âmm = amm, âmi = ami, âm j = am j, α̂m =
αm(xβm,0 + uβm,0)

xβm,0 + uβm,0 − 2∆
,

p̂ii =
pii(xβi,0 + uβi,0)

2∆ + xβi,0 + uβi,0
, p̂mm =

pmm(xβm,0 + uβm,0)

xβm,0 + uβm,0 − 2∆
,

β̂i = βi, β̂m = βm, ârr = arr, ârq = arq, α̂r = αr, p̂rr = prr, β̂r = βr,

where r ∈ V\{i,m}, q ∈ V, ∆ is an arbitrary real number, and “\” represents set subtraction. The
external input ul

i,k, l = α, β is invariant for i ∈ V, it can be easily verified that x̂αi,1 = xαi,1, x̂
α
m,1 = xαm,1.

Moreover, due to the weight values remaining identical for k ⩾ 1, it is easy to see that the updates
of all agents are same, namely, x̂αi,k = xαi,k, i ∈ V. Thus, the information received by Agent j remains
consistent even when the real initial state of Agent i changes. We now have

Diam(∆i(IN (0 : k1))) ≥ sup
∆∈R

|xi,0 − (xi,0 + ∆)| = ∞.

From the definition in [36], we have proved the first statement.
(2) For the second statement, because of the topological limitations, the eavesdropper R is unable

to eavesdrop on εmi or εim, where m ∈ N+i or m ∈ N−i , i.e., ami or aim, is inaccessible to R. Moreover,
since the self-weights aii, amm are not transmitted over the communication network, the eavesdropper
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R can not obtain any information of aim, amm or ami, aii. Subsequently, in a similar vein to the proof of
the first statement, we have Diam(∆i(IN (0 : k1))) = ∞, i.e., the privacy of xi,0 is preserved.

□

Remark 2. The state decomposition method we proposed enhances the privacy protection ability of
distributed optimization on directed graphs, but it may also fail under certain circumstances. One
potential vulnerability arises when adversaries possess highly correlated auxiliary data, which could
enable inference attacks. Additionally, if an attacker continuously observes multiple decomposed states
over time, they may reconstruct sensitive information through statistical analysis. Of course, the prob-
ability of this situation occurring is extremely low. To mitigate these risks, incorporating differential
privacy mechanisms or applying obfuscation techniques to the decomposed states could enhance ro-
bustness. Future research will explore these strategies to further strengthen privacy guarantees in
adversarial environments.

4. Numerical example

In this part, we validate the convergence and privacy of the proposed algorithm by exemplary sim-
ulations. Consider a directed graph consisting of five agents, that is, n = 5, as shown in Figure 2.
The task of each agent is to find the nearest gathering point x∗ by cooperating with other agents with-
out exposing her/his initial position pi,∀i ∈ V. The objective function of Agent i is described by
fi(x) = 1

2 ∥x − pi∥
2
2, i.e.,

min f (x) =
1
n

n∑
i=1

fi(x) =
1
5

5∑
i=1

1
2
∥x − pi∥

2
2.

Figure 2. Digraph of five agents.

We suppose that the initial state values of the agents are x1,0 = 10, x2,0 = 20, x3,0 = 30, x4,0 = 40,
and x5,0 = 50, and select the weight values between the agents reasonably.

The variation in the variable xk =
[
x1,k, x2,k, . . . , x5,k

]T with respect to the iteration k is shown in
Figure 3. It is observable that, with regard to these five agents, by applying Algorithms 1 and 2, xk is
capable of converging to the optimal solution x∗ successfully.

In addition, we need to prove that our algorithm can successfully save communication resources
compared with algorithms like the one using push-sum in [36]. We record the amount of data that
Agent 1 needs to send to their neighbors throughout the iteration process. As shown in Figure 4, the
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amount of data our algorithm needs to send during the iteration is lower. The same applies to other
agents. This fully demonstrates that our algorithm can successfully save communication resources.

0 40 80 120 160 200
Iteration step

0

10

20

30

40

50
||x

k
1 n

x
* |

| 2
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Figure 3. The variation in ∥xk − 1n ⊗ x∗∥2 with respect to the iteration k.
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Figure 4. Record of the amount of data.

In the end, we assume that there is an eavesdropper that wants to obtain the information of Agent
1, where z1,k represents the information of Agent 1 obtained by the eavesdropper. When the privacy-
preserving algorithm is not used, the result is shown in Figure 5(a). Although the convergence effect
can eventually be achieved, the eavesdropper can successfully obtain the information of Agent 1. After
using Algorithm 1, the convergence situation is shown in Figure 5(b). It is observable that not only
can it converge, but the eavesdropper cannot steal the initial value information of Agent 1, and thus the
privacy of Agent 1 is protected.
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(a) The observed result without privacy-preserving theory
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(b) The observed result under our algorithm

Figure 5. The observation results of external eavesdroppers.

5. Conclusions

In this paper, we proposed a novel privacy-preserving distributed optimization algorithm for di-
rected graphs. By leveraging a state decomposition method, our approach ensures the protection of
sensitive information while enabling agents to collaboratively minimize the sum of cost functions.
Unlike traditional methods, the introduction of external inputs effectively reduces the communication
overhead, enhancing efficiency without compromising convergence to the optimal solution. Numerical
simulations demonstrate the effectiveness and practicality of the proposed method, confirming its po-
tential for addressing privacy concerns in distributed optimization problems on directed graphs. Future
work involves enhancing the optimization accuracy and addressing constrained optimization problems.
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