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Abstract: Let ¢(z) = z¢ + ¢ be a polynomial over a field K. We study the inverse stability of ¢(z) over
K. In this paper, we establish some sufficient conditions for the inverse stability of ¢(z) over the field of
rational numbers and a function field. Furthermore, we also provide necessary and sufficient conditions
for the inverse stability of ¢(z) over a finite field.
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1. Introduction

Arithmetic dynamics focuses on number-theoretic and algebraic-geometric problems arising from
iteration. Let K be a field. A polynomial ¢(z) € K|[z] is said to be stable if all its iterates are irreducible
over K. This concept originated in 1985 with R-W.K. Odoni [1], who used the Chebotarev density
theorem to provide an asymptotic estimate for the number of prime divisors in the sequence defined
by a,.1 = ¢(a,), with a; = 2 and ¢(x) = x> — x + 1 € Z[x]. The application of the Chebotarev
density theorem requires studying the Galois groups of iterated polynomials, which in turn necessitates
understanding the reducibility of polynomial iterates.

Subsequently, the concept of stability has been extensively developed by numerous researchers. For
instance, the stability of quadratic polynomials (see, e.g., [2-5]), binomial polynomials (see, e.g., [6-8]),
trinomial polynomials [9], Eisenstein polynomials [10], and the estimation of the number of stable
polynomials over finite fields have all been studied extensively (see, e.g., [3,11,12]).

In 2017, R. Jones and L. Alon generalized the concept of polynomial stability to eventual stability,
and they also gave some applications of eventual stability. We refer the reader to [13] for more details.

Recently, in 2024, K. Cheng [14] introduced a related concept called inversely stable polynomials
(see Definition 2.1). Cheng demonstrated that a polynomial ¢(z) = z” + az + b € FF,[z] is inversely stable
over F, if and only if a = —1 and b # 0.

Moreover, it is straightforward to verify that if ¢(z) € K[z] is inversely stable over K, then (%, 00) is
eventually stable over K.
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In arithmetic dynamics, the iterative behavior of binomial polynomials is an important topic. For
example, it is closely related to problems such as the finiteness of primitive prime divisors in orbits
generated by binomial polynomials (see [15]), height estimates for binomial polynomials (see [16]),
and the existence of rational periodic points of binomial polynomials (see [17], Theorem 4).

In this paper, we establish some sufficient conditions for the binomial polynomial ¢(z) = z¢ + ¢ to
be inversely stable over the rational number field and function fields. Furthermore, we also provide
necessary and sufficient conditions for the inverse stability of ¢(z) over a finite field.

2. Main results

We employ norm maps to reduce problems over larger fields to base fields. By using properties of
unique factorization domains, the abc theorem for function fields, and character sum theory over finite
fields, we provide characterizations of inverse stability for binomial polynomials over three types of
fields. In this section, we shall formally state these results.

Definition 2.1. Let K be a field and ¢(z) € K|z]. Define ®(z) := % € K(z). For n € N*, let the n-th
iterate of ®(z) be defined as ®"(z) = Do D o --- o D(z). We express the ®"(z) in its reduced form as
| S——

n times

d"(7) = %, where f, 4(z) and g, 4(z) are coprime polynomials in K[z]. A polynomial ¢(z) € K|z] is

called inversely stable over K if g, 4(z) is irreducible over K for each n € N*.

Theorem 2.2. Let R be a unique factorization domain, and let U(R) denote the unit group of R. Let
d € N* withd > 2, and suppose ¢ ¢ uR? for all primes p | d and u € U(R). Let K be the fraction field of
R. If the polynomial ¢(z) = 2% + ¢ € R[z] is irreducible over K, then ¢(2) is inversely stable over K.

Corollary 2.3. Letd € N* withd > 2. Let ¢ € Z and ¢(z) = 7% + ¢ be irreducible over Q. Then ¢(z) is
inversely stable over Q if

(i) d is odd, or
(ii) d is even and c is not a square of an integer.

Remark 1. 1) Corollary 2.3 implies that there are infinitely many inverse stable polynomials ¢(z)
over Q, which thereby induce a family of eventually stable rational maps (%, oo) . Therefore,
Corollary 2.3 provides data support for the “Everywhere Eventual Stability Conjecture” ( refer

to [13] for details).
2) Let S be a finite set of places of the rational number field Q containing the archimedean place.
Let ¢(z) = 7% + ¢ € Z[z] be an irreducible polynomial over Q with d > 2. Let ®(z) = ﬁ. Suppose

that either d is odd, or d is even and c is not a square of an integer. By Theorem 3.1 of [13]
and Corollary 2.3, we obtain that for every y € PY(Q) that is not preperiodic under @, the set
Os,, N Oy (o) is finite, where Os ,, is the ring of S -integers relative to 'y, and Og(co) denotes the
backward orbit of oo under ®.

When KX is a rational function field, we obtain the following results.

Theorem 2.4. Let K = F(t) be the rational function field in one variable over a field F of characteristic
0.Letd > 3, and let c € R = F[t] with ¢ ¢ F. Suppose ¢(2) = z% + c is irreducible over K. Then ¢(2) is
inversely stable over K.
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Before stating our results concerning inverse stability over finite fields, we recall the definition of
m-free.

Definition 2.5. ( [18], Definition 5.1) Let F, be a finite field of ¢ elements and let m be a positive
integer such that m | g — 1. We say that an elelment @ € [} is m-free if the equality @ = B¢ with B € F,,
for any divisor d of m, implies d = 1.

In this paper, we also provide necessary and sufficient conditions for the inverse stability of ¢(z) over
a finite field.

Theorem 2.6. Let K = F, be a finite field of q elements. Let ¢(z) = 2 + ¢ € K[z], where d > 2. Suppose
that ¢(z) is irreducible over K. Define the sequence:

2
xi=c¢, x=(C=DUc""+1), x40 = (—l)dcx;f+1 + xi , neN*,

Then ¢(z) is inversely stable over K if and only if = is rad(d)-free for every n € N*, where rad(d) =
[T p

pld,
p is a prime

Corollary 2.7. Let p = 2% + 1 be a Fermat prime and d = 2*~',n > 2. Then there are at least
2%'-3 — 22722 distinct values of ¢ € F, such that z* + ¢ is inversely stable over F,,.

Remark 2. Constructing a family of irreducible polynomials over finite fields is an important topic in
the area of finite fields (see [14]). Note that if ¢(z) is inversely stable over F,, then g, 4(z) is irreducible
over F, for each n € N*. Therefore, Corollary 2.7 has constructed a family of irreducible polynomials for
each inversely stable polynomial x* +c over F,, where p = 2*' +1 is a Fermat prime and d = 2*~',n > 2.

This paper is organized as follows: In Section 3, we shall give the proof of Theorem 2.2. In Section
4, we shall give the proof of Theorem 2.4. In Section 5, we shall give the proof of Theorem 2.6 and
Corollary 2.7.

3. Proofs of theorem 2.2 and corollary 2.3

In this section, we give the proofs of Theorem 2.2 and Corollary 2.3. First, we shall prove some
lemmas that will be used in the proofs of our main results. Let K be a field. A rational function
o(z) = {g% € K(z) is a quotient of polynomials f(z), g(z) € K[z] with no common factors. The degree of
¢ is deg ¢ = max{deg f, deg g}. The rational function ¢ of degree d induces a rational map (morphism)

of the projective space P'(K),
¢ P'(K) — P'(K). (X : YD) = [YIfX/Y): Yig(X/ D).

A point P € P'(K) is said to be periodic under ¢ if ¢"(P) = P for some n > 1.

Lemma 3.1. Let d € N*, and let K be a field such that char(K) = 0 or char(K) > 0 with char(K)
prime to d. Consider the polynomial ¢(z) = z% + ¢ € K[z],c # 0 and define the rational function

D(z) := ﬁ € K(z). For each n € N*, denote the n-th iterate of ® by ®"(z) = %, where f, 4(z) and

8n6(2) € K[z] are coprime polynomials. If oo = [1 : 0] € P'(K) is not periodic under ®(z), then for any
n € N*, the degree of g, 4(2) is d".
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Proof. Note that the map ®” : P'(K) — P'(K) is given by

O"(X : Y] = [Ygfn,rb()_;) : Yeg”"l’(%()] ’

where e = deg @™ (7).
It follows that @™ ([e : 1]) = [ £,4(e) : gue(e)]. and hence

®“([a : 1]) = 0o if and only if gno(@) = 0.
By assumption we have oo ¢ (®™)~!(c0) for any n € N*. Thus, forn > 1,
(@) (00) = {[a: 1] € P'(K) | D" ([a : 1]) = oo}.

Thus,
(@) (00) = {[a : 1] € P(K) | gngla) = O).

Next, we prove that #®™) ! (c0) = d".

Since ®([X : Y]) = [Y? : X? + cY?], we have ®(c0) = [0 : 1] and ®([0 : 1]) = [1 : ¢]. Since
oo ¢ (P™)~!(co) for all n, neither [0 : 1] nor [1 : c] belongs to (®™)~!(co).

For any P = [1 : ] € P'(K), we have

O(X:Y) =P ifandonlyif [¥*:X+cy!|=[1:1],

d
which simplifies to (£)" + ¢ — 7 = 0. Therefore, if t # c, it follows that #~(P) = d.
Hence, for any i € N*, we have

(@) )| =d and |(@0) (o) = a|(@?) " (o)

It follows that |((I)”)_1 (00)| = d". Thus, g, has d" distinct roots in K. Combining this result with
deg(gne) < d", we conclude that deg(g, ») = d" for any n € N*. O

Lemma 3.2. Let F be a field, and let f(2) = 74 + m € F[z] be an irreducible polynomial. Denote by F
the algebraic closure of F, and let y € F be a root of f(z). Let a,b, e, t € F with ae # 0. We denote by
Nry)r the norm map associated with the field extension F(y)/F. Then

ay+b b + (=1)¢ma’
NrwF = T d
ey +t t“ + (=1)%me
Proof. The conjugates of g—:f are % fori = 1,2,...,d, where y,,7a,...,ys € F are the roots of

f(z) = z% + m. Hence, we have

ay+b d ay;+b
N = —.
F(WF(ey+t) l;ley,-+t
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d
Using the fact that f(z) = [[(z — y;), we obtain
i=1

d d
[ Jtayi+ ) =a'-1y'm+b, [ |evi+n=e-1)ym+1r.

i=1 i=1

Therefore,

N ay+b\ b+ (=1)'ma’
FOM oy 41 ]~ 1 4+ (=1)dme?”

This completes the proof. m|

Lemma 3.3. Let R be a unique factorization domain and let U(R) denote the unit group of R. Let ¢ € R
and ¢ ¢ U(R) U{0}. Let d € N* with d > 2. Define a sequence of matrices {Aj}js1 in My(R) by the

following relations:
x| e -1
S SRR

A = Xirl  Yj+1 _ (—l)dcxf;+y? (_1)d+1x?
! (—l)dcz?+w5? (_1)d+1z;l .

and for j > 1,

Zj+rl Wit
Then the following statements hold:

(1) Foralln > 1, x,,, = (_l)dcx;]_,_l + xzza ng(xn+l’ Xn) = 1,251 = (_l)dxn-

(ii) Foralln > 1, ¢ | xp-1, ¢ | (xay — (=1)%), ged (22, ¢) = 1.

(111) If ¢ ¢ uR? for all primes p|d and u € U(R), then for alln > 1,

Xou—1 € uR?  for all primes p|d and u € U(R).

(iv) oo is not periodic under ®(z) = = if and only if x,, # 0 forall n > 1.

T d4c

(v) Assume that oo is not periodic under the map ®(z) = Z%ﬂ If ¢ ¢ uR? for all primes p | d and

u € U(R), then for all n > 1, we have 2 ¢ +KP for all primes p | d, where K is the fraction field
of R.

Proof. (1) and (ii) are trivial from the definition.
(iii). Assume that x,,_; = ulrf ' for some u; € U(R), r; € R, and prime p; | d. Then, we have

Xon-1
c- =
cuy

By (i1), we know that ¢ and "CZ"T;‘ are coprime elements in R. It follows that ¢ can be written as ¢ = uzrg '
where u, € U(R) and r, € R. This contradicts the assumption.

(iv). Define the sequences {a,},cn+ and {b, },cn+ in R as follows:

d d d
ar=0, b =1, au=0b,, by =a,+ch,.
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Then, @™ (c0) = [a, : b,].
Now, observe that
b =cbl  +b% by =1,by=c.

It is obvious that x,,_; = by, X2, = (=1)?bs,,1. Hence, oo is not periodic under @ if and only if x, # 0
foralln > 1.

(v). Assume % € +K? for some prime p | d. Since gcd(x,+1, x,) = 1, it follows that there exist
us, us € UR) such that Xn1 € uzR? and x, € uyR?. By (iii), this is impossible. O

Lemma 3.4. ([19], Theorem 8.1.6.) Let K be a field, d > 2 an integer, and a € K. The polynomial
X? + a is irreducible over K if and only if a ¢ —K? for all primes p dividing d, and a ¢ 4K* whenever
41d.

With the above preparations, we can now prove Theorem 2.2.
Proof of Theorem 2.2.

Proof. Let the sequence {x,},cn- be defined in Lemma 3.3.
Claim 1: oo is not periodic under .
If —c € K%, then z¢ + ¢ = 7% — (=c) is reducible over K. Therefore, —c ¢ K“.

d
It is clear that x; = ¢ # 0 and x, = (—=1)%(c?*! + 1) # 0; otherwise, we would have —c = (%) e K¢,
which contradicts the assumption —c ¢ K¢.

d
1
i ) € K?. This contradicts the assumption

Xn+1

Assume x, # 0 and x,,; # 0. If x,,»b =0, then —c = (—

—c ¢ K?. Hence, x, # 0 for all n € N*.

By Lemma 3.3 (iv), oo is not periodic under ®. This completes the proof of Claim 1.

Let {Q;};>1 be a sequence in P!(K) such that D(Qy) = oo and O(Q;,1) = O; for alli > 1. Since oo is
not periodic under @, and ®(co0) = [0 : 1], we can express each Q; as Q; = [B; : 1], where §; € K and
Bi # 0 for all i € N*. Thus, we have

BB = 0.0(Bis) = =i > 1.
Bi
It is obvious that 3, is a root of the polynomial g, 4(2).
Claim 2: 77 + ¢ - ﬁi is irreducible over K(3,) for every n > 1.
We shall prove this claim by induction on n.
By Lemma 3.2, we have

X2
=(-1)94=,
- ( )x1

Cﬁl—l)_ Cd_*'1 +1
B

where x; and x, are as defined in Lemma 3.3.
By Lemma 3.3 (v), we deduce that (—1)¢ i—f ¢ +K? for all primes p | d, and hence

Cﬁl -1
B

Obviously, if 4|d and ‘ﬂ 1= € 4K(B;)*, then ‘ﬁ =~ ¢ K(B81)* and (- l)d X ¢ K?, which also contradicts
Lemma 3.3 (v). So ‘ﬁ] 95 4K(B;)*, when 4/d. By Lemma 3.4, Claim 2 holds forn=1.

Nk (

¢ —K(B,)" forall primes p | d.
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Therefore, [K(B;) : K(B1)] =d.

Assume that [K(5;) : K(B;-1)] = d for each 2 < i < n. We will prove that [K(8,+1) : K(B8,)] = d. This
means that we will prove that z¢ + ¢ — BLn is irreducible over the field K(8,).

Based on the inductive hypothesis, we know that z¢ + ¢ — ﬁij is irreducible over the field K(B;) for
each jwith1 < j<n-1.Givenafixed jwithl < j<n-1.SetF = K(B)),y = Bj+1, f(2) = zd+c—,8ij.
Then K(Bj.1) = K(B;)(B+1) = F(Bj:1). Therefore, for any [ > 1, we have

N (xzﬂj+1+yz) - N (xn'+y1)
K@)/ KBD\gBimi+wi) — Y EWIF \ yrw,
d A1
Lemma32 Yi+(=D (67,87))(11)v
- w;1+(—1)d(c—ﬁij)z;’
_ xl+1ﬁj+yl+l
Z+1Bjrwier

where x;, y;, z;, and w; are defined in Lemma 3.3.
This implies that

XiBu+y1\ _ XBu1+
Nk@,)/KB,-1)

21Bn + Wi 20fn-1 + wy

N (Xzﬂn—l + }’2) _ X3Bu2 s
K(ﬁnf )/K(ﬁnf ) - P}

1 \zBu-1 + w2 23fn—2 + W3

xn—lﬁZ + Yn-1 ) _ xmBI + Yn
Zn—l,BZ + Wyt Znﬁl + Wy

By Lemma 3.2 and the fact that ¢(z) = z¢ + c is irreducible over K, we obtain

Nk@,) k) (

xnﬁl + Yn Xn+1 dXn+1
N = = (-1 —.
Ko (Znﬁl + Wn) Zn+1 ( ) Xn
So,
xX1Bn + )1 dXn+1
N — | = (-1 —.
K(Bn)/K(Zlﬁn n Wl) (=1 .
Finally, by Lemma 3.3 (v), we conclude that
1 xl:Bn + Vi .
c——=——"—¢-K(B," forall primes pl|d,
ﬂn Zlﬁn + W (,8 P P
and

1
c— ,8_ ¢ 4[((,8,1)4 whenever 4|d.

From Lemma 3.4, we deduce that z¢ + ¢ — ﬁi is irreducible over the field K(8,). This completes the
proof of Claim 2.

Therefore, [K(B,) : K] = d" for any n € N*. Since 3, is a root of g, 4 and, by Lemma 3.1, we have
deg(gn4) = d", it follows that g, 4 is irreducible over K for all n € N*. O

Proof of Corollary 2.3.

Proof. Let R = Z. Since ¢(z) = z% + ¢ € R[z] is irreducible, it follows that ¢ ¢ —R” for any prime p
dividing d. When p is odd, it is clear that —R” = R”. Note that U(R) = {+1}. We obtain Corollary 2.3 by
Theorem 2.2. O
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4. Proof of Theorem 2.4.

The following important results will be used in the proof of Theorem 2.4.

Lemma 4.1. ( [20], Theorem 7.1) Let K be a field with characteristic 0, and let K be its algebraic
closure. For a polynomial f(¢) € K[t], define ny(f) to be the number of distinct roots of f in K. Let
a(t), b(t), c(t) € K[t] be polynomials that are relatively prime, such that a(¢) + b(t) = c¢(¢), and not all of
them have vanishing derivatives. Then, we have the inequality

max{deg(a),deg(b),deg(c)} < no(a(t)b(t)c(t)) — 1.
Proof of Theorem 2.4.
Proof. Define the sequence {x,},cn- by:
x1=¢ x= (DU + 1), Xpo = (D exd, +x8, 0> 1. (4.1)

This sequence is consistent with the sequence {x,},cn+ described in Lemma 3.3.
For any n € N*, we have the following degree formula:

n

1
4.2

—— deg(©). (4.2)
where deg(c) denotes the degree of c(r) viewed as a polynomial in ¢.

We first prove the following claim.

Claim: x,, ¢ uR? forany n > 1, u € U(R) and any prime p dividing d.

We first prove the claim holds for x,. Suppose that there exist u € U(R), z € R, and a prime p | d
such that

deg(xn) =

(=D + 1) = uz”. (4.3)

Since ¢ ¢ F, c is a non-constant polynomial in F[¢]. Taking degrees on both sides of (4.3), we obtain

(d + 1)deg(c) = pdeg(2). (4.4)
Next, we define
g= i(—l)dcd“ and h= %(—1)5’. 4.5)
By (4.3) and (4.5), we have
g+h=27" (4.6)

Note that g, &, and z are pairwise coprime, and not all of them have vanishing derivatives. Applying
Lemma 4.1 to (4.6), we obtain the inequality

(d + 1)deg(c) = max{deg(g), deg(h), deg(z")} < no(ghz’) — 1.

By (4.4), we have
no(ghz’) = no(g) + no(h) + no(z”)
= np(c™1) + 0 + ny(2)
< deg(c) + deg(z)
< deg(c) + % deg(c).
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Hence, we obtain

1
(d+ 1) deg(c) < no(ghe) — 1 < deg(c) +

deg(c).

Thus, we obtain d < % This contradicts to p > 2. Therefore, the claim holds for x,.
Next, we prove the claim holds for each x,,,n > 2. Suppose that there exist k € N*, u € U(R), zx € R,
and a prime p | d such that

Xor2 = UZL. 4.7)
We then define
1 d..d 1 »
8k = ;(—1) cxy; and g = — Xk (4.8)
From (4.1), (4.2), (4.7) and (4.8), we have deg(g;) > 1, deg(h;) > 1, deg(z) > 1, and
gk +hy =z (4.9)
By Lemma 3.3 (i) and (ii), we have

gcd(xy,c) =1 and  ged(xok, xpr41) = 1. (4.10)

In light of (4.8)—(4.10), we obtain that g, /i, and z; are pairwise coprime. Applying Lemma 4.1 on
(4.9), we obtain the following inequality:

deg(gy) + deg(hy) + deg(z}) < 3 (mo(geiuzl) — 1)

(4.11)
= 3 (no(gr) + no(hi) + no(ze) — 1)
By Lemma 3.3 (ii), we have gcd (c, XLC”) = 1. Thus,
no(g) = no(™) + ny ((xzf,“ )d)
= ny(c) + ng (x2k+l) < deg(c) + deg (xzfl) (4.12)
= deg (1),
Additionally, we have
no(h) = no(xar) = deg(xz), and no(zx) < deg(z). (4.13)
Combining (4.11)—(4.13) yields
(d — 3) deg(xys1) + (d° — 3) deg(x) + (p — 3) deg(z) + 4 < 0. (4.14)

If d is odd, this inequality leads to a contradiction since p|d. Therefore, it is sufficient to consider the
case where d is even and p = 2.
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Applying Lemma 4.1 again yields the inequality:
pdeg(z) = deg(z}) < deg(xor1) + deg(x) + deg(zy) — 1. (4.15)
Combining inequalities (4.14) and (4.15) with p = 2, we obtain:
(d — 4) deg(xpr1) + (@ — 4) deg(xy) + 5 < 0,

which is a contradiction. Thus, the claim is proved.

We can similarly prove that co is not periodic under ®(z) = ¢le) as in claim 1 of the proof of the
Theorem 2.2.

Let {Q,},>1 be a sequence in P!(K) such that O(Q;) = o and ®(Q,,1) = O, forall n > 1. Since oo
is not periodic under ®, and ®(c0) = [0 : 1], we can express each O, as Q, = [B, : 1], where 5, € K
and B8, # 0 for all n > 1. Thus, we have ¢(B;) = 0,d(B,11) = BLn and S, is a root of the polynomial
gno(2),n > 1.

Since F[t] is a UFD and gecd(x,, x,+1) = 1, applying the above claim, one can show that (—1)‘”;—+1 ¢

+KP for all n € N* and any prime p | d. Similarly, we can show that z¢ + ¢ — L is irreducible over K(8,)

for every n > 1 as in Claim 2 of the proof of Theorem 2.2. g

Therefore, [K(B,) : K] = d" for any n € N*. Since §3, is a root of g, 4 and, by Lemma 3.1, we
have deg(g,) = d", it follows that g, 4 is irreducible over K for all n > 1. Hence, ¢(z) is inversely
stable over K. O

5. Proofs of theorem 2.6 and corollary 2.7

The following two lemmas will be used in the proof of Theorem 2.6.

Lemma 5.1. ( [7], Proposition 2.3) Let d > 2 be an integer and b € F,. Then the binomial x—bis
irreducible in F,[x] if and only if the following conditions are satisfied:

(1) rad(d)l(g — 1);
(i1) b is rad(d)-free;
(iii) g =1 (mod 4) if d = 0 (mod 4).

Lemma 5.2. ( [7], Corollary 2.8) Let d > 2 be an integer such that rad(d)|(g — 1). Then an element
a € Fy is rad(d)-free if and only if Ny, (a) is rad(d)-free in F,.

Proof of Theorem 2.6.
Proof. Since ¢(z) is irreducible over F,, by Lemma 5.1, we have
() rad(d) [ ¢ - 1;
(i1) —c is rad(d)-free;

(i) g =1 (mod 4) if d =0 (mod 4).
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We now define a matrix sequence {A;} ;> in the finite field F,, analogous to that in Lemma 3.3, with
the same recurrence relation and initial values. We can similarly prove that oo is not periodic under
D(z) = ¢( 5 as in claim 1 of the proof of Theorem 2.2.

Let {Q,}.>1 be a sequence in P'(K) such that O(Qy) = coand ®(Q,,1) = O, forall n > 1. Since oo
is not periodic under @, and ®(c0) = [0 : 1], we can express each O, as O, = [B, : 1], where 5, € K
and B8, # O for all n > 1. Thus, we have ¢(B;) = 0,d(B,11) = ﬁln and S, is a root of the polynomial
gn,d)(z)’n > 1

Proof of necessity. Assume that ¢(z) is inversely stable over K. Hence g, is irreducible and so
[K(B,) : K] =d", [K(Bp1) : K(B,)] =dforalln > 1,and [K(8)) : K] =d.

It is easy to see that 77 + ¢ — ﬁi is irreducible over K(B,) for all n > 1,
d+1

By Lemma 3.2, we have NK(ﬁl)/K( PBr- ) (- 1)‘“ - X Hence is rad(d)-free by Lemmas 5.1
and 5.2.
We can similarly prove that

X18n +y1) - (- 1)d-xn+l

Nkg,/x (
1B + Wi

Xn

as that in the proof of Theorem 2.2. Note that

l_C:_thn + Yy
ﬁn Zlﬁn‘l'wl‘

Hence

1 X1B, + 1 an 4 Xn+1 Xn+1
N - = N —_ = —1 _1 - = X
KBa)/K ( z, C) K@)/K( b +W1) =D (=1 . .

By Lemmas 5.1 and 5.2, we obtain that % is rad(d)-free.
Proof of sufficiency. Assume that =+ is rad(d)-free for every n € N*.

Applying Lemmas 5.1 and 5.2, we can similarly prove that z¢ — (ﬂin — ¢) is irreducible over K(8,) as
that in the proof of Theorem 2.2. Therefore, [K(8,) : K(B,-1)] = d, and so [K(B,) : K] = d

Since B, is a root of g, 4, by Lemma 3.1, we have deg(g,4) = d"; it follows that g, , is irreducible
over K for all n € N*. Hence, ¢(z) is inverse stable. O

The following lemma will be used in our proof of Corollary 2.7.

Lemma 5.3. Let F, be a finite field of odd characteristic, and let
x :F, — {£1}

be the unique nontrivial character of order 2, i.e., x(t) = 1 if and only if t is a square in F. Extend x to
F, by setting x(0) =

(1) ([21], Application 1.3, page 139) Let f(x) = ax’ + bx* + cx + d € F,[x] be a cubic polynomial
with distinct roots in F,. Then

D x| <

x€Fy

2 3.
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(2) ([22], Theorem 5.48) Let f(x) = ax> + bx + c € F,[x]. Then

D X (f) =

xeFy,

—x(a) if b> — 4ac # 0,
x(a)(g—1) if b*> —4ac = 0.

Proof of Corollary 2.7.

Proof. Let (;) denote the Legendre symbol. We first prove the following claim.

Claim: If (%) =1and (i) = (%) = —1, then ¢(z) = z¢ + c is inversely stable over F,.

It is obvious that rad(d) = 2 and (‘Tf’) = (‘71) (?) = —1. Hence, —c is rad(d)-free. By Lemma 5.1, we
obtain that z? + ¢ is irreducible over K = F,. This implies that —c ¢ K?. Let {x,} be the sequence defined
in Theorem 2.6. It is easy to see that x,, # O for any n > 1.

Since (p — 1)|d?, by Fermat’s Little Theorem, for any integer a with p 1 a, we have a’ =1 (mod D).
Hence xffz = 1 for n > 1. Thus, we obtain that

x1=c, X2 = (DU + 1), X = (D%exd  + 1, n > 1.

From Euler’s Criterion, for any integer a and an odd prime p, we have

(ﬁ)sa”? (mod p).
p
Hence,

c-D%=1, ¢!=-1, (c+1)?=-1

Sowehave x, =1 —-c,x3=c+1,x;, =1—c,and xs = ¢ + 1. Thus, the sequence {x,},-; follows the
pattern:
(X1 il =c,e+ 1,1 —c,e+1,...

The sequence {M} o is given by:

Xn JIn

Xpt1 l=cl+c 1-c l+c 1-c
X Jooy € 1=l 1=c"1+c¢

From (%) =1 and (15) = (%) = —1, we know that =5, ¢, and 1=¢ are all 2-free. By Theorem 2.6,

we conclude that ¢(z) is inversely stable over FF,,. This completes the proof of the claim.

2 n n— .
It is easy to calculate that | ( N 1) ] =23 2272 where | x] denotes the greatest integer less

2
than or equal to x. Therefore, it is sufficient to show that there are at least Lé ( \p - 1) | distinct values

of c € F, satisfying (%) =1 and (1‘—7) = (%) = —1. Define
(o= WEDED Aoa) (e D) g,

where y(x) = (%) . It is obvious that

I, ify(x—1)=1Lxx)=xx+1)=-1,
H(x) = .
0, otherwise.
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p
Thus, the sum S = )] #(x) counts the number of x € F, satisfying the conditions y(x— 1) = 1, y(x) =
x=1

xx+1)=-1.
Expanding #(x), we obtain

1
10 = 2 [ 1+ x=1) = x(0) = (1) = Y7 =2) = (o = Dby 42) +x( =)

)
Note that the discriminants of x*— 1, x* — x, and x* + x are nonzero in F,. By Lemma 5.3 and }, y(x) = 0,
x=1

we obtain that

1 P 1 2 1 2 n n—1
S=o|p+1+ ) ¥ -0)|>c(Vp-1 >z (Vp- 1)1 =27 =22
L +x:1)((x x) 8( p-1) L8( p—1)]

This completes the proof of Corollary 2.7. O

6. Conclusions

In 2024, K. Cheng introduced the concept of inverse stable polynomials over finite fields and
investigated their properties for Artin-Schreier polynomials. In this paper, we first extend this notion to
arbitrary fields and establish connections between inverse stability and the eventual stability proposed by
R. Jones and L. Alone in 2017. Following the methodology in several references that reduce problems
in larger fields to base fields via norm maps of field extensions, we systematically study inverse stability
for binomial polynomials and present three directions of applications.

Two natural open problems emerge from this work:

e Characterizing inverse stability for other polynomial types (e.g., trinomials)

e Developing deeper estimates using advanced tools (e.g., character sums) to bound the number of
inverse stable polynomials over finite fields

The stability of polynomials possessing special significance and applications merits more focus. (see,
e.g., [23-27]). Our work combines field theory and number theory to address iteration-related questions,
representing a characteristic approach in arithmetic dynamics. Notably, inverse stability exhibits
potential applications in Arboreal-Galois representations (see [13]), warranting further exploration.
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