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Abstract: In this paper, the local convergence of a high-order Chebyshev-type method without the
second derivative is studied. We study the convergence under ω-continuity conditions based on the
first derivative. The uniqueness of the solution and the radii of convergence domains are obtained. In
contrast to the conditions used in previous studies, the new conditions of convergence are weaker. In
addition, the attractive basins of the family with different parameters are studied, which can show the
different stability of the family. Finally, in numerical experiments, the iterative method is used to solve
different nonlinear models, including vertical stresses, civil engineering problem, blood rheology model,
and so on. Theoretical results of convergence criteria are verified.
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1. Introduction

In this paper, our main purpose is to estimate an approximate solution γ∗ of the equation

P(s) = 0, (1.1)

where P : Ω ⊆ T1 → T2 is a scalar function in an open convex interval Ω.
Solving problems of nonlinear equations is widely used in many fields, such as physics, chemistry,

and biology [1]. Usually, the analytical solution of nonlinear equations is difficult to obtain in general
cases. Therefore, in most situations, iterative methods are applied to find approximate solutions [2].
The most famous and fundamental iterative method is Newton’s method [3]. Currently, many methods
are constructed on the basis of Newton’s method, and they are called Newton-type methods [4, 5].
Convergence analysis is an important part of the research of the iterative method [6]. The issue of
local convergence is, based on the information surrounding a solution, to find estimates of the radii of
the convergence balls [7]. At present, many scholars study the local convergence analysis of iterative
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methods, such as Argyros et al. studied the local convergence of a third-order iterative method [8] and
Chebyshev-type method [9]. In addition, some iterative methods and their local convergence are used in
the study of diffusion equations [10–13]. The domain of convergence is an important problem in the
study of iterative process; see [14]. Generally, the domain of convergence is small, which limits the
choice of initial points. Thus, it is crucial that the domain of convergence is expanded without additional
conditions. This paper will study the local convergence of a Chebyshev-type method without the second
derivative in order to broaden its applied range.

The classical Chebyshev-Halley type methods of third-order convergence [15], which improves
Newton’s methods are defined by

sn+1 = sn − (1 +
1
2

(1 − λKF(sn))−1KF(sn)P′(sn)−1P(sn), (1.2)

where
KF(sn) = P′(sn)−1P′′(sn)P′(sn)−1P(sn),

This method includes Halley’s method [16] for λ = 1
2 , Chebyshev’s method [17] for λ = 0, and the

super-Halley method for λ = 1. Since these methods need to calculate the second derivative, they have
an expensive computational cost. To avoid the second derivative, some scholars have proposed some
variants of Chebyshev-Halley type methods free from the second derivative [18, 19]. Cordero et al. [20]
proposed a high-order three-step form of the modified Chebyshev–Halley type method:

tn = sn − P′(sn)−1P(sn),
zn = sn − (1 + P(tn)(P(sn) − 2βP(tn))−1)P′(sn)−1P(sn),
sn+1 = zn − ([zn, tn; P] + 2(zn − tn)[zn, tn, sn; P] − (zn − tn)[tn, sn, sn; P])−1P(zn),

(1.3)

where β ∈ R denotes a parameter, and s0 ∈ Ω denotes an initial point. [., .; P] and [., ., .; P] denote
divided difference of order one and two, in particular, the second-order divided difference cannot be
generalized to Banach spaces. So, we study the local convergence of method (1.3) in real spaces. The
order of convergence of the above method is at least six, and if β = 1, it is optimal order eight.

However, earlier proofs of the analysis of convergence required third or higher derivatives. This
limits the applicability of the above method. For example, define P(s) on Ω = [0, 1] by

P(s) =

s3 ln s2 − s5 + s4, s , 0;
0, s = 0.

(1.4)

Then, P′′′(s) = 6 ln s2 − 60s2 + 24s+ 22 is unbounded on Ω. So when using the iterative method to solve
the equation (1.4), the convergence order of the iterative method cannot be guaranteed. In this paper, the
analysis of local convergence for method (1.3) only uses the first-order derivative.In particular, using
Lipschitz continuity conditions based on the first derivative, the applicability of method (1.3) is extended.

The rest part of this paper is laid out as follows: Section 2 is devoted to the study of local convergence
for method (1.3) by using assumptions based on the first derivative. Also, the uniqueness of the solution
and the radii of convergence balls are analyzed. In Section 3, according to the different parameter values,
the fractal graphs of the family are drawn. The convergence and stability of the iterative method are
analyzed by drawing the attractive basins. In Section 4, the convergence criteria are verified by some
numerical examples. Finally, conclusions appear in Section 5.
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2. Local convergence

In this Section, we study the local convergence analysis of method (1.3) under Lipschitz continuity
conditions. There are some parameters and scalar functions to be used to prove local convergence of
method (1.3). β ∈ R and θ ≥ 0 are parameters. Suppose the continuous function υ0 : [0,+∞) → R is
nondecreasing, υ0(0) = 0, and

υ0(ξ) − 1 = 0 (2.1)

has a smallest solution γ0 ∈ [0,+∞) − {0}.
Let the continuous function υ : [0, γ0)→ R be nondecreasing and υ(0) = 0. Functions h1 and g1 on the
interval [0, γ0) are defined by

h1(ξ) =

∫ 1

0
υ(|θ − 1|ξ)dθ

1 − υ0(ξ)
and

g1(ξ) = h1(ξ) − 1.

Then we obtain
g1(0) = h1(0) − 1 < 0

and g1(ξ) → ∞ as ξ → γ−0 . According to the intermediate value theorem, the equation g1(ξ) = 0
has roots in (0, γ0). Let r1 be the smallest root. Suppose continuous function ω1 : [0, γ0) → R is
nondecreasing and ω1(0) = 0. Functions h2 and g2 on the interval [0, γ0) are defined by

h2(ξ) =
∫ 1

0
υ0(|θ|ξ)dθ + 2|β|h1(ξ)

∫ 1

0
ω1(ξ|θ|h1(ξ))dθ

and
g2(ξ) = h2(ξ) − 1.

Then we have
g2(0) = h2(0) − 1 < 0

and g2(ξ)→ ∞ as ξ → γ−0 . Similarly, the equation g2(ξ) = 0 has roots in (0, γ0). Let r2 be smallest root.
Functions h3 and g3 on the interval [0, r2) are defined by

h3(ξ) = h1(ξ)[1 +

∫ 1

0
ω1(ξ|θ|h2(ξ))ω1(|θ|ξ)dθ

(1 − υ0(ξ))(1 − h2(ξ))
]

and
g3(ξ) = h3(ξ) − 1.

Then we have
g3(0) = h3(0) − 1 < 0

and g3(ξ)→ ∞ as ξ → r−2 . Similarly, the equation g3(ξ) = 0 has roots in (0, r2). Let r3 be the smallest
root. Suppose continuous functions ω0, ω2 : [0, γ0)2 → R and ω3 : [0, γ0)3 → R are nondecreasing with
ω0(0, 0) = 0, ω2(0, 0) = 0, and ω3(0, 0, 0) = 0. Functions h4 and g4 on the interval [0, γ0) are defined by

h4(ξ) = ω0(h3(ξ)ξ, h1(ξ)ξ) + ξ(h1(ξ) + h3(ξ))(ω2(ξ(h3(ξ) + h1(ξ)), ξ(h1(ξ) + 1)) + ω3(h3(ξ)ξ, h1(ξ)ξ, ξ))
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and
g4(ξ) = h4(ξ) − 1.

Then we have
g4(0) = h4(0) − 1 < 0

and g4(ξ)→ ∞ as ξ → r−3 . Similarly, the equation g4(ξ) = 0 has roots in (0, r3). Let r4 be the smallest
root. Functions h5 and g5 on the interval [0, r4) are defined by

h5 = [1 −

∫ 1

0
ω1(ξ|θ|h3(ξ))dθ

1 − h4(ξ)
]h3(ξ)

and
g5(ξ) = h5(ξ) − 1.

We have
g5(0) = h5(0) − 1 < 0

and g5(ξ)→ ∞ as ξ → r−4 . Similarly, the equation g5(ξ) = 0 has roots in (0, r4). Let r5 be the smallest
root.

Set
r = min{r1, r3, r5}. (2.2)

Then, for each ξ ∈ [0, r), we have that
0 ≤ h1(ξ) < 1, (2.3)

0 ≤ h2(ξ) < 1, (2.4)

0 ≤ h3(ξ) < 1, (2.5)

0 ≤ h4(ξ) < 1, (2.6)

0 ≤ h5(ξ) < 1. (2.7)

Applying the above conclusions, the analysis of local convergence for method (1.3) can be proved.
Theorem 2.1. Suppose P : Ω ⊂ T1 → T2 is a scalar function. [., .; P] : Ω2 → L(T1,T2) and
[., ., .; P] : Ω3 → L(T1,T2) are divided differences of one and two. Let γ∗ ∈ Ω and continuous function
υ0 : [0,+∞)→ R be nondecreasing with υ0(0) = 0 such that each x ∈ Ω

P(γ∗) = 0, P′(γ∗)−1 ∈ L(T1,T2), (2.8)

∥P′(γ∗)−1(P′(s) − P′(γ∗))∥ ≤ υ0(∥s − γ∗∥). (2.9)

Let Ω0 = Ω ∩ B(γ∗, γ0). There exist β ∈ R, M ≥ 0, continuous functions υ, ω1 : [0, γ0) → R,
ω0, ω2 : [0, γ0)2 → R, ω3 : [0, γ0)3 → R be nondecreasing such that for each x, y, z ∈ Ω0

∥P′(γ∗)−1(P′(s) − P′(t))∥ ≤ υ(∥s − t∥) (2.10)

∥P′(γ∗)−1([s, t; P] − P′(γ∗))∥ ≤ ω0(∥s − γ∗∥, ∥t − γ∗∥) (2.11)

∥P′(γ∗)−1P′(s)∥ ≤ ω1(∥s − γ∗∥) (2.12)
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∥P′(γ∗)−1([z, t, s; P] − [t, s, s; P])∥ ≤ ω2(∥z − t∥, ∥t − s∥) (2.13)

∥P′(γ∗)−1[z, t, s; P]∥ ≤ ω3(∥z − γ∗∥, ∥t − γ∗∥, ∥s − γ∗∥) (2.14)

and
Ū(γ∗, r) ⊆ Ω. (2.15)

Then the sequence {sn} produced for s0 ∈ U(γ∗, r) − {γ∗} by method (1.3) converges to γ∗ and remains
in U(γ∗, r) for each n = 0, 1, 2 . . .. Furthermore, the following estimates hold:

∥tn − γ∗∥ ≤ h1(∥sn − γ∗∥)∥sn − γ∗∥ ≤ ∥sn − γ∗∥ < r, (2.16)

∥zn − γ∗∥ ≤ h3(∥sn − γ∗∥)∥sn − γ∗∥ ≤ ∥sn − γ∗∥, (2.17)

and
∥sn+1 − γ∗∥ ≤ h5(∥sn − γ∗∥)∥sn − γ∗∥ ≤ ∥sn − γ∗∥, (2.18)

where functions hi(i = 1, 3, 5) have been defined. Moreover, for R ≥ r, if there exists that∫ 1

0
υ0(|θ − 1|R)dθ < 1, (2.19)

then, the solution γ∗ ∈ Ū(γ∗,R) ⊆ Ω of equation P(s) = 0 is unique.
Proof Using s0 ∈ U(γ∗, r), (2.8), and the definition of r, we obtain

∥P′(γ∗)−1(P′(s0) − P′(γ∗))∥ ≤ υ0(∥s0 − γ∗∥) < υ0(r) < 1. (2.20)

According to the Banach lemma [2], we obtain P′(s0) is invertible and

∥P′(s0)−1P′(γ∗)∥ ≤
1

1 − υ0(∥s0 − γ∗∥)
<

1
1 − υ0(r)

. (2.21)

Then, t0 is well defined. Therefore, we can write that

t0 − γ∗ = s0 − γ∗ − P′(s0)−1P(s0)

= −P′(s0)−1P′(γ∗)
∫ 1

0
P′(γ∗)−1[P′(γ∗ + θ(s0 − γ∗)) − P′(s0)](s0 − γ∗)dθ.

(2.22)

Using (2.2), (2.3), (2.10), (2.20), and (2.21), we obtain in turn that

∥t0 − γ∗∥ ≤ ∥P′(s0)−1P′(γ∗)∥∥
∫ 1

0
P′(γ∗)−1[P′(γ∗ + θ(∥s0 − γ∗∥)) − P′(s0)]∥dθ∥s0 − γ∗∥

≤

∫ 1

0
υ(∥γ∗ + θ(∥s0 − γ∗∥) − s0∥)dθ

1 − υ0(∥s0 − γ∗∥)
∥s0 − γ∗∥

=

∫ 1

0
υ(∥(θ − 1)(s0 − γ∗)∥)dθ

1 − υ0(∥s0 − γ∗∥)
∥s0 − γ∗∥

= h1(∥s0 − γ∗∥)∥s0 − γ∗∥ < ∥s0 − γ∗∥ < r,

(2.23)

which shows the estimate (2.16) for n = 0 and t0 ∈ U(γ∗, r).
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Using (2.2), (2.4), (2.10), (2.12), (2.16), and (2.23), we obtain

∥(P′(γ∗)(s0 − γ∗))−1[P(s0) − P(γ∗) − 2βP(t0) − P′(γ∗)(s0 − γ∗)]∥

≤
1

∥s0 − γ∗∥
∥

∫ 1

0
P′(γ∗)−1(P′(γ∗ + θ(s0 − γ∗)) − P′(γ∗))(s0 − γ∗)dθ∥

+
1

∥s0 − γ∗∥
· 2|β|∥

∫ 1

0
P′(γ∗)−1P′(γ∗ + θ(t0 − γ∗))dθ∥∥t0 − γ∗∥

≤
1

∥s0 − γ∗∥
∥

∫ 1

0
P′(γ∗)−1(P′(γ∗ + θ(s0 − γ∗)) − P′(γ∗))(s0 − γ∗)dθ∥

+
1

∥s0 − γ∗∥
· 2|β|

∫ 1

0
ω1(∥θ(t0 − γ∗)∥)dθ∥t0 − γ∗∥

≤

∫ 1

0
υ0(∥θ(s0 − γ∗)∥)dθ + 2|β|h1(∥s0 − γ∗∥)

∫ 1

0
ω1(θ(h1(∥s0 − γ∗∥)∥s0 − γ∗∥)r)dθ

=h2(∥s0 − γ∗∥) < h2(r) < 1,

(2.24)

where

P′(γ∗)−1P(t0) = P′(γ∗)−1(P(t0) − P(γ∗)) =
∫ 1

0
P′(γ∗)−1P′(γ∗ + θ(t0 − γ∗))(t0 − γ∗)dθ, (2.25)

so

∥P′(γ∗)−1P(t0)∥ ≤
∫ 1

0
ω1(∥θ(t0 − γ∗)∥)∥t0 − γ∗∥dθ

≤ h1(∥s0 − γ∗∥)∥s0 − γ∗∥

∫ 1

0
ω1(∥θ(t0 − γ∗)∥)dθ

(2.26)

and
∥γ∗ + θ(t0 − γ∗) − γ∗∥ = θ∥t0 − γ∗∥ ≤ ∥t0 − γ∗∥ ≤ r.

Thus, (P(s0) − 2βP(t0))−1 ∈ L(T1,T2) and

∥(P(s0) − 2βP(t0))−1P′(γ∗)∥ ≤
1

(1 − h2(∥s0 − γ∗∥))∥s0 − γ∗∥
. (2.27)

So, z0 is well defined.
Using (2.2), (2.5), (2.12), (2.16), (2.21), (2.24), and (2.27), we have that

∥z0 − γ∗∥ ≤∥s0 − γ∗ − P′(s0)−1P(s0)∥
+ ∥P′(γ∗)−1P(t0)∥∥P′(γ∗)−1P(s0)∥∥P′(s0)−1P′(γ∗)∥
∥(P(s0) − 2βP(t0))−1P′(γ∗)∥

≤h1(∥s0 − γ∗∥)∥s0 − γ∗∥ +

∫ 1

0
ω1(∥θ(t0 − γ∗)∥)ω1(∥θ(s0 − γ∗)∥)dθ∥t0 − γ∗∥

(1 − υ0(∥s0 − γ∗∥))(1 − h2(∥s0 − γ∗∥))

≤h1(∥s0 − γ∗∥)∥s0 − γ∗∥[1 +

∫ 1

0
ω1(∥θ(t0 − γ∗)∥)ω1(∥θ(s0 − γ∗)∥)dθ

(1 − υ0(∥s0 − γ∗∥))(1 − h2(∥s0 − γ∗∥))
]

=h3(∥s0 − γ∗∥)∥s0 − γ∗∥ < ∥s0 − γ∗∥ < r,

(2.28)
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which shows the estimate (2.17) for n = 0 and z0 ∈ U(γ∗, r).
Next, we shall show that

([z0, t0; P] + 2(z0 − t0)[z0, t0, s0; P] − (z0 − t0)[t0, s0, s0; P])−1 ∈ L(T1,T2). (2.29)

Using (2.2), (2.6), (2.11), (2.13), and (2.14), we have that

∥P′(γ∗)−1([z0, t0; P] + 2(z0 − t0)[z0, t0, s0; P] − (z0 − t0)[t0, s0, s0; P] − P′(γ∗))∥
≤∥P′(γ∗)−1([z0, t0; P] − P′(γ∗))∥ + ∥z0 − t0∥∥P′(γ∗)−1([z0, t0, s0; P] − [t0, s0, s0; P])∥
+ ∥z0 − t0∥∥P′(γ∗)−1[z0, t0, s0; P]∥
≤ω0(∥z0 − γ∗∥, ∥t0 − γ∗∥) + (∥z0 − γ∗∥ + ∥t0 − γ∗∥)(ω2(∥z0 − t0∥, ∥t0 − s0∥)
+ ω3(∥z0 − γ∗∥, ∥t0 − γ∗∥, ∥s0 − γ∗∥))
=ω0(h3(∥s0 − γ∗∥)∥s0 − γ∗∥, h1(∥s0 − γ∗∥)∥s0 − γ∗∥) + (h3(∥s0 − γ∗∥)∥s0 − γ∗∥

+ h1(∥s0 − γ∗∥)∥s0 − γ∗∥)(ω2(h3(∥s0 − γ∗∥)∥s0 − γ∗∥ + h1(∥s0 − γ∗∥)∥s0 − γ∗∥,

(h1(∥s0 − γ∗∥) + 1)∥s0 − γ∗∥)
+ ω3(h3(∥s0 − γ∗∥)∥s0 − γ∗∥, h1(∥s0 − γ∗∥)∥s0 − γ∗∥, ∥s0 − γ∗∥))
=h4(∥s0 − γ∗∥) < 1.

(2.30)

By the Banach lemma, we have that ([z0, t0; P]+2(z0− t0)[z0, t0, s0; P]− (z0− t0)[t0, s0, s0; P]) is invertible
and

∥([z0, t0; P] + 2(z0 − t0)[z0, t0, s0; P] − (z0 − t0)[t0, s0, s0; P])−1P′(γ∗)∥ ≤
1

1 − h4(∥s0 − γ∗∥)
. (2.31)

Denote △ = [z0, t0; P] + 2(z0 − t0)[z0, t0, s0; P] − (z0 − t0)[t0, s0, s0; P]. Thus, x1 is well defined.
Using x1 ∈ U(γ∗, r), (2.2), (2.8), (2.12), (2.28), and (2.31), we have that

∥s1 − γ∗∥ ≤∥z0 − γ∗∥ − ∥△
−1P′(γ∗)P′(γ∗)−1P(z0)∥

≤∥z0 − γ∗∥ −

∫ 1

0
ω1(θ∥z0 − γ∗∥)dθ

1 − h4(∥s0 − γ∗∥)
∥z0 − γ∗∥

≤[1 −

∫ 1

0
ω1(θ∥z0 − γ∗∥)dθ

1 − h4(∥s0 − γ∗∥)
]∥z0 − γ∗∥

≤[1 −

∫ 1

0
ω1(θ∥z0 − γ∗∥)dθ

1 − h4(∥s0 − γ∗∥)
]h3(∥s0 − γ∗∥)∥s0 − γ∗∥

=h5(∥s0 − γ∗∥)∥s0 − γ∗∥ < ∥s0 − γ∗∥ < r,

(2.32)

which shows the estimate (2.18) for n = 0 and s1 ∈ U(γ∗, r). By substituting s0, t0, z0, s1 in the previous
estimates with sk, tk, zk, sk+1, we get (2.16)–(2.18). Using the estimates

∥sk+1 − γ∗∥ < ∥sk − γ∗∥ < r,

we derive that sk+1 ∈ U(γ∗, r) and lim
k→∞

sk = γ∗.
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Finally, in order to prove the uniqueness of the solution γ∗, suppose there exists a second solution
y∗ ∈ B̄(γ∗,R), then P(y∗) = 0. Denote T =

∫ 1

0
P′(y∗+ θ(γ∗− y∗))dθ. Since T (y∗−γ∗) = P(y∗)−P(γ∗) = 0,

if T is invertible then y∗ = γ∗. In fact, by (2.19), we obtain

∥P′(γ∗)−1(T − P′(γ∗))∥ ≤
∫ 1

0
υ0(∥y∗ + θ(γ∗ − y∗) − γ∗∥)dθ

≤

∫ 1

0
υ0(∥(θ − 1)(γ∗ − y∗)∥)dθ

<

∫ 1

0
υ0(|θ − 1|R)dθ < 1.

(2.33)

Thus, according to the Banach lemma, T is invertible. Since 0 = P(y∗)−P(γ∗) = T (y∗−γ∗), we conclude
that γ∗ = y∗. The proof is over.

3. Attractive basins

In this section, we study some dynamical properties of the family of the iterative methods (1.3),
which are based on their attractive basins on the complex polynomial f (z). The convergence and stability
of the iterative methods are compared by studying the structure of attractive basins.

There are some dynamical concepts and basic results to be used later. Let f : Ĉ→ Ĉ be a rational
function on the Riemann sphere Ĉ. The orbit of a point z0 ∈ Ĉ is defined as

{z0, f (z0), f 2(z0), · · · , f n(z0), · · · }.

In addition, if f (z0) = z0, z0 is a fixed point. There are the following four cases:
• If | f ′(z0)| < 1, z0 is an attractive point;
• If | f ′(z0)| = 1, z0 is a neutral point;
• If | f ′(z0)| > 1, z0 is a repulsive point;
• If | f ′(z0)| = 0, z0 is an super-attractive point.
The basin of attraction of an attractor z∗ is defined by

A(z∗) = {z0 ∈ Ĉ : f n(z0)→ z∗, n→ ∞}.

Consider the following four members of the family (1.3): M1(β = 0), M2(β = 0.5), M3(β = 1),
M4(β = 2). In this study, the complex plane is Ω = [−5, 5] × [−5, 5] with 500 × 500 points. If the
sequence converges to roots, it is represented in pink, yellow, and blue. Otherwise, black represents
other cases, including non-convergence. When the family (1.3) is applied to the complex polynomials
f (z) = z2 − 1 and f (z) = z3 − 1, their attractive basins are shown in Figures 1 and 2.

In Figures 1 and 2, the fractal graphs of the methods M1 and M4 have some black zones. The
black zones indicates non-convergence, and the initial value of the black area causes the iteration to
fail; relatively speaking, the method without a black region is better. However, the fractal graphs of
the methods M2 and M3 have a black zone. As a result, the convergence of the methods M2 and M3
is better than that of the methods M1 and M4. In addition, the method M3 has the largest basins of
attraction compared to the other three methods. Thus, the stable parameters are β = 0.5, 1.
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(a) M1(β = 0) (b) M2(β = 0.5)

(c) M3(β = 1) (d) M4(β = 2)

Figure 1. Basins of attraction of the methods Mi(i = 1, 2, 3, 4), for f (z) = z2 − 1.

4. Numerical examples

4.1. Radius of convergence ball

In this section, we apply the following two numerical examples to compute the above results of
convergence for method (1.3).
Example 4.1. Let Ω = (0, 2); define the function P : Ω→ R by

P(x) = x3 − 1. (4.1)

Thus, a root of P(x) = 0 is γ∗ = 1. Then,

P′(x) = 3x2

Electronic Research Archive Volume 33, Issue 3, 1398–1413.
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(a) M1(β = 0) (b) M2(β = 0.5)

(c) M3(β = 1) (d) M4(β = 2)

Figure 2. Basins of attraction of the methods Mi(i = 1, 2, 3, 4), for f (z) = z3 − 1.

and
[x, y; P] = x2 + xy + y2.

Notice that using conditions (2.9)–(2.15), β = 0, we obtain

υ0(ξ) = 3t, υ(t) =
8
3

t,

γ0 =
1
3
, Ω0 = (

2
3
,

4
3

),

ω0(t, s) =
10
9

t +
11
9

s, ω1(t) =
16
3

t,

and
ω2(t, s) =

1
3

t +
1
3

s, ω3(t, s, u) =
1
3

t +
1
3

s +
1
3

u + 1.
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Then, according to the above definition of functions hi(i = 1, 2, 3, 4, 5), one have that

r1 ≈ 0.230769, r3 ≈ 0.221531, r5 ≈ 0.130342 = r.

Example 4.2. Let Ω = (−1, 1), define the function P : Ω→ R by

P(x) = ex − 1. (4.2)

Thus, a root of P(x) = 0 is γ∗ = 0. Then,
P′(x) = ex

and
[x, y; P] =

1
y − x

(ey − ex).

Notice that using conditions (2.9)–(2.15), β = 1, we obtain

υ0(t) = et − 1, υ(t) = et − 1,

γ0 = ln2, Ω0 = (−ln2, ln2),

ω0(t, s) =
1

t + s
(et − es) − 1, ω1(t) = et,

ω2(t + s, s + u) = (
1

(s + u)(u + t)
+

1
(s + u)2 )(eu − es) −

1
(s + t)(u + t)

(es − et),

and
ω3(t, s, u) =

1
(t + u)(s + u)

(eu − et) −
1

(t + s)(s + u)
(et − es).

Then, according to the above definition of functions hi(i = 1, 2, 3, 4, 5), one obtains

r1 ≈ 0.511083, r3 ≈ 0.270027, r5 ≈ 0.210013 = r.

4.2. Application

In this section, the iterative method (1.3) is applied to the following six practical models. For the
nonlinear equations obtained from the six models, we can find the solutions of the equations and the
data results, such as iterative errors. Therefore, our research is valuable for practical models in various
fields.

Example 4.3. Vertical stresses [21]: At uniform pressure t, the Boussinesq’s formula is used to
calculate the vertical stress y caused by a specific point within the elastic material under the edge of the
rectangular strip footing. The following formula is obtained:

σy =
t
π

x + cos(x)sin(x). (4.3)

If the value of y is determined, we can find the value of x where the vertical stress y equals 25 percent of
the applied footing stress t. When x = 0.4, the following nonlinear equation is obtained:

P1(s) =
s
π
+

1
π

cos(s)sin(s) −
1
4
. (4.4)
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Example 4.4. Civil Engineering Problem [22]: Some horizontal construction projects, such as the
topmost portion of civil engineering beams, are used in the mathematical modeling of the beams. In
order to describe the exact position of the beam in this particular case, some mathematical models based
on nonlinear equations have been established. The following model is given in [22]:

P2(s) = s4 + 4s3 − 24s2 + 16s + 16. (4.5)

Example 4.5. The trajectory of an electron moving between two parallel plates is defined by

y(l) = s0 + (ν0 + e
E0

mω
sin(ωl0 + α)) + e

E0

mω2 (cos(ωl + α) + sin(ω + α)), (4.6)

where m and e denote the mass and the charge of the electron at rest, ν0 and s0 denote the velocity and
position of the electron at time l0, and E0sin(ωl0 + α) denotes the RF electric field between the plates.
By selecting specific values, one obtains

P3(s) =
π

4
+ s −

1
2

cos(s). (4.7)

Example 4.6. Blood rheology model [23]: Medical research that concerns the physical and flow
characteristics of blood is called blood rheology. Since blood is a non-Newtonian fluid, it is often
referred to as a Caisson fluid. Based on the caisson flow characteristics, when the basic fluid, such as
water or blood, passes through the tube, it usually maintains its primary structure. When we observe the
plug flow of Caisson fluid flow, the following nonlinear equation is considered:

P4(s) =
s8

441
−

8s5

63
+

16s2

9
− 0.05714285714s4 − 3.624489796s + 0.36, (4.8)

where s is the plug flow of Caisson fluid flow.
Example 4.7. Law of population growth [24]: Population dynamics are tested by first-order linear

ordinary differential equations in the following way:

P′(u) = sP(u) + c, (4.9)

where s denotes the population’s constant birth rate and c denotes its constant immigration rate. P(u)
stands for the population at time u. Then, according to solve the above linear differential equation (4.9),
the following equation is obtained:

P(u) = (P0 +
c
s
)esu −

c
s
, (4.10)

where P0 represents the initial population. According to the different values of the parameter and the
initial conditions in [25], a nonlinear equation for calculating the birth rate is obtained:

P5(s) = −es(
435

s
+ 1000) +

435
s
+ 1564. (4.11)

Example 4.8. The non-smooth function (1.4) is defined on Ω = [0, 1] by

P6(s) =

s3 ln s2 − s5 + s4, s , 0;
0, s = 0.

(4.12)
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Table 1. Numerical results for the above six models.

Fun k s0 |P(sn) − P(sn−1)| |P(sn)| ACOC γ∗
P1 5 2.5 2.21248e-101 1.17865e-101 8.0 0.415856
P2 5 2.5 0.0000158022 7.82769e-9 8.0 2.000018
P3 5 4.5 1.07326e-2387 9.10019e-2388 8.0 -0.309093
P4 5 4.5 3.56215e-517 1.9089e-516 8.0 1.570111
P5 5 4.5 3.87571e-1076 5.18954e-1073 8.0 0.100998
P6 5 0.8 6.64779e-258 6.64779e-258 8.0 1.000000

The parameter β = 1 is selected, and the iterative method (1.3) is applied to the above six practical
application examples. Table 1 gives the specific results. k denotes the number of iterations. Fun denotes
the function Pi(1 = 1, 2, 3, 4, 5). |P(sn) − P(sn−1)| denotes the error values. |P(sn)| denotes function
values at the last step. Approximated computation order of convergence denotes ACOC. γ∗ denotes the
root of equation Pi(s) = 0 (i = 1, 2, 3, 4, 5). The stopping criteria is that if the significant digits of the
error precision exceed 5, the output will be made. Approximated computation order of convergence
(ACOC) is defined by [26]

ACOC ≈
ln (|xn+1 − xn|/|xn − xn−1|)

ln (|xn − xn−1|/|xn−1 − xn−2|)
. (4.13)

In Table 1, for six models, the error accuracy is from 10−10 to 10−2387, and the computational order of
convergence is the optimal order 8. When the initial point is 2.5, the error and precision of function P1

are higher than those of function P2. When the initial point is 4.5, the error and precision of function
P3 are higher than those of functions P4 and P5. At the same time, solutions to six decimal places are
obtained to improve the accuracy of solutions.

5. Conclusions

In this paper, local convergence analysis of a high-order Chebyshev-type method free from second
derivatives is studied under ω-continuity assumptions. In contrast to the conditions used in previous
studies, the new conditions of convergence are weaker. This study extends the applicability of method
(1.3). Also, the radii of convergence balls and uniqueness of the solution are also discussed. By drawing
the basins of attraction, four methods with different parameter values are compared with each other.
Thus, we can find that when the parameter β = 1 of method (1.3), the method M3 is relatively more
stable. Then, two numerical examples are used to prove the criteria of convergence. Finally, we apply
the method (1.3) to six concrete models. In Table 1, the numerical results such as iterative errors, ACOC,
and so on are obtained. Therefore, our research is valuable for practical models in various fields.
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