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Abstract: In this study, we derive new criteria that ensure the oscillation of solutions to noncanonical
dynamic equations that are half-linear sublinear functional. These results not only resolve an open issue
in numerous works in the literature but also emulate Ohriskatype and Hille-type criteria for canonical
dynamic equations. We provide examples to demonstrate the accuracy, usefulness, and flexibility of
the main results.
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1. Introduction

Oscillation has drawn significant interest from researchers in engineering and science due to its es-
sential applications in mechanical vibrations. Models may include advanced terms or delays to account
for the effects of temporal contexts on solutions. Numerous studies have been conducted regarding os-
cillation in delay differential equations, such as [1–5], advanced differential equations, such as [6–9],
and dynamic equations, such as [10,11], Also, various models are used to study oscillation phenomena

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2025062


1352

in practical applications. In biology, mathematical models have been enhanced with cross-diffusion
factors to better account for delay and oscillation effects; see [12–15]. Current research focuses on
differential equations essential for analyzing real-world phenomena. This paper explores their applica-
tion in the turbulent flow of a polytropic gas through porous materials and non-Newtonian fluid theory.
A solid understanding of the underlying mathematics is crucial for these fields; for more details, refer
to [16–20]. Therefore, this work aims to investigate the oscillatory behavior of a particular class of
second-order noncanonical half-linear sublinear functional dynamic equations[

r1(s)Φ
(
κ∆(s)

)]∆
+ r2(s)Φ (κ(ζ (s))) = 0 (1.1)

on an arbitrary unbounded above time scale T, where s ∈ [s0,∞)T, s0 ≥ 0, s0 ∈ T; Φ(u) := |u|κ sgnu,
0 < κ ≤ 1; r1, r2 : T→ (0,∞) and ζ : T→ T are rd-continuous functions such that lims→∞ ζ(s) = ∞.

By a solution of equation (1.1), we mean a nontrivial real-valued function κ ∈ C1
rd[Tκ,∞)T,

Tκ ∈ [s0,∞)T such that r1Φ
(
κ∆

)
∈ C1

rd[Tκ,∞)T and κ satisfies (1.1) on [Tκ,∞)T, where Crd represents
rd-continuous functions. We propose [21–24] as a very helpful introduction to time scale calculus.
According to Trench [25], Equation (1.1) is said to be in noncanonical form when∫ ∞

s0

∆ς

r1/κ
1 (ς)

< ∞, (1.2)

and canonical form when ∫ ∞

s0

∆ς

r1/κ
1 (ς)

= ∞. (1.3)

A solution κ of (1.1) is oscillatory if it is not positive or negative; otherwise, it is nonoscillatory.
Solutions that vanish at infinity are excluded. We call that Eq (1.1) is oscillatory if all its solutions
oscillate.

The subsequent presents oscillation results for differential equations associated with the oscillation
results for (1.1). It also provides a comprehensive summary of the significant contributions of this pa-
per, with our results demonstrating that they can be applied to consolidate specific outcomes regarding
oscillation in differential and difference equations and expanded to ascertain oscillatory behavior in
additional cases. When T = R, then (1.1) transforms into the half-linear sublinear differential equation.[

r1(s)Φ
(
κ′(s)

)]′
+ r2(s)Φ (κ(ζ (s))) = 0. (1.4)

Fite [26] proved that the differential equation

κ′′(s) + r2(s)κ(s) = 0, (1.5)

is oscillatory if ∫ ∞

s0

r2(ς)dς = ∞. (1.6)

Hille [27] improved criterion (1.6) and showed that if

lim inf
s→∞

s
∫ ∞

s
r2(ς)dς >

1
4
, (1.7)
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then Eq (1.5) is oscillatory. Erbe [28] extended (1.7) to the delay equation

κ′′(s) + r2(s)κ(ζ (s)) = 0, (1.8)

where ζ (s) ≤ s and proved that if

lim inf
s→∞

s
∫ ∞

s

ζ(ς)
ς

r2(ς)dς >
1
4
, (1.9)

then Eq (1.8) is oscillatory. Ohriska [29] showed that equation (1.8) is oscillatory if

lim sup
s→∞

s
∫ ∞

s

ζ(ς)
ς

r2(ς)dς > 1. (1.10)

When T= Z, then (1.1) becomes the half-linear sublinear difference equation

∆ [r1(s)Φ (∆κ(s))] + r2(s)Φ (κ(ζ (s))) = 0.

Thandapani et al. [30] considered the equation

∆2 (κ (s)) + r2(s)κ(s) = 0, (1.11)

and it was proved that Eq (1.11) is oscillatory if

∞∑
ς=s0

r2(ς) = ∞. (1.12)

If T= {s : s = qn, n ∈ N0, q > 1}, then (1.1) converts the half-linear sublinear q-difference equation

∆q

[
r1(s)Φ

(
∆qκ(s)

)]
+ r2(s)Φ (κ(ζ (s))) = 0.

Regarding canonical dynamic equations on time scales, Karpuz [31] studied the canonical dynamic
equation [

r1(s)κ∆(s)
]∆
+ r2(s)κ(σ (s)) = 0, (1.13)

and obtained that if
lim sup

s→∞

µ (s)
r1 (s)

< ∞,

∫ ∞

s0

∆ς

r1(ς)
= ∞,

and

lim inf
s→∞

{∫ s

s0

∆ς

r1(ς)

∫ ∞

s
r2 (ς)∆ς

}
>

1
4
,

then Eq (1.13) is oscillatory. Erbe et al. [32] created the Hille-type and Ohriska-type criteria for the
canonical dynamic equation (

r1 (s)
(
κ∆(s)

)κ)∆
+ r2(s)κκ(ζ(s)) = 0, (1.14)

where ζ(s) ≤ s, 0 < κ ≤ 1 is a quotient of odd positive integers,

r∆1 (s) ≥ 0, and
∫ ∞

s0

∆ς

r1/κ
1 (ς)

= ∞, (1.15)
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and obtained that if ∫ ∞

s0

ζκ(ς)r2(ς)∆ς = ∞, (1.16)

and one of the following criteria holds:

lim inf
s→∞

sκ

r1(s)

∫ ∞

σ(s)

(
ζ(ς)
σ(ς)

)κ
r2(ς)∆ς >

κκ

ℓκ2(κ + 1)κ+1
; (1.17)

lim sup
s→∞

sκ

r1(s)

∫ ∞

s

(
ζ(ς)
ς

)γ
r2(ς)∆ς > 1, (1.18)

where ℓ := lim inf s→∞
s
σ(s)
> 0, then Eq (1.14) is oscillatory. Hassan et al. [33] studied (1.14) and

showed that if (1.15) holds and

lim inf
s→∞

sκ

r1(s)

∫ ∞

s

(
ζ(ς)
ς

)γ
r2(ς)∆ς >

κκ

ℓκ|1−κ|(κ + 1)κ+1 . (1.19)

Then Eq (1.14) is oscillatory. By using (1.19), it is clear that the second-order Euler dynamic equations

sσ(s)κ∆∆(s) + λκ(s) = 0, (1.20)

and
sσ(s)κ∆∆(s) + λκ(σ(s)) = 0, (1.21)

are oscillatory if λ >
1
4

. It is well known that this is the best possible case for the second-order Euler
differential equation

s2κ′′(s) + λκ(s) = 0.

Also, we note that criterion (1.19) improves (1.17) since

sκ

r1(s)

∫ ∞

s

(
ζ(ς)
ς

)γ
r2(ς)∆ς ≥

sκ

r1(s)

∫ ∞

σ(s)

(
ζ(ς)
σ(ς)

)κ
r2(ς)∆ς,

and
κκ

ℓκ|1−κ|(κ + 1)κ+1 <
κκ

ℓκ2(κ + 1)κ+1
for κ ≥

1
2
.

For more Hille-type and Ohriska-type criteria, see [34–38].
Concerning the noncanonical form, Hassan et al. [39] established some interesting oscillation crite-

ria for the delay noncanonical linear dynamic equation[
r1(s)κ∆(s)

]∆
+ r2(s)κ(ζ (s)) = 0, (1.22)

where ζ (s) ≤ s and
∫ ∞

s0

∆ς

r1(ς)
< ∞, which are as follows:
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Theorem 1.1 (see [39]). Equation (1.22) is oscillatory if one of the following criteria holds:

lim inf
s→∞

{(∫ ∞

s

∆ς

r1(ς)

) (∫ s

T
r2(ς)∆ς

)}
>

1
4

; (1.23)

lim sup
s→∞

{(∫ ∞

s

∆ς

r1(ς)

) (∫ s

T
r2(ς)∆ς

)}
> 1, (1.24)

for sufficiently large T ∈ [s0,∞)T.

Also, Hassan et al. [40] established, in particular, Hille-type and Ohriska-type oscillation criteria for
the advanced noncanonical linear dynamic equation (1.22) where ζ (s) ≥ s, as shown in the following
result:

Theorem 1.2 (see [40]). Equation (1.22) is oscillatory if one of the following conditions is satisfied

lim inf
s→∞


(∫ ∞

s

∆ς

r1(ς)

) ∫ s

T

∫ ∞
ζ(ς)

∆v
r1(v)∫ ∞

ς
∆v

r1(v)

r2(ς)∆ς


 > 1

4
; (1.25)

lim sup
s→∞


(∫ ∞

s

∆ς

r1(ς)

) ∫ s

T

∫ ∞
ζ(ς)

∆v
r1(v)∫ ∞

ς
∆v

r1(v)

r2(ς)∆ς


 > 1, (1.26)

for sufficiently large T ∈ [s0,∞)T.

It is crucial to emphasize that previous research, such as [31, 33–35, 38], primarily focuses on
the canonical form, indicating that condition (1.3) holds. This study aims to expand on the findings
of [39, 40] by determining the oscillatory Hille-type and Ohriska-type criteria for the noncanonical
half-linear sublinear dynamic equation (1.1) in both cases ζ(s) ≤ s and ζ(s) ≥ s. The results given in
this study have successfully solved a previously unsolved problem that was discussed in several of the
author’s articles, such as [16, 33, 35, 39, 40].

This paper is organized as follows: After this introduction, we present the main results in Section 2
for ζ(s) ≤ s, the main results in Section 3 for ζ(s) ≥ s, and the discussion and conclusion in Section 4.

2. Oscillation criteria for (1.1) when ζ (s) ≤ s

In the following results, we will present Hille-type and Ohriska-type oscillation criteria for the
noncanonical case of Eq (1.1) when ζ(s) ≤ s on [s0,∞)T.

Theorem 2.1. If for sufficiently large T ∈ [s0,∞)T,

Ã := lim inf
s→∞

P̃ (s)
∫ ∞

s

[
P̃1−κ (ς)

r1(ς)

]1/κ

∆ς

 > 1
4κ
, (2.1)

where

P̃ (s) :=
∫ s

T
r2(ς)∆ς,

then Eq (1.1) is oscillatory.
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Proof. Suppose that κ is a nonoscillatory solution of (1.1) on [s0,∞)T. Without loss of generality, let
κ(ζ (s)) > 0 on [s0,∞)T. By applying the same method as in the proof of Case (a) of [39, Theorem 1],
we obtain [

r1(s)Φ
(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0,

eventually. Then there exists an s1 ∈ [s0,∞)T such that for s ∈ [s1,∞)T,[
r1(s)Φ

(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0.

Define
ϖ(s) := −

Φ (κ (s))
r1(s)Φ

(
κ∆(s)

) . (2.2)

Hence,

ϖ∆(s) = −
(Φ (κ (s)))∆

r1(s)Φ
(
κ∆(s)

) − (
1

r1(s)Φ
(
κ∆(s)

))∆Φ (κσ (s))

= −
(Φ (κ (s)))∆

r1(s)Φ
(
κ∆(s)

) + (
r1(s)Φ

(
κ∆(s)

))∆
r1(s)Φ

(
κ∆(s)

) (
r1(s)Φ

(
κ∆(s)

))σΦ (κσ (s))

= −
(Φ (κ (s)))∆

r1(s)Φ
(
κ∆(s)

) − r2(s)
Φ (κ (ζ (s)))

r1(s)Φ
(
κ∆(s)

) Φ (κσ (s))(
r1(s)Φ

(
κ∆(s)

))σ
= −

(Φ (κ (s)))∆

r1(s)Φ
(
κ∆(s)

) − Φ (κ (ζ (s)))
Φ (κ (s))

r2(s)ϖ(s)ϖσ(s)

≤ −
κ

r1(s)


∣∣∣κ∆ (s)

∣∣∣
κ (s)

1−κ

−
Φ (κ (ζ (s)))
Φ (κ (s))

r2(s)ϖ(s)ϖσ(s), (2.3)

due to Pötzsche chain rule (see [23, Theorem 1.90]),

(Φ (κ (s)))∆ = κκ∆ (s)
∫ 1

0
[(1 − h) κ (s) + hκσ (s)]κ−1 dh

≤ κκκ−1 (s) κ∆ (s) = −κκκ−1 (s)
∣∣∣κ∆ (s)

∣∣∣ .
Also, by using the fact that κ∆(s) < 0, we obtain

ϖ∆(s) ≤ −
κ

r1(s)


∣∣∣κ∆ (s)

∣∣∣
κ (s)

1−κ

− r2(s)ϖ(s)ϖσ(s). (2.4)

Integrating (1.1) and using the fact that κ∆(s) < 0, we obtain

− r1(s)Φ
(
κ∆(s)

)
> −r1(s)Φ

(
κ∆(s)

)
+ r1(s1)Φ

(
κ∆(s1)

)
≥ Φ (κ (s))

∫ s

s1

r2 (ς)∆ς, (2.5)

that is,

r1/κ
1 (s)

∣∣∣κ∆ (s)
∣∣∣ ≥ κ (s)

(∫ s

s1

r2 (ς)∆ς
)1/κ

.
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In this case, we have

κ

r1(s)


∣∣∣κ∆ (s)

∣∣∣
κ (s)

1−κ

≥ κ

 1
r1(s)

(∫ s

s1

r2 (ς)∆ς
)1−κ1/κ

= κ

[
P̃1−κ (s)

r1(s)

]1/κ

. (2.6)

Substituting (2.6) into (2.4), we obtain

ϖ∆(s) ≤ −κ
[
P̃1−κ (s)

r1(s)

]1/κ

− r2(s)ϖ(s)ϖσ(s). (2.7)

Integrating (2.7) from s to v, we obtain

ϖ (v) −ϖ (s) ≤ −κ
∫ v

s

[
P̃1−κ (ς)

r1(ς)

]1/κ

∆ς −

∫ v

s
r2(ς)ϖ(ς)ϖσ(ς)∆ς.

Due to ϖ > 0 and ϖ∆ < 0 and letting v→ ∞, we obtain

κ

∫ ∞

s

[
P̃1−κ (ς)

r1(ς)

]1/κ

∆ς ≤ ϖ (s) −
∫ ∞

s
r2(ς)ϖ (ς)ϖσ (ς)∆ς. (2.8)

By multiplying each side of (2.8) by P̃ (s), we obtain

κP̃ (s)
∫ ∞

s

[
P̃1−κ (ς)

r1(ς)

]1/κ

∆ς ≤ P̃ (s)ϖ (s) − P̃ (s)
∫ ∞

s
r2(ς)ϖ (ς)ϖσ (ς)∆ς. (2.9)

For any ε ∈ (0, 1), there exists an s2 ∈ [s1,∞)T such that, for s ∈ [s2,∞)T,

P̃ (s)
∫ ∞

s

[
P̃1−κ (ς)

r1(ς)

]1/κ

∆ς ≥ εÃ and P̃ (s)ϖ (s) ≥ εW, (2.10)

where
0 ≤ W := lim inf

s→∞
P̃ (s)ϖ (s) ≤ 1,

in view of (2.2) and (2.5). It follows from (2.9) and (2.10) that

εκÃ ≤ P̃ (s)ϖ (s)

−P̃ (s)
∫ ∞

s

r2(ς)
P̃ (ς) P̃σ (ς)

P̃ (ς)ϖ (ς) P̃σ (ς)ϖσ (ς) ∆ς

≤ P̃ (s)ϖ (s)

−P̃ (s) (εW)2
∫ ∞

s

r2(ς)
P̃ (ς) P̃σ (ς)

∆ς

= P̃ (s)ϖ (s) − P̃ (s) (εW)2
∫ ∞

s

(
−1

P̃ (ς)

)∆
∆ς

= P̃ (s)ϖ (s) − (εW)2 ,

due to P̃ (s)→ ∞ as s→ ∞. Taking the lim inf of each side of the last inequality as s→ ∞, we obtain

εκÃ ≤ W − (εW)2 .
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Since ε > 0 is arbitrary, we achieve

κÃ ≤ W −W2 ≤
1
4
,

which is a contradiction to (2.1)

Example 2.1. Consider the second-order half-linear sublinear delay dynamic equation[
P̃ (s)

√
√

sP̃σ (s) κ∆(s)sgn
(
κ∆(s)

)]∆
+

1
β̃
√

s

√
κ (ζ (s))sgn (κ (ζ (s))) = 0, (2.11)

where β̃ > 0 is a constant. Here,

κ =
1
2
, r1 (s) = P̃ (s)

√
√

sP̃σ (s), and r2 (s) :=
1
β̃
√

s
.

It is easy to see that

P̃ (s) =
1
β̃

∫ s

T

∆ς
√
ς
→ ∞ as s→ ∞,

by [24, Example 5.60]. Also,

lim inf
s→∞

P̃ (s)
∫ ∞

s

[
P̃1−κ (ς)

r1(ς)

]1/κ

∆ς


= lim inf

s→∞

{
P̃ (s)

∫ ∞

s

1
√
ςP̃ (ς) P̃σ (ς)

∆ς

}
= β̃ lim inf

s→∞

P̃ (s)
∫ ∞

s

(
−1

P̃ (ς)

)∆
∆ς

 = β̃.
In view of Theorem 2.1, Equation (2.11) is oscillatory if β̃ >

1
2

.

Theorem 2.2. If for sufficiently large T ∈ [s0,∞)T,

lim sup
s→∞


∫ ∞

s

∆ς

r1/κ
1 (ς)

(∫ s

T
r2 (ς)∆ς

)1/κ
 > 1, (2.12)

then Eq (1.1) is oscillatory.

Proof. Suppose that κ is a nonoscillatory solution of (1.1) on [s0,∞)T. Without loss of generality, let
κ(ζ (s)) > 0 on [s0,∞)T. By applying the same method as in the proof of Case (a) of [39, Theorem 1],
we obtain [

r1(s)Φ
(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0,

eventually. Then there exists an s1 ∈ [s0,∞)T such that for s ∈ [s1,∞)T,[
r1(s)Φ

(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0.
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In accordance with the proof of Theorem 2.1, Case (b), we conclude that

−r1/κ
1 (s)κ∆(s) ≥ κ (s)

(∫ s

s1

r2 (ς)∆ς
)1/κ

.

Since
[
r1(s)Φ

(
κ∆(s)

)]∆
< 0, we obtain

κ (s) > −
∫ ∞

s

r1/κ
1 (ς) κ∆(ς)

r1/κ
1 (ς)

∆ς ≥ −r1/κ
1 (s) κ∆(s)

∫ ∞

s

∆ς

r1/κ
1 (ς)

.

Therefore,

−r1/κ
1 (s)κ∆(s) ≥ −r1/κ

1 (s) κ∆(s)


∫ ∞

s

∆ς

r1/κ
1 (ς)

(∫ s

s1

r2 (ς)∆ς
)1/κ

 .
Consequently, we have

lim sup
s→∞


∫ ∞

s

∆ς

r1/κ
1 (ς)

(∫ s

s1

r2 (ς)∆ς
)1/κ

 ≤ 1,

which contradicts (2.12)

3. Oscillation criteria for (1.1) when ζ (s) ≥ s

In this section, we will introduce Hille-type and Ohriska-type oscillation criteria for the noncanon-
ical case of Eq (1.1) when ζ (s) ≥ s on [s0,∞)T.

Theorem 3.1. If for sufficiently large T ∈ [s0,∞)T,

B̃ := lim inf
s→∞

Q̃ (s)
∫ ∞

s

[
Q̃1−κ (ς)

r1(ς)

]1/κ

∆ς

 > 1
4κ
, (3.1)

where

Q̃ (s) :=
∫ s

T

(
ξ (ζ (ς))
ξ (ς)

)κ
r2(ς)∆ς,

with

ξ (s) :=
∫ ∞

s

∆ς

r1/κ
1 (ς)

,

then Eq (1.1) is oscillatory.

Proof. Suppose that κ is a nonoscillatory solution of (1.1) on [s0,∞)T. Without loss of generality, let
κ(s) > 0 on [s0,∞)T. As in the proof of Case (a) of [39, Theorem 1], we obtain[

r1(s)Φ
(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0,

eventually. Then there exists an s1 ∈ [s0,∞)T such that for s ∈ [s1,∞)T,[
r1(s)Φ

(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0.
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In accordance with the proof of Theorem 2.1, Case (b), we achieve that

ϖ∆(s) ≤ −
κ

r1(s)


∣∣∣κ∆ (s)

∣∣∣
κ (s)

1−κ

−
Φ (κ (ζ (s)))
Φ (κ (s))

r2(s)ϖ(s)ϖσ(s). (3.2)

Since
[
r1(s)Φ

(
κ∆(s)

)]∆
< 0, we obtain

−κ (s) ≤ r1/κ
1 (s) κ∆(s)

∫ ∞

s

∆ς

r1/κ
1 (ς)

= r1/κ
1 (s) κ∆(s)ξ (s) .

Hence, (
κ (s)
ξ (s)

)∆
=
ξ (s) κ∆ (s) + r−1/κ

1 (s) κ (s)
ξ (s) ξσ (s)

=
r1/κ

1 (s) ξ (s) κ∆ (s) + κ (s)

r1/κ
1 (s) ξ (s) ξσ (s)

> 0, (3.3)

which implies
Φ (κ (ζ (s)))
Φ (κ (s))

≥

(
ξ (ζ (s))
ξ (s)

)κ
. (3.4)

Therefore, (3.2) becomes

ϖ∆(s) ≤ −
κ

r1(s)


∣∣∣κ∆ (s)

∣∣∣
κ (s)

1−κ

−

(
ξ (ζ (s))
ξ (s)

)κ
r2(s)ϖ(s)ϖσ(s). (3.5)

By integrating (1.1) and by the facts that

κ∆(s) < 0 and
(
κ (s)
ξ (s)

)∆
> 0,

we obtain

−r1(s)Φ
(
κ∆(s)

)
> −r1(s)Φ

(
κ∆(s)

)
+ r1(s1)Φ

(
κ∆(s1)

)
≥

∫ s

s1

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)Φ (κ (ς))∆ς

≥ Φ (κ (s))
∫ s

s1

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς, (3.6)

that is,

r1/κ
1 (s)

∣∣∣κ∆ (s)
∣∣∣ ≥ κ (s)

(∫ s

s1

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς

)1/κ

.

In this case, we have

κ

r1(s)


∣∣∣κ∆ (s)

∣∣∣
κ (s)

1−κ

≥ κ

 1
r1(s)

(∫ s

s1

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς

)1−κ1/κ
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= κ

[
Q̃1−κ (s)

r1(s)

]1/κ

. (3.7)

Substituting (3.7) into (3.5), we conclude that

ϖ∆(s) ≤ −κ
[
Q̃1−κ (s)

r1(s)

]1/κ

−

(
ξ (ζ (s))
ξ (s)

)κ
r2(s)ϖ(s)ϖσ(s). (3.8)

Integrating (3.8) from s to v, we obtain

ϖ (v) −ϖ (s) ≤ −κ
∫ v

s

[
Q̃1−κ (ς)

r1(ς)

]1/κ

∆ς −

∫ v

s

(
ξ (ζ (ς))
ξ (ς)

)κ
r2(ς)ϖ(ς)ϖσ(ς)∆ς.

As a result of ϖ > 0 and ϖ∆ < 0 and assuming v→ ∞, we obtain

κ

∫ ∞

s

[
Q̃1−κ (ς)

r1(ς)

]1/κ

∆ς ≤ ϖ (s) −
∫ ∞

s

(
ξ (ζ (ς))
ξ (ς)

)κ
r2(ς)ϖ (ς)ϖσ (ς)∆ς. (3.9)

By multiplying each side of (3.9) by Q̃ (s), we obtain

κQ̃ (s)
∫ ∞

s

[
Q̃1−κ (ς)

r1(ς)

]1/κ

∆ς ≤ Q̃ (s)ϖ (s)

−Q̃ (s)
∫ ∞

s

(
ξ (ζ (ς))
ξ (ς)

)κ
r2(ς)ϖ (ς)ϖσ (ς)∆ς. (3.10)

For any ε ∈ (0, 1), there is an s2 ∈ [s1,∞)T such that, for s ∈ [s2,∞)T,

Q̃ (s)
∫ ∞

s

[
Q̃1−κ (ς)

r1(ς)

]1/κ

∆ς ≥ εB̃ and Q̃ (s)ϖ (s) ≥ εW, (3.11)

where
0 ≤ W := lim inf

s→∞
Q̃ (s)ϖ (s) ≤ 1,

in view of (2.2) and (3.6). From (3.10) and (3.11), we infer that

εκB̃ ≤ Q̃ (s)ϖ (s)

−Q̃ (s)
∫ ∞

s

(
ξ (ζ (ς))
ξ (ς)

)κ r2(ς)
Q̃ (ς) Q̃σ (ς)

Q̃ (ς)ϖ (ς) Q̃σ (ς)ϖσ (ς) ∆ς

≤ Q̃ (s)ϖ (s)

−Q̃ (s)
(
εW

)2
∫ ∞

s

(
ξ (ζ (ς))
ξ (ς)

)κ r2(ς)
Q̃ (ς) Q̃σ (ς)

∆ς

= Q̃ (s)ϖ (s) − Q̃ (s)
(
εW

)2
∫ ∞

s

(
−1

Q̃ (ς)

)∆
∆ς

= Q̃ (s)ϖ (s) −
(
εW

)2
, (3.12)
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due to Q̃ (s)→ ∞ as s→ ∞. Taking the lim inf of (3.12) as s→ ∞, we obtain

εκB̃ ≤ W −
(
εW

)2
.

Since ε > 0 is arbitrary, we see that

κB̃ ≤ W −W
2
≤

1
4
,

which is a contradiction to (3.1).

Theorem 3.2. If for sufficiently large T ∈ [s0,∞)T,

lim sup
s→∞

ξ (s)
(∫ s

T

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς

)1/κ
 > 1, (3.13)

where

ξ (s) :=
∫ ∞

s

∆ς

r1/κ
1 (ς)

,

then Eq (1.1) is oscillatory.

Proof. Suppose that κ is a nonoscillatory solution of (1.1) on [s0,∞)T. Without loss of generality, let
κ(s) > 0 on [s0,∞)T. By applying the same method as in the proof of Case (a) of [39, Theorem 1], we
obtain [

r1(s)Φ
(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0,

eventually. Then there exists an s1 ∈ [s0,∞)T such that for s ∈ [s1,∞)T,[
r1(s)Φ

(
κ∆(s)

)]∆
< 0 and κ∆(s) < 0.

In accordance with the proof of Theorem 3.1, Case (b), we conclude that

κ (s) ≥ −r1/κ
1 (s) κ∆(s)ξ (s) ,

and

−r1/κ
1 (s)κ∆(s) ≥ κ (s)

(∫ s

s1

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς

)1/κ

.

Therefore,

−r1/κ
1 (s)κ∆(s) ≥ −r1/κ

1 (s) κ∆(s)

ξ (s)
(∫ s

s1

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς

)1/κ
 .

Consequently,

lim sup
s→∞

ξ (s)
(∫ s

s1

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς

)1/κ
 ≤ 1,

which contradicts (3.13). This completes the proof.
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Example 3.1. Consider the half-linear sublinear advanced dynamic equation[
s 3
√
σ(s)κ∆(s)

]∆
+ β̃ξ (s) 3

√
ξ (s) κ (ζ (s)) = 0, (3.14)

where β̃ > 0 is a constant. Here,

κ =
1
3
, r1 (s) = s 3

√
σ(s), and r2 (s) = β̃ξ (s) 3

√
ξ (s).

Thus,

lim sup
s→∞

ξ (s)
(∫ s

T

(
ξ (ζ (ς))
ξ (ς)

)κ
r2 (ς)∆ς

)1/κ


≥ β̃ lim sup
s→∞


∫ ∞

s

∆ς

ς3σ(ς)

∫ s

T

ξ (ς) 3

√∫ ∞

ζ(ς)

∆ω

ω3σ(ω)

∆ς


3
≥ β̃ lim sup

s→∞


∫ ∞

s

(
−1
ς3

)∆
∆ς

∫ s

T

ξ (ς)
3

√∫ ∞

ζ(ς)

(
−1
ω3

)∆
∆ω

∆ς


3
= β̃.

By application of Theorem 3.2, if β̃ > 1, then Eq (3.14) is oscillatory.

4. Discussion and Conclusions

(1) The results in this paper presented are applicable across all time scales without any restrictive
conditions, including T = R, T = N, and T = qN0 := {qn : n ∈ N0 for q > 1}.

(2) These results, unlike previous findings [2, 26–29, 31,33–38], do not require a condition (1.3) (the
canonical case), thereby addressing an open problem noted in several papers [16, 33, 35, 39, 40].

(3) Our results extend related contributions to the second-order dynamic equations for both cases
ζ(s) ≤ s and ζ(s) ≥ s on [s0,∞)T; see the following details:

(i) Criterion (2.1) reduces to (1.23) in the case where κ = 1 and ζ(s) ≤ s;
(ii) Criterion (2.12) becomes (1.24) in the case when κ = 1 and ζ(s) ≤ s;

(iii) Criterion (3.1) reduces to (1.25) assuming that κ = 1 and ζ(s) ≥ s;
(iv) Criterion (3.13) becomes (1.26) under the assumption that κ = 1 and ζ(s) ≥ s.
(4) It would be of interest to establish Hille-type and Ohriska-type oscillation criteria for the second-

order half-linear noncanonical dynamic equation (1.1) when κ > 0.
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