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Abstract: Let M, ,, := Mat,(Z/mZ) be the ring of matrices of nXn over Z/mZ and G, := Gl,(Z/mZ)
be the multiplicative group of units of M, ,, withn > 2, m > 2. In this paper, we obtain an exact formula
for the number of representations of any element of M, ,, as the sum of k units in M, ,,. Furthermore,
by using the technique of Fourier transformation, we also give a formula for the case n > 3 and m = p
is a prime.
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1. Introduction

Let R be a finite ring with 1 € R, and let R* denote the multiplicative group of units in R. Let k be
an integer with k > 2, and let #S denote the cardinality of any finite set S. For any ¢ € R, we define

k
E Xi=Cq,
i=1

S«(R,¢) = {(xl,x2, oo X)) € (RHF

and
Ni(R,c) := #Sk(R, ).

For a positive integer n, let Z/nZ be the ring of residue classes modulo #. In 2000, Deaconescu [1]
obtained a formula for N,(Z/nZ, c). In 2009, Sander [2] gave a generalization of the above result. In
fact, for any integer c, he determined the number of representations of ¢ as a sum of two units (two
nonunits, a unit, and a nonunit, respectively) in Z/nZ.

For a positive integer n with divisors ki, k,, ..., k,(t > 2) and ¢ € Z, let

1< X; < I’l/ki, X,’,l’l/ki = 1, I = l,2,...,t,
S nikr ko ke (€) 1= {(Xl,xz,---,xz) ( ) }

" kixi=c (mod n)

We define Nn;kl,kz,...,k,(c) = ﬁSn;kl,kz,m,kt(c).
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In 2013, Sander and Sander [3] gave a formula for N,, +,(c). In 2014, Sun and Yang [4] obtained a
formula for N, k,.. x(c). In 2015, Yang and Tang [5] extended Sander’s results to the quadratic case.
In 2017, Ji and Zhang [6] extended Sander’s results to the residue ring of a Dedekind ring.

In this paper, we shall extend the above results to the ring of matrices over Z/mZ. Let M,,, =
Mat(Z/mZ), G := GL,(Z/mZ) = M, .. For any matrix A € M, ,,, we define

Zk:xi = A},
i=1

Sn,m,k(A) = {(Xl, X2yeens Xk) € Gﬁ,m

and
Nn,m,k(A) = ﬁS nmk(A)
We also define

My, = {A €M,,, | rank(A) = r} , r=0,1,...,n.

Clearly, M, ;o = {0}, M,,,,, = G, , where p is a prime.
By Lemmas 2.1 and 2.2, it is sufficient to compute N, , (A), where p is a prime . Let A = (g;j)nxn €
M,,and [ € {1,2,...,n}. Define
I
HA) = ) g
i=1

u) =0} - #{a e M,
ﬁMn,p,r

|j{A eEM,,,

1(A) = 1}

Cn,p,r(l) =
In this paper, our main results are the followings:
Theorem 1.1. Let p be a prime. For any B,C € M, ,, with rank(B) = 1, rank(C) = 2, set

@i 1= Nopi(0), B := Nopi(B), vk i= Nopi(C), k=2

Let
p 0 0 (p-Dp+D 1 (p+1D*p-1)
T=(0 (p-1*p(p+1) 0 , 8 = 1-p 1 pP-p-1
0 0 -p(p—-1) 1 1 -p-1

Then we have

a={p-17’pp+1), =@ -p-D(p-Dp, yo=p*-2p’ - p*+3p,

and
(@ B> Y1) = ST 2S Nan, Bry y2)', k> 2.

Theorem 1.2. Let p be a prime. For any A € M, , with rank(A) = r, we have

#Gnp)' <
ﬁM r Z ﬁMn,p,l : Cn,p,n(l)kcn,p,l(r)-
n,p

=0

Nn,p,k(A) =
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This paper is organized as follows: In Section 2, we shall prove some lemmas that will be used in
the proofs of our main results. In Sections 3 and 4, we shall give the proofs of Theorems 1.1 and 1.2,
respectively.

2. Preliminaries

€1 €2

Lemma 2.1. Let m € N* and m > 2 withm = p{'p3’ - - - p;', where pi, p, ..., p, are different primes,
ej>1,j=12,...,t. ForanyA € M,,,, letA; € an"j be the reduction of A module pj.’, j=1,2,...,¢t.
P

Then we have

t
Nuns@) = | [N, 0 ,4).
j=1

Proof. Let (B, By, ..., Bi) € S,mi(A). Then B;; € anej, i=1,2,...,k, j=1,2,...,t, where B;; is the
P
reduction of B; module pj:f . It is clear that (B, Byj,...,Byj) € S n,p;-f,k(Aj)’ j=1,2,...,t. Conversely,
let (Byj, Byj, ..., Byj) € Snpe, (A), j=1,2,...,t By the Chinese remainder theorem, the reduction
NI

induces two isomorphisms:

t t
Mo = DM, 0. Gun= (DG,
=1 =1

So there is a unique B; € G,,, such that B;; are the reduction of B; module p;j ,i=1,2,...,k, j =

1,2,...,t. We have
k
D Bi=A,
i=1

i.e., (Bl, B, ..., Bk) S Sn,m,k(A)~ O
For any prime p and e > 2, the next lemma shows the relation between N,, e ((A) and N, , 1(A).

Lemma 2.2. Let p be a prime and e > 2. For any A € G, let A € M, , be the reduction of A module
p. Then we have

e—1)-n2-(k— N
Nupes(A) = p D EDN, L (A).
Proof. Let (B, B,,...,By) € S we,kLA). Thin E € Gn,p,~ where Ei are the reduction of B; module p,

i = 1,2,...,k It is clear that (Bl,Bz,.;,Bk) € S, pk(A). Conversely, let B = (bs)nxn € Gy With
by €{0,1,...,p— 1}, then B is alift of Bin G, ;- if and only if B is of the form as

(kstp + bst)an’ 0< ksz < pe_l -1, s, t= 1,2, R 8

(=D’ S0 if we choose

So the number of lifts of B in Gupeisp
(Eb EZ, L] Ek) € Sn,p,k(;(),
fix an lift (By, By, ..., Bi_1) of (§1, EZ, e ,Ek_l), there is only one lift By of Ek such that
k
Z B, = A.

i=1

Electronic Research Archive Volume 33, Issue 3, 1323-1332.



1326

So we have
e—1)n?-(k— A
Ny pe(A) = p D EDN, L (A).

Next, we start to consider the case m = p, where p is a prime .

Lemma 2.3. Let A, B € M, , with rank(A) = rank(B). Then we have

Ny pk(A) = Ny pi(B).
Proof. By assumption, there exist C, D € G, , such that CAD = B. It is obvious that the map
Snpk(A) = S, pk(B), (x1,X2,...,x) = (Cx1D,Cx,D,...,Cx;D)
is bijective. Hence N, , 1(A) = N, , «(B). O
It is well known that we have the following results.

Lemma 2.4. [7] Forany 1 < r < n, we have

Gy = H(p ), My = ﬂ(p ‘p)z.
i=0

Next we consider the case n = 2,k = 2.

Theorem 2.5. Let p be a prime and A € M, ,. Then we have

(p—-1D?p(p+1), if rank(A) = 0
Nypor(A) =3 (p* —p—-D(p—-Dp, ifrank(A) =1,
pt=2p° —p*+3p, ifrank(A) =2

Proof. Case 1. rank(A) = 0,1i.e., A = O. For any x; € G, , O — x; = —x; € G, ,. Hence we have
N> ,0(A) = ﬁGz,p =(p- 1)219(19 +1).

1 0
00
compute N, ,»(A), we only need to compute the number of x; € G, such that A — x; is not in G, ,
i.e., rank(A — x;) = 1. Assume

Case 2. rank(A) = 1. By Lemma 2.3, it is sufficient to compute N, ,>(A), where A = [ ] . To

X] = [a b], a,b,c,d € Z/pZ.

c d
then
l—-a -b
A— X1 = |: —c —d] .
For x; € G, ), we have (—c, —d) # (0, 0). Then there exists k € Z/pZ such that
Ay = —kc —kd _|kc+1 kd
X1 = —c —d , X1 = d .
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We have
det(x;) = (k¢ + 1)d — ked = d # 0.

For x, to be uniquely determined by k, c, d, then the number of such x; is p*(p — 1). So

Napa(A) = 4Gy, — p(p— 1D = (p* = p— D(p - Dp.
Case 3. rank(A) = 2. We know that

M, 1 =M, — $M> 0 — M5 0
=p*-1-(p-1’p(p+1)
=(p+ 1)*(p - 1).

Choose B € M, ,,, C € M, ,;, then we have

iG>, = Z Na p2(x)

)CGMZ.p

={M> 0 - Nopo(B) + M5 1 - No po(C) + M 5 - No o (A)
=(p-D’p(p+ D +(p+1)(p-1)-(p>—p-D(p-1p
+(p=1p(p+ 1) Napa(A).
So we have
p-DPp+ 1 -(p-D’pp+DH=-(p-1D*(p+1)-(p>—p-D(p-Dp
(p-Dp(p+1)
=D (p- 1 pp+ D=1 (P =p-1)(p+ 1)
- (p=D*p(p+1)

N> ,0(A) =

=p*-2p’ - p*+3p.
O

Next, we introduce the Fourier Transformation. Let H be a finite abelian group, and let H =:
Homy(H, C*) be the character group of H. Clearly, H = H. For any function f : H — C, the function

fiH-C xm ) fax®, YyeH

xeH
is called the Fourier Transformation of f. The transformation can be inverted. We have

Lemma 2.6. [8] Let fbe the Fourier Transformation of f : H — C. Then we have

f=2%m%

XEH
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3. Proof of Theorem 1.1

Consider the equation
X1+Xxp+  + X1 = A, X1, X2, ..., Xpr] € Gz,p, Ae Mz’p.

Case 1. rank(A) = 0, i.e., A = O. Fix an xi, then O — x;11 = =Xy € Gy, So the number ay.; of
solutions of the equation

Xi+ X+ X = = Xpa1, X1, X2, .., Xr1 € Gop,

is §Ga, - v = (p = 1’ p(p + Dy
Case 2. rank(A) = 1. By Theorem 2.5, the number of x;,; such that A — xi.; € M, is 5, the
number of X, such that A — xx. € M, is §G,, — B,. So we have

Br+1 = (ﬁG2,p — B2)Bx + B2y
=pX(p= DB+ (p* = p = D(p = Dpvi
Case 3. rank(A) = 2. Use the same way as Case 2; we have
Vil =@ + (ﬁGz,p — Y2 - l)ﬁk + Y2V
=ax+ (p* = 2p = DB+ (p* = 2p° = p* + 3p)we.

Let
0 0 (p—-Dp(p+1)
P=|0 p(p-1) P -p-Dp-Dp|.
1 pP-2p-1 p*-2p-p*+3p
Then (ay, Br, i)' = P(i—1, Bt Yi1)' = - -+ = P**(a, 55, 7»)". The characteristic polynomial of P is

Y| 0 —(p = D?p(p+1)
det(AE—P)=det| 0 A-p*(p-1) —(p*—p-D(p-1p
-1 —(p’-2p-1) a-(p*-2p*—p*+3p)

=1(1-p*(p-D)(21-p(p* - 20> - p+3))
(- 1’p(p+1(1-p (p-1)
—(p* = p~D(p-Dp(p* - p-D(p+ 1A
=A-p (-1’ p+D)A+pp-1).

Hence, P is similar to

p 0 0
T:=(0 (p—1Pp(p+1) 0
0 0 -p(p—1)

The eigenvectors of p, (p — 1)*p(p + 1), —p(p — 1) are respectively

(p-1D’(p+1) 1 (p+1*p-1
el = 1-p ,e=|1|,es=| p*-p-1
| 1 p—1
Define S := (ey, €2, €3). Then we have P = STS . O
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4. Proof of Theorem 1.2

For convenience, let M := M, ,, G := G,,, M, := M, ,,. Let S be a finite set. For any map
f:S — M and x € M, we define
TANE))

Pf(X) = IiS s

where f7!(x) is the set of all the inverse images of x. Let M =: Hom,,(M, C*) be the additive character
group of M. Then we have

) — 1 _ —~
Prl) = D Prao@) = 3¢ > x(F). x € M,
xXeM SES

By Lemma 2.6, we have

me%ZEwml

e
Let ¢ : G — M be the inclusion map and
Q: Gk > M,
(X1, X0,y X)) P X1+ X + - + Xy
Clearly,
Nupi(A) = (HG)* - Py(A), VA€ M. 4.1)

For all y € M, we have

— 1
Py(x) = Z XX+ x4+ xp)

- Z X)) - x(x) -+ x ()

k
1 -
=l X (Xl)]
w2
=P4(x)".
Next, we consider Fd,(/\(). Let ¢ be a nontrivial additive character of Z/pZ. Then the map

(LY MxM — Z/pZ — C*,

(x1, X2) > tr(x1x2) > Y(tr(x1x2))
is a non-degenerated symmetric bilinear map. Hence (_, _) induces a group isomorphism:
p:M— M,

Yy Xy =Ly

Electronic Research Archive Volume 33, Issue 3, 1323-1332.
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So we have

-~ 1 — 1 1
Pu) = 3G 200 = 75 D 09 = 75 ) (xy).

xeG xeG xeG
If rank(x) = rank(y), i.e., there exits g;,g, € G such that x = g,yg,. By the properties of the trace

function, we have
Z (z,x) = Z (z,81982) = Z (82281,) = Z z,)- (4.2)

ZEMr ZEMr ZEMV ZeMr

Specially, we have

Py(x) = Py(y).

Letle{l,2,...,n}.Sety, := [I

0[ g] € M and y; := xy,, where [, is the identity matrix of order /. Then

xi(x) = ¥(t(x)), forall xe M.

For any a € (Z/pZ)*, it is obvious that

ﬁ{x €M, |t)(x) = a} = ﬁ{xe M, |t(x) = 1}.
Note that 3’ ,c7/,7z ¥(a) = 0, hence we have
1 1
— ) (ny) = Y(1(x))
iM, ZM: "M, ZM: ’
1
= Y(a) 1
ﬂM’ aGZZ/pZ xEMZt[(x)ql

> owa Y1

1 1
052 Yo

" xeM,, t;(x)=0 as(Z/ pZy* XeM,, t)(x)=a
1 1
= - 1
ﬁM’ xeM,, 1;(x)=0 ﬁ " xeM,,t(x)=1
:Cn,p,r(l)-
Especially,
—_ 1
Pu) = 55 ), (631) = Cupall) (4.3)
xeG

As rank(A) = r, by Eqgs (4.2) and (4.3), we have

1 —~
PoA) = ) PelOx(4)

XEM
n

1 —_
=T ;;yZM PG (A, )

=337 Do a0 Y A)

1=0 YEM;

Electronic Research Archive Volume 33, Issue 3, 1323-1332.
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ﬁiM Z a0 Y (5.4)

YeM;

ﬁLM chpn(l) Z 0y

=0 YEM,;

N

1
=1 Cn,p,n(l)k : ﬁMl : Cn,p,l(r)-

=0

Then by Eq (4.1), we have

DM, pa(D ().

=0
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