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Abstract: In this paper, we have constructed two muscular blood vessel systems influenced by external
disturbances by using the non-autonomous delayed differential equation (DDE). As an important
physiological structure of the human body, muscle blood vessels participate in many activities such
as blood flow. Many diseases are associated with abnormal dynamics of muscle blood vessels. From
a mathematical point of view, vasospasm is caused by a chaotic state of blood vessels. Vasospasm
is the manifestation of this disease in the vascular system, which can cause blood vessel blockage
and even harm human health when it is serious. We conducted the dynamical analysis of the S-
type and N-type muscular blood vessel systems by utilizing bifurcation diagrams, time histories,
and pseudo-phase portraits, and investigated the effects of different parameters on these systems.
Specifically, when parameters change, rich dynamical phenomena occur, such as equilibria, periodic
solutions, quasi-periodic solutions, Hopf bifurcation, and chaos, as well as the route of period-doubling
bifurcation to chaos. Meanwhile, we analyzed approximate analytical solutions by using the method
of multiple scales (MMS) and determined the stability of steady-state solutions through the Routh-
Hurwitz criterion. The results indicate that the MMS can deduce better analytical results for some
non-autonomous DDEs.
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1. Introduction

In the human body, the heart controls the flow of blood through various blood vessels. Blood
vessels are divided into arteries, capillaries, and veins according to their functions. Arteries transport
fresh oxygen from the heart to all tissues in the body. The coronary artery system is composed of two
blood vessels that diverge from the aorta. They are very close to the starting point of the heart.
According to reports, coronary artery disease is the leading global cause of mortality and
morbidity [1–3]. Unfortunately, accurate prediction and assessment of mortality or morbidity remains
difficult due to the complexity of the interdependence of various factors and the ambiguity of the data.
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Compared with the traditional binary logistic regression model to predict the mortality after coronary
artery bypass surgery, the fuzzy expert system introduced by Nouei et al. can greatly improve the
classification accuracy [4]. Auffret et al. discussed the incidence, prognostic impact, and unmet needs
of patients with new conduction disorders after transcatheter aortic valve replacement, as well as the
ongoing challenges associated with the management of concomitant coronary artery disease [5].
Coronary angiography is the process of using X-rays to determine and observe the heart condition. It
is the main imaging technique for diagnosing coronary diseases and is the standard for evaluating
clinically significant coronary artery disease [6–9]. The 3D reconstruction of rotational coronary
angiography can provide the required information volume for clinical applications [10].
Automatic 3D blood vessel reconstruction to improve vascular diagnosis and treatment is a
challenging task, where real-time implementation of automatic segmentation and specific vascular
tracking for matching artery sequences are essential [11,12]. Since most of the vascular interventional
robots cannot cope with the complicated coronary artery lesions in clinical practice, the risk of
surgery will be increased. Yu et al. developed a vascular interventional robot that can accurately
measure the delivery resistance of interventional instruments and provide tactile force feedback to
doctors [13].

As we all know, more and more attention has been paid to non-autonomous dynamical systems in
various fields of research, including ecology (such as describing the growth and competition
relationships of biological populations), economics (such as describing the delayed response to
market demand), and control theory (such as describing control systems with time-varying
characteristics and delayed feedback). In practical applications, non-autonomous delayed differential
equations can help us to understand and predict the dynamical behavior of the system more
accurately. Non-autonomous differential equations can also be used to describe multi-agent systems
and design corresponding control protocols [14, 15]. The profound discussion of the coronary artery
system as a practical biological mathematical case of the non-autonomous system is of great
significance. The dynamics of a two-dimensional non-autonomous coronary artery model is
investigated. Numerical simulations show that the system exhibits chaotic attractors, quasi-periodic
attractors, and periodic orbits. For some specific parameter sets, two different solutions appear, and
these coexisting attractors exhibit different complexity. It indicates that the dynamical characteristics
of the coronary artery system are difficult to predict [16]. Many medical experts have concluded that
vasospasm is the main cause of myocardial ischemia and other cardiovascular diseases, such as
common angina pectoris, sudden death, myocardial infarction, etc. From the mathematical
perspective, vascular spasm is caused by the chaotic state of blood vessels [17–19]. Singh et al.
suggested that the chaotic states of abnormal vasospasm in blood vessels make heart disease patients
more susceptible to severe COVID-19 infections, ultimately leading to high mortality rates [20].

Bifurcation is always an important topic in nonlinear dynamics research [21], which can lead to
some complex dynamical phenomena. The Hopf bifurcation is an important research area of
non-autonomous delayed differential equations in the field of nonlinear dynamics, which has been
widely applied to biology, physics, economics, and so on. However, the Hopf bifurcation of
non-autonomous systems is very difficult to predict even in deterministic conditions. As a result, there
are not many theories on it. Due to the sensitivity to disturbances, abnormal and fatal chaos in the
system can induce coronary artery disease. In view of the signification of the dynamics of the
coronary artery system, extensive researches have been conducted on it. By designing a chaotic
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observer and constructing a Lyapunov-Krasovskii functional (LKF) for the master-slave system, a
more conservative synchronization strategy was obtained for chaotic coronary artery systems with
state estimation errors and synchronization errors [22]. Ding et al. utilized disturbance observer
technology to discuss the chaotic suppression of the coronary artery system, and designed a smooth
second-order sliding mode controller to suppress the chaos of the coronary artery system [23].
Chantawat and Botmart were the first to investigate the finite-time H-infinity synchronization control
for the coronary artery chaotic system with input and state time-varying delays [24]. They designed a
synchronous feedback controller with good performance in the presence of disturbance and
time-varying delay. This synchronization strategy can effectively synchronize the convulsive coronary
artery system with the healthy cardiovascular system. From an engineering perspective, Qian et al.
adopted a combination of the derivative-integral terminal sliding mode controller and disturbance
observer to suppress chaos [25]. The simulation results verified the effectiveness of the proposed
strategy. The adaptive feedback scheme combining linear state feedback and adaptive laws can also
lead an abnormal muscular blood vessel to a normal track [26]. The coronary artery system is a
complex biological system. Their chaotic phenomenon can lead to serious health problems. In order
to suppress chaotic phenomena, various control methods have been proposed, such as an adaptive
observer [27], self-tuning integral-type finite-time-stabilized sliding mode control [28],
synchronization controller [29], generalized dissipative control method [30], terminal sliding mode
control with self-tuning [31], etc. In fact, most of these researches involve suppressing chaos or
synchronizing hemodynamics in the coronary artery system. However, there are not many
explorations on the dynamics of coronary artery systems with periodic disturbances under certain
parameter changes. Therefore, further researches on this system is of great significance.

As an important physiological structure in the human body, muscular blood vessels are involved in
many aspects such as blood flow. Many diseases, such as angina pectoris and myocardial infarction,
are associated with abnormal dynamics of muscular blood vessels. By studying the dynamical
phenomena of muscular blood vessel models, we can explore the cause and development of these
diseases, and provide new ideas and methods for disease prevention and treatment. From the
mathematical perspective, vascular spasm is caused by the chaotic state of blood vessels. Chaos
shows that under certain conditions, the system suddenly deviates from the expected regularity and
becomes disordered. Vasospasm is the manifestation of this disorder in the vascular system, which
can cause blood vessel blockage in serious cases, thus endangering human health. So through the
analysis of dynamical phenomena, we can deepen our understanding of these physiological
mechanisms, more accurately diagnose related diseases, and make more effective treatment plans.

The structure of this article is outlined as follows. In Section 2, we introduce the model of the
S-type muscular blood vessel. In Section 3, we discuss its steady-state equations. Then we utilize
recurrence plots to further validate the dynamics for different parameters [32, 33]. Finally, bifurcation,
chaos, and their numerical verifications are presented. In Section 4, we introduce the model of the N-
type muscular blood vessel and obtain its bifurcation diagram from periodic to chaotic motions under
different parameter changes. Section 5 presents a brief conclusion.
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2. The model of the S-type muscular blood vessel

The model of the S-type muscular blood vessel is denoted as [34]
dx
dt
= λ(y + x − x3 +

dy
dt

),

dy
dt
= −cx − by.

(2.1)

The system can be considered as

d2y
dt2 + (cλ − bλ)y(t) − (λ − cλ − b)

dy
dt
+
λb3

c2 y(t)3 +
λ

c2 (
dy
dt

)3 +
3bλ
c2 y(t)(

dy
dt

)2 +
3λb2

c2 y(t)2 dy
dt
= 0.

(2.2)
By introducing periodic disturbance and delay, System (2.2) becomes

d2y
dt2 + (cλ − bλ)y(t) − µ(λ − cλ − b)

dy
dt
+ µ

λb3

c2 y(t)3 + µ
λ

c2 (
dy
dt

)3 + µ
3bλ
c2 y(t)(

dy
dt

)2 + µ
3λb2

c2 y(t)2 dy
dt

−εγ cos(Ωt)y(t − τ) = 0,
(2.3)

where y is the change of the internal diameter of the vessel, x is the change of the internal pressure of
the vessel and the time lag term is considered as a possible backflow caused by the vascular blockage,
and εγcos(Ωt)y(t − τ) is a combination of periodic stimulating disturbances with the time-delayed
variation in the vessel internal diameter.

3. Steady-state approximate solution

3.1. MMS

The parameters of Eq (2.3) are suitably scaled as µ = ϵµ̂, ε = ϵε̂. In order to obtain an approximate
solution of Eq (2.3), we utilize the method of multiple scales to seek the solution in the following form: y(t, ϵ) = y0(T0,T1) + ϵy1(T0,T1) + O(ϵ2),

y(t − τ, ϵ) = yτ0(T0,T1) + ϵyτ1(T0,T1) + O(ϵ2),
(3.1)

where T0 = t and T1 = ϵt are two time scales. The derivatives can be written as follows:

dy
dt
=

∂y
∂T0
+ ϵ

∂y
∂T1
+ O(ϵ2),

d2y
dt2 =

∂2y
∂T 2

0

+ 2ϵ
∂2y

∂T0∂T1
+ O(ϵ2). (3.2)

Substituting Eqs (3.1) and (3.2) into Eq (2.3), then equating the coefficients of like powers of ϵ, we
obtain the following two differential equations,
O(ϵ0):

∂2

∂T 2
0

y0 + (cλ − bλ)y0 = 0, (3.3)
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O(ϵ1):

∂2

∂T 2
0

y1 + (cλ − bλ) y1 = −µ̂
λb3

c2 y3
0 + γε̂ cos(Ωt)yτ0 − µ̂ (−λ + cλ + b)

∂

∂T0
y0 − µ̂

3λb2

c2 y2
0
∂

∂T0
y0

−µ̂ 3bλ
c2 y0

(
∂y0
∂T0

)2
− µ̂ λ

c2

(
∂y0
∂T0

)3
− 2 ∂2y0

∂T0∂T1
.

(3.4)

The solution for Eq (3.3) can be represented as

y0(T0,T1) = A(T1)eiωT0 + Ā(T1)e−iωT0 . (3.5)

The corresponding time-delayed solutions can be formulated as follows:

yτ0(T0,T1) = A(T1 − ϵτ)eiω(T0−τ) + Ā(T1 − ϵτ)e−iω(T0−τ), (3.6)

where over-bars represent the complex conjugate. Expanding A(T1 − ϵτ) in the Taylor series yields

A(T1 − ϵτ) = A(T1) − ϵτA′(T1) + (ϵτ1)2

2! A′′(T1) − (ϵτ)3

3! A′′′(T1) + · · · = A(T1) + O(ϵ). (3.7)

Substituting Eq (3.7) into Eq (3.6) and by retaining only the first terms as approximations, therefore

yτ0(T0,T1) � A(T1)eiω(T0−τ) + Ā(T1)e−iω(T0−τ). (3.8)

Substituting Eqs (3.5) and (3.6) into Eq (3.4) and taking Eq (3.8) into account, it follows that

∂2

∂T 2
0
y1 + (cλ − bλ)y1 = −

(
b3λµ̂(eiT0ωA+e−iT0ωĀ)3

c2 − γε̂ cos(Ωt)(ei(T0−τ)ωA + e−i(T0−τ)ωĀ) + (b − λ + cλ)

× µ̂(ieiT0ωωA − ie−iT0ωωĀ) + 3b2λµ̂(eiT0ωA+e−iT0ωĀ)2(ieiT0ωωA−ie−iT0ωωĀ)
c2 +

λµ̂(ieiT0ωωA−ie−iT0ωωĀ)3

c2 + 2(ieiT0ω × ωA′ − ie−iT0ωωĀ′)

+
3bλµ̂(eiT0ωA+e−iT0ωĀ)(ieiT0ωωA−ie−iT0ωωĀ)2

c2

)
.

(3.9)
Since Eq (3.5) is the solution of Eq (3.3), we have ω =

√
cλ − bλ. The resonance here is 2:1 resonance,

i.e., (Ω = 2ω). Substituting (3.5) and (3.8) into (3.4), and utilizing the solvability conditions using the
original time scale

(
i.e., µ̂ = µ

ϵ
, ε̂ = ε

ϵ

)
, it follows that

−1
2eiωτγεĀ + ibµωA − iλµωA + icλµωA + 3b3λµ

c2 A2Ā + 3ib2λµω

c2 A2Ā + 3bλµω2

c2 A2Ā + 3iλµω3

c2 A2Ā + 2iωA′ = 0.
(3.10)

Expressing A in terms of the polar form, it follows that A = a
2eiϕ ⇒ Ȧ = ȧ

2eiϕ + ia
2 ϕ̇eiϕ,

Ā = a
2e−iϕ ⇒ ˙̄A = ȧ

2e−iϕ − ia
2 ϕ̇e−iϕ,

(3.11)
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in the equation, a is the amplitude and ϕ is the phases of System (2.3). Substituting Eq (3.11) into
Eq (3.10) and equating the real parts of the equation to each other and separately equating the imaginary
parts, we get the following equations: ȧ = a

8c2ω

(
−3λµω

(
b2 + ω2

)
a2 + 2c2 (−2 (b + (−1 + c) λ) µω + γε sin(ωτ − 2ϕ))

)
,

ϕ̇ = 1
8c2ω

(
3bλµ

(
b2 + ω2

)
a2 − 2c2γε cos(ωτ − 2ϕ)

)
.

(3.12)

3.2. Stability determination

In the steady state, there exists
ȧ = ϕ̇ = 0. (3.13)

From Eq (3.12), it follows that a
8c2ω

(
−3λµω

(
b2 + ω2

)
a2 + 2c2 (−2 (b + (−1 + c) λ) µω + γε sin(ωτ − 2ϕ))

)
= 0,

1
8c2ω

(
3bλµ

(
b2 + ω2

)
a2 − 2c2γε cos(ωτ − 2ϕ)

)
= 0.

(3.14)

The steady-state solution of Eq (3.14) can be numerically obtained via the software MATHEMATICA.
In order to analyze the stability of the solution, we can let

a = a0 + a1, ϕ = ϕ0 + ϕ1, (3.15)

where a0, ϕ0 satisfy Eq (3.14), and a1, ϕ1 are small-valued perturbations compared to a0, ϕ0. Inserting
Eq (3.15) into Eq (3.12) and linearizing it at (a0, ϕ0), we get the following linear dynamical system:(

ȧ1

ϕ̇1

)
= [J]

(
a1

ϕ1

)
=

(
r11 r12

r21 r22

) (
a1

ϕ1

)
, (3.16)

where [J] =
(

r11 r12

r21 r22

)
is the Jacobian matrix. The characteristic equation reads as

λ2 + η1λ + η0 = 0. (3.17)

The steady-state solution is asymptotically stable if and only if the real parts of all the eigenvalues
λ are negative. According to the Routh-Hurwitz criterion, the sufficient and necessary conditions for
ensuring that all roots of Eq (3.17) possess negative real parts is

η1 > 0, η0 > 0. (3.18)

3.3. Hopf bifurcation and chaos

Within this subsection, the bifurcation diagrams are produced on the basis of Eq (3.14). Analysis
is introduced by using the following values of the system parameters: µ = 1, ε = 1, c = 1.6, b =
−1, λ = 1.6, τ = 1, ω =

√
2.6, γ = 0.9, unless otherwise stated.
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(a) (b)

Figure 1. (a) The γ-amplitude response curves of the approximate solutions of System (2.3)
for λ = 1; (b) Comparisons between the approximate analytical solution derived using MMS
and the numerical simulation results. Red dots: numerical solutions, solid lines: stable
solutions, dashed lines: unstable solutions.

Figure 1(a) are the γ-amplitude curves of approximate solutions by MMS, while Figure 1(b)
compares the approximate analytical solution derived by using MMS with numerical simulation
results. The figure reveals that as γ decreases gradually, the amplitude of periodic oscillations
decreases accordingly. Until point A is reached, where the periodic oscillations cease to exist, this
leaves only one unstable equilibrium in the system. From Figure 2, it is evident that the system
exhibits a periodic solution for γ = 0.67, and there exists a phase-locked solution for γ = 0.66. As γ
gradually decreases, it can be seen from Figure 2(h) that for γ = 0.4, the system exhibits a
quasi-periodic solution. Figure 2(i) presents the process from periodic to quasi-periodic solutions.

Figure 3 depicts a bifurcation diagram, where λ serves as the primary bifurcation parameter. As λ
is decreased gradually, prior to reaching point A, System (2.3) possesses a single asymptotically stable
equilibrium. However, at point A, a supercritical bifurcation takes place. Subsequent to this bifurcation,
there is a stable periodic solution that is marked with a solid line and an unstable equilibrium marked
with dashed lines. Figure 4(a),(b) demonstrate the time history and pseudo-phase portrait for λ =
2.03, respectively, revealing the presence of a single asymptotically stable equilibrium at this stage.
Following a supercritical Hopf bifurcation, Figure 4(c),(d) illustrate the time history and pseudo-phase
portrait of System (2.3) at λ = 1.98, indicating that System (2.3) possesses a stable periodic solution.
Then the small-amplitude periodic solutions increase at a remarkable rate from Point A to Point B
where the stable periodic solution disappears. Figure 4(e) reveals that System (2.3) may enter into a
chaotic state for λ = 0.6. Figure 4(f) shows the process of System (2.3) from periodic to chaotic motion
when λ decreases from 0.73 to 0.6. Figure 5 describes the recurrence plots for λ = 0.6 and λ = 1.98.
Generally speaking, when the recurrence plot presents a periodic shape, it reflects that the system is in
a periodic state. When there are line segments parallel to the main diagonal and separate points mixed
together, it is in a chaotic state. It can also be inferred from the figure that it is a periodic solution for
λ = 1.98, while it has chaotic motions for λ = 0.6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. The evolution of System (2.3) for λ = 1 with initial functions with y(0) = y(−τ) =
z(0) = z(−τ) = 0.1, where z(t) = ẏ(t). (a),(b) γ = 0.67; (c),(d) γ = 0.66; (e) Poincaré section
with section ż = 0.5 for γ = 0.66; (f),(g) γ = 0.4; (h) Poincaré section with section ż = 0.5
for γ = 0.4; (i) the process of System (2.3) from periodic to quasi-periodic solutions.
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(a) (b)

Figure 3. (a) The λ-amplitude response curves of the approximate solutions of System (2.3)
for ω =

√
2.6λ; (b) Comparisons between the approximate analytical solution derived using

MMS and the numerical simulation results. Red dots: numerical solutions, solid lines: stable
solutions, dashed lines: unstable solutions.

(a) (b) (c)

(d) (e) (f)

Figure 4. The numerical simulations of System (2.3) with the initial functions with x(0) =
x(−τ) = y(0) = y(−τ) = 0.1, where z(t) = ẏ(t). (a), (b) λ = 2.03; (c), (d) λ = 1.98; (e)
λ = 0.6; (f) the process of System (2.3) from periodic to chaotic motions.
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(a) (b)

Figure 5. Recurrence plots of (a) a periodic motion for λ = 1.98, (b) the chaotic motion for
λ = 0.6.

(a) (b)

Figure 6. (a) The c-amplitude response curves of the approximate solutions of System (2.3)
for ω =

√
1.6(c + 1); (b) Comparisons between the approximate analytical solution derived

using MMS and the numerical simulation results. Red dots: numerical solutions, solid lines:
stable solutions, dashed lines: unstable solutions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The numerical simulations of System (2.3) with the initial functions with x(0) =
x(−τ) = y(0) = y(−τ) = 0.1, where z(t) = ẏ(t). (a), (b) c = 1.75; (c), (d) c = 1.77; (e),
(f) c = 1.29; (g) Poincaré section with section ż = 0.6 for c = 1.29; (h) the process of
System (2.3) from periodic to quasi-periodic solutions.

(a) (b)

Figure 8. (a) The b-amplitude response curves of the approximate solutions of System (2.3)
for λ = 0.5, τ = 0.2, ω =

√
0.5(1.6 − b); (b) Comparisons between the approximate

analytical solution derived using MMS and the numerical simulation results. Red dots:
numerical solutions, solid lines: stable solutions, dashed lines: unstable solutions.
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(a) (b)

(c) (d)

Figure 9. The numerical simulations of System (2.3) with the initial functions with x(0) =
x(−τ) = y(0) = y(−τ) = 0.1, where z(t) = ẏ(t). (a), (b) b = 0.25; (c), (d) b = 0.3.

Figure 6 illustrates the dynamical phenomena of System (2.3) with the change of parameter c,
along with a comparison between the approximate analytical solution obtained through MMS and the
numerical simulation results. It can be observed that as the parameter c gradually decreases to point A,
a supercritical Hopf bifurcation takes place, resulting in the bifurcation from the asymptotically stable
equilibrium to a stable periodic solution and an unstable equilibrium.

The numerical simulation presented in Figure 7 describes that c = 1.77 before the bifurcation is
an asymptotically stable equilibrium, as shown in Figure 7(c),(d). After the bifurcation Point A, for
c = 1.75, there is a stable periodic solution as represented in Figure 7(a),(b). As c continues to decrease,
the amplitude of the periodic solution continuously increases until it reaches Point B. Subsequent
to Point B, the periodic solution disappears, and as presented in Figure 7(e)–(g), the quasi-periodic
solution appears for c = 1.29.

As shown in Figure 8, supercritical Hopf bifurcation will occur at Point A and produce a stable
periodic solution, but as b gradually decreases, the stable periodic solution disappears at Point B.
From Figure 8(b), it can be seen that the approximate analytical solution obtained by MMS is in good
agreement with the numerical simulation results, indicating the effectiveness of MMS. Figure 9 proves
that there exists asymptotically stable equilibrium before the bifurcation point and there exists a stable
periodic solution after bifurcation, which verifies the bifurcation results shown in Figure 8.
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4. The model of the N-type muscular blood vessel

In medicine, blood vessels can be divided into the N-type and the S-type according to the shape of
the blood vessels (see Appendix). By a series of equivalent transformation, the biological mathematical
model of the N-type muscular blood vessel can be described as follows [17, 19]:

dx
dt
= λ(−y + y3 − x) + λ

dy
dt
+ uy(t − τ) cos(ωt),

dy
dt
= −ey − f x.

(4.1)

Thus there can be

d2y
dt2 − ( fλ − eλ)y(t) + (λ + fλ + e)

dy
dt
+ fλy(t)3 + f u cos(ωt)y(t − τ) = 0, (4.2)

where y represents the change of the internal diameter of the vessel, x represents the change of the
internal pressure of the vessel and the time lag term is considered as a possible backflow caused by the
vascular blockage and f u cos(ωt)y(t−τ) is a combination of periodic stimulating disturbances with the
time-delayed variation in the vessel internal diameter.

4.1. Numerical simulations

In this subsection, System (4.2) is analyzed numerically by the software WinPP. The parameters are
as follows: e = 0.15, f = −1.7, λ = −0.65, u = 2, τ = 0.1, ω = 1.

Figure 10 depicts the dynamical phenomena of System (4.2) based on different values of u.
According to Figure 10(a), System (4.2) is in stable periodic motion and exhibits a normal health case
for u = 0.335. The figures for u = 0.345, u = 0.35, and u = 0.3513 are illustrated in Figure 10(b)–(d),
respectively, which show that with the increase of u, System (4.2) gradually becomes Period-2,
Period-4, and Period-8 periodic motions. Figure 10(e),(f) indicate that chaos will occur for u = 0.38
and the system becomes more complex, which will cause vascular spasm and endanger health. Figure
10(h) describes that as u increases from 0.3 to 0.4, the system will gradually transfer from ordered
periodic motion to disordered, complex chaotic motion through period-doubling bifurcation.

Figure 11(h) illustrates a bifurcation diagram with ω as the bifurcation parameter. From the four
pseudo-phase portraits in Figure 11(a)–(d), it can be seen that with the gradual increase of ω, System
(4.2) undergoes a transition from Period-1 to Period-2, then to Period-4, and finally to Period-8, which
indicates the period-doubling bifurcation phenomenon. Figure 11(e),(f) shows that for ω = 2.18,
System (4.2) is in chaotic motion. Therefore, it can be shown that when ω gradually increases in the
range of 2.01 to 2.22, System (4.2) transfers from periodic solutions to chaos through period-doubling
bifurcation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Route of period-doubling bifurcation to chaos of System (4.2) as u increases
gradually for ω = 1.1 with initial functions with y(0) = y(−τ) = z(0) = z(−τ) = 0.1, where
z(t) = ẏ(t). (a) u = 0.335; (b) u = 0.345; (c), u = 0.35; (d) u = 0.3513; (e),(f),(g) u = 0.38; (g)
Poincaré section with section ż = 0.48; (h) System (4.2) transitions from an ordered periodic
motion to a disordered, complex chaotic motion by period-doubling bifurcation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Route of period-doubling bifurcation to chaos of System (4.2) as ω increases
gradually with initial functions with y(0) = y(−τ) = z(0) = z(−τ) = 0.1, where z(t) = ẏ(t).
(a) ω = 2.05; (b) ω = 2.1; (c) ω = 2.135; (d) ω = 2.14; (e),(f) ω = 2.18; (g) Poincaré section
with section ż = 0.5 for ω = 2.18; (h) System (4.2) transitions from an ordered periodic
motion to a disordered, complex chaotic motion by period-doubling bifurcation.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Route of period-doubling bifurcation to chaos of System (4.2) as ω increases
gradually with initial functions with y(0) = y(−τ) = z(0) = z(−τ) = 0.1, where z(t) = ẏ(t). (a)
ω = 1.3; (b) ω = 1.28; (c) ω = 1.267; (d) ω = 1.25; (e) Poincaré section with section ż = 0
for ω = 1.25; (f) System (4.2) transitions from an ordered periodic motion to a disordered,
complex chaotic motion by period-doubling bifurcation.

Figure 12 describes the motions of System (4.2) with ω ranging of 1.24–1.3. The red points in
Figure 12(a)–(c) are the Poincaré section with section ż = 0. As ω gradually decreases, System (4.2)
goes from Period-2 to Period-4 and then to Period-8 periodic motions, ultimately leading to chaos.
Such chaos is very dangerous to health and must be controlled and eliminated immediately.

Figure 13(a) is the pseudo-phase portrait for τ = 0.5, where the red dots represent the Poincaré
section with section ż = 0. In this case, System (4.2) is in Period-2 periodic motion. As τ gradually
increases, Figure 13(b) illustrates a Period-3 periodic motion for τ = 0.66. For τ = 0.7 and τ = 0.8,
System (4.2) is in Period-6 and Period-5 periodic motions, respectively. As τ continues to increase,
the system returns to Period-3 periodic motion, but subsequently changes into chaotic motion.
In Figure 14, as τ gradually decreases, System (4.2) undergoes a period-doubling bifurcation from
Period-4 to Period-8 periodic motions, then to Period-16 periodic motion, and finally leads to chaos.

Figure 15 shows the motions of System (4.2) at different f . As can be seen from the figure,
System (4.2) gradually changes from Period-2 to Period-5 periodic motions, then to Period-10
periodic motion, and finally leads to a dangerous chaotic motion.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. The bifurcation of System (4.2) as τ increases gradually with initial functions
with y(0) = y(−τ) = z(0) = z(−τ) = 0.1, where z(t) = ẏ(t). (a) τ = 0.5; (b) τ = 0.66;
(c) τ = 0.7; (d) τ = 0.8; (e) τ = 1; (f) τ = 1.15; (g) Poincaré section with section ż = 0
for τ = 1.15; (h) System (4.2) transitions from an ordered periodic motion to a disordered,
complex chaotic motion by period-doubling bifurcation.

(a) (b) (c)

(d) (e) (f)

Figure 14. Route of period-doubling bifurcation to chaos of System (4.2) as τ increases
gradually with initial functions with y(0) = y(−τ) = z(0) = z(−τ) = 0.1, where z(t) = ẏ(t).
(a) τ = 1.45; (b) τ = 1.37; (c) τ = 1.33; (d) τ = 1.27; (e) Poincaré section with section ż = 0
for τ = 1.27; (f) System (4.2) bifurcates from an ordered periodic motion to a disordered,
complex chaotic motion by period-doubling bifurcation of Period-4 periodic solutions.
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(a) (b) (c)

(d) (e) (f)

Figure 15. The bifurcation of System (4.2) as c increases gradually with initial functions
with y(0) = y(−τ) = z(0) = z(−τ) = 0.1, where z(t) = ẏ(t). (a) f = −5; (b) f = −4.2; (c)
f = −3.6; (d) f = −3; (e) Poincaré section with section ż = 0 for f = −3; (f) System (4.2)
from an ordered periodic motion to a disordered, complex chaotic motion.

5. Conclusions and discussion

Two non-autonomous systems with time delay, The models of the N-type and the S-type muscular
blood vessels, are investigated. From the above analysis, we can draw the following conclusion:

1). In order to discuss the complex dynamical behaviors of the systems, the method of multiple
scales is utilized to analyze the periodic solutions of the systems, and their stability is judged by the
Routh-Hurwitz criterion. It displays that the MMS can get better analytical results.

2). By observing bifurcation diagrams, the time histories and pseudo-phase portraits, we
uncovered various dynamical phenomena exhibited by the systems under different parameters,
including equilibrium, periodic solutions, quasi-periodic solutions, chaos, as well as the route to
chaos from period-doubling bifurcations.

3). The N-type muscular blood vessel system is more complex and chaotic, and the risk of disease is
increased. But the chaotic characteristics of the S-type muscular blood vessel system is not so strong.

4). The effects of different parameters on two systems are obtained. In the N-type muscular blood
vessel model, the larger u is between 0.3 and 0.4, the more complex the motion of the system. It will
enter a chaotic state at about 0.375, resulting in vascular spasm. The system is dangerously chaotic
with the time delay τ between 1.126 and 1.32. In the S-type muscular blood vessel model, the greater
the value of γ at the right side of Point A in Figure 1, the greater the amplitude of the periodic solution.
On the left side of Point A, the motion state of the system gradually attains quasi-periodic solutions as
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γ decreases. This work provides a reference for understanding vascular diseases and guidance to treat
these vascular diseases.

In this paper, Hopf bifurcation and chaos of two muscular blood vessel systems affected by external
disturbances are researched by the MMS, and abundant dynamical phenomena are obtained. In the
future, we will try to research the double Hopf bifurcation of non-autonomous systems with time-
varying coefficients.
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Appendix

Xu and Liu [34] described a mechanical model with concentrated parameters for muscular vessels:

dδR
dt = h − ( 1

2πLR2
0
+ R3

16µL2 )δP −
R2

0P0

4πL2 δR, (5.1)


h = Pa−Pb

2 −
πP0R4

0
8µL ,

δR = R − R0,

δP = P − P0,

(5.2)

dδP
dt = φ(δR − δP) + K dδR

dt , (5.3)

where |δR| ≪ R0, |δP| ≪ P0.
For the N-type vessels, 

φ(δR, δP) = γ[ψ(δR) − δP],

ψ(δR) = − 1
α
δR(1 − δR

δR1
)(1 + δR

δR2
).

(5.4)

For the S-type vessels, 
φ(δR, δP) = β[δR − ϕ(δP)],

ϕ(δP) = −αδP(1 − δP
δP1

)(1 + δP
δP2

),
(5.5)

where α, β, γ, K, δR1,2 and δP1,2 are normal numbers. Then, based on the above model, they organized
the following the N-type blood vessel models:

dx
dt
= λ(−y + y3 − x) + λ

dy
dt
,

dy
dt
= −ey − f x,

(5.6)

and the S-type blood vessel models: 
dx
dt
= λ(y + x − x3 +

dy
dt

),

dy
dt
= −cx − by,

(5.7)

where y represents the change of the internal diameter of the vessel and x represents the change of the
internal pressure of the vessel.
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