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Abstract: This paper is devoted to dealing with the dynamic event-triggered H∞ quantized control for
neural networks with sensor saturations and stochastic deception attacks. To save the limited network
resources, a dynamic event-triggered scheme is offered, which includes the general one. And a lower
trigger frequency can be obtained by appropriately adjusting the triggering error. Then, a new closed-
loop quantized control model is established under a dynamic event-triggered scheme, sensor satura-
tions, and stochastic deception attacks, which is described by two independent Bernoulli-distributed
variables. Moreover, by Lyapunov-Krasovskii functional theory, a new H∞ performance criterion is
given, and based on the criterion, the controller design approach is derived. Finally, simulations are
listed to verify the validity of derived methods.
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1. Introduction

For several decades, neural networks (NNs) have aroused the research interest of scholars because
of their applications in diverse fields, such as pattern recognition, rainfall forecasting, and optimization
problems [1]. The stability is the prerequisite for NNs to work, and a large number of stabilization
results for NNs have emerged [2]. For example, the dissipative synchronization issue was addressed
for semi-Markovian jumping delayed NNs under random deception attacks by a novel event-triggered
impulsive control strategy in [3], and the problem of event-triggered synchronization for master-slave
NNs was done in [4].

Networked control systems (NCSs) are the closed-loop control systems, which have been success-
fully applied in smart grids, industrial automation, and mobile communications [5]. In NCSs, data
are transmitted via a communication network among the sensor, controller, and actuator. Now, net-
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worked control problems have attracted a growing number of researchers. For example, event-triggered
sliding-mode control for networked Markov jumping systems with channel fading was done in [6], and
the paper [7] investigated event-triggered output feedback H∞ control for NCSs. Recently, Li et al. [8]
researched H∞ synchronization of semi-Markovian switching complex-valued networks with time-
varying delay; Zhao and Wu [9] studied fixed/prescribed stability criteria of stochastic systems with
time-delay; Hou et al. [10] addressed observer-based prescribed-time synchronization and topology
identification for complex networks of piecewise-smooth systems with hybrid impulses; Tan et al. [11]
focused on the dual control for autonomous airborne source search with Nesterov accelerated gradient
descent.

To realize the efficient utilization of network resources, an event-triggered scheme (ETS) was intro-
duced. Now, researchers have focused extensively on event-triggered controller design. For example,
the output feedback L∞ load frequency control of networked power systems was considered in [12] by
an adaptive ETS. The leader-following consensus for linear multi-agent systems was studied in [13] by
a dynamic ETS. The paper [14] investigated periodic event-triggered dynamic output feedback control
for NCSs, and periodic event-triggered control for NCSs subject to input and output delays and external
disturbance was studied in [15]. Recently, Wang et al. [16] addressed quantization-dependent dynamic
event-triggered control for networked switched systems under Dos attacks; Zhang et al. [17] researched
accumulated-state-error-based event-triggered sampling scheme and its application to H∞ control of
sampled-data systems; Zhao et al. [18] investigated prescribed-time synchronization for complex dy-
namic networks of piecewise smooth systems by a hybrid event-triggering control approach; Hou et
al. [19] focused on the practical finite-time synchronization for master-slave Lur’e nonlinear systems
with performance constraint and time-varying actuator faults via the memory based quantized dynamic
event-triggered control.

Nowadays, the security issue of NCSs has received broad interest. Cyber-attacks are mainly clas-
sified into deception attacks and DoS attacks [20]. Now, researchers have focused extensively on
cyber-attacks. For example, event-triggered H∞ load frequency control for multi-area power systems
was addressed in [21] with DoS attacks, and co-design of dynamic ETS and resilient observer-based
control under aperiodic DoS attacks was done in [22]. The event-triggered control for networked
Markovian jump systems was considered in [23] subject to a deception attack. Recently, the paper [24]
investigated asynchronous sliding-mode control for discrete-time networked hidden stochastic jump
systems with cyber attacks, and Yao et al. [25] solved prescribed-time output feedback control for
cyber-physical systems under malicious attacks.

Sensor saturation brings nonlinear characteristics to the system by nonlinear sampled measure-
ments, which can degrade the systems performance or even make it unstable. Therefore, it makes
practical sense to take the sensor saturation into account. Now, some efforts have been devoted to
researching the sensor saturation. For example, the H∞ control for time-delay systems was consid-
ered in [26] with sensor saturations, and the paper [27] was concerned with the robust non-fragile
observer-based dynamic event-triggered sliding mode control for NCSs subject to sensor saturation.
The paper [28] has addressed security output feedback control for T-S fuzzy systems with decentral-
ized ETS and multi-sensor saturations. Recently, dual flexible prescribed performance control [29],
flexible prescribed performance output feedback control [30], and sliding flexible prescribed perfor-
mance control [31] are investigated with input saturation.

Based on the above discussion, we found that in the research of deception attacks, the accumulated
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dynamic cyber-attack is often ignored, and only conventional deception attack, such as those that
satisfy the Lipschitz condition are considered. At the same time, with the continuous improvement of
ETS, there is still room for further research on how to balance the control performance of the system
and the utilization rate of network resources. As for sensor saturation, to our knowledge, few scholars
have investigated event-triggered quantized control for neural networks (NNs) with sensor saturations
and cyber-attacks. Based on these, the dynamic event-triggered quantized control for NNs with sensor
saturations and stochastic deception attacks is studied. The main contributions of this article can be
summarized as follows. (1) The dynamic ETS is offered to save limited system resources, which can
be reduce to the static one. (2) An improved quantized control model is established for NNs with
dynamic ETS, sensor saturations and stochastic deception attacks. (3) A reformative event-triggered
H∞ quantized controller design is derived.

Notations: S ym {A} = A + AT ; Pb {A} is the probability of event A that happens; ∗ denotes the
symmetric term; E {·} is the expectation; B > 0 shows B is a positive-definite matrix; diag {·} means
block-diagonal matrix.

2. Problem formulation

A framework of dynamic event-triggered quantized control for NNs with sensor saturations and
cyber-attacks is presented in Figure 1.

Figure 1. Networked control for NNs.

The plant is described by:
χ̇ (t) = Aχ (t) +Du (t) + Eĥ (t − η(t)) + Bµ(t)
y(t) = Cχ(t)
z̃(t) = F χ(t)

(2.1)

where A ∈ Rn×n, D ∈ Rn×p, C ∈ Rm×n, B ∈ Rn×r, E ∈ Rn×n, and F ∈ Rq×n; χ (t) = [ χ1(t) χ2(t) ··· χn(t) ]T

∈ Rn is the system state; u (t) ∈ Rp is the control input; µ(t) ∈ Rr is the disturbance input;
y (t) = [ y1(t) y2(t) ··· ym(t) ]T ∈ Rm is the measured output; z̃ (t) ∈ Rq is the controlled output; ĥ(χ(t)) =
[ ĥ1(χ1(t)) ĥ2(χ2(t)) ··· ĥn(χn(t)) ]T ∈ Rn denotes the neuron activation function, and satisfies

ℓ−i ≤
ĥi (l1) − ĥi (l2)

l1 − l2
≤ ℓ+i , l1 , l2, i = 1, · · · , n (2.2)
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with ĥ(0) = 0, ℓ−i and ℓ+i are known constants.
In Figure 1, sensor saturation is taken into account, which can be described by a saturation function

sat(ν) = [sat(ν1), sat(ν2), · · · , sat(νm)] ∈Rm, and it can be decomposed into a linear part and a nonlinear
part, that is, sat(ν) = ν − ϕ(ν). Then, there exists a real number δ ∈ (0, 1) such that

δνTν ≥ ϕT (ν)ϕ(ν)

Therefore, the real output of the sensor is

ȳ(t) = sat(y(t)) = y(t) − ϕ(y(t))

holds for the constraint that for δ ∈ (0, 1),

δyT (t)y(t) ≥ ϕT (y(t))ϕ(y(t)) (2.3)

The ETS is given as follows:

eT
ȳ (lh)Ω1eȳ(lh) ≤ σȳT

ρ (tkl
h)Ω2ȳρ(tkl

h) +
1
α
η(tkl

h) (2.4)

where the triggering error
eȳ(lh) = ȳ(tkh) − ȳρ(tkl

h), tkl
h = tkh + lh

and ȳρ(tkl
h) = ρȳ(tkl

h) + (1 − ρ)ȳ(tkh) with 0 ≤ ρ ≤ 1 and l ∈ N; Ωk > 0 (k = 1, 2) are the weighting
matrices; ȳ(tkl

h) and ȳ(tkh) are the currently sampled signal and the last transmitted signal, respectively;
the variable η(t) satisfies

η̇(t) = −βη(t) + σȳT
ρ (tkl

h)Ω2ȳρ(tkl
h) − eT

ȳ (lh)Ω1eȳ(lh), t ∈ [0,∞) (2.5)

where β > 0 and η (0) > 0.

Remark 1. Compared with the reported ETSs in [32–34], a new triggering error ey(lh) = ȳ(tkh) −
ȳρ(tklh) is introduced, and when ρ = 1, it can reduce to the general one e(t) = y(tkh) − y(tklh). By this
triggering error, when the sampled data have a rapid change arising from the external disturbance,
spurious triggering events may decrease. Second, more parameters are used to adjust the ETS (2.4)
with (2.5), such as σ, ρ, α, β, Ω1, and Ω2. Third, the variable η(t) can be adjusted as the system
changes instead of a preset constant.

Remark 2. When ρ = 1, Ω1 = Ω2 and α→ ∞ or η(t)→ 0, the ETS (2.4) degrades into the static ones
in [28], [35], and [36]. So, the static ETSs in [28], [35], and [36] are the special case of ETS (2.4).
When Ω1 = Ω2, ρ = 1, and y = x, the ETS (2.4) can reduce to state-based dynamic ETS in [37]. So,
the dynamic ETS in [37] can also be the special case of ETS (2.4). Moreover, when Ω1 = Ω2, the ETS
(2.4) reduces to the dynamic ETS in [34].

Remark 3. Refer to the paper [38]; since the event-triggered condition is only tested at the periodic
moment, the minimum value of the time interval of the adjacent event-triggered moment is the sampling
period h, which can directly exclude Zeno behavior.
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The logarithmic quantizer is presented as

q(·) =
[
q1(·), q2(·), · · · , qm(·)

]T
where qi(·) is the i-th subquantizer, and qi(·) is described by

qi(ȳi(tkh))=


µ(l)

i
1

1+wi
µ(l)

i < ȳi(tkh)≤ 1
1−wi

µ(l)
i

0 ȳi(tkh) = 0
−gi(−ȳi(tkh)) ȳi(tkh) < 0

with quantized levels set

{±µ(l)
i |µ

(l)
i = (di)lµ(0)

i , l = 0,±1,±2, · · · } ∪ {0}

where wi =
1−di
1+di

, di ∈ (0, 1), u(0)
i > 0 denote quantizer parameter, quantizer density, and initial quanti-

zation, respectively. From [39], the quantizer is the characteristic of

q(ȳ(tkh)) = ȳ(tkh) + h(ȳ(tkh)) (2.6)

where
h(ȳ(tkh))=

[
h1(ȳ1(tkh)) h2(ȳ2(tkh)) · · · hm(ȳm(tkh))

]T
with

−wi[ȳi(tkh)]2 ≤ ȳi(tkh)hi(ȳi(tkh)) ≤ wi[ȳi(tkh)]2 (i = 1, 2, · · · ,m) (2.7)

Assumed that τk satisfies τ ≤ τk ≤ τ (k = 1, 2, · · · ), where τ and τ are two constants. For t ∈
[tkh + τk, tk+1h + τk+1), the controller input

ŷ(t) =δ(tk)q(ȳ(tkh)) + κ(tk)C f (x(t − ν(t))) + λ(tk)C
∫ t

t−θ(t)
g(x(q))dq

where f (·) and g(·) are the cyber-attacks; Pb {δ(tk) = 1} = δ̄, Pb {δ(tk) = 0} = 1 − δ̄, Pb {φ(tk) = 1} = φ̄,
Pb {φ(tk) = 0} = 1 − φ̄; κ(tk) = [1 − δ(tk)]φ(tk), λ(tk) = [1 − δ(tk)]

[
1 − φ(tk)

]
with δ(tk) ∈ {0, 1}, φ(tk) ∈

{0, 1}; ν(t) ∈ (0, νM], θ(t) ∈ (0, θM].
Assumption 1 [40]: Deception attacks f (·) and g(·) are bounded and satisfy

p−j ≤
f j (ℓ1) − f j (ℓ2)

ℓ1 − ℓ2
≤ p+j , q−j ≤

g j (ℓ1) − g j (ℓ2)
ℓ1 − ℓ2

≤ q+j (ℓ1 , ℓ2) (2.8)

where p−j , p+j , q−j , q+j ( j = 1, · · · , n) are constants, and f (0) = g(0) = 0.
Similar to [41], the interval [tkh + τk, tk+1h + τk+1) can be divided as

[tkh + τk, tk+1h + τk+1) = ∪dk
d=0χ

d
tk , dk = tk+1 − tk − 1

where χd
tk =
[
tkh + dh + τd

k , tkh + dh + h + τd+1
k

)
with τ0

k = τk and τdk+1
k = τk+1. For t ∈ χd

tk , we define
τ(t) = t − tkh − dh and e(t) = ρȳ(tkh) − ρȳ(tkh + dh). It is clear that

0 ≤ τm ≤ τ(t) ≤ τM, ȳ(tkh) = ρ−1e(t) + ȳ(t − τ(t))
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where τm := τ and τM := τ + h. So, the dynamic ETS (2.4) can be rewritten as

eT (t)Ω1e(t) ≤ σ
[
ϱe(t) + ȳ(t − τ(t))

]T
Ω2
[
ϱe(t) + ȳ(t − τ(t))

]
+

1
α
η(t − τ(t)) (2.9)

where ϱ = ρ−1 − 1, and

η̇(t) = −βη(t) − eT (t)Ω1e(t) + σ
[
ϱe(t) + ȳ(t − τ(t))

]T
Ω2
[
ϱe(t) + ȳ(t − τ(t))

]
(2.10)

The controller is formulated as

u(t) = K ŷ(t) (2.11)

where K is the controller gain.
Substituting (2.11) into (2.1), we can obtain the following system subject to (2.3), (2.7)–(2.9):

χ̇(t) = Aχ(t) + Eĥ(t − η(t)) + κ̄DKC f (χ(t − ν(t)))
+λ̄DKC

∫ t

t−θ(t)
g(x(r))dr + Bµ(t)

+δ̄DK
[
Cχ(t − τ(t)) + ρ−1e(t) − ϕ(Cχ(t − τ(t))) + h(ȳ(tkh)

]
+
[
δ(tk) − δ̄

]
DK
[
Cχ(t − τ(t)) + ρ−1e(t) − ϕ(Cχ(t − τ(t))) + h(ȳ(tkh)

]
+ [κ(tk) − κ̄]DKC f (χ(t − ν(t)))
+
[
λ(tk) − λ̄

]
DKC

∫ t

t−θ(t)
g(χ(r))dr

z̃(t) = F χ(t)

(2.12)

where t ∈ [tkh + τk, tk+1h + τk+1), κ̄ = (1 − δ̄)φ̄ and λ̄ = (1 − δ̄)(1 − φ̄).

Remark 4. The problem of dynamic event-triggered H∞ networked control for NNs subject to stochas-
tic deception attacks is studied. Compared to the reported paper [42], a new event-triggered quantized
control model for NNs is presented under the dynamic ETS, sensor saturations, and stochastic decep-
tion attacks.

Lemma 1 ( [42]). For a scalar 0 ≤ µ(t) ≤ µM, any matrices W ∈ S+n , U ∈ Rn×n satisfying
[

W ∗
U W

]
≥ 0

and integral function {ẋ(r)|r ∈ [−µM, 0]}, we have

−µM

∫ t

t−µM

ẋT (r) W ẋ (r) dr ≤ ψT (t)Λψ (t)

where

ψ(t) =
[ x(t)

x(t−µ(t))
x(t−µM)

]
, Λ =

[
−W ∗ ∗

W −U −2W +U +U T ∗
U W −U −W

]
Lemma 2 ( [43]). D = MΣN T ∈ Rn×m is a matrix with full column rank, where Σ ∈ Rm×n is a
rectangular diagonal matrix, and M and N are orthogonal matrices. For P ∈ Sn, X ∈ Rm×m, the
sufficient and necessary condition of PD = DX is P =M diag {P1,P2}M T with P1 ∈ R

m×m and
P2 ∈ R

(n−m)×(n−m).
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3. Main results

We will design a controller such that 1) the system (2.12) is mean-square asymptotically stable; 2)
For µ(t) , 0 ∈ L2 [0,∞), z̃(t) satisfies

∥̃z(t)∥E2
< γ∥µ(t)∥2

under zero initial condition.

Theorem 1. For parameters γ, δ̄, φ̄, α, β, ρ, σ, ηM, τM, vM, θM, and matrix K , if matrices P , U , Qℓ,
Rℓ (ℓ = 1, · · · , 4) ∈ S+n , diagonal matrices Fa j ≥ 0, Ga j ≥ 0, Fb j ≥ 0, Gb j ≥ 0, Fd j ≥ 0, Gd j ≥ 0
( j = 1, 2, 3), Ω1 ≥ 0, Ω2 ≥ 0, Nk (k = 1, · · · , 4) and X such that:

Ξ ∗ ∗ ∗

BTPe1 −γ
2I ∗ ∗

Υ̂1 ∇ Λ ∗

Υ̂2 0 0 Λ

 < 0 (3.1)

[
Qi ∗

Ni Qi

]
≥ 0 (i = 1, · · · , 4) ,

[
U X
∗ U

]
≥ 0 (3.2)

where

Ξ =Ξ1 + Ξ2 + Ξ3 + eT
1F

TF e1

Ξ1 =S ym
{
eT

1

(
PAe1 + η̄PDK

(
Ce4 + ρ

−1e21 − e22 + e23

)
+ φ̄PDKCe14

+γ̄PDKCe19 +PEe11)}
Ξ2 =eT

1 (R1 +R2 +R3 +R4) e1 − eT
3 R1e3 − eT

5 R2e5 − eT
7 R3e7 − eT

9 R4e9

+
[ e1

e2
e3

]T
Ψ1

[ e1
e2
e3

]
+
[ e1

e4
e5

]T
Ψ2

[ e1
e4
e5

]
+
[ e1

e6
e7

]T
Ψ3

[ e1
e6
e7

]
+
[ e1

e8
e9

]T
Ψ4

[ e1
e8
e9

]
+ v2

MeT
16U e16 −

[
e19

e20

]T [
U X
∗ U

] [
e19

e20

]
+ (1+αβ)

[
(Ce4+ϱe21−e22)T σΩ2 (Ce4+ϱe21−e22)

]
− (1 + αβ)eT

21Ω1e21 + δeT
4C

TCe4 − eT
22e22 − eT

23D̂e23

+
(
ρ−1e21 + Ce4 − e22

)T
WT D̂W

(
ρ−1e21 + Ce4 − e22

)
Ξ3 =

3∑
i=1

S ym
{(

Wpei − ei+9

)T
Fai (ei+9 −Wmei)

}
+

3∑
i=1

{
eT

i WGaiWei − eT
i+9Gaiei+9

}
+ S ym

{(
Kpe1 − e13

)T
Fb1 (e13 − Kme1)

}
+

3∑
i=2

S ym
{(

Kpei+4 − ei+12

)T
Fbi (ei+12 − Kmei+4)

}
+ eT

1 K̂Gb1K̂e1 − eT
13Gb1e13 +

3∑
i=2

{
eT

i+4K̂GbiK̂ei+4 − eT
i+12Gbiei+12

}
Electronic Research Archive Volume 33, Issue 3, 1267–1284.
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+ S ym
{(

Lpe1 − e16

)T
Fd1 (e16 − Lme1)

}
+

3∑
i=2

S ym
{(

Lpei+6 − ei+15

)T
Fdi (ei+15 − Lmei+6)

}
+ eT

1 LGd1Le1 − eT
16Gd1e16 +

3∑
i=2

{
eT

i+6LGdiLei+6 − eT
i+15Gdiei+15

}
Ψi =

[
−Qi ∗ ∗

Qi−Ni −2Qi+Ni+N T
i ∗

Ni Qi−Ni −Qi

]
(i = 1, · · · , 4)

Υi =
[
ηMΓ

T
i τMΓ

T
i dMΓ

T
i vMΓ

T
i

]T
(i = 1, 2)

Γ1 =PAe1 + η̄PDK
(
Ce4 + ρ

−1e21 − e22 + e23

)
+ φ̄PDKCe14 + γ̄PDKCe19 +PEe11

Γ2 =λ1PDK
(
Ce4 + ρ

−1e21 − e22 + e23

)
+ λ2PDKCe14 + λ3PDKCe19

∇ =
[
ηM(PD)T τM(PD)T vM(PD)T θM(PD)T

]T
Λ =diag

{
−PQ−1

1 P ,−PQ−1
2 P ,−PQ−1

3 P ,−PQ−1
4 P
}

ei =
[
0n×(i−1)n In×n 0n×(23−i)n

]
(i = 1, · · · , 23)

µ1 =

√
δ̄(1 − δ̄), µ2 =

√
κ̄(1 − κ̄), µ3 =

√
λ̄(1 − λ̄)

Then the system (2.12) is asymptotically stable.

Proof. The LKF candidate is chosen as

V(t) = V1(t) +V2(t) +V3(t) +V4(t)

where

V1(t) =χT (t)Pχ(t)

V2(t) =
∫ t

t−ηM

χT (s)R1χ(s)ds +
∫ t

t−τM

χT (s)R2χ(s)ds

+

∫ t

t−dM

χT (s)R3χ(s)ds +
∫ t

t−vM

χT (s)R4χ(s)ds

V3(t) =ηM

∫ t

t−ηM

∫ t

s
χ̇T (u)Q1χ̇(u)duds + τM

∫ t

t−τM

∫ t

s
χ̇T (u)Q2χ̇(u)duds

+ vM

∫ t

t−vM

∫ t

s
χ̇T (u)Q3χ̇(u)duds + θM

∫ t

t−θM

∫ t

s
χ̇T (u)Q4χ̇(u)duds

V4(t) =θM

∫ t

t−θM

∫ t

s
hT (χ(v))U h(χ(v))dvds

For convenience, we define:

ξ1(t) = col {χ(t) χ(t − η(t)) χ(t − ηM) χ(t − τ(t))}
ξ2(t) = col {χ(t − τM) χ(t − v(t)) χ(t − vM) χ(t − θ(t))}
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ξ3(t) = col
{
χ(t − θM) ĥ(χ(t)) ĥ(χ(t − η(t))) ĥ(χ(t − ηM))

}
ξ4(t) = col {g(χ(t)) g(χ(t − v(t))) g(χ(t − vM))}
ξ5(t) = col {h(χ(t)) h(χ(t − θ(t))) h(χ(t − θM))}

ξ6(t) = col
{ ∫ t

t−θ(t)
h(χ(u))du

∫ t−θ(t)

t−θM

h(χ(u))du
}

ξ7(t) = col {e(t) ϕ(ȳ(t − τ(t))) h(ȳ(tkh))}
ξ(t) = col {ξ1(t) ξ2(t) ξ3(t) ξ4(t) ξ5(t) ξ6(t) ξ7(t)}

From P > 0, U > 0, Qℓ > 0, Rℓ > 0 (ℓ = 1, · · · , 4), we haveV(t) > 0. Computing dV(t)
dt , we have

V̇1(t) =2χT (t)Pχ̇(t) (3.3)
V̇2(t) =χT (t) (R1 +R2 +R3 +R4) χ(t)

− χT (t − ηM)R1χ(t − ηM) − χT (t − τM)R2χ(t − τM)
− χT (t − vM)R3χ(t − vM) − χT (t − θM)R4χ(t − θM) (3.4)

V̇3(t) =χ̇T (t)
(
η2

MQ1 + τ
2
MQ2 + d2

MQ3 + v2
MQ4

)
χ̇(t)

− ηM

∫ t

t−ηM

χ̇T (s)Q1χ̇(s)ds − τM

∫ t

t−τM

χ̇T (s)Q2χ̇(s)ds

− vM

∫ t

t−vM

χ̇T (s)Q3χ̇(s)ds − θM

∫ t

t−θM

χ̇T (s)Q4χ̇(s)ds

V̇4(t) =θ2
MhT (χ(t))U h(χ(t)) − θM

∫ t

t−θM

hT (χ(v))U h(χ(v))dv

From Lemma 1, there exist Ni (i = 1, · · · , 4) satisfying (3.2) such that

− ηM

∫ t

t−ηM

χ̇T (s)Q1χ̇(s)ds ≤
[

χ(t)
χ(t−η(t))
χ(t−ηM)

]T
Ψ1

[
χ(t)

χ(t−η(t))
χ(t−ηM)

]
− τM

∫ t

t−τM

χ̇T (s)Q2χ̇(s)ds ≤
[

χ(t)
χ(t−τ(t))
χ(t−τM)

]T
Ψ2

[
χ(t)

χ(t−τ(t))
χ(t−τM)

]
− vM

∫ t

t−vM

χ̇T (s)Q3χ̇(s)ds ≤
[

χ(t)
χ(t−v(t))
χ(t−vM)

]T
Ψ3

[
χ(t)

χ(t−v(t))
χ(t−vM)

]
− θM

∫ t

t−θM

χ̇T (s)Q4χ̇(s)ds ≤
[

χ(t)
χ(t−θ(t))
χ(t−θM)

]T
Ψ4

[
χ(t)

χ(t−θ(t))
χ(t−θM)

]
By the reciprocally convex inequality, we have

− θM

∫ t

t−θM

hT (χ(v))U h(χ(v))dv

≤ −
θM

θ(t)

∫ t

t−θ(t)
hT (χ(v))dvU

∫ t

t−θ(t)
h(χ(v))dv

−
θM

θM − θ(t)

∫ t−θ(t)

t−θM

hT (χ(v))dvU
∫ t−θ(t)

t−θM

h(χ(v))dv
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≤ −


∫ t

t−θ(t)
h(χ(v))dv∫ t−v(t)

t−θM
h(χ(v))dv


T [

U X
∗ U

] 
∫ t

t−θ(t)
h(χ(v))dv∫ t−θ(t)

t−θM
h(χ(v))dv


Based on the inequality (2.3), we have

0 ≤δȳT (t − τ(t))ȳ(t − τ(t)) − ϕT (ȳ(t − τ(t)))ϕ(ȳ(t − τ(t)))
=δχT (t − τ(t))CTCχ(t − τ(t)) − ϕT (ȳ(t − τ(t)))ϕ(ȳ(t − τ(t))) (3.5)

From (2.7), we obtain

0 ≤ − [h(ȳ(tkh)) +Wȳ(tkh)]T D̂[h(ȳ(tkh)) −Wȳ(tkh)]

=
[
ρ−1e(t) + Cχ(t − τ(t)) − ϕ(ȳ(t − τ(t)))

]T
WT D̂W

×
[
ρ−1e(t) + Cχ(t − τ(t)) − ϕ(ȳ(t − τ(t)))

]
− hT (y(tkh))D̂h(y(tkh)) (3.6)

From (2.9), we have

0 = −βη(t−τ(t))+
[
ϱe(t)+ȳ(t−τ(t))

]T σΩ2
[
ϱe(t)+ȳ(t−τ(t))

]
−eT (t)Ω1e(t)

≤(1 + αβ)
[(
ϱe(t) + Cχ(t − τ(t)) − ϕ(ȳ(t − τ(t)))

)T
σΩ2

×
(
ϱe(t) + Cχ(t − τ(t)) − ϕ(ȳ(t − τ(t)))

)
− eT (t)Ω1e(t)

]
(3.7)

Note that

f̂1i (ℓ) := 2
(
Wpχ (ℓ) − ĥ (χ(ℓ))

)T
Fai

(
ĥ (χ(ℓ)) −Wmχ (ℓ)

)
≥ 0

ĝ1i (ℓ) := χT (ℓ) WGaiWχ (ℓ) − ĥT (χ(ℓ)) Gaiĥ (χ(ℓ)) ≥ 0

f̂2i (ℓ) := 2
(
Kpχ (ℓ) − g (χ(ℓ))

)T
Fbi (g (χ(ℓ)) − Kmχ (ℓ)) ≥ 0

ĝ2i (ℓ) := χT (ℓ) K̂GbiK̂χ (ℓ) − gT (χ(ℓ)) Gbig (χ(ℓ)) ≥ 0

f̂3i (ℓ) := 2
(
Lpχ (ℓ) − h (χ(ℓ))

)T
Fdi (h (χ(ℓ)) − Lmχ (ℓ)) ≥ 0

ĝ3i (ℓ) := χT (ℓ) LGdiLχ (ℓ) − hT (χ(ℓ)) Gdih (χ(ℓ)) ≥ 0

where Fai, Fbi, Fdi, Gai, Gbi, Gdi are n-dimensional diagonal matrices, and

Wm =diag
{
ℓ−1 , · · · , ℓ

−
n
}
, Wp = diag

{
ℓ+1 , · · · , ℓ

+
n
}

W =diag {ℓ1, · · · , ℓn} , ℓk = max
{∣∣∣ℓ+k ∣∣∣ , ∣∣∣ℓ−k ∣∣∣} (k = 1, · · · , n)

Km =diag
{
p−1 , · · · , p−n

}
, Kp = diag

{
p+1 , · · · , p+n

}
K̂ =diag {p1, · · · , pn} , p j = max

{∣∣∣p+j ∣∣∣ , ∣∣∣p−j ∣∣∣} ( j = 1, · · · , n)

Lm =diag
{
q−1 , · · · , q

−
n
}
, Lp = diag

{
q+1 , · · · , q

+
n
}

L =diag {q1, · · · , qn} , qm = max
{∣∣∣q+m∣∣∣ , ∣∣∣q−m∣∣∣} (m = 1, · · · , n)

Thus, we have

f̂11 (t) + f̂12 (t − η (t)) + f̂13 (t − ηM) + ĝ11 (t)+ĝ12 (t − η (t)) + ĝ13 (t − ηM)
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+ f̂21 (t) + f̂22 (t − d (t))+ f̂23 (t − dM) + ĝ21 (t) + ĝ22 (t − v (t)) + ĝ23 (t − vM)

+ f̂31 (t) + f̂32 (t − θ (t)) + f̂33 (t − θM) + ĝ31 (t)+ĝ32 (t − θ (t)) + ĝ33 (t − θM)

= ξT (t)Ξ3ξ(t) ≥ 0 (3.8)

Now, using (3.3)–(3.8) yields

V̇(t) ≤ 2χT (t)Pχ̇(t) + χ̇T (t)Q̃χ̇(t) + ξT (t) (Ξ2 + Ξ3) ξ(t)

where Q̃ = η2
MQ1 + τ

2
MQ2 + d2

MQ3 + φ
2
MQ4.

When µ(t) , 0, we have

E
{
2χT (t)Pχ̇(t)

}
=2ξT (t)eT

1 P
(
Π0ξ(t) + Eω(t)

)
= ξT (t)Ξ1ξ(t) + 2ξT (t)eT

1 PEω(t) (3.9)

and

E
{
χ̇T (t)Q̃χ̇(t)

}
=E
{(
Π0ξ(t) + Eω(t)

)T Q̃
(
Π0ξ(t) + Eω(t)

)
+ ξT (t)ΠT

1 Q̃Π1ξ(t)
}

(3.10)

where

Π0 = Ae1 + η̄DK
(
Ce4 + ρ

−1e21 − e22 + e23

)
+ φ̄DKCe14 + γ̄DKCe19 + Ee11

Π1 = λ1DK
(
Ce4 + ρ

−1e21 − e22 + e23

)
+ λ2DKCe14 + λ3BKCe19

Furthermore, from (2.1), we have

z̃T (t)̃z(t) − γ2µT (t)µ(t) = ξT (t)eT
1F

TF e1ξ(t) − γ2µT (t)µ(t) (3.11)

We can obtain

E
{
V̇(t) + z̃T (t)̃z(t) − γ2µT (t)µ(t)

}
≤E
{̂
ξT (t)

[
Ξ ∗

BTPe1 −γ
2I

]
ξ̂(t)

− ξ̂T (t)
( [
Υ1 𭟋

]T
Λ−1
[
Υ1 𭟋

]
+
[
Υ2 0

]T
Λ−1
[
Υ2 0

] )̂
ξ(t)
}

(3.12)

where ξ̂(t) = col {ξ(t) µ(t)}. Since the system (2.12) is asymptotically stable, under zero initial condi-
tions, we have

E

{∫ ∞

0
V̇(s)ds

}
= E {V(∞) −V(0)} = 0

Then by (3.12) and (3.1), we can obtain

E

{∫ ∞

0

[̃
zT (s)̃z(s) − γ2µT (s)µ(s)

]
ds
}
= E

{∫ ∞

0

[
V̇(s) + z̃T (s)̃z(s) − γ2µT (s)µ(s)

]
ds
}
< 0

which means ∥̃z(t)∥E2
< γ∥µ(t)∥2. □
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Remark 5. Compared with recently reported works [32], [37], and [42], more system information
was used. First, the information of sensor saturation and quantization error h(y(tkh)) was used, as
seen from (3.5) and (3.6). Second, the cyber-attack functions f (x(t)), g(x(t)), and their ramifications

f (x(t − d(t))), f (x(t − dM)), g(x(t − v(t))), g(x(t − vM))∫ t

t−v(t)
g(x(s))ds,

∫ t−v(t)

t−vM

g(x(s))ds

are all employed. Finally, based on the ETS (2.4), the dynamic variable η(t) is utilized, as seen from
(3.7).

Remark 6. Theorem 1 is derived based on a Jensen integral inequality. If we employ the Bessel-
Legendre inequality [44], it is expected to derive some less conservative results.

Based on Theorem 1, we will give an event-triggered quantized controller design for NNs with
sensor saturation and stochastic deception attacks.

Theorem 2. For parameters γ, δ̄, φ̄, α, β, σ, ρ, ηM, τM, θM, vM, ϵi (i = 1, · · · , 4), if matrices P , U ,
Qℓ, Rℓ (ℓ = 1, · · · , 4) ∈ S+n , diagonal matrices Fa j ≥ 0, Ga j ≥ 0, Fb j ≥ 0, Gb j ≥ 0, Fd j ≥ 0, Gd j ≥ 0
( j = 1, 2, 3), Ω1 ≥ 0, Ω2 ≥ 0, Nk (k = 1, · · · , 4), X and Y such that (3.2) and the following LMI hold:

Π̃ ∗ ∗ ∗

BTPe1 −γ
2I ∗ ∗

Υ̃1 ∇ Λ̃ ∗

Υ̃2 0 0 Λ̃

 < 0 (3.13)

where

Π̃ =Ξ̃1 + Ξ2 + Ξ3 + eT
1F

TF e1

Ξ̃1 =S ym
{
eT

1

(
PAe1 + η̄DY

(
Ce4 + ρ

−1e21 − e22 + e23

)
+ φ̄DY Ce14 + γ̄DY Ce19 +PEe11

) }
Υ̃i =

[
ηMΓ̃

T
i τMΓ̃

T
i vMΓ̃

T
i θMΓ̃

T
i

]T
(i = 1, 2)

Γ̃1 =PAe1 + η̄DY
(
Ce4 + ρ

−1e21 − e22 + e23

)
+ φ̄DY Ce14 + γ̄DY Ce19 +PEe11

Γ̃2 =λ1DY
(
Ce4+ρ

−1e21−e22+e23

)
+λ2DY Ce14+λ3DY Ce19

Λ̃ =diag
{
− 2ϵ1P + ϵ

2
1Q1,−2ϵ2P + ϵ

2
2Q2,−2ϵ3P + ϵ

2
3Q3,−2ϵ4P + ϵ

2
4Q4
}

Then the system (2.12) with K = (DTPD)−1DTDY is asymptotically stable.

Proof. Because of D is a matrix with full column rank, we have D = M
[

D0
0

]
NT , where D0 ∈ R

m×m

is a diagonal matrix. Let P = Mdiag {P1,P2}M
T ; by Lemma 2, we can find a matrix S ∈ Rm×m

such that PDK = DSK . Defining Y = SK , we have PDK = DY and K = (DTPD)−1DTDY ,
which implies 

Π̃ ∗ ∗ ∗

BTPe1 −γ
2I ∗ ∗

Υ̃1 ∇ Λ ∗

Υ̃2 0 0 Λ

 < 0 (3.14)
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There exist ϵℓ > 0 (ℓ = 1, · · · , 4) satisfy

−PQ−1
i P ≤ −2ϵiP + ϵ

2
i Qi

Replace −PQ−1
i P with −2ϵiP + ϵ2

i Qi in (3.14), and we can obtain (3.13). □

Remark 7. By introducing dynamic ETS, quantization, sensor saturations, and stochastic deception
attacks, we derived a new stability criterion. Based on the criterion, a reformative event-triggered
quantized controller design was derived.

4. Numerical examples

Here, we list a three-order system example to verify the validity of derived results.
Example 1. Considering an NN (2.1) with

A =


−2.1 0.1 0

1 −2 0
0 0 −1

 ,D =

0.1
0.2
0.1

 , E =


0.1 0.2 0
−0.1 0.2 0.1
−0.2 0 −0.3


B =


0.1
0.1
0.1

 ,C = F =

0.1 0 0
0 0.1 0
0 0 0.1

 , ĥ(x) =


tanh(0.03x1)
tanh(0.06x2)
tanh(0.03x3)


and µ(t) = e−0.08t, the cyber-attacks are

f (x) =


tanh(0.04x1)
tanh(0.04x2)
tanh(0.04x3)

 , g(x) =


tanh(0.03x1)
tanh(0.06x2)
tanh(0.03x3)


Thus, Wp = diag {0.03, 0.06, 0.03}, Kp = diag {0.04, 0.04, 0.04}, Lp = diag {0.03, 0.06, 0.03}, Km =

diag {0, 0, 0}, Wm = diag {0, 0, 0}, Lm = diag {0, 0, 0}.
For γ = 1, h = 0.1, δ̄ = 0.5, φ̄ = 0.5, ηM = 0.5, τM = 0.5, θM = 0.5, vM = 0.5, ϵℓ = 1(ℓ = 1, · · · , 4),

α = 5, β = 0.1, σ = 1 and ρ = 0.3, by Theorem 2, we have

P =


3.7741 −0.1598 −0.0006
−0.1598 2.9349 −0.0041
−0.0006 −0.0041 3.0832

 , Y =


−0.1512
0.1667
−0.0239


T

Ω1 =


5.3130 −0.0024 0.0008
−0.0024 5.8848 −0.0008
0.0008 −0.0008 5.3116

 , Ω2 =


0.2312 −0.0002 0.0001
−0.0002 0.2213 −0.0001
0.0001 −0.0001 0.2312


Then we can obtain

K =
[
−0.0506 0.0558 −0.0080

]
For x(0) =

[
−0.5 −0.3 0.4

]T
, Figure 2 displays the state trajectory of system (2.12). It is not

difficult to see that the state trajectory of system (2.12) is convergent to zero, which shows the system
(2.12) is stochastically asymptotically stable.
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Figure 2. The state trajectory of NN (2.1).

Choose η(0) = 0.0001. Figure 3 shows event-based signal transmission instants and release inter-
vals. It is not difficult to see that only 38 times are triggered during the period [0, 50s], and we can
work out the average trigger rate is 7.6%. Thus, our ETS can save more system resources. Moreover,
by adjusting the parameters η(0) and ρ, we can obtain the desired result.
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Figure 3. Signal transmission instants and intervals.

Set γ = 1, δ̄ = 0.5, φ̄ = 0.5, τM = 0.3, νM = 0.4, θM = 0.4, α = 5, β = 0.1, δ = 0.5, ρ = 0.5,
σ = 0.01, and η0 = 0.0001. For different values of h, the number of triggered data during [0,50s] are
listed in Table 1.

Table 1. The number of triggered data.

h 0.1 0.2 0.5

ETS in [36] 75 61 52
ETS in [37] 38 31 24
This paper 21 20 15

It is clear that the number of triggered data for various h are far less than those in [36, 37], which
means our ETS is more advanced.
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5. Conclusions

Dynamic event-triggered quantized control for neural networks with sensor saturations and stochas-
tic deception attacks has been studied. With the dynamic ETS and quantization being introduced, an
improved networked control model was formulated with stochastic deception attacks and sensor satu-
rations. By the LKF approach, the event-triggered quantized controller design under sensor saturations
and deception attacks was solved. Finally, a numerical example was listed to display the availability of
derived methods. In the future, we will study distributed event-triggered H∞ filtering for NCSs.
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