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Abstract: Medical image denoising is particularly important in brain image processing. Noise
in acquisition and transmission degrades image quality and affects the reliability of diagnosis and
research. Due to the complexity of the brain’s structure and minor density differences, noise can
increase diagnosis difficulty, so high-quality images are essential for disease detection, prognosis
assessment, and treatment plan development. This paper proposes a multi-convolutional neural
network based on feature distillation learning and dense residual attention to enhance the quality
of brain images and improve denoising performance. The overall network structure contains four
parts: a global sparse network (GSN), a dense residual attention network (DRAN), a feature distiller
network (FDN), and a feature processing block (FPB). Before feeding the brain images into the
denoising network model, they are preprocessed using a modified watershed algorithm based on
a combination of a morphological gradient, Sobel’s operator, and Canny’s operator. The GSN is
used to extract global features and increase the sensory field, and the DRAN efficiently extracts key
features by combining improved channel attention and spatial attention mechanisms. The FDN extracts
useful features through two feature distillation blocks, suppresses redundant information, and reduces
computational complexity. The FPB performs feature fusion. Experimental results on brain image
datasets and ground-based open datasets show that the proposed model outperforms existing methods
in several metrics, and helps to improve the accuracy of brain disease diagnosis and treatment.

Keywords: watershed algorithm; dense residual attention network; feature distillation network;
multi-convolutional neural network; brain image denoising

1. Introduction

Rapid advances in medical imaging technology have made brain image denoising particularly
important for disease diagnosis [1]. First, the diversity of noise types, including Gaussian noise and
salt-and-pepper noise, requires denoising algorithms to have strong adaptability to different noise
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characteristics. Second, brain images possess complex anatomical structures, such as gray matter,
white matter, and cerebral vessels. Noise interferes with the identification of lesion areas and reduces
diagnostic accuracy. By balancing noise suppression and feature retention, denoising technology
improves image quality and preserves key pathological information to support the diagnosis and
treatment of brain diseases. Positron emission tomography (PET) [2] and magnetic resonance
imaging (MRI) [3] each have unique imaging characteristics. MRI is known for its high-resolution
images of anatomical structures, which are effective in differentiating between normal and abnormal
tissues and provide detailed information on internal structures [4]. In contrast, PET mainly provides
information on the metabolic or biochemical function of tissues and organs, and is highly sensitive,
enabling the detection of changes at the molecular level in the early stages of disease [2]. The brain
images used in this paper are publicly available PET images. Due to the different noise characteristics
of brain images, traditional denoising methods are difficult to apply directly [5]. The central challenge
in image denoising is accurately distinguishing the original content from noise and artifacts. Effective
denoising methods must suppress noise while preserving edge information, maintaining global
contrast, preserving texture detail integrity, and avoiding introducing new artifacts. All of these
factors together determine the effectiveness of denoising [6]. Pan et al. [7] first introduced the
hypergraph for brain network decoupling, proposing a decoupling module with an adversarial
strategy, a sparse capacity loss to enhance performance, and an analysis module to identify
Alzheimer’s-related neural circuits.

In recent years, researchers have proposed various techniques to solve the PET [2] denoising
challenges, and the denoising techniques are classified into traditional denoising methods and deep
learning-based denoising methods. Traditional denoising methods can be broadly classified into
several categories, including techniques based on statistical models [8], transform domain
methods [4], filtering, gradient models, multiscale techniques, non-local self-similarity (NSS) models,
and non-local mean algorithms [9], have been developed for medical image denoising. Despite the
progress of the existing methods in medical image processing, the complex optimization process and
cumbersome parameter adjustments limit their usefulness. In summary, traditional denoising methods
are limited in preserving image details and practical information.

With the advancement of deep learning, image denoising research based on convolutional neural
networks has become an important direction in image processing due to its efficiency and
robustness [10]. Zhang et al. [11] proposed feed-forward denoising convolutional neural
networks (DnCNN), which combine deep architecture, residual learning, and batch normalization
techniques to improve denoising performance and speed up training. Unlike traditional models that
only target specific noise levels, DnCNN can handle the Gaussian denoising of unknown noise levels,
implicitly removing the noise through residual learning and recovering clean images. The enhanced
convolutional neural denoising network (ECNDNet) proposed by Tian et al. [12] combined residual
learning, batch normalization, and dilation convolution to improve denoising performance and
convergence speed. However, the method does not fully consider the local and overall features of the
image. Zhang et al. [13] proposed a fast and flexible denoising convolutional neural
network (FFDNet), an efficient and flexible denoising network, which balances performance and
speed through adjustable noise level maps, can handle a wide range of noises, and outperforms BM3D
on CPUs. Jifara et al. [14] designed a deep convolutional neural network for denoising a small sample
of medical images using residual learning to learn the noise from the noise-containing images and
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then subtract the residuals to get the denoised image. Combining batch normalization and residual
learning improved the model’s accuracy and the training’s efficiency. Tian et al. [15] proposed a novel
deep convolutional neural network for image denoising that accelerates convergence by increasing the
width and a batch-renormalization denoising network (BRDNet) for low-configuration hardware.
BRDNet expands the sensory field using dilated convolution to reduce the computational cost and
improves denoising by residual learning. Hema et al. [16] proposed a scheme combining a
convolutional neural network (CNN) with an autoencoder, which is used to extract key features and
suppress noise. In contrast, CNNs are used to process these features efficiently, achieving high
accuracy and robustness in tumor prediction. Tian et al. [17] proposed a multi-stage image denoising
CNN with the wavelet transform (MWDCNN), combining a dynamic convolutional block (DCB),
two cascaded wavelet transforms and enhancement blocks (WEBs), and a residual block (RB), where
the DCB dynamically adjusts the convolutional parameters to balance the performance and cost, and
the WEBs suppress noise. The RB removes the redundant information and reconstructs a clear image.
Li et al. [18] proposed an anchor-free object detector based on CNN, which integrates
transformer-based global and local feature extraction (GLFT) to enhance the extraction of semantic
information from images. Although these CNNs effectively reduce fixed-pattern noise, their
performance still needs to be improved when facing more complex noise distributions, and these
models lack flexibility in dealing with spatial variations and real noise.

CNN can extract features from image pixels, but they suffer from limited feature extraction, single
information transfer, and gradient vanishing in denoising tasks. Convolutional operations favor local
features and lead to smooth processing, making it difficult to focus on key areas and underperforming,
especially in complex details and non-uniform noise. Channel attention enhances key information and
feature delivery by dynamically adjusting the feature map weights, which helps to improve the
denoising effect, especially in dense RBs. The essence of the spatial attention mechanism lies in
highlighting the relative importance of the locations of the feature map in the spatial dimension by
learning a weight map. To address the trade-off between performance and complexity,
Wang et al. [19] proposed an efficient channel attention module that avoids dimensionality reduction,
captures channel interactions lightly, and significantly improves CNNs’ performance but neglects
attention to spatially essential locations and has insufficient detail extraction capability. The feature
fusion and attention network (FFA-DMRI) was proposed by Hong et al. [20] to separate noise from
observed MRI, which combines feature fusion and spatial attention mechanisms to locate MRI
regions of interest accurately. It performs well on the Alzheimer’s disease neuroimaging
initiative (ADNI) dataset. However, the method did not consider channel weight assignment and
could not highlight key features. To solve the problem that deep learning image drawing algorithms
are prone to losing deep features, resulting in missing texture and irrational structure, Chen et al. [21]
proposed an improved image drawing network that combines a multi-scale feature module and an
enhanced attention module. Multi-scale fusion through dilated convolution reduces information loss,
and the attention module enhances semantic mapping to ensure that precise texture results are
generated. Deng and Hu [22] proposed a progressive multi-scale denoising network (PMSDNet),
which enhances noise extraction by a progressive multi-scale fusion block (PMSFB) and focuses on
multi-noise pixels and high-frequency regions with a pixel attention block (PAB), but does not pay
enough attention to low-frequency features and smoothing the background. Duong et al. [23]
proposed a self-encoder multi-branch network combining a pyramid context module (PCM) and a
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residual bottleneck attention module (RBAM), where the PCM handles global information and the
RBAM focuses on the key features and is computationally low. However, the articles above do not
consider the issue of gradient reduction and the repeated use of multi-layered features, and the use of
the attention mechanism alone has limitations in capturing multi-layered features and complex
structures, especially dealing with high-frequency details.

Although the attention mechanism can focus on the key regions of an image, it still falls short in
capturing multi-scale features and detailed structures when used alone and is prone to gradient
vanishing. Therefore, in recent years, some studies have combined the dense RB with the attention
mechanism to take advantage of the feature reuse of the dense RB, which not only enhances the
extraction of multi-scale features but also effectively mitigates the problem of gradient vanishing, thus
significantly improving the denoising effect. Zhang et al. [24] proposed a residual dense
network (RDN) to adaptively integrate features through a continuous memory (CM) mechanism and
local feature fusion (LFF). RDN achieves global feature fusion in low-resolution (LR) space and
extracts globally dense features from low-quality (LQ) images through global residual learning.
Gao et al. [25] proposed a hierarchical feature fusion (HFF) framework combining multi-scale dense
blocks (MSDBs) and a self-attention (SA) module for extracting multi-scale features and global
information to enhance the image reconstruction accuracy, which performed well in super-resolution
reconstruction. Li et al. [26] proposed a parallel multi-scale feature CNN (PMSF-CNN) for image
denoising using parallel multi-scale feature extraction to enhance detail capture, adaptive dense
residuals to enhance information flow, and a channel attention mechanism with a spatial attention
mechanism to improve noise suppression. In a no-reference image quality assessment (NR-IQA),
Zhang et al. [27] proposed the attention-driven residual dense network (ADRDN), which enhances the
feature extraction by a multi-scale feature extraction block (MSFEB) and a dual-pooling squeeze and
excitation block (DPSEB), removes the redundant information using 1× 1 convolution, and ultimately
regresses the image quality scores through the fully connected layer, which enhances the efficiency
and accuracy of the evaluation. However, that paper ignores the problem that dense RBs have certain
limitations in the feature extraction process, and the issue of computational complexity is challenging
to solve, thus affecting the denoising performance.

General CNNs have high computational complexity, and, in recent years, more and more research
has been devoted to developing more efficient lightweight models. As a research hotspot for
lightweight models, a feature distillation network maintains performance while reducing the
computational costs by compressing the model and retaining the key information. Hui et al. [28]
proposed a deep compact CNN for the efficient reconstruction of high-resolution images from
low-resolution images through feature extraction blocks, information distillation blocks, and
reconstruction blocks, using a small number of filters and group convolution for fast execution.
Liu et al. [29] proposed a lightweight and efficient feature distillation connection (FDC) and a residual
feature distillation network (RFDN) to learn more discriminative feature representations through a
shallow residual block (SRB) and multiple distillation connections. RFDN strikes a better balance
between performance and model complexity. Zhang et al. [30] proposed a lightweight fusion
distillation network (LFDN) to remove noise through an encoder–decoder architecture and multiscale
information fusion efficiently. LFDN utilizes feature distillation and attention mechanisms to filter the
key information, reduce redundant parameters, and maintain the image details. Zong et al. [31]
designed an asymmetric information distillation block (AIDB) with information reuse and
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asymmetric feature extraction capability. Parameters are reduced by horizontal and vertical extraction,
and information reuse supplements the high-dimensional information. The asymmetric information
distillation network (AIDN) outperformed the state-of-the-art (SOTA) model in terms of performance
and complexity. Yu et al. [32] proposed a single-image super-resolution network based on the residual
feature distillation mechanism, which improves the image reconstruction quality through the residual
feature distillation mechanism and the spatial attention module, and reduces the model complexity
and the number of parameters while maintaining high reconstruction performance. Jiang et al. [33]
proposed a fast and lightweight denoising method based on deep learning by retraining the model
with natural images and migrating the learning with simulated noisy ultrasound images. However,
none of these studies explored performance enhancement by widening the network model.

Many researchers have found that increasing the width of the network is more effective in
improving model performance than simply deepening the network. The dual residual attention
network (DRANet) proposed by Wu et al. [34] captured complementary features by widening the
network. Its residual attention block (RAB) and a novel hybrid dilated residual attention block
(HDRAB) used jump connections to extract local features and dilation convolution to enhance
contextual information capture. The flexible and effective U-shaped network (FEUNet) proposed by
Wu et al. [35] adapted to different noise levels through adjustable noise level maps, enhanced
denoising using U-Net architecture, and enhanced multiscale feature capture by combining with
upper and lower dual convolutional networks through direct passes during intermediate processing of
images. The network proposed by Thakur and Maji [36] consisted of dual convolutional networks.
The first network extracted the inverted features of the input image, and the second focused on
removing the original features. The dual denoising network (DudeNet) [37] used a dual convolutional
neural network to extract image characteristics, achieving complementary local and global
characteristics of the image and enhancing the denoising performance of the model. The underwater
dual residual convolutional neural network (UDRN) [38] introduced RBs in the DudeNet and
improved the loss function to enhance the denoising performance. These methods perform feature
extraction and image processing using dual CNNs. We further improved the UDRN denoising model
by upgrading the RB to a dense RB fusing channel attention and spatial attention, introducing a
feature distiller network (FDN) to enhance feature extraction, and optimizing the dual convolutional
networks to a multi-convolutional network denoising model.

In image processing, edge detection tools such as the Canny operator, Sobel operator, and Laplace
operator extract edge information. Region-based segmentation methods divide regions by analyzing
pixels’ similarity, and standard techniques include watershed algorithms [39], split and merge
methods, and region-growing methods. Neural networks use the learning mechanism of neurons to
improve segmentation accuracy. In image denoising, the watershed algorithms [40] are used to
segment the foreground and background to enhance the denoising effect so that the algorithms focus
on the important regions and reduce the mishandling of the background. The foreground usually
contains critical details, and the watershed algorithms [41] protect this information from being lost
during the denoising process. In addition, distinguishing between the foreground and background
helps to reduce computational complexity, improve denoising efficiency, and provide cleaner images
for subsequent feature extraction or object detection. The improved algorithm proposed by Wu and
Li [42] removed noise through grayscale conversion and morphological open and close
reconstruction, preserved the main contours, extracted the markers using the maximum interclass
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variance method, and finally applied the watershed algorithms to improve segmentation accuracy and
preserve edge information. Yesmin et al. [43] proposed an improved marker-based watershed
approach to achieve denoised image segmentation by first removing noise through preprocessing and
then combining the Otsu thresholding method [44] and marker-controlled watersheds, but difficulties
in marker selection and automatic generation may lead to over segmentation or under segmentation.
These articles use watershed algorithms for image segmentation. They improve the segmentation
effect by denoising, while these papers considered the watershed algorithms as image preprocessing
tools, mainly for extracting foreground information. The watershed algorithms not only effectively
separate the central regions in the image by removing the background interference and irrelevant
noise but also enhance the structural clarity, which provides a reliable basis for subsequent network
training and feature extraction to optimize the models’ performance further.

In the field of image denoising, most of the existing models focus on a single deep learning
architecture and rely only on specific deep learning models, which have limitations in accurately
capturing image boundaries and details. By systematically analyzing studies related to attention
mechanisms, dense RBs, feature extraction blocks, dual CNNs, and watershed algorithms, we have
found that these approaches have potential advantages in image denoising tasks. In light of this, this
paper proposes a novel multi-convolutional neural network based on feature distillation learning and
dense residual attention (MFDRAN) model, which is innovative in that it employs a multi-CNN
structure. The images are first preprocessed using the watershed algorithm (WA), followed by a
combination of feature distillation learning as well as dense residual attention blocks. This multi-level
and multi-method fusion makes the MFDRAN model break through the limitations of traditional
models and achieves an improvement in image denoising performance.

The main contributions of this paper are as follows.

• We propose the MFDRAN, which effectively improves the performance of the brain image
denoising task. This task operates in a networked information stream using the global sparse
network (GSN), the dense residual attention network (DRAN), the FDN and the feature
processing block (FPB).
• Before the brain image enters the denoising network, the brain image is preprocessed with the

watershed algorithms, which preserves the foreground portion of the valid information and
reduces the background noise.
• The DRAN is proposed. The design accurately extracts key features by adaptively adjusting

the channel and spatial location weights to enhance the model’s feature selection and expression
ability. In addition, 1 × 1 convolution is used for dimensionality reduction to remove redundant
information and strengthen the salient features, thus optimizing the model’s performance.
• Two feature distillation RBs form the FDN that suppress redundant information, reduce the

network’s computational complexity, and preserve essential image details.
• We conducted qualitative and quantitative experiments on brain images, ground-based open

datasets, and real noisy image datasets, and verified that the proposed model has good denoising
performance. This provides strong support for accurate diagnosis and analysis in brain
image processing.

The remainder of this paper is organized as follows: Section 2 briefly describes the related work.
Section 3 describes the proposed multi-CNN based on feature distillation learning and dense residual
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attention in detail. Section 4 shows the experimental results and analyses, and compares the
performance of the proposed network with other methods. Finally, the conclusions are given in
Section 5.

2. Basic theory

2.1. The WA

Watershed segmentation is an image segmentation algorithm that combines geomorphology and
area growth, which treats the grayscale image as a topographic map, with regions of high gray values
representing mountainous terrain and regions of low gray values representing low-lying areas. Water
flows along the hillside to the low-lying area, forming a “catchment area”, and the boundary of the
catchment area is the watershed line. By constructing a dam at the junction of the catchment area, the
water can be prevented from overflowing, thus determining the boundary location of image
segmentation and making watershed segmentation an effective image segmentation method. The WA
is an image segmentation algorithm based on mathematical morphology, terrain, and the region’s
growth [45]. The algorithm can compute and localize the target accurately and approximate the
contour of the target [42]. Marker-based controlled watershed segmentation divides the image into
connected components using labels. Foreground markers correspond to essential objects, and
background markers are associated with background regions. Foreground labels satisfy the following
conditions: 1) a region surrounded by points with a higher “elevation”; 2) the points within the region
form a connected component; and 3) all points within the component have the same gray value. The
background labels are defined by the watershed lines [41]. WAs has the limitations of false labeling in
medical image segmentation and are prone to over segmentation and image contamination by noise
during acquisition. Liang and Fu [41] proposed an improved WA based on morphological processing
and complete variance modeling for medical image segmentation. The method starts with
morphological gradient preprocessing and full variance denoising of brain injury MRI images to
preserve the edges and suppress noise. Then, inner and outer markers are generated by the forced
minimum technique, and watershed segmentation is performed after correcting the gradient map.

The morphological gradient calculates the difference between expansion and corrosion by
performing morphological operations on the image. The morphological gradient mathematical
expression is

Gmorph(x, y) = D (I(x, y)) − E(I(x, y)), (2.1)

where D and E denote the dilation and erosion operations, respectively, and I(x, y) is the gray value of
the image at position (x, y). Sivakumar and Janakiraman [40] proposed a modified watershed
segmentation (MWS) method for segmenting tumor regions from MRI images. Firstly, MRI images
are extracted from the database, denoised, and enhanced by a high-pass filter. Then the edges are
extracted with enhanced Canny edge detection to improve the input quality of the WA. The Canny
operator is formulated as follows:

Gcanny(x, y) = Canny(I(x, y)), (2.2)

where I(x, y) is the gray value of the image at position (x, y) and Canny(x, y) denotes the application of
the Canny edge detection algorithm on the image I. The Sobel algorithm [45] is a fast and effective edge
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detection method that can smooth and suppress noise. The Sobel gradient [46] is computed separately
in the x and y directions. The mathematical expression for the Sobel gradient is

Gsobel(x, y) =
√

S x(x, y)2 + S y(x, y)2, (2.3)

where S x(x, y) and S y(x, y) are the gradients in the x and y directions computed using the Sobel operator.

2.2. Attention mechanisms and dense RBs

Neuroscientific studies have shown that the brain’s visual cortex focuses on specific regions in a
visual scene through selective attention mechanisms, effectively processing relevant information and
ignoring irrelevant information. In neural networks, the attentional mechanisms [47] filter out
important information by assigning weights to different parts of the input data. Attentional
mechanisms [48] improve a model’s performance by directing the model’s attention to important
content and locations, and channel attention can adaptively realign features by considering
interdependencies between channels [49]. Attentional mechanisms are widely used in computer
vision to enhance image generation by extracting intact features and reconstructing damaged
features [21]. For the brain image, the pixels in the background are primarily black. Brain regions’
pixel values are more significant than zero. Average pooling retains the background information and
is suitable for cases where all pixels contribute. Average pooling alone is not ideal for brain image
denoising. In contrast, maximum pooling is better at extracting texture information and helps the
network focus on brain regions. The following describes three methods for aggregating local areas of
the feature map in the attention mechanism: average pooling [50], maximum pooling [51], and
standard deviation pooling.

Average pooling:

avgout(X) =
1
C

c∑
i=1

Xi, where i = 1, · · · , c, (2.4)

where Xi denotes the feature map of the i-th channel.
Maximum pooling:

maxout(X) = max Xi, where i = 1, · · · , c. (2.5)

Standard deviation pooling:

stdout(X) =

√√
1
C

c∑
i=1

(Xi − avgout(X))2, where i = 1, · · · , c. (2.6)

Increasing the network depth extends the model’s representation capability to fit the training data
more adequately, which theoretically can reduce the training error. However, the training error may
increase in practice due to gradient disappearance or explosion. Figure 1 shows the schematic structure
of the RB, dense block, and dense RB.

To address this problem, He et al. [52] proposed a residual learning framework to simplify the
training process for deeper networks than ever before. Figure 1(a) shows the RB. The RB is a network
structure that contains a “skip connection”, which passes the input directly to the output layer and
adds it to the output of the convolutional layer to form the so-called “residual”. This structure helps
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alleviate the gradient vanishing problem in deep networks, improving training efficiency and model
performance. Based on the RB, Huang et al. [53] proposed a dense convolutional network (DenseNet)
connecting each layer to all other layers, strengthening feature transfer, mitigating gradient vanishing,
and promoting feature fusion and reuse. The dense blocks are shown in Figure 1(b), where each layer
receives the feature mappings of all previous layers as input. This dense connectivity effectively
enhances feature reuse, helps capture richer feature representations, reduces the gradient vanishing
problem, and improves the parameter utilization efficiency of the network at the same time.
Subsequently, Zhang et al. [24] proposed a RDN, which uses a residual dense block (RDB) to extract
local features, combined with CM mechanisms and regional and global feature fusion to achieve
efficient training and global feature learning. Figure 1(c) shows the dense RB. The input X0 is passed
through the H1 convolution layer to get the output X1, and X1 is spliced with X0 on the channel axis to
get the spliced feature tensor, which is fed into the H2 convolution layer to get the output X2. In the
same way, X2 is spliced with the feature information of all the previous layers before it is fed into the
next layer. This cycle continues until the output of the last layer, X3, is spliced with the feature
information of all previous layers and the input information, X0, to obtain the final output of
the module.

Figure 1. Schematic structure of the RB, dense block, and dense RB.

2.3. The feature distillation RB

Feature distillation is a key step in knowledge distillation, which enables even lightweight models
to achieve close performance by efficiently migrating the essential features from the complex teacher
network (T-Net) to the student network (S-Net). Knowledge distillation aims to compress and transfer
features and parameters from the teacher model, allowing the student network to reduce the number
of parameters while significantly maintaining efficient performance. T-Net [54] effectively guides the
learning process of S-Net through rich feature representations for efficient knowledge transfer.
S-Net [55] employs an encoder–decoder architecture to avoid the limitations of traditional
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convolutional stacking, and also utilizes bottleneck separable convolution (BSConv) to decompose
convolutional operations into depth and pointwise convolutions to significantly reduce the number of
parameters and the computational overhead. S-Net introduces a middle distillation block (MDB)
between the encoder and decoder to optimize feature extraction through three stages: feature
distillation, compression, and enhancement. Combining the BSConv and MDB modules, S-Net
improves the feature extraction efficiency while reducing the parameters, achieving a balance between
performance and efficiency [55].

Many scholars have adopted lightweight and optimization strategies to improve image
reconstruction quality and make the model more lightweight and efficient. By extracting and
streamlining valuable features, the distillation module can suppress redundant information, reduce the
computational complexity of the network, and preserve important image details. This feature
distillation strategy enables residual feature dense blocks (RFDBs) to achieve efficient image
reconstruction with less computational overhead. RFDBs avoid the problem of gradient vanishing in
deep networks by introducing residual connectivity. Residual connections allow the network to learn
the residuals between inputs and outputs rather than understanding the input-to-output mapping
directly. This design speeds up the convergence of the network and makes training more stable. Other
scholars [56] processed the input features using a 3 × 3 convolutional layer and then performed
multiple subsequent distillation steps. In each step, a channel segmentation operation is performed on
the previous features to divide the features into the selected and the remaining parts. The remaining
portion is further processed and transferred to the next computational unit. The selective part can be
considered as the refined feature. In short, a stepwise channel separation operation preserves some
features and extracts information from other parts.

2.4. The GSN

The core of the GSN is implemented through a sparse mechanism in collaboration with 3
convolutional layers. Layers 2, 5, 9, and 12 use a 3 × 3 convolutional kernel with an expansion factor
of 2. The rest of the convolutional layers use a 3 × 3 convolutional kernel. In the GSN, the first
convolutional layer changes the number of input image channels from 3 to 64. Each convolutional
layer contains convolution, batch normalization (BN), and ReLU activation and has the same structure
except for the convolutional kernel size. Therefore, the final output of the GSN is

TGS N = C(S (X)), (2.7)

where C(·) is the final convolutional output, C(X) is the sparse convolutional output, and X is the sparse
convolutional input.

3. Network construction

In this paper, the GSN and FPB proposed by Yang et al. [38] were applied to optimize the model’s
feature extraction and processing process. On this basis, this paper proposes a
multi-CNN (MFDRAN) based on feature distillation learning and dense residual attention for brain
image denoising, proposes a dense residual network based on an improved channel attention
mechanism and a spatial attention mechanism for parallel processing, innovatively introduces the
FDN, and applies the combination of these four modules to the task of brain image denoising. This
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MFDRAN brain image denoising model fully uses the multi-convolutional structure to effectively
process complex information in brain images. In the preprocessing stage, important information in the
image’s foreground is extracted using an improved WA to provide an accurate feature base. The
model can efficiently extract and retain critical features by incorporating dense residual attention
blocks (DRABs) into the feature distillation framework, achieving noise suppression with reduced
computational complexity. This structure enables the proposed denoising model to perform well in
the brain image denoising task with high performance and robustness. The overall network structure
is shown in Figure 2.

Figure 2. Diagram of the MFDRAN network’s architecture.

The MFDRAN brain image denoising model adopts a hierarchical architecture composed of five key
components: the WA, the GSN, the DRAN, the FDN, and the FPB. In Figure 2, the brain image is first
taken as the network input. The important foreground information in the image is extracted by the WA.
The preprocessed image is input into the subsequent network. The GSN and DRAN extract the brain
image’s overall and local features. The FDN adopts two feature distillation blocks (FDBs), which
mainly extract the critical and representative features in the brain image and reduce computational
complexity at the same time to retain the image’s details and structure, especially the efficient features
after removing noise to achieve the task of shallow denoising of the brain image. Then the different
features are fused by the FPB, and the first feature extraction result is further processed, after which,
the final brain image noise feature map is obtained. Finally, the input image and the second output
noise feature map are subtracted to get a potentially clear brain image.

Since the GSN and the FPB partially adopt the structure in the UDRN [38] model, they are not
described in detail in the introduction section of the network model in this paper. Next, the other
components of the network will be described in detail, including the WA, the DRAN, and the FDN.
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3.1. The WA

In the image preprocessing stage, the image’s edge information is first extracted using the
morphological gradient, the Sobel operator, and the Canny operator, where the morphological
gradient highlights the edges by the difference between erosion and dilation operations, the Sobel
operator calculates the gradient by using discrete first-order differentiation, and the Canny operator
determines the edges after Gaussian filtering, gradient computation, non-maximum value suppression,
and double threshold detection steps. After several ablation experiments, the weights are set to 0.7,
0.2, and 0.1, thus generating high-quality gradient maps and providing a reliable input base for the
subsequent WA. The WA combines this gradient information and performs image segmentation by
simulating the water flow process in the terrain, which can accurately extract the foreground region
and effectively remove background interference and noise. Next, the extracted foreground region is
input into the denoising network, which models and suppresses the noise through convolution,
residual joining, and attention mechanisms to generate a clear denoised image. According to the
evaluation indicators, namely the peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and normalized mean square error (NMSE), the process effectively combines gradient
feature extraction, segmentation, and denoising, making it particularly suitable for medical image
processing scenarios and able to efficiently extract and optimize the target region to provide
high-quality data support for subsequent diagnosis and analysis.

3.2. The DRAN

Our proposed DRAN consists of four dense RBs, as well as improved channel attention
mechanisms and spatial attention mechanisms. It adopts dense connectivity so that the output of each
layer is passed not only to the next layer but also to all subsequent layers. Through dense
connectivity, LFF, attention mechanisms, and local residual learning, a CM mechanism is constructed,
which is used to fully fuse the feature information of each convolutional layer and enhance the
richness and diversity of feature expression. The network progressively extracts features through
multi-layer convolution in dense blocks, and the output of each layer is spliced with the input feature
maps to preserve the rich feature information. To avoid the redundancy and computational overhead
of directly integrating the feature maps of all convolutional layers, the network introduces a feature
fusion strategy, which effectively combines the local features first and then gradually passes the
optimized features to the subsequent fusion stage. In the feature extraction process, the improved
channel attention mechanism and spatial attention mechanism are applied to the dense block to
improve the accuracy of feature extraction, focus on essential features, and capture the salient features
of the image at the channel level and spatial level, respectively. Among them, the improved channel
attention mechanism dynamically adjusts the weights of different channels to focus on more
representative feature channels. In contrast, the enhanced spatial attention mechanism helps the
network to locate key regions in the image and improve the information representation in the spatial
dimension. The feature representation is optimized by weighted fusion, and the last convolution layer
subsequently processes the fused features. After a series of dense RBs, the initial input image is
summed with the processed feature map, which preserves the original features, effectively enhances
the image’s detailed information, improves the brain image’s denoising effect, and avoids the problem
of vanishing gradients. This architecture allows the network to be trained more stably. It does not
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significantly increase the computational complexity when increasing the depth, thus capturing
multi-dimensional feature information more effectively when processing complex images.

This paper’s improved channel attention mechanism generates weights for each channel through
mean pooling, maximum pooling, and standard deviation pooling, thus generating weights for each
channel. First, the global information of the channel is extracted using mean pooling and maximum
pooling, and the standard deviation is obtained through standard deviation pooling, reflecting the
discrete nature of the channel features. Then, after two convolutional layers, the feature dimensions
are reduced from the number of input channels to the ratio of the number of input channels to the ratio
of the reduction in dimensionality, and then restored to the original number of channels. The final
generated weights are restricted to between 0 and 1 by a sigmoid function to form the final channel
weights. This weight is multiplied by the essential input feature map to highlight essential channels
and suppress information from unimportant ones. The flowchart of the channel attention mechanism
is shown in Figure 3.

Figure 3. Flowchart of the channel attention mechanism.

In Figure 3, the input feature F of the channel attention module is of size H × W × C. First, the
feature map is pooled into feature vectors of size 1 × 1 × C by mean pooling Faνg, maximum pooling
Fmax, and standard deviation pooling Fstd, respectively. Then the weighted pooling result Fpool can be
expressed as

Fpool = 0.1 · Favg + 0.8 · Fmax + 0.1 · Fstd. (3.1)

Next, Fpool is processed through a fully connected dual-layer neural network. The number of neurons
in the first layer is C/r, the number of neurons in the second layer is C, and the ReLU activation
function is applied after the first layer. The output result F f c is

F f c = FC2(ReLU(FC1(Fpool))), (3.2)

where FC1 and FC2 are the first and second fully connected layers, respectively; FC1 is the
downscaled convolutional weight matrix for reducing the number of channels from C to C/r (where r
is the reduction ratio); and FC2 is the upscaled convolutional weight matrix for restoring the number
of channels from C/r to C. The outputs F f c are then passed through a sigmoid activation function to
obtain the channel weight coefficients Mc. Mc is calculated as follows:

Mc = S igmoid(F f c). (3.3)
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Finally, the weighting coefficients Mc are multiplied by the initial feature F to obtain the weighted new
feature F1. F1 is calculated as follows:

F1 = Mc · F. (3.4)

This gives the feature map after applying the channel attention mechanism.
This paper’s improved spatial attention mechanism calculates aggregated spatial features by mean

pooling, maximum pooling, and standard deviation pooling. For each pixel location, the weighting
coefficients of average pooling, maximum pooling, and standard deviation pooling are determined after
several ablation experiments, which are 0.35, 0.45, and 0.2, respectively, and the pooling results are
weighted and combined to generate an integrated feature map, which can more accurately characterize
the spatial properties. Next, spatial attention weights are computed through a convolutional layer, and
a sigmoid function is used to limit the range of weights. Finally, these spatial weights are applied
to the input feature map to adjust the influence of each pixel. The flowchart of the spatial attention
mechanism is shown in Figure 4.

Figure 4. Flowchart of the spatial attention mechanism.

First, for the input feature map F ∈ RB×C×H×W , the average pooling, maximum pooling, and standard
deviation pooling operations are performed. Weighted combinations are performed according to the set
weights, assuming that the average pooling result is Faνg and the maximum pooling result is Fmax. The
standard deviation pooling result is Fstd. Then the weighted pooling result, Fpool, can be expressed as

Fpool(F) = wavg · Favg + wmax · Fmax + wstd · Fstd, (3.5)

where waνg, wmax, and wstd are the weights for average pooling, maximum pooling, and standard
deviation pooling, respectively. Next, the generative spatial attention weight Y is activated by the
convolutional layer Conv 3×3 , and Y can be expressed as

Y = σ(Conv 3×3(Fpool(F))). (3.6)

Finally, the spatial attention weight Y is applied to the feature map F to obtain the weighted output
F · Y , where σ denotes the sigmoid activation function.

The dense residual attention block’s flowchart is shown in Figure 5. The dense residual attention
block (DRAB) consists of densely connected convolutional layers and an attention module. A dense
block enables feature reuse by densely connecting different convolutional layers, which enhances the
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transfer and utilization of features. In a dense block, the output from each layer is passed to the
subsequent layers and spliced with the outputs of all previous layers. This design can mitigate the
gradient vanishing problem and maximize the information flow.

Figure 5. Flowchart of the DRAB.

The following is the detailed computation process of the dense block, assuming that the input feature
map is F. The dimension is C×H×W, where C is the number of channels, and H×W are the height and
width of the feature map, respectively. The first layer of convolution receives the input feature map F
and performs the convolution operation Convk1×k1 , where the size of the convolution kernel is k1. After
the PReLU activation function, we get the output feature map F1 from the first layer of convolution.
F1 is calculated as follows:

F1 = PReLU(Convk1×k1(F)). (3.7)

The output feature map F1 from the first convolutional layer is spliced with the original input feature
map F to form the first fused feature map Fconcat1 . Fconcat1 is calculated as follows:

Fconcat1 = Concat(F, F1), (3.8)

where Concat(·) represents “spliced”. The second layer of convolution receives the spliced feature map
Fconcat1; performs the convolution operation Convk2×k2 , where the size of the convolution kernel is k2;
and undergoes the PReLU activation function to get the feature map F2 output from the second layer
convolution. F2 is calculated as follows:

F2 = PReLU(Convk2×k2(Fconcat1)). (3.9)

The second-layer convolutional output feature map F2 is spliced with the original input feature map F
and the first-layer convolutional output feature map F1 to form the second fusion feature map Fconcat2 .
Fconcat2 is calculated as follows:

Fconcat2 = Concat(F, F1, F2). (3.10)

This operation makes the output of each layer participate in the feature extraction of the subsequent
convolutional layer, which ensures the efficient flow of information. The second fused feature map
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Fconcat2 is subjected to the convolution operation Convk3×k3 , where the size of convolution kernel is k3.
It undergoes the PReLU activation function to obtain the third-layer convolutional output of the feature
map F3. F3 is calculated as follows:

F3 = PReLU(Convk3×k3(Fconcat2)). (3.11)

This convolutional layer continues to extract high-level features from the spliced feature map. The
feature map F3 from the third convolutional layer is spliced with the original input feature map F
and the feature map F1 from the first convolutional layer and the feature map F2 from the second
convolutional layer to form the third fused feature map Fconcat3 . Fconcat3 is calculated as follows:

Fconcat3 = Concat(F, F1, F2, F3). (3.12)

After the convolutional layer, DenseBlock introduces the channel attention mechanism to enhance the
selection of important features. The channel attention mechanism weights the features according to
the importance of each channel to get the feature map CAout after reweighting by the channel attention
mechanism. CAout is calculated as follows:

CAout = ChannelAttention(Fconcat3), (3.13)

where ChannelAttention(·) represents the result of processing the features through the channel attention
mechanism. After the channel attention mechanism, DenseBlock further applies the spatial attention
mechanism to enhance the selection of important spatial locations and obtains the feature map SAout

after reweighting by the spatial attention mechanism. SAout is calculated as follows:

SAout = SpatialAttention(Fconcat3), (3.14)

where SpatialAttention(·) is the result of processing the features through the channel attention
mechanism. The spatial attention mechanism weights individual pixel positions according to the
importance of the feature map at different locations. The outputs of channel and spatial attention
represent the importance of the feature map in the channel dimension and spatial dimension,
respectively. DenseBlock weights and fuses both outputs to combine these two attention mechanisms
to obtain the new feature map F f uesd. F f uesd is calculated as follows:

F f uesd = 0.55 ×CAout + 0.45 × S Aout. (3.15)

In this method, after several experimental optimizations, the weighting coefficients of the feature
maps for the spatial attention mechanism and the channel attention mechanism were found to be 0.55
and 0.45, respectively, aiming to obtain the best feature fusion effect. The fused feature is Fout. Fout is
calculated as follows:

Fout = Convk4×k4(F f uesd). (3.16)

The fused feature Fout is subjected to the convolution operation Convk4×k4 , where the size of convolution
kernel is k4. This step performs further feature extraction on the weighted fused feature map to generate
the final output. Finally, DenseBlock introduces residual concatenation, which adds the input feature
map F and the convolutional output Fout to get the final output F f inal. F f inal is calculated as follows:

F f inal = F + Fout. (3.17)
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Residual concatenation effectively mitigates the gradient vanishing problem and maintains the flow of
input features. DenseBlock maximizes feature reuse through dense concatenation and feature splicing
operations with three-layer convolution and enhances attention to essential features through the channel
attention and spatial attention mechanisms. The final residual concatenation ensures efficient delivery
of the input features and promotes stable gradient updating.

3.3. The FDN

The FDN of this paper contains two FDBs, each of which performs three feature distillation
processes, and the flowchart of the FDB is shown in Figure 6. In the FDB of this paper, a total of three
feature distillation processes are performed. After several ablation experiments, we set the distillation
rate of each distillation step to 25% to strike a balance between the extraction of key features and the
retention of residual information. This setting ensures that the network effectively focuses on key
features while avoiding information loss due to overcompression, thus improving the overall
performance. As shown in Figure 6, specifically, we divide each distillation operation into the
distillation layer (DL) and the refinement layer (RL) to process the input features. The DL generates
the initial refined features, and the RL further refines these features. As a result, the features are
divided into two parts: one is retained by the DL, and the other is refined by the RL and passed to the
next computational unit.

Figure 6. Flowchart of the feature distiller block.

Given the output F i−1
RFDB of the (i−1)th FDB, the computational process in the output F i

RFDB of the ith
FDB can be described as follows: first, the input feature is the output F i−1

RFDB of the (i−1)th FDB, 25% of
the channels of F i−1

RFDB are passed through a 1× 1 convolutional layer to get the first level of refinement
feature Fdistilled1 , and 75% of the channels of F i−1

RFDB are passed through a 3 × 3 convolutional layer to
get the first-level of the to-be-refined feature Fcoarse1 . The first-level refined feature Fdistilled1 and the
first-level to-be-refined feature Fcoarse1 are given as:

Fdistilled1 = Conv1×1(F i−1
RFDB), (3.18)
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Fcoarse1=Conv3×3(F i−1
RFDB). (3.19)

The first level of features to be refined, Fcoarse1 , goes to the next distillation unit to continue refining
the features. Finally, 25% of the channels of these refined features are passed through the DL to obtain
the second level of refined features, Fdistilled2 , and 75% of the channels are passed through the second
level of features to be refined in the RL, Fcoarse2 , given as, respectively:

Fdistilled2 = Conv1×1(Fcoarse1), (3.20)

Fcoarse2 = Conv3×3(Fcoarse1). (3.21)

Similarly, the third-stage distillation feature Fdistilled3 and the third-stage to-be-refined feature Fcoarse3

can be obtained, and this process can be expressed as:

Fdistilled3 = Conv1×1(Fcoarse2), (3.22)

Fcoarse3 = Conv3×3. (3.23)

It is worth noting that we perform a refinement operation on the third level of features to be refined
Fcoarse3 to obtain the fourth level of refined features Fcoarse4 . This process can be expressed as

Fcoarse4 = Conv3×3(Fcoarse3). (3.24)

All distillation features and the last refinement feature are spliced in the channel dimension to obtain
a multi-scale feature map Fconcat containing detailed and global information for each layer. Fconcat is
calculated as follows:

Fconcat = Concat(Fdistilled1 , Fdistilled2 , Fdistilled3 , Fcoarse4). (3.25)

The merged multi-scale feature map Fconcat is compressed and fused by 1×1 convolution Conv1×1 to
obtain the second fused feature map Fconcat2 . Fconcat2 is calculated as follows:

Fconcat2 = Conv1×1(Fconcat), (3.26)

where 1 × 1 convolution reduces the feature dimensions and integrates the multi-channel information,
reducing redundancy and highlighting key features. Finally, residual concatenation is added to sum the
fused output Fconcat2 with the original input F i−1

RFDB element by element to form the final output. The
final output Fout is calculated as

Fout = F i−1
RFDB + Fconcat2 . (3.27)

4. Numerical experiments

In this section, we provide an overview of the datasets used in the experiments and discuss the
details of implementing the network’s training. At the same time, we analyze the contributions of the
framework’s various components, present the model’s experiments on the image test set, and explore
the experimental setup and results quantitatively and qualitatively.
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4.1. Experimental preparation

4.1.1. Experimental setup

Experiments were conducted using Adam’s algorithm [57] to optimize the training of the network.
Specifically, this was based on using the Pytorch framework to train the network. After several
experiments, the hyperparameters β1 and β2 controlling the decay rate of the first-order momentum
estimation and second-order momentum estimation were set to β1=0.9 and β2=0.9, respectively.

Before feeding the training and test images into the network, all images were converted to tensors
and normalized to [0,1]. The learning rate in deep learning determines how much the model
parameters are updated. Higher learning rates speed up convergence but may trigger oscillations and
affect stability. Therefore, gradually decreasing the learning rate is often used during training to
balance speed and stability. In this paper, the learning rate was dynamically adjusted according to
different stages in the training process. Expressly, in various components, the learning rate during
network training was set as follows: at epoch ≤ 40, the learning rate was set to 1 × 10−3; at
40 < epoch < 60, the learning rate was set to 1 × 10−4; at epoch ≥ 60, the learning rate was set to
1 × 10−5.

The noise simulation in this study was confined to applying artificial Gaussian noise at three specific
levels, with standard deviations of 15, 25, and 35.

4.1.2. Experimental data

For the medical image denoising task, we chose the brain image dataset AANLIB [58] from the
Harvard Medical Dataset, which contains a wide range of brain images and is suitable for evaluating
the denoising performance of the MFDRAN model on medical imaging noise. To validate the
model’s generality on different color images, the publicly available datasets CBSD68 [59] and
Kodak24 [60] were also introduced to provide standardized benchmarks for color image denoising
performance comparison. In addition, to evaluate the performance of the model in a real noise
environment, the real dataset SIDD [61] and an actual authentic noise dataset RNI15 [62] were also
used in this study to validate the denoising capability of the MFDRAN model. In summary, the
experimental dataset selected in this study covers medical images, standard images of natural scenes,
and authentic noise images containing various noise types and image contents, which provides a
scientific basis for evaluating the denoising effect of the model under different noise conditions.

Before data preprocessing, 40 clearer brain images were screened from the dataset, of which 20
were used for the test set and 20 for the training set. After preprocessing the 20 images used for the
training set, 3872 colorful synthetic noise images with a size of 41 × 41 were finally generated as the
final training dataset for training the designed network model. The preprocessing steps for the 20
training set images were as follows: first, during data preprocessing, the sliding window size was set
to 41 × 41, and the step size was 10; the images were cropped step by step to generate the actual
training samples, and all brain images were normalized to the range of [0, 1]. To ensure the fairness of
the experiments, all methods were trained on the same training and test sets, and the number of model
training rounds was kept the same. To expand the diversity of the training dataset, each cropped image
was randomly transformed four times according to the following operations: 1) horizontal flipping,
2) 90° counterclockwise rotation, 3) 180° counterclockwise rotation, 4) 270° counterclockwise
rotation, 5) the original cropped image, 6) horizontal flipping after 90° counterclockwise rotation, 7)
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horizontal flipping after 180° counterclockwise rotation, and 8) horizontal flipping after 270°
counterclockwise rotation. The study also obtained 3872 images. Finally, 3872 41 × 41 color
synthetic noisy brain images were obtained in this paper and used as the training dataset.

This experiment consists of two parts: the ablation experiments and the comparison experiments.
The ablation experiments are described below.

4.2. Ablation experiments

This paper designed three ablation experiments to validate the effectiveness of each module. The
experiments evaluated the contribution of the WA, the FDN, and the DRAN to the model’s
performance. The same dataset was used and trained the same number of times under a noise level of
25 to ensure the fairness and reliability of the evaluation results.

4.2.1. WA ablation experiments

We performed ablation experiments on the WA to evaluate the impact of the WA in a brain image
preprocessing step on the performance of denoising models. Specifically, this experiment used two
scenarios for comparison. The first experiment aimed to directly denoise brain images containing
additive noise using the denoising model without any preprocessing step. The second experiment
applied the WA to the original brain image for preprocessing. It separated and extracted the foreground
regions, added noise to the extracted foreground regions, and finally input them into the denoising
model for further processing. In both experiments, we used three quantitative metrics, PSNR, SSIM,
and NMSE, to assess the difference in denoising effectiveness. The experimental results are shown
in Table 1, where the bolded data represent the best performance. From Table 1, it can be seen that
the network structure preprocessed is 0.6154 dB higher than the “No preprocessing” network structure
in terms of the PSNR value, which exhibits a relative enhancement of about 1.52%, and this is a
relative enhancement of about 0.48% in terms of the SSIM value. In addition, the network structure
preprocessed by the WA is slightly higher than the “No preprocessing” network structure in terms
of the NMSE metrics. It is shown that the model has some improvement in structural similarity. In
summary, it is shown that the WA helps reduce noise’s interference with the model based on accurate
foreground extraction, thus enhancing the denoising effect.

Table 1. Comparison of the results of watershed preprocessing.

Network architecture PSNR SSIM NMSE

No preprocessing 40.3819 0.9851 0.0013
Preprocessed 40.9973 0.9898 0.0012

4.2.2. FDN ablation experiments

We conducted ablation experiments on the FDN to obtain average test results, shown in Table 2, to
evaluate the effect of FDBs on the denoising performance of the CNN. First, the original CNN
denoising model was used as a benchmark to evaluate the effectiveness of the denoising task.
Subsequently, one, two, and three FDBs were added sequentially to this model, and three
experimental models were constructed to analyze the specific effects of the number of FDBs on the

Electronic Research Archive Volume 33, Issue 3, 1231–1266.



1251

denoising performance of the model. The experimental results show that the model denoising
performance was improved after adding the FDBs. The test results in Table 2 show that the model
containing two FDBs performs well in terms of the PSNR, SSIM, and NMSE metrics, significantly
outperforming the base model and other configurations. Specifically, the network model containing
two FDBs improved the PSNR value by 0.5781 dB, which is about 1.43%, and the SSIM value by
about 0.48% in terms of the denoising effect, compared with the model without FDBs. The
configuration of two FDBs demonstrates more substantial advantages in detail recovery and noise
suppression compared with the model containing only one FDB. However, with a third FDB, the
model’s performance did not show a significant improvement but a slight decrease. This result
indicates an optimal value for the number of FDBs in the model performance. Too many distillation
blocks may lead to information redundancy and increased computational complexity. In summary,
two FDBs achieved the optimal balance between the denoising effect and computational efficiency.

Table 2. Comparison of the results of different FDBs.

Network architecture PSNR SSIM NMSE

No RFDB 40.3819 0.9851 0.0013
An RFDB 40.8847 0.9888 0.0012
Two RFDBs 40.9600 0.9898 0.0011
Three RFDBs 40.9309 0.9893 0.0012

4.2.3. DRAN ablation experiments

We conducted ablation experiments on the DRAN to obtain average test results, shown in Table 3.
The impact of DRNs based on improved channel and spatial attention mechanisms on brain image
denoising performance was verified by ablation experiments using DRNs. The experimental design
included two comparison scenarios: the first scenario was the network model without a dense residual
attention block (WDRAB) for denoising brain images; the second scenario was the network model
incorporating a DRAB based on the improved channel attention mechanism and spatial attention
mechanism processed in parallel for denoising brain images.

Table 3. The comparison results of DRAN.

Network architecture PSNR SSIM NMSE

WDRAB 40.3819 0.9851 0.0013
DRAB 40.9792 0.9893 0.0011

Table 3 shows the average test results of the two sets of experiments. Our experiments used the
PSNR, SSIM, and NMSE as quantitative metrics to measure the signal-to-noise ratio, structural
similarity, and error level of the denoised images, respectively. The data analysis shows that the
network containing dense residual attention blocks significantly outperformed the network without
dense residual attention blocks in the image-denoising task. Specifically, as can be seen in Table 3,
the PSNR of the DRAN reaches 40.9792 dB, which is improved compared with 40.3819 dB for the
network without the DRAB, an improvement of about 1.48%, indicating that it is more advantageous
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in restoring the details of the image. The SSIM improved from 0.9851 to 0.9893, which suggests that
the network with DRAN performs better in maintaining the image structure similarity. The NMSE
reduced to 0.0011, which further reduces the reconstruction error compared with 0.0013 for the
network without dense residual attention blocks. In summary, the improved density residual attention
network has been introduced.

4.3. Comparative experiments

The comparison experiments section is divided into two parts: brain image comparison experiments
and ground-based open dataset comparison experiments.

4.3.1. Brain image comparison experiments

The experimental part was designed to verify the effectiveness of the MFDRAN in the denoising
of brain images proposed in this paper. Based on 20 brain images from the Harvard Medical dataset,
the experiments were set up with synthetic noisy images at noise levels of 15, 25, and 35 as the test
set. The experiment started with watershed preprocessing of brain images to preserve and enhance
the foreground region (the effective information). On this basis, a multi-convolution denoising neural
network consisting of two FDBs and a DRAN was built to enhance the feature extraction capability
of the network, and comparative experiments were conducted. In the quantitative experiments on
the synthetic noise dataset, PSNR, SSIM, and NMSE metrics were used to evaluate the denoising
performance. The results show that this paper’s model significantly outperforms the other comparative
denoising models regarding noise suppression and detail retention. It also has a good visual effect in
image detail restoration, demonstrating good practicality and robustness.

In this study, we proposed and validated the performance of our denoising model, MFDRAN, for
denoising additive Gaussian noise in brain images with a noise level of 15. The experiments used
brain images from the Harvard Medical dataset as the test set. The evaluation metric for the
experiment was PSNR. The MFDRAN model was trained in the training set for 70 iterations and
subsequently evaluated on the test set. The experimental results are shown in Table 4, where the
bolded data represent the best performance. The experimental results show that the MFDRAN model
significantly outperformed the comparative models in the denoising effect, including ECNDNet,
DnCNN, DudeNet, and UDRN. The average PSNR value of MFDRAN reaches 43.4619 dB, which is
an improvement of about 9.29 dB and 1.92 dB compared with the DnCNN and DudeNet models,
respectively, and also an improvement of about 0.73 dB compared with UDRN. These data
thoroughly verify the advantages of MFDRAN in denoising performance. Further analysis shows that
MFDRAN has higher PSNR values in all test images, demonstrating strong denoising ability and
image quality enhancement. In addition, the statistical analysis (p < 0.05) shows that the denoising
performance enhancement of MFDRAN is significant. This indicates that the MFDRAN model
outperforms other models regarding the denoising effect. It reflects its consistency, stability, and
generalization ability in denoising tasks, and it is particularly suitable for denoising brain images at
low noise levels.
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Table 4. Results of different methods for brain images with a noise level of 15.

Image ECNDNet DnCNN DudeNet UDRN MFDRAN
Image 1 28.4412 36.7754 42.8468 44.8510 45.5732
Image 2 28.4377 36.5052 42.7507 44.4998 45.1592
Image 3 28.4173 36.1027 42.5177 44.2240 44.8368
Image 4 28.3872 35.8521 42.3344 44.0132 44.6403
Image 5 28.3563 35.5895 42.1590 43.6382 44.3233
Image 6 28.3280 35.3740 41.9391 43.3480 43.9758
Image 7 28.3169 35.0834 41.8996 43.1651 43.8347
Image 8 28.3216 34.9632 41.9413 43.1350 43.8283
Image 9 28.3258 34.6409 41.9274 43.0917 43.8036
Image 10 28.3161 34.3814 41.8624 43.0721 43.7992
Image 11 28.2823 34.0516 41.7378 42.9175 43.5711
Image 12 28.2193 33.0453 40.7179 41.6658 41.9438
Image 13 28.1728 33.0216 41.0571 41.8494 42.7239
Image 14 28.1197 32.9514 41.0563 42.1193 42.9966
Image 15 28.0702 32.9173 40.8885 41.9185 42.8534
Image 16 28.0318 32.7365 40.6749 41.4084 42.4563
Image 17 28.0230 32.8701 40.8092 41.7762 42.6045
Image 18 28.0199 32.5721 40.7413 41.6556 42.3935
Image 19 28.0260 32.2054 40.4815 41.0596 41.8056
Image 20 28.0134 31.8451 40.5480 41.2084 42.1147
Average 28.2313 34.1742 41.5445 42.7309 43.4619

With a noise level of 25, Table 5 demonstrates the denoising effect of five different methods on the
AANLIB brain dataset. The bolded data in the table represent the best performance. The evaluation
metric for the experiment is PSNR. This experiment evaluated the performance of the newly proposed
MFDRAN denoising model against the comparison model in processing image noise. Specifically, we
calculated the PSNR values of each model on the same test set at a noise level of 25 to quantify the
denoising effect. The experimental results show that the PSNR values of the new model, MFDRAN,
range from 39.6180 dB to 42.6261 dB, while the best-performing PSNR values of the comparison
model range from 38.8715 dB to 42.1468 dB. The comparison shows that the MFDRAN model exhibits
higher PSNR values in most test samples, indicating that it is significantly better than the original model
in denoising. In addition, the PSNR values of 17 out of 20 test set images exceeded 40 dB, proving
that the MFDRAN model can achieve excellent denoising results in most cases. This indicates that
the performance of the MFDRAN model in the denoising task is stable and can effectively improve
the image quality. It can be seen that the average denoising performance of the MFDRAN model is
improved by about 1.606% compared with the UDRN. The enhancement is significant according to
the statistical analysis (p < 0.05), which indicates that the MFDRAN denoising model exhibits a more
stable performance and stronger denoising ability in different scenarios. This enhancement not only
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verifies the positive impact of the structural improvement of the MFDRAN model on image quality but
also indicates the superior reliability and adaptability of the model in practical applications.

Table 5. Results of different methods for brain images with a noise level of 25.

Image ECNDNet DnCNN DudeNet UDRN MFDRAN
Image 1 22.9458 41.3676 41.6487 42.1468 42.6261
Image 2 22.9368 41.5018 41.6142 41.9843 42.5447
Image 3 22.9089 41.2898 41.3201 41.7332 42.2945
Image 4 22.8679 40.8700 41.2038 41.4941 41.9846
Image 5 22.8318 40.5338 40.9140 41.1757 41.7416
Image 6 22.7997 40.2966 40.6730 40.8990 41.4467
Image 7 22.7799 40.0882 40.5312 40.7417 41.2466
Image 8 22.7730 39.9893 40.6445 40.8250 41.3685
Image 9 22.7775 39.7859 40.5822 40.6830 41.3144
Image 10 22.7771 39.8075 40.5324 40.7228 41.4097
Image 11 22.7348 39.5453 40.4306 40.5869 41.3118
Image 12 22.6643 37.4394 39.0277 39.0619 39.6431
Image 13 22.5949 38.5461 39.7078 39.5001 40.4633
Image 14 22.5176 38.7659 39.9242 39.9429 40.6431
Image 15 22.4542 38.5646 39.7725 39.7896 40.4994
Image 16 22.4095 37.9773 39.5142 39.2908 40.1481
Image 17 22.3919 38.0750 39.7174 39.6761 40.3079
Image 18 22.3921 37.8021 39.5144 39.4951 40.1496
Image 19 22.3968 37.1777 39.0273 38.8715 39.6180
Image 20 22.3773 37.0677 39.1398 39.0170 39.8345
Average 22.6666 39.3246 40.2720 40.3819 41.0298

A detailed comparison of the brain image denoising results for the AANLIB dataset was
performed under a noise level of 25, and the results are shown in Figure 7. The local zoom in the
figure’s upper right corner demonstrates each method’s performance regarding detail recovery. As
seen from Figure 7, the MFDRAN method proposed in this paper shows significant denoising effect
and color preservation advantages. It excels in edge detail reconstruction of brain images and the
color consistency of color images, respectively. MFDRAN can more accurately reconstruct the edge
details and the image structure during denoising of the brain images, and compared with the other
methods, it was more accurate. Compared with different techniques, MFDRAN is more effective in
suppressing artifacts and preserving accurate details. Compared with ECNDNet, MFDRAN removes
the noise more thoroughly. Compared with UDRN and DudeNet, it performs better in the
reconstruction of edge texture, which significantly reduces the blurring of edges and the loss of
texture and results in a clear and natural image, especially in the denoising task of complex brain
images. On the other hand, the MFDRAN model outperforms DudeNet in color consistency in
denoising color images. The MFDRAN model’s processed images with stable colors maintained the
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original hue and saturation naturally and accurately. In contrast, DudeNet’s processed images showed
color shifts, which led to some color distortion. This indicates that the MFDRAN model can better
retain the image’s color information during denoising, while DudeNet still has room for optimization
in color information retention. Overall, the MFDRAN model demonstrates superior performance in
the denoising task, outperforming other methods in detail restoration and color preservation of
complex images, resulting in more transparent, more natural, and visually faithful image results.

Figure 7. Visual comparison of brain images by different methods at a noise level of 25.

Table 6 compares the effectiveness of the five denoising methods on the AANLIB brain dataset at a
noise level of 35. The best-performing data are labeled in bold font in the table to highlight the best
performance. The evaluation metric for the experiment is PSNR. This table demonstrates the
differences between noise suppression and image detail retention methods, which helps to visually
analyze the denoising effect of different techniques on this dataset. Under the test conditions with a
noise level of 35, our proposed MFDRAN model significantly outperforms the other compared
models regarding the denoising effect. The test results in the table show that the average PSNR value
of MFDRAN reaches 38.8955 dB, which is significantly improved compared with all other models.
For example, the average PSNR of the comparison models DnCNN and DudeNet are 35.7648 dB and
38.7003 dB, respectively, which fail to achieve the denoising performance of MFDRAN. Compared
with the UDRN model, the average PSNR value of UDRN is 38.7212 dB, and the PSNR value of
MFDRAN is improved by about 0.45% compared with UDRN. In addition, in 20 test images, the
MFDRAN model’s denoising results exceeded 40 dB in the PSNR value part of the sample, further
proving its superior denoising capability. According to the statistical analysis (p < 0.05), the
denoising enhancement of MFDRAN is statistically significant. This suggests that at a noise level
of 35, MFDRAN demonstrates superior performance in improving image quality and stronger
generalization ability in terms of the consistency and stability of noise suppression.
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Table 6. Results of different methods for brain images with a noise level of 35.

Image ECNDNet DnCNN DudeNet UDRN MFDRAN
Image 1 21.6690 39.4936 40.4237 40.2731 40.4410
Image 2 21.6655 39.4007 40.3312 40.2481 40.3935
Image 3 21.6391 39.0510 39.9121 40.0118 40.1265
Image 4 21.6057 38.2241 39.8032 39.6742 39.8019
Image 5 21.5696 37.8699 39.3969 39.4052 39.4067
Image 6 21.5397 38.3380 39.1945 39.1782 39.2154
Image 7 21.5225 37.0960 39.0124 38.9465 39.1093
Image 8 21.5182 36.7240 39.1624 39.0521 39.1497
Image 9 21.5241 38.0336 39.1158 38.9940 39.1688
Image 10 21.5190 36.6233 39.0518 39.0971 39.2376
Image 11 21.4774 35.1597 38.8826 38.9561 39.0515
Image 12 21.4044 33.2355 37.1475 37.2345 37.5672
Image 13 21.3417 32.8824 37.9772 38.1361 38.3786
Image 14 21.2768 29.4202 38.1779 38.3204 38.5903
Image 15 21.2158 30.9225 38.0231 38.1840 38.4428
Image 16 21.1677 30.3132 37.7971 37.7674 38.0799
Image 17 21.1555 35.2424 38.0409 38.0425 38.2263
Image 18 21.1543 35.2248 37.7989 37.9100 38.0830
Image 19 21.1548 36.0785 37.3693 37.4680 37.5985
Image 20 21.1362 35.9614 37.3870 37.5240 37.8414
Average 21.4129 35.7648 38.7003 38.7212 38.8955

The denoising test results for the test and training sets of brain images are shown in Table 7, where
the best-performing data are shown in bold font to highlight the best performance. For the test set,
the denoising performance of MFDRAN outperforms that of the comparison models at different noise
levels (σ = 15, σ = 25, σ = 35). MFDRAN achieves the highest PSNR at all noise levels, such
as 43.4619 dB at σ=15, which is an enhancement of about 0.731 dB over the UDRN, demonstrating
more substantial denoising capability. Its SSIM reaches 0.9905 at σ = 25 and σ = 35, which is similar
to that of UDRN, maintaining the integrity of the image structure. Regarding NMSE, MFDRAN has a
minor error under different noise levels, such as 0.0007 at σ = 15, which is slightly better than UDRN,
indicating stable error control. ECNDNet is significantly lower than the other models in each metric,
especially under high noise, and it is insufficient to meet the demand for high-quality denoising.

For the training set, we test ECNDNet, DnCNN, DudeNet, UDRN, and MFDRAN models under
noise levels of 15, 25, and 35 to compare the denoising performance of each model. The results
shown in Table 7 indicate that in terms of the PSNR metrics, the MFDRAN model performs well at
all noise levels; in particular, at low to medium noise levels (σ = 15 and σ = 25), its PSNR
reaches 43.6248 dB and 41.2177 dB, respectively, which demonstrates good noise immunity
performance. Regarding SSIM, MFDRAN maintains a high value close to 0.9905 under different
noise levels, which ensures the fidelity of the structural details of the brain images and slightly
outperforms the performance of the UDRN model under medium and high noise conditions. In
summary, the MFDRAN model improves denoising, structure preservation, and error control
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capabilities, and performs well in all metrics of the brain image denoising task, especially under
high-noise conditions, which verifies its versatility and stability under different noise levels, and has
potential clinical applications.

Table 7. Performance comparison with other methods on the brain images.

Dataset Indicator Noise ECNDNet DnCNN DudeNet UDRN MFDRAN

Test set

PSNR
15 28.2313 34.1742 41.5445 42.7309 43.4619
25 22.6666 39.3246 40.2720 40.8265 41.0298
35 21.4129 35.7648 38.7003 38.7212 38.8955

SSIM
15 0.2902 0.9598 0.6767 0.9921 0.9904
25 0.1749 0.9879 0.7090 0.9870 0.9905
35 0.1570 0.9792 0.7332 0.9840 0.9905

NMSE
15 0.0098 0.0032 0.0609 0.0008 0.0007
25 0.0490 0.0009 0.0612 0.0012 0.0012
35 0.0498 0.0018 0.0624 0.0019 0.0019

Training set

PSNR
15 28.2428 34.3502 42.5156 42.8301 43.6248
25 22.6803 39.5662 40.4391 40.7007 41.2177
35 21.4268 35.8128 37.9619 38.9037 39.2229

SSIM
15 0.2852 0.9598 0.7100 0.9923 0.9905
25 0.1706 0.9882 0.7151 0.9872 0.9905
35 0.1531 0.9794 0.6958 0.9842 0.9905

NMSE
15 0.0103 0.0031 0.0603 0.0007 0.0007
25 0.0515 0.0009 0.0611 0.0012 0.0012
35 0.0526 0.0018 0.0634 0.0019 0.0019

4.3.2. Ground-based open dataset comparison experiments

To evaluate the denoising performance of the proposed MFDRAN model on different types of
images, this study applied it to the task of additive noise denoising on the CBSD68 dataset. It
evaluated its performance under various noise levels. The test results are shown in Table 8, where the
best-performing data are shown in bold font to highlight the best performance. It can be seen from
Table 8 that the performance of the MFDRAN model in image denoising and its generality is
systematically evaluated by comparing several denoising models with different structures under
different noise levels. On the CBSD68 dataset, the MFDRAN model significantly outperforms the
other models in all the metrics, especially at a noise level of 35. For the PSNR metric, MFDRAN
reaches 28.9878 dB, and for the SSIM metric, MFDRAN outperforms UDRN and DudeNet in
denoising, with an improvement of 22.38% and 34.08%, respectively. Compared with DnCNN’s
SSIM value of 0.7601, MFDRAN has improved by 30.15%; compared with ECNDNet’s SSIM value
of 0.2951, MFDRAN has improved by 235.27%. Compared with DnCNN’s SSIM value of 0.7601,
MFDRAN is 30.14% higher; compared with ECNDNet’s SSIM value of 0.2951, MFDRAN
is 235.27% higher. In addition, in terms of NMSE, MFDRAN’s 0.0077 is 41.67% and 19.79% lower
than DudeNet and DnCNN, respectively, and 54.71% lower than ECNDNet. Under the conditions
of 15 and 25 noise levels, MFDRAN outperforms other models in PSNR, SSIM, and NMSE, and
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always shows better denoising performance under each noise level. These results fully demonstrate
that MFDRAN has significant advantages in denoising performance, image structure information
retention, and reconstruction accuracy, and especially shows excellent robustness and practical
application value in high-noise scenarios.

Table 8. Performance comparison with other methods on the CBSD68 dataset.

Dataset Indicator Noise ECNDNet DnCNN DudeNet UDRN MFDRAN
PSNR 15 25.8158 28.897 33.3771 33.4277 33.4404
SSIM 15 0.6034 0.8615 0.8221 0.9212 0.9893
NMSE 15 0.0041 0.0053 0.0091 0.0025 0.0025
PSNR 25 20.5214 28.0764 30.2138 30.6765 30.7292

CBSD68 SSIM 25 0.4069 0.8148 0.7756 0.8641 0.9893
NMSE 25 0.0208 0.0075 0.0121 0.0052 0.0049
PSNR 35 18.9731 27.0477 28.7108 28.8788 28.9878
SSIM 35 0.2951 0.7601 0.7379 0.8084 0.9893
NMSE 35 0.0170 0.0096 0.0132 0.0076 0.0077

To evaluate the denoising performance of the MFDRAN model proposed in this paper on different
types of images, this study applied it to the task of additive noise denoising on the Kodak24 dataset. It
evaluated its performance under various noise levels. The test results are shown in Table 9, where the
best-performing data are shown in bold font to highlight the best performance. As can be seen in
Table 9, at a noise level of 15, MFDRAN shows significant advantages in all three evaluation metrics.
Specifically, the PSNR of MFDRAN reaches 34.0285 dB, which is 0.80% and 0.82% better than
UDRN (33.7573 dB) and DudeNet (33.7534 dB), respectively, and 15.96% better than
DnCNN (29.3545 dB), and a significant 36.80% better than ECNDNet (24.8419 dB). MFDRAN also
outperforms the other compared models in the SSIM and NMSE metrics, where SSIM reaches
0.9893, which is significantly higher than UDRN (0.9147) and DudeNet (0.8457), and NMSE is
reduced to 0.0017, which outperforms all the compared models. These results indicate the MFDRAN
model excels in denoising accuracy, and is better at recovering image details and reducing redundant
information. Meanwhile, MFDRAN still improves its denoising ability compared with other models
at noise levels of 25 and 35, which further validates its robustness and superiority in different
noise scenarios.

To verify the denoising performance of the MFDRAN model on authentic noisy images, this study
conducted in-depth experimental analyses based on the SIDD and RNI15 datasets. The SIDD dataset
contains nearly noiseless photos, making it suitable for quantitative and qualitative evaluation of the
MFDRAN model and other different structural models, and demonstrates the denoising effect of the
model from multiple perspectives. The RNI15 dataset, on the other hand, contains authentic noisy
images, which helps to compare the difference in denoising performance between the MFDRAN model
and other models more intuitively to validate the superior performance of the MFDRAN model in
complex noise environments.

The denoising visual effects of different models on the actual image SIDD dataset are shown in
Figure 8. The top left corner of the figure shows the local zoomed-in area, which is convenient for
observing the details of the denoising effect. According to the denoising results, the DudeNet model
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shows some color deviation after denoising, and there are still more apparent artifacts in the results of
ECNDNet. In contrast, the color of the denoised image of the DnCNN model is deepened compared
with the original image. In contrast, the denoising results of the MFDRAN and UDRN models are
visually more similar. Still, according to the PSNR values, our proposed model performs better in
denoising performance, further indicating that it is more capable of detail preservation and
noise suppression.

Table 9. Performance comparison with other methods on the Kodak24 dataset.

Dataset Indicator Noise ECNDNet DnCNN DudeNet UDRN MFDRAN
PSNR 15 24.8419 29.3545 33.7534 33.7573 34.0285
SSIM 15 0.5732 0.882 0.8457 0.9147 0.9893
NMSE 15 0.0055 0.003 0.0052 0.0019 0.0017
PSNR 25 21.7449 20.5143 31.2911 31.046 31.2216

Kodak24 SSIM 25 0.4072 0.7919 0.8129 0.8638 0.9893
NMSE 25 0.0067 0.0758 0.0063 0.0036 0.0032
PSNR 35 19.0184 26.7120 29.4296 29.7051 29.8735
SSIM 35 0.3002 0.7895 0.7710 0.8248 0.9893
NMSE 35 0.0120 0.0060 0.0075 0.0050 0.0045

Figure 8. Visual comparison of the SIDD dataset obtained by different methods at a noise
level of 25.

The denoising visual effects of different models on the actual noisy image RNI15 dataset are shown
in Figure 9. The bottom right corner of the figure shows the local zoomed-in area, which makes it easy
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to observe the details of the denoising effect. Compared with the DnCNN and DudeNet models, our
MFDRAN model performs more accurately in color reproduction, effectively avoiding the problem
of color deviation and ensuring that the color of the denoised image is closer to the actual scene.
Compared with the ECNDNet and UDRN models, the MFDRAN model can significantly preserve the
details and texture features of the image after denoising the real noisy image RNI15 dataset, resulting in
the denoised image presenting higher detail clarity and visual fidelity. This indicates that the MFDRAN
model has an advantage in denoising performance and outperforms the comparison model regarding
the comprehensive ability of detail retention and color reproduction.

Figure 9. Visual comparison of the RNI15 dataset obtained by different methods.

To fully evaluate the complexity of the proposed MFDRAN models, we conducted experiments
in the Pytorch framework using a hardware environment consisting of an Intel(R) Xeon(R) Silver
processor, 64 GB of RAM, and an NVIDIA Quadro P2200 graphics card. In our experiments, we
evaluated the runtime and number of parameters for each model.

Table 10 compares the training time and number of parameters required by the MFDRAN model
with those of the ECNDNet, DnCNN, DudeNet, and UDRN models for the brain image denoising task.
It is worth noting that ECNDNet and DnCNN are single-channel networks, and DudeNet and UDRN
are two-channel networks, while our proposed MFDRAN is a multi-CNN. The data show that although
our MFDRAN model has a higher number of parameters due to its multi-CNN structure, its running
time is significantly better than that of the DudeNet model in the dual-channel network. In addition,
according to the experimental results in Table 7, MFDRAN outperforms both the single-channel and
dual-channel networks in terms of image denoising performance. Compared with the other compared
models, MFDRAN not only shows an advantage in denoising quality, but also demonstrates a better
balance in terms of running efficiency, which gives it a significant advantage in terms of comprehensive

Electronic Research Archive Volume 33, Issue 3, 1231–1266.



1261

performance and further highlights its potential for application in complex tasks.

Table 10. Running time and parameters of different models in a single training session.

Models Training time (s) Parameters (M)
ECNDNet 225.6290 0.520M
DnCNN 197.7364 0.558M
DudeNet 832.2255 1.080M
UDRN 439.2483 0.820M
MFDRAN 760.2237 1.301M

5. Conclusions

In this paper, we propose a brain image denoising model called MFDRAN, which incorporates
GSN, DRAN, FDN, and FPB to form a multi-CNN to improve the accuracy and effectiveness of brain
image denoising. The preprocessing part of the model adopts an improved WA, which combines the
multiple edge extraction method with the morphological gradient, Sobel’s operator, and Canny’s
operator to effectively extract the foreground information and gradient features of the image, which
lays a reliable foundation for the subsequent denoising and, at the same time, shows excellent
performance in terms of segmentation accuracy and noise suppression. The DRAN internally
combines the improved channel attention mechanism and spatial attention mechanism, which retains
the key features of the image through multi-layer feature fusion and adaptive information filtering,
and significantly enhances the clarity and diagnostic details of the brain image. The experimental
results show that the MFDRAN model has significant advantages in suppressing redundant image
information and enhancing high-frequency details, providing an effective way to improve brain image
quality. The application potential in medical image denoising was further validated, especially in
enhancing brain image clarity and diagnostic accuracy. Although the MFDRAN model performs well
in denoising and image quality enhancement, the current experiments mainly focus on Gaussian noise
models, and the types and properties of noise in real applications are more complex. Therefore, future
research should consider introducing more real noise models or using medical image datasets
containing real noise to verify the effectiveness and robustness of the proposed method in complex
noise environments. To improve the generalization ability of the model, combining deep learning with
traditional image processing techniques can be explored. With these optimizations, the MFDRAN
model is expected to be more widely used in real medical environments.
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