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Abstract: This manuscript investigated the stability of Hopfield neural networks with time-varying
transmission delays and leakage delays, and specially discussed the impact of the time-varying delays’
dynamic characteristics on network stability. First, to characterize the dynamic features of time-varying
delays transitioning continuously between short and large delays, two key parameters were introduced:
a critical threshold for distinguishing whether the time-varying delays are short or large delays, and
the ratio of the measure of the union of time periods, in which the time-varying delays appear as
short delays, to the measure of the whole time interval. Then, by utilizing the Lyapunov stability
method, some sufficient conditions for the global exponential stability of the neural networks were
derived. It is pointed out that when the measure of time periods in which the time-varying delays
appear as short delays is large enough, the above two parameters related to the time-varying delays’
dynamic characteristics will have an important impact on the system stability, and the upper bound that
the time-varying delays can achieve in the whole time interval will no longer be the dominant factor
influencing stability. Additionally, the relationship between the leakage delays and the stabilization
ability of the negative feedback terms was explored. Two admissible upper bounds were presented,
below which the leakage delays do not completely undermine the capacity of negative feedback terms
to stabilize the neural networks. Finally, some simulation experiments were conducted to validate our
theoretical findings.
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1. Introduction

Hopfield neural networks (NNs), as a kind of classical artificial NN, have been continuously
attracting great attention of scientists since they were proposed by Hopfield in 1982 [1]. So far, this
kind of network model has been widely applied in various realms including secure communications,
pattern recognition, medical imaging, and so on [2–4], showing its great potential in practical
applications. Stability [5] is a significant dynamical property of NNs and is also a key indicator for
evaluating the performance of neural network models. Hence, as the theoretical foundation for the
actual applications of NNs, the exploration on the stability theory of Hopfield NNs has continuously
garnered extensive attention from scientists and remains a research focus to this day.

Time delays unavoidably exist in NNs and can significantly affect the dynamic performance of
systems, potentially leading to instability, bifurcation, or oscillations [6, 7]. Meanwhile, different
transmission circumstances can give rise to the occurrence of delays with different attributes. NNs
often encounter various forms of time delays during the progress of information transmission, like
transmission delays (or called discrete delays), proportional delays, distributed delays, leakage delays,
and so forth [8, 9]. Among these, transmission delays and leakage delays are the most common types
of delays. Transmission delays can be utilized to describe the phenomenon that information cannot be
transmitted instantaneously between neurons on account of the intricate distribution pathways of
various axons within NNs. Leakage delays arise in the negative feedback components of NNs and
have been shown to possess the potential to destabilize the system stability within realistic nervous
system architectures [10]. It holds considerable practical significance to investigate the stability of
NNs with these two kinds of delays.

From the perspective of correlation with the time variable, time delays can be sorted into two
categories: time-varying delays [11] and constant delays [12]. In comparison to constant delays,
time-varying delays are more prevalent in real-life circumstances. Moreover, the models that
incorporate time-varying delays provide a more accurate representation of the characteristics inherent
in actual systems. Consequently, studying the stability issues associated with time-varying delays is
particularly significant. During the previous two decades, the research on the stability of NNs subject
to time-varying delays has garnered considerable interest from numerous investigators, resulting in a
wealth of outstanding findings. Wang et al. conducted an analysis on the stability of mixed recurrent
NNs characterized by leakage delays and impulsive perturbations [13]. Chen et al. explored the
passivity properties of NNs incorporating not only leakage delays but time-varying transmission
delays [14]. Zhang et al. integrated the concept of switched delays with an admissible edge-dependent
average dwell-time method to address synchronization challenges for NNs experiencing not only
time-varying leakage delays but transmission delays [15]. Wang et al. introduced a degree-dependent
polynomial-based reciprocally convex matrix inequality and employed this inequality to establish
several stability criteria for a specific sort of NN with time-varying delayed dynamics [16].

The Lyapunov-Krasovskii functional method [17] serves as a primary theoretical tool for
researching the stability issues of time-varying delayed NNs. Researchers have integrated this method
with various algebraic approaches, including Jensen’s inequality technique, the free-weighting matrix
method [18], and the reciprocally convex inequality approach [19], thereby constructing diverse
stability criteria for delayed NNs [20–25]. With the utilization of the Lyapunov-Krasovskii functional
method, Zhu and Cao investigated the exponential stability within a sort of Markovian jump impulsive
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stochastic Cohen-Grossberg NN characterized by mixed time delays and unknown parameters [26].
Zhang et al. explored the H∞ synchronization problem associated with switching inertial NNs that
suffer from mixed time-varying delays, presenting several related synchronization conditions [27].
Chen et al. examined the scenarios where delays in NNs are periodically varying bounded functions
with constrained derivatives, proposing stability criteria through the application of both the
Lyapunov-Krasovskii functional method and certain integral inequalities [28]. Qin et al. utilized this
same methodological framework alongside an adaptive controller to address finite-time projective
synchronization challenges in memristor-based NNs featuring multi-links and leakage delays [29].
However, it is important to note that in these aforementioned studies, upper bounds on time-varying
delays and the bounds of their derivatives are universally regarded as critical factors influencing
system stability. Moreover, most stability conditions derived using the Lyapunov-Krasovskii
functional method within these references closely relate to these bounds. Unfortunately, these
investigations often overlook potential impact stemming from other characteristics of time-varying
delays on the overall system stability. The function value of a time-varying delay fluctuates
continuously with the progression of the time variable. In certain intervals, it may present as a short
delay characterized by a small value, while in other intervals, it transitions into a large delay with a
larger value. Intuitively, the dynamic characteristics of time-varying delays that transition
continuously between short and large delays may influence the stability of NNs. However, there exists
a deficiency in comprehensive and in-depth research concerning the relationship between the
time-varying delays’ dynamic characteristics and neural network stability.

Leakage delays, as a common category of time delays, have been considered in numerous studies
related to NNs [13–15, 23, 29]. Unlike other types of delays, leakage delays occur in the negative
feedback terms and can influence the ability of negative feedback terms to stabilize NNs. Intuitively,
smaller leakage delays exert less adverse effects on the negative feedback terms, whereas larger leakage
delays tend to have more significant negative impacts on them. However, in many existing research
articles [13–15,23,29], the existence of leakage delays is always regarded as a disruptive factor that can
definitely render the negative feedback terms ineffective. Such an assumption is undoubtedly simplistic
and conservative. Yet, to date, there remains an absence of thorough investigation into the relationship
between leakage delays and the stabilization capability of negative feedback terms.

Motivated by the previous discussion, this manuscript explores the stability issues associated with
a specific sort of Hopfield NN that incorporates time-varying transmission delays and leakage delays.
Particular emphasis is placed on examining how the dynamic characteristics of these time-varying
delays influence network stability. First, two parameters are introduced to characterize the dynamic
features of time-varying delays transitioning continuously between short and large delays. These two
parameters are, respectively, a critical threshold that can be used to distinguish whether the
time-varying delays are short delays or large delays, and the ratio of the measure of the union of time
periods, in which the time-varying delays appear as short delays, to the measure of the whole time
interval. Then, by employing the Lyapunov stability method alongside algebraic inequality
techniques, we establish several criteria for the stability of NNs. It is emphasized that when the
duration of time intervals in which time-varying delays manifest as short delays is sufficiently large,
the above two parameters significantly influence system stability, and the upper bound that
time-varying delays can attain over the entire time interval will no longer be a predominant factor
affecting stability. Furthermore, we investigate the relationship between leakage delays and the
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stabilization capacity of negative feedback terms. Two admissible upper bounds are presented, less
than which the leakage delays can not completely undermine the capacity of negative feedback terms
to stabilize the NNs.

The remaining portions of this manuscript are structured as follows. In Section 2, we provide a
model description for a type of delayed Hopfield NN. Section 3 presents research findings related to
neural network stability. Numerical simulations illustrated in Section 4 validate our primary theoretical
results. In the end, Section 5 concludes this article.

Notations: Let R = (−∞,+∞). Ri is the Euclidean space with i dimensions. ∥ ξ ∥ is the Euclidean

norm of vector ξ = (ξ1, · · · , ξn)T and ∥ ξ ∥ =
√∑n

i=1 ξ
2
i . | v | is the absolute value of scalar function v.

Ψ1
⋃
Ψ2 denotes the union of set Ψ1 and set Ψ2. Ψ1

⋂
Ψ2 denotes the intersection of set Ψ1 and set Ψ2.

2. Problem formulation and preliminaries

Consider a Hopfield NN characterized by time-varying delays, which is constituted by n neurons.
Its dynamical model is expressed by

ẋi(t) = −bixi(t − δi(t)) +
n∑

j=1

ωi jφ j(x j(t − τi j(t))) + Ii, t ≥ t0,

xi(s) = xi0(s), s ∈ [t0 − h, t0],

(2.1)

where i = 1, 2, . . . , n, t stands for the time variable, xi(t) ∈ R denotes the state of the ith neuron,
bi > 0 is the self-inhibition coefficient, and Ii is a constant input. ωi j represents the weight of the
connection from the jth neuron to the ith neuron. φ j : R → R represents the nonlinear activation
function associated with the jth neuron. The continuous function δi(t) is the leakage delay satisfying
0 ≤ δi(t) ≤ δ̄i, where δ̄i is a positive constant. The continuous function τi j(t) stands for the transmission
delay between the ith neuron and the jth neuron with 0 ≤ τi j(t) ≤ τ̄i j, where τ̄i j is a positive constant.
In addition, suppose that δ̇i(t) ≤ 1 and τ̇i j(t) ≤ 1 for i, j ∈ {1, 2, . . . , n} and t ≥ t0. The continuous
function xi0(s) : [t0 − h, t0]→ R is the initial value of system (2.1) where h = max

i, j=1,2,...,n
{δ̄i, τ̄i j}.

Remark 1: Two typical types of time-varying delays, namely transmission delays and leakage
delays, are considered in the neural network model (2.1). The transmission delays are caused by the
fact that the signal transmission between neurons is restricted by the limited channel transmission speed
or transmission capacity. This type of time delay is ubiquitous in NNs and can result in processing
delays for information within the networks. The leakage delays primarily arise from measurement
errors. This type of delay occurs within the negative feedback terms of NNs and can adversely affect
the capacity of negative feedback terms to stabilize NNs. The presence of these two forms of time
delays significantly impacts the stability of NNs and may even result in chaos, oscillations, or other
complex dynamics. Hence, the research concerning these time delays holds substantial importance.

Assume that there exists a constant vector x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T that satisfies

−bix∗i +
n∑

j=1

ωi jφ j(x∗j) + Ii = 0, i = 1, 2, . . . , n.

That is, the point x∗ serves as an equilibrium point for the system described in (2.1). The primary
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objective of this article is to investigate the global exponential stability of the equilibrium point x∗ and
to establish corresponding criteria for its stability.

Definition 1 [30]: The equilibrium point x∗ of system (2.1) is globally exponentially stable, if there
exist two positive constants µ and ϑ such that, for every solution x(t) of (2.1), the subsequent inequality
is satisfied,

∥ x(t) − x∗ ∥≤ µe−ϑ(t−t0) sup
s∈[t0−h,t0]

∥ x0(s) − x∗ ∥,

where x(t) = (x1(t), x2(t), . . . , xn(t))T and x0(s) = (x10(s), x20(s), . . . , xn0(s))T . The parameter ϑ is the
exponential convergence rate which describes how fast x(t) converges to the equilibrium point x∗.

Remark 2: What is noteworthy is that our primary concern in this article is not to establish the
conditions under which equilibrium points of system (2.1) exist. Consequently, rather than discussing
the existence of equilibrium points, we will assume the existence of an equilibrium point x∗ that is
associated with the system (2.1). For research findings related to the presence of equilibrium points in
delayed NNs, please refer to article [31].

Unlike constant delays, time-varying delays often exhibit some distinct and unique dynamic
characteristics. The function values of time-varying delays exhibit continuous fluctuations as the time
variable progresses. In some time intervals, they may manifest as short delays with small values,
while at other intervals, they transition into large delays characterized by large values. A primary
focus of this article is to examine the effect of the dynamic characteristics associated with
time-varying delays that transition continuously between short and long delays on network stability.
Furthermore, the impact of the leakage delays on the capacity of the negative feedback terms to
stabilize neural networks will also be examined.

Let τ be defined as the critical threshold to distinguish whether the time-varying delays are short or
large delays. It is defined that when the time-varying delays are less than or equal to τ at a given time t,
they are called short delays at that moment. When they exceed τ at time t, they are called large delays
at time t.

Next, two assumptions on time-varying delays in the system (2.1) are given.
Assumption 1: There is a time instant sequence {tm}

∞
m=1 satisfying t0 ≤ t1 < t2 < . . .. Meanwhile,

assume that a positive constant α > 1 exists ,such that t2k − t2k−1 > ατ, and the following inequalities
hold for t ∈ [t2k−1, t2k]:

δi(t) ≤ τ, τi j(t) ≤ τ, δi(t2k−1) = 0, τi j(t2k−1) = 0,

where k = 1, 2, . . . and i, j = 1, 2, . . . , n.
Remark 3: The short delay and large delay are two opposing concepts. By introducing the critical

threshold τ, the short delay and large delay are clearly divided. It should be pointed out that there are
no specific requirements for the setting of this critical threshold, and usually this threshold can be set
to different values depending on the system and the problem under study. In this paper, the setting of
this critical threshold will be related to the exponential stability of NN (2.1).

Remark 4: When Assumption 1 holds, the interval [t0,∞) can be split into an infinite number of
small intervals [tm−1, tm] (m = 1, 2, . . .) through the time instant sequence {tm}

∞
m=1. When t ∈ [t2k−1, t2k]

(k = 1, 2, . . .), the leakage delays δi(t) and transmission delays τi j(t) all appear as short delays.
Furthermore, it should be noted that the small intervals [tm−1, tm] (m = 1, 2, . . .) do not have to be
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equidistant. For instance, consider the delay function δi(t) satisfying the following form:

δi(t) = 0.3(cos(
√

t) + 1),

where t ≥ 1. Clearly, the function takes the value of 0 at countless discrete moments, but it is not a
periodic function.

Assumption 2: There are two positive constants N∗ and γ, such that, for any given time instants t′

and t′′ (t′′ > t′), the subsequent inequality is satisfied,

N(t′, t′′) ≥ γ(t′′ − t′) − N∗,

where N(t′, t′′) is the measure of the set {s | s ∈ [t′, t′′]
⋂

(
∞⋃

k=1
[t2k−1, t2k])}.

Remark 5: The set {s | s ∈ [t′, t′′]
⋂

(
∞⋃

k=1
[t2k−1, t2k])} is the union of the time periods, in which the

time-varying delays appear as short delays, within the interval [t′, t′′]. Due to the arbitrariness of t′ and
t′′, the following relation can be derived from Assumption 2,

lim
t→∞

N(t0, t)
t − t0

≥ γ,

where N(t0, t) is the measure of the set {s | s ∈ [t0, t]
⋂

(
∞⋃

k=1
[t2k−1, t2k])}. This means that the parameter

γ can be used to represent the ratio of the measure of the union of time periods, in which the
time-varying delays appear as short delays, to the measure of the overall time interval [t0,∞). The
parameters τ and γ can be used, to a certain extent, to characterize the dynamic features of
time-varying delays transitioning continuously between short and large delays. Therefore, the
implication of the time-varying delays’ dynamic characteristics on the neural network stability will be
investigated via analyzing the bond between the stability of system (2.1) and these two parameters.

Then an assumption on activation functions in the system (2.1) is given as follows.
Assumption 3: There exists a positive constant ξ j such that

∥ φ j(u) − φ j(v) ∥≤ ξ j ∥ u − v ∥, f or all u, v ∈ R,

where j = 1, 2, . . . , n.

3. Main results

The global exponential stability of NN (2.1) is researched in this section, and several
corresponding stability theorems are established. Particularly, the impact of time-varying delays’
dynamic characteristics on neural network stability, as well as the influence of leakage delays on the
stabilization ability of negative feedback terms, are discussed separately.

Let e(t) = x(t) − x∗ where e(t) = (e1(t), e2(t), . . . , en(t))T , and then the system (2.1) can be converted
into the following system,

ėi(t) = −biei(t − δi(t)) +
n∑

j=1

ωi j[φ j(e j(t − τi j(t)) + x∗j) − φ j(x∗j)], t ≥ t0,

ei(s) = ei0(s) = xi0(s) − x∗i , s ∈ [t0 − h, t0],

(3.1)
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where i = 1, 2, . . . , n. Obviously, the origin is an equilibrium point of the system (3.1) and its stability
is equivalent to the stability of equilibrium x∗ for system (2.1). Therefore, the stability of NN (2.1) will
be studied through an analysis of the stability of the zero equilibrium point in system (3.1).

First, a proposition is provided as follows, on the basis of which the main theorems of this paper
will be established.

Proposition 1: Let V(t) = 1
2

n∑
i=1

e2
i (t). Suppose that Assumption 3 holds, and there are two time

instants t′ and t′′ such that t′′ − t′ > τ, δi(t′) = 0, τi j(t′) = 0, δi(t) ≤ τ and τi j(t) ≤ τ, where t ∈ [t′, t′′]
and i, j = 1, 2, . . . , n. Then

V̇(t) ≤ −2λV(t) (3.2)

for t ∈ [t′, t′′], if there are three positive constants ε, σ and θ such that

bi − εbi −
σ

2

n∑
j=1

| ωi j | ξ j −
b̄θ
2ε
−

4θ(1 + θ)
ε

n∑
i=1

bi −
2(1 + θ)2

σ

n∑
i=1

n∑
j=1

| ωi j | ξ j > 0 (3.3)

and

τ =
1

1 +
√
θ

√
θ

2(1 + θ)
1

n∑
i=1

bi +
n∑

i=1

n∑
j=1
| ωi j | ξ j

, (3.4)

where i = 1, 2, . . . , n, b̄ = max
i=1,...,n

{bi}, λ = min
i=1,...,n

{λi} and λi = bi − εbi −
σ
2

n∑
j=1
| ωi j | ξ j −

b̄θ
2ε −

4θ(1+θ)
ε

n∑
i=1

bi −

2(1+θ)2

σ

n∑
i=1

n∑
j=1
| ωi j | ξ j.

Furthermore, if δi(t) ≤ τ and τi j(t) ≤ τ for t ∈ [t′,∞) while the other conditions still hold, then the
inequality (3.2) holds for t ∈ [t′,∞).

Proof: The time derivative of V(t) along the trajectories of the system (3.1) is given by

V̇(t) =
n∑

i=1

ei(t){−biei(t − δi(t)) +
n∑

j=1

ωi j[φ j(e j(t − τi j(t)) + x∗j) − φ j(x∗j)]}, (3.5)

where t ≥ t0. Then based on Assumption 3,

V̇(t) ≤ −
n∑

i=1

biei(t)ei(t − δi(t)) +
n∑

i=1

ei(t)
n∑

j=1

| ωi j | ξ j ∥ e j(t − τi j(t)) ∥, (3.6)

for t ≥ t0.
Let m̂ = ⌈ t′′−t′

τ
⌉−1, where ⌈ t′′−t′

τ
⌉ is the smallest integer greater than or equal to t′′−t′

τ
. Then let t′1 = t′,

t′2 = t′ + τ, t′3 = t′ + 2τ, . . . , t′m̂+1 = t′ + m̂τ, and t′m̂+2 = t′′. Evidently, [t′, t′′] =
m̂+1⋃
k=1

[t′k, t
′
k+1].
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From (3.6), the following inequality holds for t ∈ [t′k, t
′
k+1], k = 1, 2, . . . , m̂ + 1,

V̇(t) ≤ −
n∑

i=1

bie2
i (t) +

n∑
i=1

biei(t)[ei(t) − ei(t′k)]

+

n∑
i=1

biei(t)[ei(t′k) − ei(t − δi(t))] +
n∑

i=1

ei(t)
n∑

j=1

| ωi j | ξ j ∥ e j(t − τi j(t)) ∥

≤ −

n∑
i=1

bie2
i (t) +

ε

2

n∑
i=1

bie2
i (t) +

1
2ε

n∑
i=1

bi[ei(t) − ei(t′k)]
2

+
ε

2

n∑
i=1

bie2
i (t) +

1
2ε

n∑
i=1

bi[ei(t′k) − ei(t − δi(t))]2

+

n∑
i=1

n∑
j=1

| ωi j | ξ j[
σ

2
e2

i (t) +
1

2σ
e2

j(t − τi j(t))]

≤ −a ∥ e(t) ∥2 +
b̄
2ε
∥ e(t) − e(t′k) ∥

2 +
1
2ε

n∑
i=1

bi ∥ e(t′k) − e(t − δi(t)) ∥2

+
1

2σ

n∑
i=1

n∑
j=1

| ωi j | ξ j ∥ e(t − τi j(t)) ∥2,

(3.7)

where a = min
i=1,...,n

{bi − εbi −
σ
2

n∑
j=1
| ωi j | ξ j} and b̄ = max

i=1,...,n
{bi}.

Next, we can get a conclusion that

∥ e(t) − e(t′1) ∥ ≤
√
η ∥ e(t′1) ∥ f or t ∈ [t′1, t

′
2], (3.8)

where η = θ
2(1+θ) . This conclusion is demonstrated as follows by contradiction. Suppose that there

exists a time instant t∗ ∈ [t′1, t
′
2] such that ∥ e(t∗) − e(t′1) ∥ >

√
η ∥ e(t′1) ∥ and

∥ e(t) − e(t′1) ∥ ≤
√
η ∥ e(t′1) ∥ f or t ∈ [t′1, t

∗). (3.9)

Obviously, t∗ > t′1. This fact can be shown by contradiction. Suppose that t∗ = t′1. Then 0 =∥
e(t∗) − e(t′1) ∥>

√
η ∥ e(t′1) ∥ ≥ 0, which is a contradiction.

From (3.9),

∥ e(t) − e(t′1) ∥2 ≤
θ

2(1 + θ)
∥ e(t′1) ∥2 f or t ∈ [t′1, t

∗). (3.10)

Then

∥ e(t) − e(t′1) ∥2 ≤
θ

2
∥ e(t) − (e(t) − e(t′1)) ∥2 −θ ∥ e(t) − e(t′1) ∥2

≤
θ

2
{∥ e(t) ∥2 +2 ∥ e(t) ∥∥ e(t) − e(t′1) ∥ + ∥ e(t) − e(t′1) ∥2} − θ ∥ e(t) − e(t′1) ∥2

≤ θ ∥ e(t) ∥2

(3.11)

for t ∈ [t′1, t
∗). Next, the following inequality is deduced,

∥ e(t′1) ∥ ≤ (1 +
√
θ) ∥ e(t) ∥ f or t ∈ [t′1, t

∗). (3.12)
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Since δi(t′1) = 0, τi j(t′1) = 0, δ̇i(t) ≤ 1 and τ̇i j(t) ≤ 1 where i, j = 1, 2, . . . , n and t ≥ t0, then
δi(t) ≤ t − t′1 and τi j(t) ≤ t − t′1 for t ∈ [t′1, t

′
2]. This means that t − δi(t) ≥ t′1 and t − τi j(t) ≥ t′1 for

t ∈ [t′1, t
′
2]. Then, from (3.9) and (3.12), the following two inequalities are acquired,

∥ e(t − δi(t)) − e(t′1) ∥2 ≤ η ∥ e(t′1) ∥2 ≤
θ

2(1 + θ)
2(1 + θ) ∥ e(t) ∥2 = θ ∥ e(t) ∥2 (3.13)

and
∥ e(t − τi j(t)) ∥2 ≤ {∥ e(t′1) ∥ + ∥ e(t − τi j(t)) − e(t′1) ∥}2

≤ (1 +
√
η)2 ∥ e(t′1) ∥2

≤ 2(1 + η)2(1 + θ) ∥ e(t) ∥2

= (4 + 6θ) ∥ e(t) ∥2,

(3.14)

where t ∈ [t′1, t
∗) and i, j = 1, 2, . . . , n.

From (3.7), (3.11), (3.13) and (3.14), it is inferred that

V̇(t) ≤ −a ∥ e(t) ∥2 +
b̄θ
2ε
∥ e(t) ∥2 +

θ

2ε

n∑
i=1

bi ∥ e(t) ∥2 +
2 + 3θ
σ

n∑
i=1

n∑
j=1

| ωi j | ξ j ∥ e(t) ∥2

≤ −2λV(t)

(3.15)

for t ∈ [t′1, t
∗). Thus,

∥ e(t) ∥ ≤ ∥ e(t′1) ∥ f or t ∈ [t′1, t
∗). (3.16)

From (3.1), the below-mentioned inequality is applicable for t ≥ t0,

∥ ė(t) ∥ ≤
n∑

i=1

∥ ėi(t) ∥

≤

n∑
i=1

{bi ∥ ei(t − δi(t)) ∥ +
n∑

j=1

| ωi j | ξ j ∥ e j(t − τi j(t)) ∥}.
(3.17)

Then it can be inferred from (3.16) and (3.17) that

∥ ė(t) ∥ ≤ [
n∑

i=1

bi +

n∑
i=1

n∑
j=1

| ωi j | ξ j] ∥ e(t′1) ∥ (3.18)

for t ∈ [t′1, t
∗). Thus,

∥ e(t∗) − e(t′1) ∥ =∥
∫ t∗

t′1

ė(s)ds ∥

≤

∫ t∗

t′1

∥ ė(s) ∥ ds

≤ τ[
n∑

i=1

bi +

n∑
i=1

n∑
j=1

| ωi j | ξ j] ∥ e(t′1) ∥

≤
√
η ∥ e(t′1) ∥,

(3.19)
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which is in contradiction to the assumption that ∥ e(t∗) − e(t′1) ∥>
√
η ∥ e(t′1) ∥. Therefore, the

inequality (3.8) holds for t ∈ [t′1, t
′
2]. Then, similar to the derivation of (3.11) and (3.15), the following

two inequalities are concluded,
V̇(t) ≤ −2λV(t) (3.20)

and
∥ e(t) − e(t′1) ∥2 ≤ θ ∥ e(t) ∥2, (3.21)

where t ∈ [t′1, t
′
2].

Suppose that the following inequalities hold for t ∈ [t′k, t
′
k+1],

V̇(t) ≤ −2λV(t), (3.22)

∥ e(t) − e(t′k) ∥
2 ≤ η ∥ e(t′k) ∥

2 (3.23)

and
∥ e(t) − e(t′k) ∥

2 ≤ θ ∥ e(t) ∥2, (3.24)

where k ∈ {1, 2, . . . , m̂}. Then consider the situation that t ∈ [t′k+1, t
′
k+2].

Next, we can get a conclusion that

∥ e(t) − e(t′k+1) ∥ ≤
√
η ∥ e(t′k+1) ∥ f or t ∈ [t′k+1, t

′
k+2]. (3.25)

This conclusion is demonstrated as follows by contradiction. Suppose that there occurs a time instant
t̂∗ ∈ [t′k+1, t

′
k+2] such that ∥ e(t̂∗) − e(t′k+1) ∥ >

√
η ∥ e(t′k+1) ∥ and

∥ e(t) − e(t′k+1) ∥ ≤
√
η ∥ e(t′k+1) ∥ f or t ∈ [t′k+1, t̂

∗). (3.26)

It is evident that t̂∗ > t′k+1. This fact can be shown by contradiction. Suppose that t̂∗ = t′k+1. Then
0 =∥ e(t̂∗) − e(t′k+1) ∥ >

√
η ∥ e(t′k+1) ∥ ≥ 0, which is a contradiction.

Similar to the derivation of (3.11) and (3.12), the following inequalities are derived from (3.26),

∥ e(t) − e(t′k+1) ∥2 ≤ θ ∥ e(t) ∥2 (3.27)

and
∥ e(t′k+1) ∥ ≤ (1 +

√
θ) ∥ e(t) ∥, (3.28)

where t ∈ [t′k+1, t̂
∗).

Since δi(t) ≤ τ and τi j(t) ≤ τ where t ∈ [t′, t′′] and i, j = 1, 2, . . . , n, then t − δi(t) ≥ t′k+1 − τ = t′k and
t − τi j(t) ≥ t′k+1 − τ = t′k for t ∈ [t′k+1, t

′
k+2].

If t − δi(t) ≥ t′k+1, then it can be inferred from (3.26) and (3.28) that

∥ e(t − δi(t)) − e(t′k+1) ∥2 ≤ η ∥ e(t′k+1) ∥2

≤ θ ∥ e(t) ∥2,

where t ∈ [t′k+1, t̂
∗). If t′k ≤ t − δi(t) ≤ t′k+1, then it can be inferred from (3.23), (3.24) and (3.28) that

∥ e(t − δi(t)) − e(t′k+1) ∥2 ≤ {∥ e(t′k+1) − e(t′k) ∥ + ∥ e(t − δi(t)) − e(t′k) ∥}
2

≤ {[
√
θ +
√
η(1 +

√
θ)] ∥ e(t′k+1) ∥}2

≤ {[
√
θ +
√
η(1 +

√
θ)](1 +

√
θ) ∥ e(t) ∥}2

≤ 8θ(1 + θ) ∥ e(t) ∥2,
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where t ∈ [t′k+1, t̂
∗). Thus,

∥ e(t − δi(t)) − e(t′k+1) ∥2 ≤ 8θ(1 + θ) ∥ e(t) ∥2 (3.29)

for t ∈ [t′k+1, t̂
∗) and i = 1, 2, . . . , n.

If t − τi j(t) ≥ t′k+1, then it is inferred from (3.26) and (3.28) that

∥ e(t − τi j(t)) ∥2 ≤ {∥ e(t − τi j(t)) − e(t′k+1) ∥ + ∥ e(t′k+1) ∥}2

≤ {(1 +
√
η) ∥ e(t′k+1) ∥}2

≤ (4 + 6θ) ∥ e(t) ∥2,

where t ∈ [t′k+1, t̂
∗). If t′k ≤ t − τi j(t) ≤ t′k+1, thereafter it can be inferred from (3.22), (3.24) and (3.28)

that
∥ e(t − τi j(t)) ∥2 ≤∥ e(t′k) ∥

2

≤ 2(1 + θ) ∥ e(t′k+1) ∥2

≤ 4(1 + θ)2 ∥ e(t) ∥2,

where t ∈ [t′k+1, t̂
∗). Thus,

∥ e(t − τi j(t)) ∥2≤ 4(1 + θ)2 ∥ e(t) ∥2 (3.30)

for t ∈ [t′k+1, t̂
∗) and i, j = 1, 2, . . . , n.

From (3.7), (3.27), (3.29) and (3.30),

V̇(t) ≤ −{a −
b̄θ
2ε
−

4θ(1 + θ)
ε

n∑
i=1

bi −
2(1 + θ)2

σ

n∑
i=1

n∑
j=1

| ωi j | ξ j} ∥ e(t) ∥2

= −2λV(t),

(3.31)

where t ∈ [t′k+1, t̂
∗).

Similar to the derivation of (3.18) and (3.19), the following relation is derived from (3.17), (3.22),
(3.24) and (3.31) that

∥ e(t̂∗) − e(t′k+1) ∥ ≤ τ[
n∑

i=1

bi +

n∑
i=1

n∑
j=1

| ωi j | ξ j](1 +
√
θ) ∥ e(t′k+1) ∥

≤
√
η ∥ e(t′k+1) ∥,

(3.32)

which contradicts the supposition that ∥ e(t̂∗) − e(t′k+1) ∥ >
√
η ∥ e(t′k+1) ∥. Therefore, the inequality

(3.25) applies to t ∈ [t′k+1, t
′
k+2]. Then, similar to the derivation of (3.27) and (3.31), the following

inequalities are concluded,
V̇(t) ≤ −2λV(t) (3.33)

and
∥ e(t) − e(t′k+1) ∥2≤ θ ∥ e(t) ∥2, (3.34)

where t ∈ [t′k+1, t
′
k+2].

Therefore, on the basis of the mathematical induction method, the following relation is valid for any
given k ∈ {1, 2, . . . , m̂ + 1},

V̇(t) ≤ −2λV(t) where t ∈ [t′k, t
′
k+1].
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That is,
V̇(t) ≤ −2λV(t) (3.35)

for t ∈ [t′, t′′].
If δi(t) ≤ τ and τi j(t) ≤ τ for t ∈ [t′,∞) while the other conditions in Proposition 1 still hold, then,

consistent with the preceding proof, it can be demonstrated by the mathematical induction method that
the inequality (3.35) holds when t ∈ [t′,∞).

This concludes the proof.
Next, a theorem is presented in which some stability criteria for NN (2.1) are constructed.
Theorem 1: Suppose that Assumptions 1–3 hold. If there exist three positive constants ε, σ and θ

such that the conditions (3.3), (3.4) and the following inequality hold,

γ >
ζ

2λ(1 − 1
α
) + ζ

, (3.36)

where ζ = ā + 1
ε

n∑
i=1

bi +
1
σ

n∑
i=1

n∑
j=1
| ωi j | ξ j and ā = max

i=1,...,n
{εbi +σ

n∑
j=1
| ωi j | ξ j}, then the equilibrium point

x∗ of NN (2.1) is globally exponentially stable and the state vector x(t) satisfies the following relation
for t ≥ t0,

∥ x(t) − x∗ ∥ ≤ sup
s∈[t0−h,t0]

{∥ x0(s) − x∗ ∥}µe−υ(t−t0), (3.37)

where µ = e
1
2 [2λ(1− 1

α )+ζ]N∗ , υ = 1
2 [2λ(1 − 1

α
)γ − ζ(1 − γ)] and x0(s) = (x10(s), x20(s), . . . , xn0(s))T .

Proof: According to Assumption 1 and Proposition 1,

V̇(t) ≤ −2λV(t), (3.38)

where t ∈ [t2k−1, t2k], k = 1, 2, . . .. Thus,

V(t) ≤ V(t2k−1)e−2λ(t−t2k−1), (3.39)

where t ∈ [t2k−1, t2k], k = 1, 2, . . ..
Furthermore, according to Assumption 1, t2k − t2k−1 > ατ > τ. Hence, from (3.38) and (3.39),

V(t) ≤ V(t2k − τ) ≤ V(t2k−1)e−2λ(t2k−t2k−1−τ), (3.40)

where t ∈ [t2k − τ, t2k], k = 1, 2, . . ..
It is inferred from (3.6) that

V̇(t) ≤
n∑

i=1

{εbi + σ

n∑
j=1

| ωi j | ξ j}
1
2

e2
i (t) +

1
ε

n∑
i=1

bi
1
2

e2
i (t − δi(t)) +

1
σ

n∑
i=1

n∑
j=1

| ωi j | ξ j
1
2

e2
j(t − τi j(t))

≤ āV(t) +
1
ε

n∑
i=1

biV(t − δi(t)) +
1
σ

n∑
i=1

n∑
j=1

| ωi j | ξ jV(t − τi j(t)),

(3.41)

where ā = max
i=1,...,n

{εbi + σ
n∑

j=1
| ωi j | ξ j} and t ≥ t0.
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Next, consider the situation that t ∈ [t2k, t2k+1], k = 1, 2, . . .. According to Assumption 1, δi(t2k) ≤ τ
and τi j(t2k) ≤ τ, where i, j = 1, 2, . . . , n. Since δ̇i(t) ≤ 1 and τ̇i j(t) ≤ 1 for t ≥ t0, then t − δi(t) ≥ t2k − τ

and t − τi j(t) ≥ t2k − τ for t ∈ [t2k, t2k+1].
Then an auxiliary system is constructed as below,

˙̄V(t) = āV̄(t) +
1
ε

n∑
i=1

biV̄(t − δi(t)) +
1
σ

n∑
i=1

n∑
j=1

| ωi j | ξ jV̄(t − τi j(t)),

V̄(s) = V(t2k−1)e−2λ(t2k−t2k−1−τ) f or s ∈ [t2k − τ, t2k],

(3.42)

where t ∈ [t2k, t2k+1]. It is easy to find that V(t) ≤ V̄(t) for t ∈ [t2k, t2k+1].
From Eq (3.42), ˙̄V(t) ≥ 0 for t ∈ [t2k, t2k+1]. Then, V̄(t − δi(t)) ≤ V̄(t) and V̄(t − τi j(t)) ≤ V̄(t) for

t ∈ [t2k, t2k+1]. Therefore,
˙̄V(t) ≤ ζV̄(t), (3.43)

where ζ = ā + 1
ε

n∑
i=1

bi +
1
σ

n∑
i=1

n∑
j=1
| ωi j | ξ j and t ∈ [t2k, t2k+1].

From (3.43), the subsequent inequality is derived,

V(t) ≤ V̄(t) ≤ V̄(t2k)eζ(t−t2k) = V(t2k−1)eζ(t−t2k)e−2λ(t2k−t2k−1−τ), (3.44)

where t ∈ [t2k, t2k+1], k = 1, 2, . . ..
Then consider the situation that t ∈ [t0, t1]. Similar to the previous discussion, it is inferred that

V(t) ≤ Vmaxeζ(t−t0), (3.45)

where Vmax = sup
s∈[t0−h,t0]

{ 12 ∥ x0(s) − x∗ ∥2} and t ∈ [t0, t1].

It can be inferred from (3.39), (3.44) and (3.45) that

V(t) ≤ V(t2m−1)e−2λ(t−t2m−1)

≤ V(t2m−3)e−2λ(t−t2m−1)eζ(t2m−1−t2m−2)e−2λ(t2m−2−t2m−3−τ)

...

≤ V(t1)e−2λ(t−t2m−1)e
ζ

m∑
k=2

(t2k−1−t2k−2)
e
−2λ

m∑
k=2

(t2k−2−t2k−3−τ)

≤ V(t1)e−2λ(t−t2m−1)e
ζ

m∑
k=2

(t2k−1−t2k−2)
e
−2λ(1− 1

α )
m∑

k=2
(t2k−2−t2k−3)

≤ Vmaxe
−2λ(1− 1

α )[(t−t2m−1)+
m∑

k=2
(t2k−2−t2k−3)]+ζ

m∑
k=1

(t2k−1−t2k−2)

≤ Vmaxe−2λ(1− 1
α )[γ(t−t0)−N∗]+ζ(1−γ)(t−t0)+ζN∗

≤ Vmaxe[2λ(1− 1
α )+ζ]N∗e−[2λ(1− 1

α )γ−ζ(1−γ)](t−t0),

(3.46)

where t ∈ [t2m−1, t2m] and m = 2, 3, . . .. Assumptions 1 and 2 are used in the derivation of (3.46).
Similarly, it can be concluded from (3.44) and (3.45) that the following relation holds when
t ∈ [t2m, t2m+1], m = 2, 3, . . .,

V(t) ≤ V(t2m−1)eζ(t−t2m)e−2λ(t2m−t2m−1−τ)

≤ Vmaxe
−2λ

m+1∑
k=2

(t2k−2−t2k−3−τ)+ζ[(t−t2m)+
m∑

k=1
(t2k−1−t2k−2)]

≤ Vmaxe[2λ(1− 1
α )+ζ]N∗e−[2λ(1− 1

α )γ−ζ(1−γ)](t−t0).

(3.47)
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Then it is inferred from (3.46) and (3.47) that

V(t) ≤ Vmaxe[2λ(1− 1
α )+ζ]N∗e−[2λ(1− 1

α )γ−ζ(1−γ)](t−t0), (3.48)

where t ≥ t3. Further, it is not difficult to verify that the inequality (3.48) still holds for t ∈ [t0, t3].
Therefore,

V(t) ≤ Vmaxe[2λ(1− 1
α )+ζ]N∗e−[2λ(1− 1

α )γ−ζ(1−γ)](t−t0) f or t ≥ t0. (3.49)

That is,
∥ x(t) − x∗ ∥ ≤ sup

s∈[t0−h,t0]
{∥ x0(s) − x∗ ∥}µe−

1
2 [2λ(1− 1

α )γ−ζ(1−γ)](t−t0), (3.50)

where t ≥ t0 and µ = e
1
2 [2λ(1− 1

α )+ζ]N∗ .
This ends the proof.
Remark 6: In Theorem 1, some stability conditions pertaining to the parameters τ and γ are

established. These two parameters can be used to describe the dynamic characteristics of time-varying
delays continuously varying between short and large delays. By observing the condition (3.36) and
other stability conditions in Theorem 1, the following peroration can be drawn: when the measure of
the union of time periods in which the time-varying delays appear as short delays is large enough, the
parameters τ and γ will have an important impact on the stability of NN (2.1) and the upper bound
that the time-varying delays can achieve in the whole time interval [t0,∞) will no longer be the
dominant factor influencing stability. This is different from most existing research results on the
stability of delayed NNs, like the references [20–29]. In these references, the derivatives and upper
bounds of time-varying delays are usually regarded as key factors affecting stability, and limited
attention has been given to the impact of time-varying delays’ dynamic characteristics on the neural
network stability.

Remark 7: By observing the inequality (3.37), the value of the exponential convergence rate υ
hinges on the parameters λ and γ, and the value of υ is greater when these two parameters are larger.
Additionally, by observing conditions (3.3) and (3.4), it can be found that when the value of parameter
τ is smaller, the value of the parameter θ can be smaller to make the condition (3.4) true, thereby
making the value of the parameter λ larger. Hence, it can be deduced that a smaller value of τ and
a larger value of γ will give rise to a greater value of υ. This means that the convergence speed of
the network state vector x(t) to the equilibrium point x∗ will be faster, if the critical threshold of short
delays is smaller and the ratio of the measure of time periods, in which the time-varying delays appear
as short delays, to the measure of the whole time interval is larger. In addition, since the conditions
established in Theorem 1 can guarantee the equilibrium point x∗ is globally exponentially stable, then
it is concluded that the equilibrium point x∗ is unique for system (2.1) when the conditions hold.

Two corollaries related to Theorem 1 are presented as follows.
Corollary 1: Suppose that Assumption 3 holds. If there are three positive constants ε, σ and θ such

that the conditions (3.3) and (3.4) hold, and there exits a time instant t̂ such that δi(t̂) = 0, τi j(t̂) = 0,
δi(t) ≤ τ and τi j(t) ≤ τ for i, j =, 1, 2, . . . , n and t ≥ t̂, then the equilibrium point x∗ of NN (2.1) is
globally exponentially stable and the state vector x(t) satisfies the following relation for t ≥ t̂,

∥ x(t) − x∗ ∥ ≤ sup
s∈[t0−h,t0]

{∥ x0(s) − x∗ ∥}e
1
2 ζ(t̂−t0)e−λ(t−t̂).
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Proof: According to Proposition 1,

V̇(t) ≤ −2λV(t) f or t ≥ t̂.

Thus,
V(t) ≤ V(t̂)e−2λ(t−t̂) (3.51)

for t ≥ t̂.
Similar to the derivation of the inequality (3.45), an inequality is obtained as below,

V(t) ≤ Vmaxeζ(t̂−t0), (3.52)

where t ∈ [t0, t̂].
From (3.51) and (3.52),

V(t) ≤ Vmaxeζ(t̂−t0)e−2λ(t−t̂),

where t ≥ t̂. That is, ∥ x(t) − x∗ ∥ ≤ sup
s∈[t0−h,t0]

{∥ x0(s) − x∗ ∥}e
1
2 ζ(t̂−t0)e−λ(t−t̂) for t ≥ t̂.

This concludes the proof.
Corollary 2: Suppose that Assumptions 1–3 are true. In addition, suppose that τi j(t) = 0 for t ≥ t0

and i, j = 1, 2, . . . , n, that is, there is no transmission delay in the network (2.1). If there exist three
positive constants ε, σ and θ such that

bi − εbi −
σ

2

n∑
j=1

| ωi j | ξ j −
1

2σ

n∑
j=1

| ω ji | ξi −
b̄θ
2ε
−

4θ(1 + θ)
ε

n∑
i=1

bi > 0, (3.53)

τ =

√
θ

2(1 + θ)
1

(1 +
√
θ)

n∑
i=1

bi +
n∑

i=1

n∑
j=1
| ωi j | ξ j

, (3.54)

and

γ >
ζ̂

2λ̂(1 − 1
α
) + ζ̂

, (3.55)

where i = 1, 2, . . . , n, λ̂ = min
i=1,...,n

{bi − εbi −
σ
2

n∑
j=1
| ωi j | ξ j −

1
2σ

n∑
j=1
| ω ji | ξi −

b̄θ
2ε −

4θ(1+θ)
ε

n∑
i=1

bi} and

ζ̂ = max
i=1,...,n

{εbi + σ
n∑

j=1
| ωi j | ξ j +

1
σ

n∑
j=1
| ω ji | ξi +

n∑
i=1

bi
ε
}, then the equilibrium point x∗ of NN (2.1) is

globally exponentially stable and the state vector x(t) satisfies the following relation for t ≥ t0,

∥ x(t) − x∗ ∥ ≤ sup
s∈[t0−h,t0]

{∥ x0(s) − x∗ ∥}µ̂e−υ̂(t−t0), (3.56)

where µ̂ = e
1
2 [2λ̂(1− 1

α )+ζ̂]N∗ and υ̂ = 1
2 [2λ̂(1 − 1

α
)γ − ζ̂(1 − γ)].

In Theorem 1, Corollaries 1 and 2, an assumption is requisite that the time-varying delays δi(t) and
τi j(t) have to be equal to zero at some discrete time instants. This constraint will no longer be needed
in the theorem to be presented next.
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Theorem 2: Suppose that xi(s) = ρi where i = 1, 2 · · · , n, s ∈ [t0−h, t0] and ρi is any given constant,
that is, the initial values of system (2.1) are constant initial values. Suppose that Assumption 3 is true.
If there exist three positive constants ε, σ and θ such that conditions (3.3) and (3.4) hold, and

δi(t) ≤ τ, τi j(t) ≤ τ (3.57)

for t ≥ t0 and i, j = 1, 2, . . . , n, then the equilibrium point x∗ of NN (2.1) is globally exponentially
stable and the state vector x(t) fulfills the following relation for t ≥ t0,

∥ x(t) − x∗ ∥ ≤∥ ρ − x∗ ∥ e−λ(t−t0), (3.58)

where ρ = (ρ1, ρ2, . . . , ρn)T .
Proof: According to the assumptions in this theorem, the initial values of the system (3.1) become

constant initial values which are given as below,

ei(s) = ρi − x∗i f or s ∈ [t0 − h, t0] and i = 1, . . . , n.

Let tm = t0 + mτ, m = 1, 2, . . .. Similar to the derivation of (3.7), the following relation is obtained,

V̇(t) ≤ −a ∥ e(t) ∥2 +
b̄
2ε
∥ e(t) − e(tm) ∥2 +

1
2ε

n∑
i=1

bi ∥ e(tm) − e(t − δi(t)) ∥2

+
1

2σ

n∑
i=1

n∑
j=1

| ωi j | ξ j ∥ e(t − τi j(t)) ∥2,
(3.59)

where t ∈ [tm, tm+1], m = 0, 1, 2, . . ., a = min
i=1,...,n

{bi − εbi −
σ
2

n∑
j=1
| ωi j | ξ j} and b̄ = max

i=1,...,n
{bi}.

Next, we can get a conclusion that

∥ e(t) − e(t0) ∥ ≤
√
η ∥ e(t0) ∥ f or t ∈ [t0, t1], (3.60)

where η = θ
2(1+θ) . This conclusion is demonstrated as follows by contradiction. Suppose that there is a

time instant t̃ ∈ [t0, t1] such that ∥ e(t̃) − e(t0) ∥ >
√
η ∥ e(t0) ∥ and

∥ e(t) − e(t0) ∥ ≤
√
η ∥ e(t0) ∥ f or t ∈ [t0, t̃). (3.61)

Similar to the derivation of (3.11), the following relation is derived from (3.61),

∥ e(t) − e(t0) ∥2≤ θ ∥ e(t) ∥2 f or t ∈ [t0, t̃). (3.62)

If t − δi(t) ≥ t0 and t ∈ [t0, t̃), then, similar to the derivation of (3.13), the subsequent inequality can
be gained,

∥ e(t − δi(t)) − e(t0) ∥2≤ θ ∥ e(t) ∥2 .

If t − δi(t) < t0 and t ∈ [t0, t̃), then ∥ e(t − δi(t)) − e(t0) ∥2= 0 ≤ θ ∥ e(t) ∥2. Hence,

∥ e(t − δi(t)) − e(t0) ∥2≤ θ ∥ e(t) ∥2 (3.63)
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for i = 1, 2, . . . , n and t ∈ [t0, t̃).
If t − τi j(t) ≥ t0 and t ∈ [t0, t̃), then, similar to the derivation of (3.14), the subsequent inequality can

be obtained,
∥ e(t − τi j(t)) ∥2≤ (4 + 6θ) ∥ e(t) ∥2 .

If t − τi j(t) < t0 and t ∈ [t0, t̃), then it follows from (3.62) that ∥ e(t − τi j(t)) ∥2=∥ e(t0) ∥2≤ 2(1 + θ) ∥
e(t) ∥2≤ (4 + 6θ) ∥ e(t) ∥2. Thus,

∥ e(t − τi j(t)) ∥2≤ (4 + 6θ) ∥ e(t) ∥2 (3.64)

for i, j = 1, 2, . . . , n and t ∈ [t0, t̃).
Then, resembling the derivation of inequalities (3.15)−(3.19), the following relation can be deduced,

∥ e(t̃) − e(t0) ∥ ≤
√
η ∥ e(t0) ∥,

which contradicts the assumption that ∥ e(t̃) − e(t0) ∥ >
√
η ∥ e(t0) ∥. Therefore, the inequality (3.60)

holds for t ∈ [t0, t1]. Then, similar to the derivation of (3.20) and (3.21), the following two inequalities
can be concluded,

V̇(t) ≤ −2λV(t)

and
∥ e(t) − e(t0) ∥2≤ θ ∥ e(t) ∥2,

where t ∈ [t0, t1].
The subsequent proof is the same as the proof of Proposition 1. By using the mathematical induction

method, the following inequality can be proved to be true,

V̇(t) ≤ −2λV(t)

for t ≥ t0. Consequently, ∥ x(t) − x∗ ∥≤∥ ρ − x∗ ∥ e−λ(t−t0) for t ≥ t0.
This concludes the proof.
Remark 8: In fact, the parameter τ given in conditions (3.4) and (3.57) can be regarded as an

admissible upper bound on the time-varying delays, below which the leakage delays and transmission
delays will not destroy the neural network stability. Furthermore, by observing the relationship between
the parameters in condition (3.3), it can be found that the presence of negative feedback terms in NN
(2.1) is one of the main reasons why the network is stable. This implies that the occurrence of leakage
delays will not completely undermine the capacity of negative feedback terms to stabilize the network
when these delays are smaller than the admissible upper bound τ. At present, many studies on NNs
have considered and researched leakage delays, like [13–15, 23, 29]. However, in these studies, the
existence of leakage delays is always regarded as a disruptive factor that can definitely render the
negative feedback terms ineffective. Obviously, such a setting adopted for leakage delays may make
the theoretical results obtained in these references somewhat conservative. Meanwhile, it should be
pointed out that there are few studies on the admissible upper bounds of leakage delays related to the
stabilization ability of the negative feedback terms.

Next, a corollary related to Theorem 2 is presented.
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Corollary 3: Suppose that Assumption 3 holds, and xi(s) = ρi where i = 1, 2 · · · , n, s ∈ [t0 − h, t0]
and ρi is any given constant. Furthermore, suppose that τi j(t) = 0 for t ≥ t0 and i, j = 1, 2, . . . , n. If
there are three positive constants ε, σ and θ such that the conditions (3.53) and (3.54) hold, and

δi(t) ≤ τ (3.65)

for t ≥ t0 and i = 1, 2, . . . , n, then the equilibrium point x∗ of NN (2.1) is globally exponentially stable
and the state vector x(t) satisfies the following relation for t ≥ t0,

∥ x(t) − x∗ ∥ ≤∥ ρ − x∗ ∥ e−λ̂(t−t0). (3.66)

Remark 9: The parameter τ =
√

θ
2(1+θ)

1

(1+
√
θ)

n∑
i=1

bi+
n∑

i=1

n∑
j=1
|ωi j |ξ j

given in conditions (3.54) and (3.65)

can be regarded as an admissible upper bound of the time-varying leakage delays when there is no
transmission delay in the network (2.1).

4. Numerical simulations

Example 1: A neural network consisting of three neurons is considered as below,
ẋ1(t) = −2x1(t − δ1(t)) + 0.02tanh(x1(t − τ11(t))) − 0.012tanh(x2(t − τ12(t))),
ẋ2(t) = −2x2(t − δ2(t)) + 0.018tanh(x1(t − τ21(t))) + 0.0171tanh(x2(t − τ22(t)))

+ 0.0115tanh(x3(t − τ23(t))),
ẋ3(t) = −2x3(t − δ3(t)) − 0.0475tanh(x1(t − τ31(t))) + 0.011tanh(x3(t − τ33(t))),

(4.1)

where t0 = 0. The time-varying delays in this system are supposed to be that δi(t) = τi j(t) = ψ(t) and

ψ(t) =


0.01[cos(t + π) + 1], t ∈ [100(k − 1)π, 100(k − 1)π + 96π),
cos(t + π) + 1, t ∈ [100(k − 1)π + 96π, 100(k − 1)π + 97π),
cos(t) + 3, t ∈ [100(k − 1)π + 97π, 100(k − 1)π + 99π),
cos(t + π) + 1, t ∈ [100(k − 1)π + 99π, 100kπ),

(4.2)

where i, j = 1, 2, 3, k = 1, 2, . . ., and π stands for PI. Obviously, the function ψ(t) is continuous
and ψ̇(t) ≤ 1 for t ≥ 0. Furthermore, it can be found that there exists a zero equilibrium point for
this system.

According to the parameter settings in the system (4.1), it can be inferred that there exist three
positive constants ε = 0.5, σ = 4 and θ = 0.01 such that the conditions (3.3), (3.4) and (3.36) in
Theorem 1 hold. Then it is concluded from Theorem 1 that the zero equilibrium point of system (4.1)
is globally exponentially stable. Next, eight sets of initial values for this system are randomly picked
as: x(1)(s) = (3,−4, 9), x(2)(s) = (0.3,−1, 1), x(3)(s) = (5, 8,−0.1), x(4)(s) = (−6,−11,−0.9), x(5)(s) =
(−7.5, 13,−6), x(6)(s) = (8.8,−14.5,−13.6), x(7)(s) = (1.9, 2.6, 0) and x(8)(s) = (3.8, 6.3,−2.9), where
s ∈ [−4, 0]. Figure 1 shows the evolution of the norm of the state vectors of system (4.1) satisfying
these different initial conditions. It is observed in this figure that the state vectors satisfying these
different initial conditions converge to the origin as the time variable goes to infinity. This verifies the
correctness of Theorem 1.
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To further elucidate the novelty of the theoretical findings presented in this paper, consider another
neural network as follows,

ẋ1(t) = −2x1(t − δ1(t)) + 0.02tanh(x1(t − τ11(t))) − 0.012tanh(x2(t − τ12(t))),
ẋ2(t) = −2x2(t − δ2(t)) + 0.018tanh(x1(t − τ21(t))) + 0.0171tanh(x2(t − τ22(t)))

+ 0.0115tanh(x3(t − τ23(t))),
ẋ3(t) = −2x3(t − δ3(t)) − 0.0475tanh(x1(t − τ31(t))) + 0.011tanh(x3(t − τ33(t))),

(4.3)

where δi(t) = τi j(t) = ϖ(t),

ϖ(t) =


cos(t + π) + 1, t ∈ [20(k − 1)π, 20(k − 1)π + π),
cos(t) + 3, t ∈ [20(k − 1)π + π, 20(k − 1)π + 19π),
cos(t + π) + 1, t ∈ [20(k − 1)π + 19π, 20kπ),

(4.4)

i, j = 1, 2, 3 and k = 1, 2, . . .. Next, eight sets of initial values for this system are chosen that are the
same as the initial conditions of the system (4.1) above. Figure 2 shows the evolution of the norm
of the state vectors of system (4.3) fulfilling these initial conditions. It can be observed in Figure 2
that the state vectors of system (4.3) do not converge to the zero equilibrium point over time. Hence,
from this numerical experiment result, it can be inferred that the zero equilibrium point of system (4.3)
is unstable.

By observing the functions ϖ(t) and ψ(t), it can be found that the derivatives of both functions are
less than or equal to 1, and these two functions have the same supremum 4 and infimum 0. Furthermore,
the parameter settings in system (4.1) and system (4.3) are exactly the same. But, according to the
experimental results in Figures 1 and 2, it is clear that these two systems have completely different
stability properties. The reason why this happens is that the time-varying delays in these systems have
different dynamic characteristics. It can be found from (4.2) and (4.4) that, compared with the function
ϖ(t), the fraction of time periods in which the time-varying delay ψ(t) appears as a short delay over the
whole time interval [0,∞) is larger. This indicates that, in addition to system parameters, derivatives
of time-varying delays and their upper bounds, the time-varying delays’ dynamic characteristics also
have a significant effect on the stability of NNs. Thus, it is of significance to study the relationship
between the time-varying delays’ dynamic characteristics and the stability of NNs in this paper.

Furthermore, in most existing research papers on the stability of delayed NNs, only the stability
criteria related to the derivatives and upper bounds of time-varying delays are established. It is not
easy to employ these existing stability criteria to effectively analyze the stability of some systems
such as the systems (4.1) and (4.3), which differ only in the dynamic characteristics of time-varying
delays. In contrast, the stability of system (4.1) can be validly analyzed by making use of the stability
theorems presented in this paper. Thus, the comparison can show that the theoretical results exhibited
in this paper are somewhat innovative.

Remark 10: Compared with the classic Lyapunov-Krasovskii functional method, the stability
analysis method proposed in this paper can effectively establish the correlation between the stability
of delayed neural networks and the time-varying delays’ dynamic characteristics. However, this does
not mean that the stability analysis method in this paper is superior to the Lyapunov-Krasovskii
functional method. In fact, the stability criteria established in this paper and those based on the
Lyapunov-Krasovskii functional method are suitable for different types of dynamical systems in terms
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of stability analysis. In practical applications, one should choose to use these two types of methods
according to the characteristics of the systems. The stability conditions based on the
Lyapunov-Krasovskii functional method are usually related to the upper bound of time-varying
delays. If the upper bound of time-varying delays of a delayed system is particularly large, then it
may not be suitable to use the Lyapunov-Krasovskii functional method to analyze the stability of the
system. Besides, if the parameters τ and γ that characterize the time-varying delays’ dynamic
characteristics of this system satisfy the conditions in the stability theorems of this paper, then the
stability of the system can be analyzed using the stability criteria of this paper. Although the stability
criteria proposed in this paper are independent of the upper bound of time-varying delays, they have
strong constraints on the parameters τ and γ. If for a delayed system, the parameters τ and γ fail to
satisfy the conditions in the theorems of this paper, then the analysis method presented in this paper
will no longer be applicable. But if the upper bound of time-varying delays is not particularly large,
then it is more suitable to use the Lyapunov-Krasovskii functional method to analyze the stability.
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Figure 1. Evolution of the state vectors of system (4.1).
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Figure 2. Evolution of the state vectors of system (4.3).
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5. Conclusions

In this article, the stability of Hopfield NNs with time-varying transmission delays and leakage
delays is investigated, and a special focus is placed on the impact of the time-varying delays’ dynamic
characteristics on the neural network stability. To characterize the dynamic features of time-varying
delays continuously varying between short and large delays, two parameters are introduced: a critical
threshold used to distinguish whether the time-varying delays are short or large delays, and the ratio of
the measure of the time periods, in which the time-varying delays appear as short delays, to the measure
of the whole time interval. Subsequently, some stability conditions for the NNs are proposed. Notably,
it is revealed that, when the measure of the time periods in which the time-varying delays appear
as short delays is large enough, these two parameters related to the time-varying delays’ dynamic
characteristics can exert a significant influence on system stability, and the upper bound of time-varying
delays across the whole time interval ceases to be the primary determinant of stability. Finally, the
relationship between leakage delays and the stabilization ability of negative feedback terms is explored,
and two admissible upper bounds are constructed, less than which leakage delays do not completely
compromise the capacity of negative feedback terms to stabilize the NNs.

In the future, the investigation on stability of delayed coupled neural networks with time-varying
topologies and a limited communication data rate will be carried out.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the Natural Science Foundation of Ningxia Province (Nos.
2024AAC03004 and 2024AAC01001).

Conflict of interest

Qingyun Wang is an editorial board member for the Electronic Research Archive and was not
involved in the editorial review or the decision to publish this article. All authors declare that there are
no conflicts of interest.

References

1. J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. U.S.A., 79 (1982), 2554–2558.
https://doi.org/10.1073/pnas.79.8.2554

2. S. K. Duan, X. F. Hu, Z. K. Dong, L. D. Wang, P. Mazumder, Memristor-based cellular
nonlinear/neural network: Design, analysis, and applications, IEEE Trans. Neural Networks
Learn. Syst., 26 (2015), 1202–1213. https://doi.org/10.1109/TNNLS.2014.2334701

Electronic Research Archive Volume 33, Issue 3, 1207–1230.

https://dx.doi.org/https://doi.org/10.1073/pnas.79.8.2554
https://dx.doi.org/https://doi.org/10.1109/TNNLS.2014.2334701


1228

3. Z. G. Zeng, J. Wang, Associative memories based on continuous-time cellular neural networks
designed using space-invariant cloning templates, Neural Networks, 22 (2009), 651–657.
https://doi.org/10.1016/j.neunet.2009.06.031

4. A. Ascoli, V. Lanza, F. Corinto, R. Tetzlaff, Synchronization conditions in
simple memristor neural networks, J. Franklin Inst., 352 (2015), 3196–3220.
https://doi.org/10.1016/j.jfranklin.2015.06.003

5. E. Aktas, O. Faydasicok, S. Arik, Robust stability of dynamical neural networks with
multiple time delays: A review and new results, Artif. Intell. Rev., 56 (2023), 1647–1684.
https://doi.org/10.1007/s10462-023-10552-x

6. X. Y. Zhang, X. D. Li, J. D. Cao, F. Miaadi, Design of memory controllers for finite-time
stabilization of delayed neural networks with uncertainty, Artif. Intell. Rev., 355 (2018), 5394–
5413. https://doi.org/10.1016/j.jfranklin.2018.05.037

7. Z. Ma, G. Sun, D. Liu, X. Xing, Dissipativity analysis for discrete-time fuzzy neural
networks with leakage and time-varying delays, Neurocomputing, 175 (2016), 579–584.
https://doi.org/10.1016/j.neucom.2015.10.098

8. W. T. Hua, Y. T. Wang, C. Y. Liu, New method for global exponential synchronization of multi-
link memristive neural networks with three kinds of time-varying delays, Appl. Math. Comput.,
471 (2024), 128593. https://doi.org/10.1016/j.amc.2024.128593

9. Q. K. Song, H. Q. Shu, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Lagrange stability analysis for complex-
valued neural networks with leakage delay and mixed time-varying delays, Neurocomputing, 244
(2017), 33–41. https://doi.org/10.1016/j.neucom.2017.03.015

10. K. Gopalsamy, Leakage delays in BAM, J. Math. Anal. Appl., 325 (2007), 1117–1132.
https://doi.org/10.1016/j.jmaa.2006.02.039

11. X. M. Zhang, Q. L. Han, State estimation for static neural networks with time-varying delays
based on an improved reciprocally convex inequality, IEEE Trans. Neural Networks Learn. Syst.,
29 (2018), 1376–1381. https://doi.org/10.1109/TNNLS.2017.2661862

12. M. Sader, A. Abdurahman, H. J. Jiang, General decay lag synchronization for competitive
neural networks with constant delays, Neural Process. Lett., 50 (2019), 445–457.
https://doi.org/10.1007/s11063-019-09984-w

13. Y. Wang, C. D. Zheng, E. Feng, Stability analysis of mixed recurrent neural networks with time
delay in the leakage term under impulsive perturbations, Neurocomputing, 119 (2013), 454–461.
https://doi.org/10.1016/j.neucom.2013.03.012

14. Y. Chen, Z. Fu, Y. Liu, F. E. Alsaadi, Further results on passivity analysis of
delayed neural networks with leakage delay, Neurocomputing, 224 (2017), 135–141.
https://doi.org/10.1016/j.neucom.2016.10.045

15. X. Y. Zhang, D. G. Wang, B. Yang, K. R. Ota, M. X. Dong, H. X. Li, Exponentially
synchronous results for delayed neural networks with leakage delay via switched delay idea
and AED-ADT method, IEEE Trans. Neural Networks Learn. Syst., 35 (2024), 3713–3724.
https://doi.org/10.1109/TNNLS.2022.3196402

Electronic Research Archive Volume 33, Issue 3, 1207–1230.

https://dx.doi.org/https://doi.org/10.1016/j.neunet.2009.06.031
https://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2015.06.003
https://dx.doi.org/https://doi.org/10.1007/s10462-023-10552-x
https://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2018.05.037
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.10.098
https://dx.doi.org/https://doi.org/10.1016/j.amc.2024.128593
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.03.015
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2006.02.039
https://dx.doi.org/https://doi.org/10.1109/TNNLS.2017.2661862
https://dx.doi.org/https://doi.org/10.1007/s11063-019-09984-w
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2013.03.012
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.10.045
https://dx.doi.org/https://doi.org/10.1109/TNNLS.2022.3196402


1229

16. C. R. Wang, F. Long, K. Y. Xie, H. T. Wang, C. K. Zhang, Y. He, A degree-
dependent polynomial-based reciprocally convex matrix inequality and its application to
stability analysis of delayed neural networks, IEEE Tran. Sybernetics, 54 (2024), 4164–4176.
https://doi.org/10.1109/TCYB.2024.3365709

17. H. G. Zhang, D. W. Gong, B. Chen, Z. W. Liu, Synchronization for coupled neural networks with
interval delay: A novel augmented Lyapunov-Krasovskii functional method, IEEE Trans. Neural
Networks Learn. Syst., 24 (2013), 58–70. https://doi.org/10.1109/TNNLS.2012.2225444

18. B. Zhang, S. Xu, Y. Zou, Improved delay-dependent exponential stability criteria for discrete-
time recurrent neural networks with time-varying delays, Neurocomputing, 72 (2008), 321–330.
https://doi.org/10.1016/j.neucom.2008.01.006

19. P. Park, J. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying
delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014

20. Q. X. Zhu, J. D. Cao, Exponential stability of stochastic neural networks with both markovian
jump parameters and mixed time delays, IEEE Tran. Syst. Man Cybern. Part B, 41 (2011), 341–
353. https://doi.org/10.1109/TSMCB.2010.2053354

21. H. B. Zeng, J. H. Park, C. F. Zhang, W. Wang, Stability and dissipativity analysis of static
neural networks with interval time-varying delay, J. Franklin Inst., 352 (2015), 1284–1295.
https://doi.org/10.1016/j.jfranklin.2014.12.023

22. H. C. Lin, H. B. Zeng, X. M. Zhang, W. Wang, Stability analysis for delayed neural networks via a
generalized reciprocally convex inequality, IEEE Trans. Neural Networks Learn. Syst., 34 (2023),
7491–7499. https://doi.org/10.1109/TNNLS.2022.3144032

23. X. Wei, Z. Zhang, M. Liu, Z. Wang, J. Chen, Anti-synchronization for complex-valued neural
networks with leakage delay and time-varying delays, Neurocomputing, 412 (2020), 312–319.
https://doi.org/10.1016/j.neucom.2020.06.080

24. H. B. Zeng, Z. J. Zhu, W. Wang, X. M. Zhang, Relaxed stability criteria of delayed neural
networks using delay-parameters-dependent slack matrices, Neural Networks, 180 (2024),
106676. https://doi.org/10.1016/j.neunet.2024.106676

25. X. M. Zhang, Q. L. Han, Z. G. Zeng, Hierarchical type stability criteria for delayed neural
networks via canonical bessel-legendre inequalities, IEEE Trans. Cybern., 48 (2018), 1660–1671.
https://doi.org/10.1109/TCYB.2017.2776283

26. Q. X. Zhu, J. D. Cao, Robust exponential stability of markovian jump impulsive stochastic Cohen-
Grossberg neural networks with mixed time delays, IEEE Trans. Neural Networks, 21 (2010),
1314–1325. https://doi.org/10.1109/TNN.2010.2054108

27. X. Zhang, S. L. Yuan, Y. T. Wang, X. A. Yang, A novel direct method to H∞ synchronization of
switching inertial neural networks with mixed time-varying delays, Neurocomputing, 598 (2024),
128039. https://doi.org/10.1016/j.neucom.2024.128039

28. Y. Chen, Y. Q. Li, G. Chen, New results on stability analysis for a class of
generalized delayed neural networks, Appl. Math. Comput., 469 (2024), 128529.
https://doi.org/10.1016/j.amc.2024.128529

Electronic Research Archive Volume 33, Issue 3, 1207–1230.

https://dx.doi.org/https://doi.org/10.1109/TCYB.2024.3365709
https://dx.doi.org/https://doi.org/10.1109/TNNLS.2012.2225444
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2008.01.006
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2010.10.014
https://dx.doi.org/https://doi.org/10.1109/TSMCB.2010.2053354
https://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2014.12.023
https://dx.doi.org/https://doi.org/10.1109/TNNLS.2022.3144032
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.06.080
https://dx.doi.org/https://doi.org/10.1016/j.neunet.2024.106676
https://dx.doi.org/https://doi.org/10.1109/TCYB.2017.2776283
https://dx.doi.org/https://doi.org/10.1109/TNN.2010.2054108
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2024.128039
https://dx.doi.org/https://doi.org/10.1016/j.amc.2024.128529


1230

29. X. L. Qin, C. Wang, L. X. Li, H. P. Peng, Y. X. Yang, L. Ye, Finite-time modified projective
synchronization of memristor-based neural network with multi-links and leakage delay, Chaos
Solitons Fractals, 116 (2018), 302–315. https://doi.org/10.1016/j.chaos.2018.09.040

30. J. W. Cao, S. M. Zhong, Y. Y. Hu, Global stability analysis for a class of neural networks
with varying delays and control input, Appl. Math. Comput., 189 (2007), 1480–1490.
https://doi.org/10.1016/j.amc.2006.12.048

31. T. Ensari, S. Arik, Global stability analysis of neural networks with multiple time varying delays,
IEEE Trans. Autom. Control, 50 (2005), 1781–1785. https://doi.org/10.1109/TAC.2005.858634

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 3, 1207–1230.

https://dx.doi.org/https://doi.org/10.1016/j.chaos.2018.09.040
https://dx.doi.org/https://doi.org/10.1016/j.amc.2006.12.048
https://dx.doi.org/https://doi.org/10.1109/TAC.2005.858634
https://creativecommons.org/licenses/by/4.0

	Introduction
	Problem formulation and preliminaries
	Main results
	Numerical simulations
	Conclusions

