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Abstract: In this paper, a multiple delays stage-structure predator-prey model with refuge and coop-
eration is established. First, the local asymptotic stability of the trivial equilibrium and the predator
extinction equilibrium are discussed by analyzing the characteristic equations of the system. Second,
taking time delays as the bifurcation parameters, the existence of Hopf bifurcation at the positive equi-
librium is given. Next, the direction of Hopf bifurcation and the stability of the periodic solutions
are analyzed based on the center manifold theorem and normal form theory. Moreover, the optimal
harvesting policy of the system is showed by using Pontryagin’s maximum principle. Finally, we give
the global sensitivity analysis of some parameters by calculating the partial rank correlation coeffi-
cients, and some numerical simulations are performed to verify the correctness and feasibility of the
theoretical results by using the MATLAB software.
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1. Introduction

In natural ecology, each species exhibits unique habits and complex biological relationships with
other species. These interactions form a biological system, a key focus area in ecology. Among these,
predator-prey dynamics are considered foundational to understanding biological systems. The basic
predator-prey model was first proposed by Lotka and Volterra [1], laying the groundwork for subse-
quent studies. Numerous scholars have since expanded on this model [2-5], exploring interactions
such as intra-species competition [6], cooperation [7], and stage structure [8—13]. Among them, Hu
et al. [8], Meng and Qin [10], and Wu et al. [13] considered dynamical behaviors such as stability,
boundedness, and bifurcation of predator-prey systems with stage structure in the absence of spatial
diffusion. However, Xu and Liu [9], Xu et al. [11], and Mi et al. [12] investigated spatial dynamical
behaviors such as global existence of predator-prey models with stage structure with spatial diffusion.
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In the classical predator-prey model, it is assumed that all individuals of a species possess identi-
cal predation abilities. However, this assumption often fails to reflect real-world dynamics, as species
exhibit variation due to historical and ecological differences. For instance, juvenile individuals often
depend on their parents for survival as they lack independent predation skills. To address such realities,
many researchers divide species into immature and mature stages when studying the dynamical behav-
ior of stage-structured predator-prey models [14—18]. In 1990, Aiello and Freedman [14] introduced a
delayed single-population model with stage structure, assuming that the average age of maturity was
represented by a constant time delay. The model is expressed as follows:

D~ st -y, - e aatt ~ 1),
dx l(t) "
;t = ae"”xz(t - T) —ﬁx%(t),

where x;(#) and x,(¢) are the densities of immature and mature population at time #, respectively; a and
v are the birth rate and the death rate of the immature population, respectively; § is the intra-species
competition rate of the mature population; 7 is the maturity time delay, and ae™"x,(¢ —7) represents the
quantity which the immature population born at time ¢ — 7 can survive at time 7. Xu [15] and Song et
al. [16] mainly studied the stability and Hopf bifurcation of a predator-prey model with stage structure
and time delay. Li et al. [17] considered a stage-structured predator-prey model with Crowley-Martin
functional response and analyzed the impaction of predator maturity delay and predator interference
on the dynamics of the system. Certainly, Zhu et al. [18] developed a reaction-diffusion predator-
prey model incorporating the Allee effect based on network and non-network environments, which
represents a relatively novel research approach in the field. Based on model (1.1), many scholars have
studied predator-prey models with stage structure by considering multiple populations [19-21].

Additionally, certain biological behaviors of predator and prey populations cannot be immediately
captured in ecological models due to the presence of time delays. Compared with ordinary differential
equations, delay differential equations can better reflect the complex dynamical behavior of the sys-
tem. Due to the fact that the time delay makes the model more realistic and reliable, then the delayed
predator-prey systems with stage structure have been studied [22-26]. For instance, Xu and Ma [22] in-
vestigated a predator-prey system incorporating stage structure for the predator and a time delay. Their
study examined the existence of Hopf bifurcation and the global stability of the positive equilibrium.
Similarly, Maiti and Dubey [27] introduced a delayed predator-prey system with a Crowley-Martin
functional response and stage structure for the prey, which can be described as follows:

d’gf’) = s5(t) - i (t) - dxi (1),
o) L By

@ - 0= aex® - din) - G e o) (12)
dy(r) _ Bt — 1)yt — 1) B 2

& Arant-)l+hi—n) @O,

where y(7) is the density of the predator population at time #; r is the conversion rate from immature
prey to mature prey; d,d;, and d, are the death rate of the immature prey, mature prey, and predator,
respectively; @ and y are the intra-specific competition rate of mature prey and predator, respectively;
B and (B, are the conversion rate from mature prey to predator and the intake rate of the predator,
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respectively. The term (H%;(y”hy) is named the Crowley-Martin type functional response, which takes

into account the interference between predators and preys. 7 is the time delay due to the gestation of
the predator. The biological significance of other parameters remain consistent with system (1.1).

In biology, refuges provide shelter for prey that are vulnerable to predation or environmental pres-
sures, reducing the risk of prey population extinction. For example, some small fish can avoid predation
by hiding within coral reefs. Additionally, refuges can decrease direct interactions between preda-
tors and prey, potentially delaying or mitigating severe fluctuations in predator-prey systems, thereby
maintaining the dynamic balance of biological systems. Thus, refuges play a important role in pro-
moting the coexistence of predator and prey populations. Recently, many scholars have studied some
predator-prey models including prey refuges [28—32]. For example, Fu and Wei [28] studied the effect
of prey refuge on the stability of a predator-prey model with stage structure, they analyzed the global
asymptotic stability of the positive equilibrium according to the comparison principle and the iterative
principle. Song et al. [32] proposed a discrete one-predator two-prey system with Michaelis-Menten-
type prey harvesting and prey refuge, and their findings demonstrated that both harvesting and refuge
contribute to the stabilization of the system, with the stabilizing effect of harvesting outweighing that
of refuge.

Actually, cooperation among populations plays a crucial role in population growth dynamics [7,33,
34]. On one hand, it not only enhances the overall survival ability of the population, but also enables
more efficient resource utilization. On the other hand, cooperation helps populations better adapt
to environmental changes and natural disasters, while interspecies cooperation (such as mutualistic
symbiosis) also has a key impact on the balance of ecosystems. Kundu and Maitra [33] analyzed the
impact of prey cooperation on a delayed predator-prey system, concluding that cooperative interactions
among prey positively influence the system and significantly enhance its stability. Similarly, Wu and
Zhao [34] investigated a diffusion predator-prey model with predator cooperation, demonstrating that
cooperation benefits the predator population. In 2023, Meng and Feng [7] proposed an intraguild
predator-prey model with prey refuge and hunting cooperation, and they showed that prey refuge can
change the stability of model and even have a stabilizing effect on this model. In addition, they found
that hunting cooperation destabilizes the model in the absence of diffusion, but stabilizes it when
diffusion is present.

In nature, humans exploit certain organisms to gain economic benefits, with the methods of cap-
ture directly influencing the outcomes. Recently, many scholars have studied different types of har-
vesting [35-39]. For instance, Meng and Li [37] analyzed a delayed prey-predator-scavenger system
incorporating the fear effect and linear harvesting. They derived the optimal harvesting strategy for the
delayed system using Pontryagin’s maximum principle with delay. In 2023, Feng et al. [38] studied
a single species model with seasonal Michaelis-Menten type harvesting. In particular, under the crit-
ical conditions on special harvest parameters, it was found that the T-periodic solution still exists as
long as an arbitrary positive close season is formulated. Wu et al. [39] investigated an age-structured
predator-prey system with Beddington-DeAngelis functional response and constant harvesting, and
they obtained that the stability of system changes from a stable equilibrium to a stable limit cycle to an
unstable limit cycle as the values of constant harvesting rate increase.

Considering the behavioral differences among species, we classify the prey population into imma-
ture and mature groups. However, studies that integrate time delay, cooperation, and harvesting within
predator-prey models remain relatively scarce. This gap motivates our research. Thus, we consider the
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following facts and assumptions that are consistent with natural phenomena:

e To make the model more realistic, we assume that buffalos represent the prey population, and
lions represent the predator population, forming a subsystem within the forest. Specifically, there
is a cooperative relationship between immature and mature buffalos, while lions exclusively hunt
the mature buffalos.

e Assume that the number of this immature prey populations is proportional to the number of ex-
isting immature prey populations; the number of mature prey populations is proportional to the
number of existing mature prey populations. Similarly, the number of predator populations is
directly proportional to the number of existing predator populations.

e Assume that immature and mature prey cooperate, providing mutual benefits. However, the ben-
efit provided by mature prey to immature prey is significantly greater than the benefit provided by
immature prey to mature prey.

e Assume that human harvesting of species for maximum economic benefit does not disrupt the
balance of the ecosystem.

e Assume that the immature prey population transitions into the mature prey population at a con-
stant rate, following a fixed time delay, denoted as 7;.

Motivated by the literature [27,33,37], we propose a stage structure predator-prey model with two
time delays, prey refuge, cooperation, and linear harvesting as follows:

d
xc;t(t) = axy() - bxi(t = 1) — rixy (1) + o1xy (Dxa(2),
d 1-
xét(t) = bxi(t = 1) = a%a(t) = d(r) + ooy (Dx(0) — qules(r) - f (+ - (f?ix;()tlyz ((?) (13)
b Bl -mumi-Th-)
@ T Ttk —mmi—ry O e,
with the initial conditions
x1(0) = ¢1(0), x2(0) = $2(0), y(0) = ¢3(0), 0 € [-7,0), (1.4)

7 = max{7, 72}, ¢1(0) >0, ¢,(0) > 0, ¢3(0) >0,

where x;(¢), x,(#), and y(¢) are the densities of immature prey, mature prey, and predator populations at
time ¢, respectively; a and b are the birth rate of immature prey and the conversion rate of immature prey
into mature prey; ry, 2, and r3 are the natural death rates of immature prey, mature prey, and predator,
respectively; d is the intraspecific competition rate of mature prey; o; and o, are the cooperation
coeflicients of immature prey and mature prey (o, > 0,), respectively; 8 and ¢ are the maximum
capture rate and conversion rate of the predator, respectively; (1 — m)x,(m € [0, 1)) is the number of
prey that can be caught by predator; k is the half-saturation constant; 7, is the maturity time delay and
bx;(t—1,) represents the quantity which the immature prey born at time #—7, can survive at time #; 7, is
the time delay since the gestation of the predator; 7 is the harvesting effort, and ¢, and ¢, are the catch
ability coeflicient of the mature prey and predator. The biological interpretations of other parameters
are same as in system (1.2), and all parameters are positive constants.
The highlights of this paper are as follows:

e A stage-structure predator-prey model is proposed, where the prey population is divided into two
stages: immature prey and mature prey.
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e The model incorporates two important time delays: the maturation time delay 7, of the immature
prey population and the gestation time delay 7, of the predator population.

e Immature prey and mature prey cooperate to protect the immature prey from being predated. As
a result, predators exclusively hunt the mature prey.

e A linear harvesting approach is applied to both the mature prey and the predator. By using an
optimal harvesting strategy, the study determines the optimal harvesting effort.

e The analysis reveals that increases in the cooperation coefficient and the refuge coefficient have
significant impacts on the stability of the system.

The organization of this paper is as follows. In Section 2, we discuss the positiveness and bounded-
ness of system (1.3) without time delay. In addition, the existence and stability of the trivial equilibrium
and the extinction equilibrium of the predator are given. In Section 3, the stability of the positive equi-
librium and the existence of Hopf bifurcation of system with time delay are studied. In addition, the
direction and the stability of Hopf bifurcation are shown based on the center manifold theorem and
normal form theory. Based on Pontryagin’s maximum principle, the optimal harvesting policy of the
system is discussed in Section 4. To support our theoretical predictions, some numerical simulations
are given in Section 5.

2. The system (1.3) without time delay

In order to study some properties of system (1.3), we give system (1.3) without time delay as
follows:

d
0 = )= b0 = 0+ 70 D0,
d o
)Zt( 2= ) = ra) - A0 + 20 (D% - g1 - f(+ k(;ﬂ lezn()tl);((?) 2.1)
dy(@®) _ B = mx(t)y(®) )
dt 1 +k(1 —mxa) r3y(t) = q21y(0),

with the initial conditions
x1(0) 2 0, x,(0) > 0 and y(0) > 0.

2.1. Positivity and boundedness of solutions

In natural ecology, the positiveness reflects the ability of populations to survive and sustain them-
selves over a long period, while boundedness ensures that population sizes remain within the limits
imposed by available resources. These properties are crucial for the ecological viability and stability
of populations. To effectively analyze the positiveness and boundedness of system (2.1), it is essential
to carefully define the initial conditions of system (2.1), as they play a important role in determining
the long-term dynamics of system. We can rewrite system (2.1) as the following matrix form:

dX
o H(X), (2.2)
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where X = (x,(1), x2(2), y®))T € R?, and H(X) are given by

H,(X) axy(t) — bx(t) — rix1 () + o1x1(£)x2(2)
HX) = | Ha(X) | = | bxi(0) = raxa(t) = dxy(1) + 0221 (1)22(1) = qi T (1) — Fppied
HX) | | Frimaay = rav(®) = q2hy(@)

1+k(1—m)x2(1)

Now, let H : R} — R, satisfy the locally Lipschitz condition and [#;(X)] xert = 0,i = 1,2,3.
According to reference [40], the solution of (2.2) is positive, which means that all solutions of system
(2.1) under positive initial conditions are positive. That is to say, each component of X remains in the
interval [0, B) for some B > 0. If B = oo, then lim sup(x(¢) + x,(¢) + y(¢)) =

—o0

In the following lemma, we will prove that the solution of system (2.1) is bounded.
Lemma 2.1. All solutions of system (2.1) starting in R3 are confined to the region D* = {(x1 (1),

x(1),y(1)) € R3 Vi) < M* = 4dr0 q‘h)z} as t — oo for all positive initial values (x(0), x,(6),
y(@)) € R, where V(£) = x,(t) + x2(f) + cy(t).

Proof. Let x(1), x,(t), and y(¢) be the solution of system (2.1) under the initial condition. In order to
prove the boundedness of the solution of system (2.1), we construct a function V() as follows:

1
V@) = x1(1) + x(1) + —y(0). (2.3)

By differentiating (2.3) with respect to #, we get

dv  dx; N dx, N 1dy
dr dr dr c dt

1
—[r1x1 + rx; + —(r3 + qzh)y] — dx% + ax; — qihxy; + (0 + 02)x1 X,
c

o1+ 0> )
< -roV —qihix(1 - —dx5 + ,
To q1 xz( o Xl) Xy T ax;
where ry = min {r, r,, r; + g>7i}. In addition, we need to discuss the sign of the qlhxz( 1- %xl) term
in separate cases
DIf x; < 2(0 o 55 then we obtain that qlhxz(l - ‘fz ) > ‘sz by using 1 — (”q:r—;l'le > é;
2) If x; > 2(0 o)’ then we know that the above inequality holds if x; does not exceed this range in the
long-term.
Thus, the above inequality becomes
dv h h
m < —-ryV — %xg - dx2 +ax, = -rgV + x (a - % - dxz)
1 qlh
-rnV+—la-—]| .
YT 4a (“ 2 )
According to the comparison principle, we have that limsup V(r) < —— dro (a - '%h) = M* and V(1) <

—oc0

M* +(Vy— M*)e™ . Hence, there is at least a positive constant M > M* and T > 0 such that V() < M*
when ¢t > T. Therefore, we can say that all trajectories of system (2.1) from any points in R> are
located on a fixed bounded area D*. O
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2.2. Existence and stability of equilibria

In this subsection, we will discuss the existence and the stability of equilibria E, E , and E*, re-
spectively.

2.2.1. The trivial equilibrium

Theorem 2.1. The trivial equilibrium E, of system (2.1) is locally asymptotically stable if ab < (b +
ri)(r, + g1h), but E is unstable if ab > (b + r)(r, + q1h).

Proof. The Jacobian matrix of system (2.1) is as follows:

Ay Ap O
J=| Ay An Ax |, (2.4)
0 Az A

where

Ay =—=b+r)+oix, An=a+o1x;, Ay =b+0yx,,

B(1 —m)y Bl —m)x,
A = — h - 2d - 9 A = - D)
2 = =+l 0 = 200 = s A S T i
Bl —m)y Bl —m)x,
— , A= ——M = — h).
2= Tk —mmP P Tek(—my BTN
Then, the Jacobian matrix at £ is
—(b +7r) a 0
J(Ey) = b —(r2 + q1h) 0 ,
0 0 —(r3 + q2h)

and the characteristic equation of system (2.1) at the trivial equilibrium Ej is
[A+ (r3 + @A + (B + 1y + 12+ @ )A+ (b + 1))(r2 + q1]) — ab] = 0. (2.5)

Thus, the first eigenvalue of Eq (2.5) is 4; = —(r3 + ¢2h), and the other two eigenvalues are determined
by the following equation:

A+ b+r+rn+qh)d+®B+r)r+qh) —ab=0.

Then, we have A, + A3 = =(b+ 1y + r, + ¢1h) < 0 and A5 = (b + r)(r, + g1h) — ab. Thus, when
ab < (b + r)(r, + q1h), the trivial equilibrium Ej is locally asymptotically stable, and the trivial
equilibrium E is unstable when ab > (b + ry)(r, + g1 h). O

2.2.2. The predator extinction equilibrium

For the predator extinction equilibrium E (%1, X»,0), we can obtain the following system:

(2.6)

{(15(:'2 —-bxX| —rx +o1%% =0,

b)NCl — Xy — d)?% - qlh)'éz + 0 X1X% =0.
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(b+r1)x1
a+o X

By calculation from the first equation of (2.6), we get that X, =
following equation:

. Furthermore, X, satisfies the

A% + B +F =0,

where A = bO’% +o0y(b + 1)), B = o[2ab — (b + r))(ry + qih)] + ac»(b + 1) — d(b + r1)?, and
F = alab — (b + r\)(r, + qih)]. Let A} = B> — 4AF. Then, there is the following conclusion.

Lemma 2.2. The predator extinction equilibria E (%1, X2,0) of system (2.1) are as follows:

(i) If Ay = 0and B < 0, that is, o1[2ab — (b + r)(r; + qlh)] <d(b + r)?* —ao(b + ry), then system

(2.1) has a unique extinction equilibrium given by E (x1 1s % 0) here X1 = —%;

(i) If Ay > 0and 0 < F < fA, then system (2.1) has two distinct extinction equilibria

b b Al _

E, (xlz, % 0) and E; (xl 3, % O) here X, = \/; and %13 = W R

(iii) If Ay > 0 and F < 0, then system (2.1) has a extinction equilibrium Ez( X12, %,O) here
~ B
X12 = \/;A .

Now we prove the stability of the predator extinction equilibrium E, ()?1 1s %, O) at which point

the local stability of other predator extinction equilibria can be proved by using similar methods.

Theorem 2.2. The predator extinction equilibrium E, of system (2.1) is locally asymptotically stable
if and only if the condition (('y) holds, but E is unstable if (1) does not hold.

Proof. According to the matrix (2.4), we can know that the Jacobian matrix of the system at E 1 18

. Ju Ji 0
JE) =] Ju Jn Ji |,
0 0 Jx

where

Jn=0o1X—(b+r), Ju=a+o01X, Joy =b+ 0%, Jpn = 02X —2dX; — (r; + q1h),

__ Bd-mix o B -mi
s = o mn T Tk oy, B TR

Then, the characteristic equation of system (2.1) at the predator extinction equilibrium E, is
L +DVP+F1+G=0, (2.7)

where D = —(J11 + J2 + J33), F = JuJn + Judsz + Indsz — JinJay, and G = Jindo 3 — JinJndss.
According to the Hurwitz criterion, we find that all eigenvalues of Eq (2.7) have negative real parts if

and only if
(T ) (1) 2A(b+r)(2d—01)—02(2aA-01B) cf(1-m) rtrtqiitgh 1.,
1) 2AQaA—c B)(b+11) (2aA-c | B)—k(1-m)(b+r)B B(b+r1) B’
.. 2d(b+r)-01(ra+q1h) (b+r1)(rz+q1h) (r3+goM2A+k(1—m)(b+r1)B]
(il) a > maX{ pETSTR } and 8 > (1-m)B ’

(iii)) DF -G >0 _
holds. Thus, the predator extinction equilibrium E; is locally asymptotically stable, but is unstable if
the condition (';) does not hold. O
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Remark 2.1. For (iii) of condition (('y), it should be noted that the explicit analytical expressions of
the predator extinction equilibria X\, and X, are not straightforward to derive due to the complexity
of the system. As a result, the form (iii) of the condition ((y) is retained here without explicitly solving
for X1 and X,. To address this limitation, computational techniques can be employed to verify the
validity of this condition under specific parameter settings. These numerical explorations demonstrate
that condition (iii) is indeed satisfied in certain cases, providing confidence in its applicability.

2.2.3. The positive equilibrium

Theorem 2.3. If the condition ((,) holds, then the positive equilibrium E* of system (2.1) always
exists. But, if one of the conditions does not hold, then the positive equilibrium E* does not exist.

Proof. We assume that E*(x], x3,y") is a positive equilibrium of system (2.1). Then, xj, x3, and y*
satisfy the following system:

% * * o x_
ax, —bx; —rx; +oxjx, =0,

L
« 2 ﬁ(l - m)xzy
bx| — x5 —dx5" — q1hx; + 02X (x5 —

L+ k(1 —m)x; 2.8)
B(1 —m)x;
—— 13— qh =0.
T+ k(l-mx, P
By calculation from (2.8), we can obtain that
. a(rs + q2h) . I+qh . cP
x; = — , Xy = —— andy:~2 )
D+ rym —o1(r3 + q2h) m m*[cf — k(rs + g2h)]

where

% = (1 — m)[Cﬁ - k(r3 + Q2h)]’
P =[ab (b +r)(rs + @I + (5 + g2DA(b + 1) = o1 (r2 + @) = aors )i + dory (r3 + gah)’.

Thus, if the conditions

+qoh +q17)+
(T2): B —k(rs + qah) > FH2HE ab > (b + r1)(r, + q1}) and d > T 0o

hold, then the positive equilibrium E*(x7}, x5, y*) exists. O
Next, we will discuss the stability of the positive equilibrium E* of system (1.3).
3. Hopf bifurcation of system with time delay

3.1. The existence of Hopf bifurcation

From a biological perspective, analyzing the stability of the positive equilibrium of system (1.3)
provides deeper insights into the dynamics of system. In this subsection, we discuss the local stability
of the system at the positive equilibrium and the existence of Hopf bifurcation of system (1.3). For
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convenience, let X;(f) = x;(r) — x], X2(t) = x2(¢) — x3, and y(r) = y(r) — y*. We have the following
linearized system:
x1(t) = anxi(t) + apk(t) + by X, (t — 1),
X(1) = az Xi(1) + ank(t) + anj(t) + by %1t — 1)), (3.1
V(1) = b31 Xa(t = T2) + az3y(t) + b3 3(t — 12),

where
Ay = =1+ 01X, dip = a+ 01Xy, Gy = 02X, d ——M
1n=-r 1%, A2 = 1X1, Q21 = 02Xy, 23 = T+ k(1 —m)xy
B —m)y”
= —(ry + q1h) — 2dx; + 1— , = —(r; + q2h),
axn = —(r2 + qih) = 2dx, + 02x [+ k(1 —mxil as3 = —(r3 + q2h)
cB(1 — m)y* Bl —m)x;

bll = _b, b21 = b’ b31 =

2T T k(- mx

[+ k(1 —mx;2”
Then, the characteristic equation of system (3.1) can be given by

2+ p2/12 + pid+ po+(S2/12 + 514+ so)e T+ (ule2 + A + ug)e ™

(3.2)
+ (M A+ vp)e ) =,
where
p2 = —(ai + axn + as3), p1 = axpazs + apas; + ajdax — apds,
Po = Q1202133 — A11022033, S2 = —by1, 51 = asbyy + axnby — ainbyy, uy = —b3,

S0 = apazsby — apaszzbyy, uy = (ax + ay)bzy — axbszy, vi = by1bs,,

Uy = araxbs + appaz by — ananbs, vo = axbi by + ainbabi; — anbybs;.
In order to study the distribution of the root of Eq (3.2), we will discuss it in the following cases.
Casel:7y=7=0
In this case, the Eq (3.2) is reduced to

X+ prad® + pud+ pio =0, (3.3)

where P2 =pr+ S+ Uy, p11 = p1+81+u +v and P1o = po + So + Up + vo. Thus, we know that all
roots of Eq (3.3) have negative real parts if the assumption

(f3) : p12 > 0, p1o > 0and piap11 > pro
holds. That is, system (1.3) is locally asymptotically stable at the positive equilibrium E*(x7, x3, y*) if
condition (Y3) is satisfied.

Remark 3.1. With Remark 2.1, we can use the computer to determine that this condition can be
established under certain circumstances for the condition ((’3).

Case2:7,>0,7,=0
Equation (3.2) is reduced to

X+ pd® + ppd + pao + (Und® + Uz A + uyp)e ™™ =0, (3.4)
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where py = py + U, pa1 = p1+ur, pa = po+ U, U = 2, Uy = Sy + vy, and uy = 5o + vo. Let
iwi(w; > 0) be aroot of Eq (3.4). By separating the real and imaginary parts, it follows that

. 2 2
U W1 SiNW T + (Uop — UW])COSW T = Prw| — Pao, 35)
N 3 :
Uz w1COSWIT) — (U — UpW])SINW|T] = W] — PrW].
Adding squares of Eq (3.5), we can get
w? + 612(1)41L + 611(4)% + €190 = 0, (36)
2 2 2 2 2 2 2
where ey = p5, — 2pay — uy,, €11 = pyy + 2(uxUz — prop) — Uiy, €10 = Piy — Uy Let wy = ny. Then,
Equation (3.6) can be written as
I’l? + €121’l% +en +ep= 0. (37)

Here, we denote fi(n1) = 3 + ejon + eqny + ego. Then, £1(0) = elo’nhrf} fi(ny) = +o0, and f(ny) =
1 —>+00

311% + 2eppn + eqy.
After discussion about the roots of Eq (3.7) by the method in [41], we have the following conditions:
(T4) te =0, A= 6%2 —3e; <0,
(Ts5):e20, a=el,—3en >0, ni =22V 5 0and fi(n}) <0,
(T6) te < 0.

Lemma 3.1. For the polynomial Eq (3.7), we have the following results. If ('(4) holds, then Eq (3.7)
has no positive root. If (N's) or (Y¢) holds, then Eq (3.7) has at least one positive root.

Without loss of generality, we assume that Eq (3.7) has three positive roots defined as nyy,n;,, and

ni3. Then, Equation (3.6) has three positive roots wy, = +/ny, kK = 1,2,3. According to (3.5), if

nix > 0, then the corresponding critical value of time delay T(ljk) is

, 1 Apw], + Apwi, +Ay)  271j .
7 = — arccos { —Hk T CLYh + 2 k=1.23=0.1.2.....
Wik Bywi, + Bawy, + By Wik
where
Ay = Uy — pouy, Ay = paultag + paolzs — Paittar, Ajg = —Paolto,

By = U3y, Biy = 13, — Uiz, Byg = U3
Therefore, +iw;; is a pair of purely imaginary roots of Eq (3.4) with 7; = T(ljk) . And, let 7y =
minke{l,2,3}{7(1(]){)}aw10 = Wike-
Lemma 3.2. Suppose that ('('7) : fl' (w},) # 0. Then, the following transversality condition

sign {d%b } # 0 holds.

Proof. Differentiating Eq (3.4) with respect to 71, we obtain

A=iwg

dAa - _ 3/12 + 2p22/l + P21 2/11122 + Uy T1 (3 8)
dT1 B Ae=47 (M22/12 + Mz]ﬂ + I/lzo) /l(lxlzz/l2 + M21/1 + I/tzo) A ’ ’
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From Eq (3.4), we have

B+ ppd® + pyd +
T = _ P2 P21 on, (3.9)
I/tzz/lz + I/tgl/l + Uy

and then, by substituting Eq (3.9) into Eq (3.8), we can get

( dAa )_1 _ 3/7.2 + 2p22/l + P21 + 2/11422 + Uy T1

dr;) — A+ P2A? + pud+ pr)  A(und? + und + uz) A

Thus, we have

~ Re (_ 3/12 + 2])22/1 + P21 ) + Re( 2/7.1422 + Uy ) (3 10)
AL + pod® + pnd+ p20) ) i, Aupd® + und +uxn) /i, o
_ 30)41;0 + 2(p§2 - P21)wf0 + p%l — 2p20p22 B 2u§2w%0 + u%l — 2u20u22
(w}y = P21wi0)* + (P20 — Prwiy)? (unpwiy — Uz0)? + 3, w7,
From Eq (3.10), we obtain that
. {d(Rexl)} . ( da )‘1
sign =sign{Re|—
dT1 A=iwno dTl =i
=iw1o
= sign {3(0)%0)2 + 2(1’52 — D2 — uiz)w%o + ey } 20
M%l(.l)%o + (uyy — Mgza)%o)z .
It follows that sign {d%@ - } # 0, and the proof is complete. O
=iw1o

By Lemmas 3.1 and 3.2 and the Hopf bifurcation theorem [42,43], we have the following results.

Theorem 3.1. For system (1.3) with T, > 0,7, = 0O, the following results are true.

1) If ('C4) holds, then the positive equilibrium E*(x}, x5,y") is locally asymptotically stable for all
T 2> 0.

2) If (Cs) or (Ys) and () hold, then the positive equilibrium E*(x7, x5,y") is locally asymptotically
stable for all T, € [0,719) and unstable for T\ > 19. Furthermore, system (1.3) undergoes a Hopf
bifurcation at the positive equilibrium E*(x}, x5,y") when T = 7.

Case3: 71 =0,7,>0
Equation (3.2) is reduced to

/7.3 + p32/12 + p31/1 + p3p + (l/t32/12 + I/t31/1 + u30)€_/h2 = O, (31 1)

where p3; = pa + 52, p31 = p1+ 81, P30 = po + So,Usz = up,uz = uy + vy, and uzp = up + vop. Let
iwr(wy > 0) be aroot of Eq (3.11). By separating real and imaginary parts, it follows that

(3.12)

. 2 _ 2
U31 Wy SINWH Ty + (U30 — U3W3)COSWHT) = P3W; — P30,
2N o _ 3
U31W2COSWHTy — (U3) — UnW3)SINWIT) = W, — P31W).
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Adding the sum of squares of Eq (3.12), we can get
(Ug + €22(1)§ + 621(1)% + ey = 0, (313)

where e, = p%z - 2p31 - l/lgz, e = p%l + 2(uzguzp — p30p32) - Lt%l and ey = pgo - u%o. Let w% = nsp.
Then, Equation (3.13) can be written as

I’lg + 62271% + eyny + ey = 0. (314)

Denote fo(ny) = nd + exnn? + eaina + ex. Then, f,(0) = ezo,nli_)r{rlm f(n2) = +o0, and f,(ny) = 3n2 +
2exn, + €. :

After discussion about the roots of Eq (3.14) by the method in [41], we have the following assump-
tions:

(Tg) : €20 >0, A= e%z —3e <0,

(To) : e 20, a=e2, —3ey >0, my = <22 5 0 and fo(n3) <0,

(T1o) : €20 < 0.

Lemma 3.3. For the polynomial Eq (3.14), we have the following results. If () holds, then Eq (3.14)
has no positive root. If (19) or (V1) holds, then Eq (3.14) has at least one positive root.

Generally, we assume that Eq (3.14) has positive roots. Without loss of generality, we assume that
Eq (3.14) has three positive roots defined as n,;, ny,, and n,3. Then, Equation (3.13) has three positive
100ts wy, = o, k =1,2,3. According to (3.12), if ny > 0, the corresponding critical value of time
delay T(ij) 1S

. 1 A24Q)4 +A22a)2 +A2() 2] .
T(ij):—arccos ik ik +—], k=1,2,3;7=0,1,2,...,
Wk Brwy, + Bypwsy + By ) wi
where
Any = Uz — pxnuz, Axn = p3uzp + paoUss — p3iusr, Axg = —p3oltso,

—_ 2 .2 _ .2
By = u3,, By = uz — 2usousy, By = uy.

Therefore, +iwy; is a pair of purely imaginary roots of Eq (3.11) with 7, = T(ij) . And, let 75 =
minke{1,2,3}{7—(2?€)}, Woo = Wigy-
Lemma 3.4. Suppose that (') : fz'(wgo) # 0. Then, the following transversality condition

sign {%:j) } # 0 holds.

Proof. Differentiating Eq (3.11) with respect to 7,, we have

A=iwy

dT2 2’

- 4 2 2 2 2 0 2
Re (d_/l) _ 3wy, + 2(p3, = p3wyy + Py~ 2psopxn 2uzwsy + gy — 2usous)
= ' :
(w3 — P31w20)* + (P30 — P3awyy)? (U w3y — uz0)* + U3, w3,

Then, we have

. [d(Red) . day™
sign J = sign{Re I
72 ) aion e A=iwng

2 \2 2 2N, 2
_ sign {3(&)20) + 2([’32 — P31~ u32)w20 t+ e } £0
- 2 2 2 :
U3, w3 + (30 — Unwy))?
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d(ReAd)

It follows that sign {d—rz

} # 0if (Cy) holds. The proof is complete. O

A=iwyg

By Lemmas 3.3 and 3.4 and the Hopf bifurcation theorem [42,43], we have the following results.
Theorem 3.2. For system (1.3) with t; = 0,7, > 0, the following results are true.

1) If ('('s) holds, then the positive equilibrium E*(x}, x5,y") is locally asymptotically stable for all
Ty > 0.

2) If (Co) or (o) and ('('yy) hold, then the positive equilibrium E*(x7, x5,y") is locally asymptoti-
cally stable for all T, € [0, Ty9), but unstable for T, > 1y9. Furthermore, system (1.3) undergoes a Hopf
bifurcation at the positive equilibrium E*(x7, x5, y") when 5 = Ty.

Cased . 1=1,=7#0
Equation (3.2) is reduced to

(X + pad® + pud + pa)e™ + und® + ug A + ugo + (sy A + sg)e™"" = 0, (3.15)

where py = pa, pai = p1, Pao = Po, Uax = S2+Un, Ugy = S|+ Uy, Usgg = So+ U, S41 = Vi, and s49 = Vp.
Let iw(w > 0) be a root of Eq (3.15). By separating the real and imaginary parts, we can get

{E41 sinwt + Epcoswt = Eys,

Epicoswt + Egsinwt = Eyg,
where

3 2 _ P
Eq = 0 = pyiw + 541w, Egp = pag + Sa0 — parw”, Ess = ugppw”™ — g,

_ 3 _ 2 _
Ep = —w + py1w + 5410w, Eqy = pao — S40 — paow”, Ese = —ugiw.

It follows that
A45a)5 + 1443(,()3 + A416()

SINWT = )
w® + B44(,L)4 + B426L)2 + B40
4 2 (3.16)
Apw” + Apw” + Ay
COSWT = ,
wb + B440)4 + B42(U2 + B40
where
Ays = Uap, Ass = Ugy — UgpPap, Asz = Uy Pag — Ugo — Ug2(S41 + Par),
2
Ay = ug(Pao — Sa0) + Usgopaz + us1 (841 — par), Aso = uso(S40 — Pao)s Bas = plp — 2pai,
2 2 2 P
Ayr = ugo(par + 541) — ua1(Pao + Sa0), Baz = piy — 2psapao — 15 Bao = pPiy — Sao-
From Eq (3.16), we can get
(1.)]2 + 635(1)]0 + 634(1)8 + €33a)6 + 832604 + 631(,1)2 +e3 =0, (3.17)

where

e3s = 2By, — Ais, €30 = Bio - Aio, €34 = Bi; + 2By — A4214 — 2A45A43,
ey3 = 2Byg + 2BuBuy — Ajy — 2(An1Ass + AnAus), e31 = 2BagBar — A3, — 2As0Au,
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2 2
€3 = By, + 2B40Bas — Ay, — 2(A41A43 + AgoAys).
Let w? = n3. Then, Equation (3.17) can be written as
flg + 6351’12 + e34n§ + 633I’l§ + 63211% + e3n3 + ez = 0.

Without loss of generality, we assume that it has six positive roots and define them as n3, k =

1,2,...,6. Then, Equation (3.17) has six positive roots w; = ns,k = 1,2,...,6. According to

(3.16), if n3; > 0, the corresponding critical value of time delay T/(cj Vis

T]((j):—arCCOS 6 _,k:1’2,-"a6’j20’1’2""'

1 { A44(1)2 + A42(,4)% + Aso } + 27'[]
Wy wy Wy

+ B44wi + B42(,()]% + B40
Therefore, +iw; is a pair of purely imaginary roots of Eq (3.15) with 7 = ‘r,(cj)

.....

{T(O)} Wy = W,
k s 0 — k()'

Lemma 3.5. Suppose that (V1;) : AC, + BiD, # 0. Then, the following transversality condition
d(Red)
— # 0 holds.

L P E

Proof. Differentiating Eq (3.15) with respect to 7, we obtain

Re(d/l)_l _ RC(AI + Bll) _ A1C1 + B]D]

. 2 2 b
d7 ) 1Ziw, C, + Dyi Ci + D
where
Ay = (py — 3w%)cosworo — 2PapwoSINWTy + §41COSWOTo + Uy,
By = (p41 — 3a)(2))sina)0‘r0 + 2Py woSINWTy — S41SINWOT + 2Usn Wy,
) 2 .
Ci = (py1 — 541 — WHWHCoswTo + (S40 + Pao — Pa2Wy)WoSiNWyTo,
2N 2 . 2
Dy = (pa1 + 541 — wp)wysinwoTo + (530 — Pao + Pa2iy)WoCOSWoT.
. R _ .
Noting that { w} ~and {Re(dl) 1} _have the same sign, we get
T ) A=iwg dr A=iwg

d(ReA) . ACi + BiD,
sign =sign{————>— #0.
At J i Ci + Dg

If condition () holds, then %

# 0. This completes the proof. O

A=iwg
By applying Lemma 3.5 to Eq (3.15), we obtain the existence of Hopf bifurcation as stated in the

following theorem.

Theorem 3.3. For system (1.3) with t; = 1, = 7 # 0, if (Y1) holds, then the positive equilibrium
E*(x},x5,y") is locally asymptotically stable for all T € [0, 1), but unstable for Tt > 7. Furthermore,
system (1.3) undergoes a Hopf bifurcation at the positive equilibrium E*(x}, x3,y") when T = 1.
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Case 5 : T > 0, Ty € [0, T20) and T * T».
We consider Eq (3.2) with 7, in its stable interval, and taking 7, as bifurcation parameter. Let
iw.(w1. > 0) be the root of Eq (3.2). Then, we obtain

E51sinw1*7’1 + E52€0SCL)1*T1 = E53,
(3.18)

Esicoswy.t1 — Espsinwy,. ) = Esy,
where

Es; = 1wy, + ViW1.c05W1. T2 — VoSinw1, T2, Esp = 5o — sza)%* + VW1 SINW1, T2 + VoCOSW15T2,
2 2 .
Es3 = phwi, — po + (awi, — Up)COSW1.Ty — U W1, SINW1. T2,

3 2 .
Esy = wy, — pro. — (uawy, — Ug)SINW1,.Ty — U1 W1.COSW1.T).
From Eq (3.18), we have

6 4 2 4 2

W), + e, + 51w, + esp + (Csaw], + C5ow7, + C50)COSW1. T2 (3.19)
5 3 . .
+ (c55w7, + €537, + C51W1.)SiNW,Ty = 0,

where

€5y = P% - S% -2p + ui, €s] = P% + M% - S% - V% + 2(8052 — pop2 — Uglz), esp = Pé + M(z) - 5(2) - Vé,

—2uy, ¢s55 = 2(u1 p1 — Uppo + SoVo — UaPo — S1V1), Cs4 = 2(Ua82 — Uy),

2(pouo — Sovo), €53 = 2(up — u1pr + usp1 + $2v1), ¢s1 = 2(u1 po — upp1 + S1vo — Sovi).

Css

Cs0

In order to reach some main conclusions, we give the following assumption.
(13) : Eq (3.19) has at least a finite positive root.
We denote the positive roots of Eq (3.19) by w’i*, (i=1,2,...,6). For every wﬁ*(i =1,2,...,6), the

corresponding critical value of time delay T(ljl:), j=12,3...,is

, 1 Es\Esy + Es;E 2]
) _ { 51554 T =52 53} +ﬂ,i:],z,,.,,6;j:0,1,2....
w1, =0),

T]i = —— arccos > >
W1 E51 + E52 [P

Let 7,, = min {T(S)Ii =1,2,...;j=0,1,2.. } and w), be the corresponding root of Eq (3.19) with 7,,.

Lemma 3.6. Suppose that (T14) : A,C, + B,D, # 0. Then, the transversality condition dRed) #0

a1 D=io),
holds.

Proof. Differentiating Eq (3.2) with respect to 7{, we can get

b

Re( da )_1 _ RC(A2 + le) _ A2C2 + B,D,

dry Cy + Dy C2 + D?

A=iw),
where

_ /2 ’ . ’ ’ ’ ’ ’ ’
Ay = p1 = 3wy + 250, SINW (T o + $1C0SW (T o + (mUow (T2 + 2Upw)
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+ v sina),m‘r’m)sinw’wrz + (uzwﬁ)rz + Up — UgTy + vlcosw;OT;O)cosw;OTz,
B, = 2p2w'10 + 2szwllocosw’107"10 - slsinwllorllo(—ul + UugT, — uzw’lonz

- vlcoswlorlo)sinwlom + (2u2w/10 - u1w1072 - vlsinwllorllo)coswllorz,
C, = (sow/]o - szw'l%)sinw/]oﬂo - slw/]zocosa)'lo‘r’lo + (vow’locosw/]oT/lo

+ vlwll%sinw/wr'lo)sinwllorz + (vocullosina)'m‘r'10 - vlw’l%coswllor/w)cosw'lorz,
D, = (sowllo — szw,fo)coswllorllo + s1a),lzosina)/lo‘r'10 + (—voa),losina)’lo?',lo

+ vlw/]zocosa)'lo‘rlm)sinw’mﬁ + (vow,locoswfloT/lo + vlw’lzosinw,lo‘r'lo)cosw,lon.

Noting that {d(f—flﬂ)}ﬂ:iw, and {Re(f—fl)‘l}ﬂ:iw, have the same sign, we have
0 1

1 0

. d(ReA) . [ACy + By,
signq{ ——— =signq ——>——>— ¢ # 0.
dT] /1_1“)’ CZ + D2

dry

.
w

=l

If condition ('14) holds, then we obtain sign {M } # 0. This completes the proof. O

Through the above analysis, we have the following theorem.

Theorem 3.4. For system (1.3) with t\ > 0,7, € [0,7y), and 11 # T3, if (V13) and ((4) hold, then
the positive equilibrium E*(x}, x5,y") is locally asymptotically stable for all T\ € [0, T'lo), but unstable
for T > T/lo. Furthermore, system (1.3) undergoes a Hopf bifurcation at the positive equilibrium
E*(x}, x5, y") when 7| = T’lo.

Case 6 : Ty > 0, T1 € [O,Tlo), and T # Ta.
We consider Eq (4.2) with 7 in its stable interval, and taking 7, is regarded as the bifurcation
parameter. Let iw;.(w,. > 0) be the root of Eq (4.2). Then, we obtain

E¢15inw,,. 72 + Egpcoswr, Ty = Eg3,

. (3.20)
Eg1c08w1,. Ty — EgySinw», Ty = Eea,
where
Eg1 = u1wry + VW2,COSW2, T — VoSINW1,T1,
E¢ = ug — uzwg* + VW2 STNW2, T + VoCOSW2,T1,
2 2 .
Ee3z = prw;, — po + ($205, — $0)COSW2.T| — S1W2, SINW2,T1,
3 2 .
Eoy = w5, — prwa. — (5205, — $0)SINW2.T| — S1W2.COSW,T].
From Eq (3.20), we have
O + eqrwi, + eq1w3, + egy + (Coatws, + Corw3, + Ceo)
W, €, €61Wy, €60 Ceals, Cerls, C60)COSWH,. T (3 21)

5 3 .
+ (Co5W3, + Co3W5, + Co1W2.)SiNW, T = 0,
where

_ 2 2 2 _ 2., 2 2 2 _ 2., 2 2 2
€sy = Py — U, —2p1 + 85,861 = p] + ST — uj — vi + 2(upty — pop2 — S082), €60 = Py + S5 — Uy — Vo,
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Cos = 2(S2Up — 51),Ce2 = 2(S1P1 — SoPo + UgVo — S2P0 — U1V1), Ceo = 2(PoSo — UoVo),

Cos = —282,C63 = 2(So — S1p2 + $2p1 + UaVy), Co1 = 2(S1po — Sop1 + U1V — UgVy).

In order to obtain some main conclusions, we give the following assumption.
(r15) : Eq (3.21) has at least a finite positive root.
We denote the positive roots of Eq (3.21) by wg*, (i=1,2,...,6). For every wg*(i =1,2,...,6), the

corresponding critical value of time delay T(zjl:), j=1,2,3...,is

o _ 1 {E61E64 + E62E63} N 2nj
wp=wh,

T2i = —— arccos > >
W), E61 + E62 W)y

i=1,2,...,6;j=0,1,2....

Let 7'20 = min{r(z(l).)ﬁ =1,2,...;j=0,1,2...} and ‘Ulzo be the corresponding root of Eq (3.21) with T,ZO.

Lemma 3.7. Suppose that (T1¢) : A3C3 + B3D3 # 0. Then, the following transversality condition
d(Reld)
T # 0 holds.

d‘[‘z !
A=iw,,

Proof. Differentiating Eq (3.2) with respect to 7,, we can get

da -l A3 + Bgl A3C3 + B3D3
Re|— =Re = B 2
C; + Dsi Cs + Dj

2

dT2

A=iw),
where
%) . ro ro ’ ’ . o . ’
Az = p1 — 3wy + 2Upy) SINW,THg + U1COSWy) Ty + (=820 T1 + 2852Ws0 + Vi SINW,TH0) SINW, T
+ (S20mT) + 81 — SOT| + VICOSWy)Ty)COSWH T,
B3 = 2pywhy — U SiNWay Ty + 2UsrWnCOSWToy + (SOT1 = S| = S2WsnT| — VICOSWoyTog)SiWy, T
+ (2szw’20 - slw’zo‘rl - vlsinw'zorlzo)cosw'zoﬁ,
C3 = (ttpwoy — uzw’z%)sinw,zor/zo — U WA COSW Ty + (VoWagCOSWo) Ty + VIWh SIW Toy) SiNW, T
+ (vow'zosinw’zor’zo - vlw,zzocosa);o‘rfzo)cosw’zoﬁ,
D3 = (UgWoy — Ur Wy )COSWayTog + Ul W SINWATog + (—V0WoySiNWagTog + V1 W COSW T o) SiWA, T

+ (VoWoygCOSWoTag + V1Woh SINW T )COSWAT] -

-1
Noting that { M} , and {Re ((%) } have the same sign, we get
0

dry J=iw L
2 A=iw,,

d(ReA) . |A3C5+ B3Ds
n =signq ————>— ¢ # 0.
dTZ ’1:’.‘“,20 C3 + D3

If condition () holds, then “G=0

. !
A=iw,,

# 0. This completes the proof. O

Through the above analysis, we have the following theorem.

Theorem 3.5. For system (1.3) with T, > 0,7 € [0,79) and 7| # T3, if (Y15) and (V1¢) hold, then the
positive equilibrium E*(x}, x5, y") is asymptotically stable for all T, € [0, 7/20), but unstable for T, > T'ZO.
Furthermore, system (1.3) undergoes a Hopf bifurcation at the positive equilibrium E*(x7, x3,y") when
Ty = T20.
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3.2. Direction and stability of Hopf bifurcation

In the previous subsection, we analyzed the various cases in which Hopf bifurcation occurs in
system (1.3) at 7; and 7,. In this subsection, we focus on determining the direction of the Hopf
bifurcation and the stability of the bifurcating periodic solutions of system (1.3). To achieve this, we
employ the normal form theory and center manifold theorem as outlined in [42]. For the analysis in
this subsection, we assume that system (1.3) undergoes a Hopf bifurcation at 7 = T'l 0> T2 € [0, 720).

Without loss of generality, it is assumed that 7}, > 7,. Let 7y = 7}, + i, u € R, 1 = 571, x1(s71) =
X1(s), x2(s71) = X2(s), and y(s71) = J(s). We denote x1(s) = x1(5), X2(s) = x3(s), and y(s) = y(s).
Then, system (2.1) can be written as a functional differential equation (FDE) in C = C([-1,0],R?) :

u(t) = L,(u) + F (, u,), (3.22)

where u(t) = (x,(t), x2(0), ()T € C, u,(6) = ut +6) = (x;(t + ), x2(¢t + 0),y(t + )T € C, and
L,:C—R,F :RxC — R?are given by

’

Lu(¢) = (i + 1){Ad(0) + 1§¢[_2) + Cop(-1))

Tho
and
F W, 8) = (19 + (1, P2, F)',
where
$(0) = (¢1(6), $2(0), 63(0)" € C,
[aH ap O [0 0 O] [bUOO]
A= ay a»n ayn |, B=10 0 0 |, C=]| by 0 0],
0 0 ass 0 b3y by 0 0O
F1 = k1191(0)92(0),
Fa = ka1¢95(0) + kaoh(0)¢p3(0),
F3 = k3192 (—2) b3 (—2)
Tio Tio
with

kB(1 — m)*y o = -B(1 —m) __pd-m
L+k(1—mx)> 77 L+k(1=mx)?” ' 1+ k(1 = mxa)?
By the Riesz representation theorem, there exists a 3 X 3 matrix function n(6, u) for 8 € [-1,0) such
that

kiy = o, kg = -2d +

0
L) = fl dn(6, we(©®), ¢ € C([-1,0],R). (3.23)
In fact, we can choose

(T +WA+B+C), 6=0

’
i)

(T,IO + #)(B + 6)9 0 e (_Ta O)
77(9,#) = , - 10 T’
(T]() +/’L)C’ 0e (_la _,[_’_2)
10
0. 0=-1
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For ¢ € C'([-1,0],R?), we define

{ 0 -1<6<0
Awe={ ¥ -
[, dntus, $)6(s), 0= 0
and
0, -1<6<0
Rl ®) = { F (. ¢).6=0
Then, system (3.22) can be rewritten as
i, = A(Wu, + R(1u,. (3.24)

For ¢ € C'([-1,0], (R*)*), where (R?)* is the three-dimensional space of row vectors, we further define
the adjoint operator A* of A(0):

A ols) — 40, 0<s<l
S) =
4 [ di", 000(-1). s = 0

For ¢ € C'([-1,0],R?) and ¢ € C!([-1, 0], (R?)*), we define the bilinear form

0 0
(@(s), 6(s)) = @(0)p(0) — f 1 ff y @& = 0)dn(0)¢(£)dé, (3.25)

where 17(0) = 17(0,0),A = A(0), and A* are adjoint operators. By the discussion in Section 4, we know
that +iw),T), are eigenvalues of A(0). Thus, they are also the eigenvalues of A*.

We suppose that y(0) = (1,2, 73 )Te"‘“llofllog is the eigenvector of A(0) corresponding to the eigenvalue
ia)/lor’]o, and y*(s) = D(1,7;,y5)e v is the eigenvector of A* corresponding to the eigenvalue
—iw|,T),- By computation, we obtain

_ ia)lo —dai _ (iwlo - azz)(iwlo —ap) — andy
Y= ———»V3= )
(4) a;ndss

iwlo + ayy + b€ a23(iw10 + app + by1e'“0 )

Y; = 2

a1 + byreo (az1 + by 10T 0)(iw), + azz + bzze™™)

Then, from Eq (3.25), we get
0 o
(), 7(0)) =¥ (0)y(0) - f 1 f . Y dn(6)y(£)dé
— é_‘:

0 0
= D[y"y - f f y'dn(0)ydé] = DI¥"y + 7,¢¥" Cy + 7,7 By
-1 Je=0

= D[1 + %572 + %33 + Tyoe 07 0(byy + by¥3) + The 072 (b3 ¥y + bu¥iys))-
Therefore, we choose

L —iw T —k L —iw) T % =% -1
D = [1 +¥5¥2 + Y3y3 4+ Tpe 10T0(byy + by Y5) + Ty 1072 (b Yy + b327373)] ,
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such that (y*(s),¥(6)) = 1,(y*(s), ¥(6)) = 0.
Next, let u, be the solution of Eq (3.24) when u = 0. We define

2(t) =y, u), W(t,0) = u, — zy — 7y = u; — 2Rez(t)y(0). (3.26)

On the center manifold Cy, we come to the conclusion that

2 =2
W(z,0) = W(z(0), (1), ) = WZO(H)% + Wy (0)2Z + WOZ% P (3.27)

where z and 7 are local coordinates for Cy in the direction of y* and y*.
Note that W is real if u, is real, and we only consider the real solutions. From Eq (3.26), we get

YWy = u—zy = 2y) =y u) — Y vz — (v Yz
For a solution u, € Cy of Egs (3.23)—(3.25) and i = 0, we have

20 =" u®) = (7', AQuy + RO,y = (A" (0)y", ue) + ¥ (O)F (0, ur)

; . B (3.28)
1= iwoz(1) + ¥ Fo(z, 2).
Moreover, the above equation can be rewritten as follows:
(1) = iwpz(1) + 8(z, 2),

where ) R .

_ Z _ Z °Z
8(z,2) = 807 + 8N+ gnT + e+ (3.29)

It follows from Eqs (3.26) and (3.27) that
22 z2 o o

u,(0) = Wzo(e)z + Wi(0)zz + Woz(e)a +yle iz + yTe@nlz 4 ... (3.30)

By Eqgs (3.29) and (3.30), it derives that
8(z,2) = ¥ (0)F (0)[W(z,Z,0) + 2Re(z(1)y(6))]

N — % 2 —% _T_,Z _T_,2
= D{J1161(0)0:(0) + 3121 63(0) + K h2(0)5(0)] +F3lksid(~—2)(~—2)])

10 Tio
) 1) Z D)oz ) 7 At 2
= D{ku[WéO (0)5 + W (0)zz + W, (O)E +z7+ Z][WZO (O)E
2 )
L WO+ W05 + 722+ 72+l BIWR 05 + W0z
z? 2 2
+ Wi (03 +7:2+ 72| [Wyg (07 + WP 0)Z + Wi (07 + 722+ 727]
22 2 P
kBl WE O % + W) + WO + 7,2+ AW O

Z2

=2 '
— Z A7 VA ‘
+ WO + We (007 + 732+ 732] + kar 73 - [Wag (- 55)

To
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/ / 2

WO 2yz 4 W‘%)(__)E + (72 + Fa2)e ]
710 TIO

2 2
W-2)E S+ W= 2y 4 W(3)(— )5 + (ysz + a2)e ]

10 10 10

Then, from Eq (3.29) and the above equation, we obtain the following relevant parameters, which help
determine the direction and stability of Hopf bifurcation:
820 = 2DT/10[/<11?’2 + ¥5(ka1ys + kaayays) + 5’;(k317273€_2iw/107;)],
g = Driglkn (2 + v2) + ¥5(2karya¥2 + kno(v2¥3 + ¥273))]
+ D [F3 (ks yay3e 0% + ke Payse Henn)],
8n = 2DT/1o[k11)72 + 95 (ko173 + kaa¥a¥3) + 7§(k317’2)_’3€_2iw/107;)],

1
g1 = 2DTlo{k11( Wao 0072 + Wy ()y2 + 5 W3 (0) + Wi (0))

, _ 1 _
+ k2172<—W20><om + W)y, + Evv§%;<0>yz + W2(0)y2)

1
W§3><om + W (0)y2)

+ kp¥i(= W20><0>y3 + W0)y; + = 5

—x —iw T 1 <
+ k31y3e 10 Z[EWE(Z))(—T,—Z)’)@ + W(z)( —)’)/
10

1 T )
* EWS))(_TZ)')Q + WG)(—_)), 1)
1o T
with
Wag(6) = —22—y(O)e i + 52 _5(0)e o7 + EyeHeinti,
wlOTlo WiTho
Wi(0) = ‘8 (0)€lw10T1°0 + 81 (0)6_’“’10"10 + Ey,
wlOTlo “)10710

T T
where E; = (Egl), Eﬁz), E?)) eRiand E, = (Eg), E;Z), Ef)) € R? are also constant vectors and can
be determined by the following equations, respectively:

H, P,
AE1E1 =2 H2 aIldAEzEz = P2 ,
H, P
where
Ag1y, —ap 0 —ap — by —ap 0
Ap, =| Ap, 2iwg—an —axn |, Ag, =| —axn —by —axn —as3 ,
0  —bype” 21 Agiy, 0 —b3, —azz — b33
and
H, = ki1ys, Hy = ko1ys + kyyyays, Hs = kayayse” M‘OTZ
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Py = 2kay2¥a + knn(y2¥s + ¥2y3), P3 = k3ie 202 (273 + ¥2y3),

Agyy, = 2iwyy — ay — b11€_2iw/‘°T,‘°, Ag1, = —az — bzle_ziw,loT/‘O,
Agi, = 2wy, — azy — byze 07, Py = k(72 + ).
Therefore, we can calculate g,; and the following values:
__ 1 2 gl | gu
C1(0) = =—— (820811 — 2lgul” - + =,
2w,,T 3 2
_ Re(Ci(0))
Re{' (7))} ’

B> = 2Re{C;(0)},
Im{Ci(0)} + poIm{A (7))}

h =

b

WipTho
which determine the properties of bifurcating periodic solutions at 7, = T/lo. From the discussion
above, we have the following result.

Theorem 3.6. For system (1.3), the direction of Hopf bifurcation is determined by the sign of u,: if
Uy > O(uy < 0), then the Hopf bifurcation is supercritical (subcritical). The stability of the bifurcating
periodic solutions is determined by the sign of B,: if B, < 0(B, > 0), then the bifurcating periodic
solutions are stable (unstable). The period of the bifurcating periodic solutions is determined by the
sign of Ty: if T, > O(T, < 0), then the bifurcating periodic solutions increase (decrease).

4. The optimal harvesting policy

The development and sustainable utilization of biological resources are common practices in fish-
eries, forestry, and wildlife management. Effective management of biological species, such as fisheries,
is essential for maintaining ecological balance and ensuring long-term resource availability. With this
in mind, we aim to analyze the optimal strategies that regulators can adopt to maximize the benefits of
harvesting while preserving the ecosystem.

In particular, our study will focus on determining the optimal harvesting policy by employing the
harvesting effort 7 as a control tool. This involves balancing ecological considerations with economic
gains to achieve a sustainable outcome. To better understand this dynamic, we will explore the rela-
tionship between the population densities of prey species (xi, x»), predator species (y) and the overall
ecosystem response under optimal conditions. Our goal is to investigate the three-dimensional curve
(x1, x2,y) that represents the behavior of the system at the optimal equilibrium level, achieved by ap-
plying the appropriate harvesting effort 7i. By analyzing this curve, we aim to identify the conditions
that maximize net income from both prey and predator species, while ensuring the system remains
ecologically and economically viable [35].

The net economic income to the society is

n(xy, X2, ¥, B, 1) = piqix2h + phgayh — ¢'h,
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where ¢’ is the harvesting cost per unit effort, which in turn is given by ¢’ = ¢; + ¢,. Here, c; is the
harvesting cost per unit effort corresponding to the adult prey species, and c; is the harvesting cost per
unit effort corresponding to the predator species. p] is the price per unit biomass of x,, and p) is the
price per unit biomass of y. p}, p}, and ¢ are positive constants.

Our main problem is to optimize the objective function

= f e (Pqixa(Oh + pigay(h — Tyt
0

subject to system (1.3) by using Pontryagin’s maximum principle [44]. We construct the Hamiltonian
function as

H(t, x1,x2,y,0,T) = 6_&(17,16113(2(075 + Pyqay()h — 'h) + A1(D]ax, — bxy — r1x; + 01X1X2]

1 —m)x
+ /lz(t)[bxl — Xy — dx% — % - qthZ + O'2X1X2]
Bl —m)xyy
)| s Y
+ 3(0[1 Tk —m, YT y],

where A; = 4;(¢1)(i = 1,2, 3) are adjoint variables corresponding to the variables x;, x,, and y, respec-
tively. 7 is the restricted control variable, 0 < % < h,,,,, where #,,,, 1s the feasible upper limit of 7
with the infrastructure support available for harvesting. The condition that the Hamiltonian function H
must satisfy is given by
oH _,
on
that is,

€_6tF1()C2,y) - /lquxz - /7.3Q2y = 0, (41)

where Fi(x2,y) = piqixa + pygay — ¢'.
We suppose that 7 is the optimal control, and x;, x,, and y are the response functions. By using the
maximum principle, there are adjoint variables 4;, A, and A3 for # > 0. Then, we have,

dl,  oH
d_tl = “on = —[(0'1X2 —b+r)A + 0+ szz)/lz],
dl,  oOH
—2 = ——— = —[epigih + (@+ o1x)A + [-(r2 + qih) - 2dx,
dr 0x,
B —m)y cp(l —m)y
- 1 A,
Tk —mmP " oo ]

dAs oH 5t Bl —m)x, cB(1 — m)x,
i oy [ prgan + T+ k(1 —m)x 2+(1+k(1—m)x2 (13 + 21) s

For positive optimal equilibrium solutions, X, = y = 0 (in other words, x,, y are not dependent on
1), and from the three equations of system (2.1), we have

ax, — bx; —rix; + oy1x1x, =0, 4.2)
X1 B —m)y
b——-r—d - —q1h =0, 4.
5 rp—dx +0px - T k(1= mx q1 4.3)
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Bl —m)x,
———— —r3—qoh = 0. 4.4
L+ k(1 —mx, o P 4
From the above analysis, it is obvious that 7 is also independent of ¢. Furthermore, we get
da, OH
o = _(9_)61 = —[(0'1X2 —(b+r))A + b+ szz)/lz],
da, OH 5 X1 kB(1 —m)’xyy
— === "qih+ (a+ A+ —dxy—b— +
m o [e pPigih+ (a+ ox)Ay ( X2 o 4k —mxn)
4.5)
BLomy |
[1+k(1 - mx,? )
d/l3 oH —5t ,8(1 - m)x2
— === Sgoh + ——————— .
ar  dy [ pag2 1+ k(1 — m)xs |
From Egs (4.1) and (4.5), we get
Apie” + Ape® + Az ze” = 6F) — (plgix + phgoy)h, (4.6)
where
cB(1 —m)qix2y
A = — A =
1 =—(a+o1x1)q1x2, A3 T+ k(0 —mnl
Bkxsy(1 = m)*(qi = q2) = B(1 = m)qaxzy
Ay = b x; +dg x5 — :
12 q1Xxi q1x, [1+ k(1 —m)x)?
By Eqgs (4.1) and (4.6), we can get
L = 6F | — (P\qix2 + D5y ¥ (Ajpdy + A3 As)
1 = - ’
Ap Ap
s OF 1 —(Dlqixa + D5sy)h (A4, + Az ds)
/7.26 = - .
Ap Ap
o OF1 = (P\qixy + Pyganh (A Ay + Ainda)
/136 = - .
A A
Now removing 7 from Eqs (4.3) and (4.4), we obtain
x| B —m)y q1| Bl —mx,
b— —ry—dx, + - == -3, 4.7
n TN T T O w14k —my, “.7)

which is the optimal trajectory of the steady state given by the optimal solutions x, = x5,y = ys. Then,
we substitute A, and A3 into Eq (4.5) and obtain the optimal equilibrium level of effort given by

_ OA3[1 + k(1 — m)xzs] + [B(1 — m)xas] o

Pyqil1 + k(1 — m)xys] '
By solving Egs (4.7) and (4.8) when assigning a certain value to ¢, we can obtain the optimal equilib-
rium level (x4, X245, ¥s). The optimal harvesting effort at any time is determined by

0H

his (4.8)

hmin’ Tar 09
on
oH
h(t) = hé, % = 0’
O0H
hmax, % > Oa
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where 7, 1s the minimum harvesting effort. This study not only contributes to theoretical insights
into ecological management, but also provides practical guidelines for policymakers to implement
sustainable harvesting strategies that align with conservation and economic goals.

5. Numerical simulations

To identify the parameters that significantly influence the output variables of system (2.1), we per-
form a global sensitivity analysis on selected parameters. Specifically, we calculate the partial rank
correlation coefficients (PRCCs) for the parameters a,f,d, 01,0, and m in system (2.1). Nonlinear
and monotonic relationships are observed between the input parameters and the outputs of system (2.1),
which is a key prerequisite for computing PRCCs. Then, a total of 1000 simulations of the model per
Latin hypercube sampling (LHS) were carried out using the baseline values tabulated in Table 1.

Table 1. Ranges of variability of the considered sensitive parameters of system (2.1).

Parameter Baseline values Minimum Maximum

a 16.03 15.6832 16.3832

B 1.54 1.1605 1.9282
d 0.60 0.5375 0.6688
o 0.099 0.0966 0.1031
o> 0.009 0.0034 0.0164
m 0.29 0.2647 0.3225

1:

|

0.8|

mature prey

time t

Figure 1. Sampling results of 1000 times samples for mature prey of the system (2.1).

According to the parameter values in Table 1, we analyze the influence of some parameters in
the system on the correlation of mature prey. By sampling these parameters 1000 times and with a
scatter plot with a fixed time point of 80, we obtain the sampling results in Figure 1 and the scatter
plot in Figure 2. Monotonic increasing (decreasing) indicates a positive (negative) correlation of the
parameter with the model output. It is known from Figure 1 that several selected parameters exhibit
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periodic correlation. From Figure 2, we can know that the parameters a,d, and m show a positive
correlation with the output of the system, the parameters 5 and o, show a negative correlation with the
output of the system, and the parameter oy has no correlation with the output of the system.

[Time point, p-value] = [80 , 4.3859e-64]. [Time point , p-value] = [80 , 1.7056e~75]. [Time point , p-value] = [80 , 2.5638e-147]

i 60! oot W d

mature prey
o
mature prey
mature prey
o

-200 —200 —200

-400 —400y

~400 P

_69400 -200 0 200 400 600 800 _6—0400 -200 0 200 400 600 800 _69500 0 500 1000

60
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400 400 400
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o
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200

n
o
S

0

mature prey
<)
mature prey
mature prey
<)

-200 —-200 —200;

-400 —-400; —400;

-60 -60 -60
—-400 —200 0 200 400 600 —-400 -200 0 200 400 600 800 -1000 -500 0 500 1000
m

(d) (e) (®

Figure 2. Scatter plots with different parameters of the system (2.1). (a) a, (b) 3, (¢) d, (d)
gy, (e) (N (f) m.

5.1. Dynamics of system without time delay

In this part, we study how different dynamics occur by varying three parameters of system (2.1): the
cooperation coeflicients of immature prey and mature prey (o, and 0-,), and the number of refuge for
prey (m). The values of all parameters in system (2.1) are sourced from Table 2. First, let 7; = 7, = 0,
that is, we assume that condition (’3) is true. At the same time, we consider the cooperation of the prey
population and provide a certain amount of refuge for the prey. We choose oy = 0.1, 0, = 0.01(cy >
03), and m = 0.3 (m € [0, 1)) by fixing the values of the other parameters as in Table 2 with initial
conditions (1, 1, 1). By calculation and analysis, system (2.1) is locally asymptotically stable around
the interior equilibrium point (0.8613,0.1242,0.2755) (see Figure 3).

Second, we select the number of refuge for prey (m) as a parameter and keep the values of the
other parameters in Table 2. According to the initial conditions, when m = 0.3 and m = 0, the
stability of system (2.1) is given in Figure 4. Although the equilibrium of the system changes from
(0.8613,0.1242,0.2755) to (0.6021,0.0869, 0.2062), system (2.1) is locally asymptotically stable (see
Figure 4). This shows that if the system has no refuges, then the number of various species will
decrease. At the same time, the effect of the refuge parameter m on the steady-state level of prey and
predator species is shown in Figure 5. We can see that the number of prey always increases. The
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predator population initially increases with the increase of m, then begins to decrease when the value
is bigger than m* = 0.74, and disappears when m = 0.9. This means that the predator may by extinct
due to lack of food resources. This indicates that if the refuge is lower than critical level, then it has a
positive effect on the two species, but is harmful to the predator population once it exceeds its critical
value. In biological terms, these results highlight the importance of prey refuges in maintaining the
stability of predator-prey systems. A reasonable proportion of refuges help to sustain the dynamic
balance of the ecosystem, while extreme conditions may lead to extinct populations or even instability
of the system.

Table 2. Parameter estimation of system (2.1).

Parameter Value Reference Parameter Value Reference

a 16 [45] m 0.3 Estimated
b 0.12  [45] B 1.5 [45]

12 2.2 [45] c 10/3  [45]

r 0.2 [45] k 1 [45]

r3 0.2 [45] q1 0.3 [35]

d 0.6 [45] q> 0.2 [35]

o 0.1 Estimated 7 1 [35]

o) 0.01  Estimated

IS
=
N

w
&

w
o
3]

15

I

&)
I
=)

predator
[

immature prey
N
mature prey
o
n

=
[

0.5

=}
3
=}
N
—
—
=

o
o
o

200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
time t time t time t

o

(@ (b) (©

Figure 3. When oy = 0.1, 0, = 0.01, and m = 0.3, local asymptotic stability of the
interior equilibrium (0.8613,0.1242,0.2755) of system (2.1). (a) immature prey population;
(b) mature prey population; (c) predator population.

Next, we will consider the effect of the cooperative relationship between the prey. The mature
prey protects the immature prey from being captured by predators, thus the benefits of mature prey to
immature prey are bigger than the benefits of immature prey to mature prey. Here, let oy = 0.1 and
o0, = 0.01. By calculation, we can get that the interior equilibrium is (0.8570, 0.1242,0.2620), and
system (2.1) is locally asymptotically stable (see Figure 6). According to Figure 6, we can know that
cooperation has a positive impact for all species. If there is a cooperative relationship between the
prey, the number of immature prey will increase to a certain extent, but the number of mature prey will
basically remain stable.
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Figure 4. When with refuge (m = 0.3) and without refuge (m = 0), local asymptotic stability
of the interior equilibrium (0.6021, 0.0869, 0.2062) of system (2.1). (a) immature prey pop-
ulation; (b) mature prey population; (c) predator population.
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Figure 5. Dynamical responses of system (2.1) with different m. (a) immature prey popula-
tion; (b) mature prey population; (c) predator population.
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Figure 6. Local asymptotic stability of system (2.1) with cooperation and without coopera-
tion. (a) immature prey population; (b) mature prey population; (c) predator population.
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Figure 7. Dynamical behavior of system (2.1). (a) and (b) dynamical responses of system
(2.1) with oy = 0.1; (c) and (d) Hopf bifurcation of system (2.1) occurring at o7 = 1.

25 0.35 1
0.3
2 0.8
0.25
§15 ! ) 06 !
o ! s 02 g |
2 | S0 ! E
% wnffll Al - alll
= I m 0.1 | | “""Il [
||]
0.05
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0. 0.8 1 O0 0.2 0.4 0.6 0.8 1
Sy o %
(@) (b) (©

Figure 8. Dynamical responses of system (2.1) with different 0. (a) immature prey popula-
tion; (b) mature prey population; (c) predator population.

Finally, we choose o7y as a bifurcation parameter to discuss the stability of system (2.1). When
o1 = 0.1, we know that system (2.1) is locally asymptotically stable (see Figure 7(a),(b)). As the
value of oy increases, it derives that system (2.1) undergoes Hopf bifurcation when oy = 1 > 0.8
(see Figure 7(c),(d)). Thus, we can get that system (2.1) is stable when 0 < o < 0.8 and Hopf
bifurcation occurs at the interior equilibrium when oy = 0.8 (see Figure 8). We will discuss the
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stability of system (2.1) by taking o, as a bifurcation parameter. When o, = 0.01, we know that system
(2.1) is locally asymptotically stable from Figure 9(a),(b). As the value of o, increases, system (2.1)
undergoes Hopf bifurcation around (1.2826, 0.2010, 0.0348) when o, = 0.055 (see Figure 9(c),(d)).
Therefore, the benefit of the cooperation between the immature prey and the mature prey becomes
larger, then the number of mature prey increases, and so the number of other species also increases
to a certain extent. By calculations, we can get that system (2.1) is stable when 0 < 0, < 0.055 and
Hopf bifurcation occurs at the interior equilibrium when o, = 0.055 (see Figure 10). These results
indicate the importance of prey cooperation in maintaining the stability of predator-prey systems, and
an appropriate level of cooperation help to sustain the dynamic balance of the ecosystem, while extreme
conditions may lead to periodic fluctuations in population sizes or even instability of the system.
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Figure 9. Dynamical behavior of system (2.1). (a) and (b) dynamical responses of system
(2.1) with o, = 0.01; (c) and (d) Hopf bifurcation of system (2.1) occurring at o, = 0.07.

5.2. Dynamics of the system in the presence of time delay

In this subsection, we discuss the dynamical behavior of system (1.3) in the presence of time delay
by fixing the values of the other parameters as in Table 2. According to Theorem 2.3, system (1.3) has
a unique positive equilibrium £%(0.8613,0.1242,0.2755).

When 7; > 0 and 7, = 0, we can get wy = 0.4316, 719 = 2.2654 in Theorem 3.1. When 71 = 2 <
T1o = 2.2654, the positive equilibrium E* is locally asymptotically stable (see Figure 11(a)). When
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T = 3 > 110 = 2.2654, system (1.3) is unstable at the positive equilibrium E*, and system (1.3)
undergoes Hopf bifurcation at 7;p = 2.2654 (see Figure 11(b)).
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Figure 10. Dynamical responses of system (2.1) with different 0,. (a) immature prey popu-
lation; (b) mature prey population; (c) predator population.
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Figure 11. Dynamical behavior of system (1.3) with 7y > 0and 7, = 0. (a) 7 =2 < 719 =
2.2654; (b) 1 = 3 > 119 = 2.2654.

When 7; = 0,7, > 0, according to Theorem 3.2, we can get w,y = 0.2070, 159 = 0.8527. When
7, = 0.5 < 1y = 0.8527, the positive equilibrium E* is locally asymptotically stable (see Figure 12(a)).
When 1, = 1 > 159 = 0.8527, system (1.3) is unstable at the positive equilibrium E*, and system (1.3)
undergoes Hopf bifurcation at 759 = 0.8527 (see Figure 12(b)). Taking 7, as a bifurcation parameter,
the bifurcation diagram obtained is shown in Figure 14(a).

When 7y = 7, = 7, we can get wy = 0.0587, 79 = 1.0125 in Theorem 3.3. When 7 = 0.5 <
79 = 1.0125, the positive equilibrium E* is locally asymptotically stable (see Figure 13(a)). When
T =3 > 19 = 1.0125, system (1.3) is unstable at the positive equilibrium E*, and system (1.3)
undergoes Hopf bifurcation at 7o = 1.0125 (see Figure 13(b)). Taking 7 as a bifurcation parameter, the
bifurcation diagram obtained is shown in Figure 14(b).

When 71 > 0 and 7, = 0.8 € [0, 1y), we can get TIIO = 0.1 in Theorem 3.4. When 7; = 0.01 <
T'l o = 0.1, then the positive equilibrium E™ is locally asymptotically stable (see Figurel5 (a),(b)). When
T =2 > T'IO = 0.1, we obtain that C;(0) = —0.4109 + 0.6987i,u, = 1.9830 > 0,8, = —0.8218 <
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0,7, = —0.6724 < 0. From Theorem 3.6, the Hopf bifurcation is supercritical, system (1.3) has stable
bifurcating periodic solutions, the period of the bifurcating periodic solutions is decreasing, and system
(1.3) undergoes Hopf bifurcation at T/lo = 0.1 (see Figure 15(c),(d)).
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Figure 12. Dynamical behavior of system (1.3) with 7y = 0,7, > 0. (a) 7, = 0.5 < 739 =
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Figure 13. Dynamical behavior of system (1.3) with7; =7, = 7. (a) 7 = 0.5 < 79 = 1.0125;
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71 =0.01 < T'IO =0.1,7,=08€[0,75); (c)and (d) 7; =2 > T'IO =0.1, 7 = 0.8 € [0, 7).

When 7, > 0 and 7; = 0.5 € [0, 7119), we can get T,ZO = 0.8 according to Theorem 3.5. When
7, =06 < 7'20 = 0.8, then the positive equilibrium E* is locally asymptotically stable (see Figure
16(a),(b)). When 7, = 2 > T’zo = (.8, the positive equilibrium E* is unstable, and system (1.3)
undergoes Hopf bifurcation at T,ZO = 0.8 (see Figure 16(c),(d)).

The above numerical simulation analysis shows that when the time delay is small, the system can
maintain local asymptotic stability and the predator and prey populations can coexist under positive
equilibrium. However, when the time delay exceeds the critical value (e.g., 7¢), the system loses
stability and undergoes a Hopf bifurcation, leading to periodic fluctuations in the populations. This
result suggests that excessive time delay may disrupt the balance between populations, making the
ecosystem more unstable.

Next, the Lyapunov exponents have been derived numerically from system (1.3) in absence of
time delay for different species (see Figure 17(a)). All Lyapunov exponents are negative (L; =
-0.2792,L, = —-0.2037,L; = —3.1328), and thus system (1.3) is stable. We also show the maxi-
mum Lyapunov exponent [46] of system (1.3) for 7; = 0,7, = 1 (see Figure 17(b)). In the figure,
positive values of the maximum Lyapunov exponent indicates that system (1.3) is unstable. Therefore,
it is consistent with Case 3 (Figure 12) in the theoretical results.
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Figure 17. (a) Lyapunov exponent for 7; = 7, = 0; (b) maximum Lyapunov exponent for
T = 0, Ty = 1.

Finally, we consider the following parameter values: a = 6, k = 100, p; = 0.01, p, = 0.05, ¢ =
0.1, 6 = 0.02, and the other parameters remain unchanged. Figure 18 shows the solution curve of
the state variables. Figure 19(a)—(c) show the variation curves of the adjoint variables A;, A, and A3,
respectively. It is easy to see from Figure 19 that the adjoint variables A;, A,, and A3 tend ultimately
to 0 with the increase of time. Dynamical responses of system (2.1) for different values of 7 are
given in Figure 20. From the calculations, we find that the optimal value of the harvesting effort 7 is
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h(;:

1.75. When the value of 7 is less than 7, the prey and predator populations coexist. However, if

h exceeds 7, the optimal harvesting threshold is surpassed, causing the prey population to gradually
decline and eventually go extinct. Consequently, the predator population also declines due to the
increasing difficulty of capturing prey. Furthermore, the impact of the cooperation coefficients oy and
0, (representing the cooperation between immature and mature prey) on the optimal harvesting effort
is illustrated in Figure 21. The results indicate that the optimal harvesting effort decreases as oy and
0 Increase.

1

0.5 0.7
0.45 0.6
0.9
0.4 0.5
>
2 3 .
> 08 5035 504
5 3 3
g7 2 03 Lo3
E E
0.25 0.2
0.6
0.2 0.1
05 : : : . . . 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
time t time t time t
(@) (b) (©

A
1
o P N W A~ OO N ®

Figure 18. The solution curve of state variables of the control system (2.1): (a) immature
prey population; (b) mature prey population; (c) predator population.
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6. Discussion and conclusions

In this article, we study a predator-prey model that incorporates stage-structure prey, prey refuge,
and cooperative behavior. To enhance the realism of the system, we account for the effects of time
delays associated with prey maturity and predator gestation. Additionally, the capture rate of the
predator for the prey population is modeled using a Holling-II type functional response.

According to calculation, system (2.1) has a trivial equilibrium Ej, a predator extinction equilibrium
Eanda unique positive equilibrium £* when Lemma 2.2 and Theorem 2.3 are satisfied. In the absence
of time delay, we found that the prey refuge m does not influence the stability of system (2.1) when m
is relatively small from Figure 4. However, when m > 0.9, the predator population eventually tends
to zero, which is detrimental to the survival of the predator, leading to the instability of system (2.1)
from Figure 5. Next, for the cooperation coefficients oy and o of immature prey and mature prey,
the research shows that the values of parameters o, and 0, could change the stability of system (2.1).
System (2.1) exhibits Hopf bifurcation when o; = 0.8 and 0, = 0.055 (see Figures 7 and 9). In biolog-
ical terms, these results highlight the importance of prey refuges and prey cooperation in maintaining
the stability of predator-prey systems. A reasonable proportion of refuges and an appropriate level of
cooperation help to sustain the dynamic balance of the ecosystem, while extreme conditions may lead
to periodic fluctuations in population sizes or even instability of the system. This suggests that it is
crucial to balance the protection of prey and the survival of predators to avoid ecological imbalances
caused by excessive interventions in ecological conservation.

In the presence of time delay, we divided them into six cases to discuss the stability of the positive
equilibrium and the existence of the Hopf bifurcation of system (1.3). For example, under the fourth
case Ty = T, = T, the critical value of 7 is 7y, then system (1.3) is locally asymptotically stable
when 7 < 7, but is unstable when 7 > 7). That is, the Hopf bifurcation occurs at 7 = 7, which is
demonstrated by Figure 13. Finally, we calculated the optimal value of harvesting effort 7 is 75 = 1.75
when 7 < 75, the prey and predator populations coexist, and the number of prey and predators gradually
decrease when 7 > 7is. In the long run, optimal control strategies are not only applicable to population
harvesting, but can also be utilized for controlling epidemics in both homogeneous and heterogeneous
networks [47]. In a biological sense, these results highlight the importance of studying the control of

Electronic Research Archive Volume 33, Issue 2, 995-1036.



1032

time delay in maintaining ecosystem stability, and provide a theoretical basis for understanding the
impact of time delay on the dynamic behavior of ecosystems.

From an ecological perspective, this study holds greater realistic significance. Additionally, our
research provides insights into the reasons behind the periodic dynamics observed in prey and preda-
tor populations in real life, effectively validating the reliability of the theoretical results. From the
perspective of human economic interests, we examine the impact of harvesting on prey and predator
populations, offering valuable reference points for sustainable harvesting practices. In the future, let
uy (1), up(t), and v(¢) be the densities of immature prey, mature prey, and predator populations at time ¢,
respectively, then we can consider the exponential transformation between the prey and the nonlinear
harvest into our model:

d

% =auy —riug —be™"u(t — 1)) + ou U,

d E 1-

ﬂ = be_rlletl(l — T]) — Uy — du% + ou Uy — N2 - ﬁ( m)ugv N
dr E+mu 1+k(1-mu
dv (1 —muy(t — T)v(t — 13) q.Ev
— = -3V — ,
dr 1+ k(1 = m)us(t — ) T E +myy

with the initial conditions

u1(6) = ¢1(0), u2(0) = ¢2(0), v(0) = ¢5(6), 6 € [-7,0),
T= IIlaX{Tl,TQ}, ¢1(0) > 0, ¢2(0) > 0, d)g(O) > 0.

Additionally, due to the heterogeneity of spatial distribution, populations often migrate and diffuse
within a certain spatial range. Therefore, future research can further incorporate stage-structure
predator-prey models with spatial diffusion to more comprehensively describe the spatial behavioral
characteristics and interaction mechanisms in population dynamics. Let u;(¢, x), uy(t, x), and v(z, x)
represent the population densities of immature prey, mature prey, and predator populations at location
x € Q and time ¢, respectively. Here, O C R”" is a bounded, open, and connected domain with smooth
boundary 92, then we have the following model:

aula(t’ Y = dAuy (2, x) + aus(t, x) — be” " "uy (t — 71, %) — riug (8, X) + oug (8, X)us(t, x),
X
6u28(t’ ») = dhAusr(t, x) + be™""uy (t — 11, X) — rus(t, x) — du%(t, X) + opuy (2, X)us(t, x)
X
oy — B Mt v(2.)
il 1+ k(1 — myun(t, x)
ov(t, x) cB(1 — muy(t — 5, X)v(t — T2, X)
= d A t, - t, - h ta s
ox  BAEO T nt —m D T e
Oui(t,x)  Oup(t,x)  Ov(t,x) _
on  dn  On =0, xeon,

with the initial conditions

ui(t, x) = ¢1(t, x) >0, up(t,x) = ¢2(l, x) >0, v(t,x) = ¢3(t’ x) >0,
7 = max{ty, 72}, (1,%) € [-7,0) X Q,

where d,,d,, and d; are the diffusion rates for immature prey, mature prey, and predator populations,
respectively.
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