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Abstract: In this paper, a multiple delays stage-structure predator-prey model with refuge and coop-
eration is established. First, the local asymptotic stability of the trivial equilibrium and the predator
extinction equilibrium are discussed by analyzing the characteristic equations of the system. Second,
taking time delays as the bifurcation parameters, the existence of Hopf bifurcation at the positive equi-
librium is given. Next, the direction of Hopf bifurcation and the stability of the periodic solutions
are analyzed based on the center manifold theorem and normal form theory. Moreover, the optimal
harvesting policy of the system is showed by using Pontryagin’s maximum principle. Finally, we give
the global sensitivity analysis of some parameters by calculating the partial rank correlation coeffi-
cients, and some numerical simulations are performed to verify the correctness and feasibility of the
theoretical results by using the MATLAB software.
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1. Introduction

In natural ecology, each species exhibits unique habits and complex biological relationships with
other species. These interactions form a biological system, a key focus area in ecology. Among these,
predator-prey dynamics are considered foundational to understanding biological systems. The basic
predator-prey model was first proposed by Lotka and Volterra [1], laying the groundwork for subse-
quent studies. Numerous scholars have since expanded on this model [2–5], exploring interactions
such as intra-species competition [6], cooperation [7], and stage structure [8–13]. Among them, Hu
et al. [8], Meng and Qin [10], and Wu et al. [13] considered dynamical behaviors such as stability,
boundedness, and bifurcation of predator-prey systems with stage structure in the absence of spatial
diffusion. However, Xu and Liu [9], Xu et al. [11], and Mi et al. [12] investigated spatial dynamical
behaviors such as global existence of predator-prey models with stage structure with spatial diffusion.
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In the classical predator-prey model, it is assumed that all individuals of a species possess identi-
cal predation abilities. However, this assumption often fails to reflect real-world dynamics, as species
exhibit variation due to historical and ecological differences. For instance, juvenile individuals often
depend on their parents for survival as they lack independent predation skills. To address such realities,
many researchers divide species into immature and mature stages when studying the dynamical behav-
ior of stage-structured predator-prey models [14–18]. In 1990, Aiello and Freedman [14] introduced a
delayed single-population model with stage structure, assuming that the average age of maturity was
represented by a constant time delay. The model is expressed as follows:

dx1(t)
dt
= ax2(t) − γx1(t) − αe−γτx2(t − τ),

dx2(t)
dt
= αe−γτx2(t − τ) − βx2

2(t),
(1.1)

where x1(t) and x2(t) are the densities of immature and mature population at time t, respectively; a and
γ are the birth rate and the death rate of the immature population, respectively; β is the intra-species
competition rate of the mature population; τ is the maturity time delay, and αe−γτx2(t−τ) represents the
quantity which the immature population born at time t − τ can survive at time t. Xu [15] and Song et
al. [16] mainly studied the stability and Hopf bifurcation of a predator-prey model with stage structure
and time delay. Li et al. [17] considered a stage-structured predator-prey model with Crowley-Martin
functional response and analyzed the impaction of predator maturity delay and predator interference
on the dynamics of the system. Certainly, Zhu et al. [18] developed a reaction-diffusion predator-
prey model incorporating the Allee effect based on network and non-network environments, which
represents a relatively novel research approach in the field. Based on model (1.1), many scholars have
studied predator-prey models with stage structure by considering multiple populations [19–21].

Additionally, certain biological behaviors of predator and prey populations cannot be immediately
captured in ecological models due to the presence of time delays. Compared with ordinary differential
equations, delay differential equations can better reflect the complex dynamical behavior of the sys-
tem. Due to the fact that the time delay makes the model more realistic and reliable, then the delayed
predator-prey systems with stage structure have been studied [22–26]. For instance, Xu and Ma [22] in-
vestigated a predator-prey system incorporating stage structure for the predator and a time delay. Their
study examined the existence of Hopf bifurcation and the global stability of the positive equilibrium.
Similarly, Maiti and Dubey [27] introduced a delayed predator-prey system with a Crowley-Martin
functional response and stage structure for the prey, which can be described as follows:

dx1(t)
dt
= sx2(t) − rx1(t) − dx1(t),

dx2(t)
dt
= rx1(t) − αx2

2(t) − d1x2(t) −
βx2(t)y(t)

(1 + ax2(t))(1 + by(t))
,

dy(t)
dt
=

β1x2(t − τ)y(t − τ)
(1 + ax2(t − τ))(1 + by(t − τ))

− d2y(t) − γy2(t),

(1.2)

where y(t) is the density of the predator population at time t; r is the conversion rate from immature
prey to mature prey; d, d1, and d2 are the death rate of the immature prey, mature prey, and predator,
respectively; α and γ are the intra-specific competition rate of mature prey and predator, respectively;
β and β1 are the conversion rate from mature prey to predator and the intake rate of the predator,
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respectively. The term βx2y
(1+ax2)(1+by) is named the Crowley-Martin type functional response, which takes

into account the interference between predators and preys. τ is the time delay due to the gestation of
the predator. The biological significance of other parameters remain consistent with system (1.1).

In biology, refuges provide shelter for prey that are vulnerable to predation or environmental pres-
sures, reducing the risk of prey population extinction. For example, some small fish can avoid predation
by hiding within coral reefs. Additionally, refuges can decrease direct interactions between preda-
tors and prey, potentially delaying or mitigating severe fluctuations in predator-prey systems, thereby
maintaining the dynamic balance of biological systems. Thus, refuges play a important role in pro-
moting the coexistence of predator and prey populations. Recently, many scholars have studied some
predator-prey models including prey refuges [28–32]. For example, Fu and Wei [28] studied the effect
of prey refuge on the stability of a predator-prey model with stage structure, they analyzed the global
asymptotic stability of the positive equilibrium according to the comparison principle and the iterative
principle. Song et al. [32] proposed a discrete one-predator two-prey system with Michaelis-Menten-
type prey harvesting and prey refuge, and their findings demonstrated that both harvesting and refuge
contribute to the stabilization of the system, with the stabilizing effect of harvesting outweighing that
of refuge.

Actually, cooperation among populations plays a crucial role in population growth dynamics [7,33,
34]. On one hand, it not only enhances the overall survival ability of the population, but also enables
more efficient resource utilization. On the other hand, cooperation helps populations better adapt
to environmental changes and natural disasters, while interspecies cooperation (such as mutualistic
symbiosis) also has a key impact on the balance of ecosystems. Kundu and Maitra [33] analyzed the
impact of prey cooperation on a delayed predator-prey system, concluding that cooperative interactions
among prey positively influence the system and significantly enhance its stability. Similarly, Wu and
Zhao [34] investigated a diffusion predator-prey model with predator cooperation, demonstrating that
cooperation benefits the predator population. In 2023, Meng and Feng [7] proposed an intraguild
predator-prey model with prey refuge and hunting cooperation, and they showed that prey refuge can
change the stability of model and even have a stabilizing effect on this model. In addition, they found
that hunting cooperation destabilizes the model in the absence of diffusion, but stabilizes it when
diffusion is present.

In nature, humans exploit certain organisms to gain economic benefits, with the methods of cap-
ture directly influencing the outcomes. Recently, many scholars have studied different types of har-
vesting [35–39]. For instance, Meng and Li [37] analyzed a delayed prey-predator-scavenger system
incorporating the fear effect and linear harvesting. They derived the optimal harvesting strategy for the
delayed system using Pontryagin’s maximum principle with delay. In 2023, Feng et al. [38] studied
a single species model with seasonal Michaelis-Menten type harvesting. In particular, under the crit-
ical conditions on special harvest parameters, it was found that the T-periodic solution still exists as
long as an arbitrary positive close season is formulated. Wu et al. [39] investigated an age-structured
predator-prey system with Beddington-DeAngelis functional response and constant harvesting, and
they obtained that the stability of system changes from a stable equilibrium to a stable limit cycle to an
unstable limit cycle as the values of constant harvesting rate increase.

Considering the behavioral differences among species, we classify the prey population into imma-
ture and mature groups. However, studies that integrate time delay, cooperation, and harvesting within
predator-prey models remain relatively scarce. This gap motivates our research. Thus, we consider the
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following facts and assumptions that are consistent with natural phenomena:

• To make the model more realistic, we assume that buffalos represent the prey population, and
lions represent the predator population, forming a subsystem within the forest. Specifically, there
is a cooperative relationship between immature and mature buffalos, while lions exclusively hunt
the mature buffalos.
• Assume that the number of this immature prey populations is proportional to the number of ex-

isting immature prey populations; the number of mature prey populations is proportional to the
number of existing mature prey populations. Similarly, the number of predator populations is
directly proportional to the number of existing predator populations.
• Assume that immature and mature prey cooperate, providing mutual benefits. However, the ben-

efit provided by mature prey to immature prey is significantly greater than the benefit provided by
immature prey to mature prey.
• Assume that human harvesting of species for maximum economic benefit does not disrupt the

balance of the ecosystem.
• Assume that the immature prey population transitions into the mature prey population at a con-

stant rate, following a fixed time delay, denoted as τ1.

Motivated by the literature [27, 33, 37], we propose a stage structure predator-prey model with two
time delays, prey refuge, cooperation, and linear harvesting as follows:

dx1(t)
dt
= ax2(t) − bx1(t − τ1) − r1x1(t) + σ1x1(t)x2(t),

dx2(t)
dt
= bx1(t − τ1) − r2x2(t) − dx2

2(t) + σ2x1(t)x2(t) − q1ℏx2(t) −
β(1 − m)x2(t)y(t)
1 + k(1 − m)x2(t)

,

dy(t)
dt
=

cβ(1 − m)x2(t − τ2)y(t − τ2)
1 + k(1 − m)x2(t − τ2)

− r3y(t) − q2ℏy(t),

(1.3)

with the initial conditions

x1(θ) = ϕ1(θ), x2(θ) = ϕ2(θ), y(θ) = ϕ3(θ), θ ∈ [−τ, 0),
τ = max{τ1, τ2}, ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0,

(1.4)

where x1(t), x2(t), and y(t) are the densities of immature prey, mature prey, and predator populations at
time t, respectively; a and b are the birth rate of immature prey and the conversion rate of immature prey
into mature prey; r1, r2, and r3 are the natural death rates of immature prey, mature prey, and predator,
respectively; d is the intraspecific competition rate of mature prey; σ1 and σ2 are the cooperation
coefficients of immature prey and mature prey (σ1 > σ2), respectively; β and c are the maximum
capture rate and conversion rate of the predator, respectively; (1 − m)x2(m ∈ [0, 1)) is the number of
prey that can be caught by predator; k is the half-saturation constant; τ1 is the maturity time delay and
bx1(t−τ1) represents the quantity which the immature prey born at time t−τ1 can survive at time t; τ2 is
the time delay since the gestation of the predator; ℏ is the harvesting effort, and q1 and q2 are the catch
ability coefficient of the mature prey and predator. The biological interpretations of other parameters
are same as in system (1.2), and all parameters are positive constants.

The highlights of this paper are as follows:

• A stage-structure predator-prey model is proposed, where the prey population is divided into two
stages: immature prey and mature prey.
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• The model incorporates two important time delays: the maturation time delay τ1 of the immature
prey population and the gestation time delay τ2 of the predator population.
• Immature prey and mature prey cooperate to protect the immature prey from being predated. As

a result, predators exclusively hunt the mature prey.
• A linear harvesting approach is applied to both the mature prey and the predator. By using an

optimal harvesting strategy, the study determines the optimal harvesting effort.
• The analysis reveals that increases in the cooperation coefficient and the refuge coefficient have

significant impacts on the stability of the system.

The organization of this paper is as follows. In Section 2, we discuss the positiveness and bounded-
ness of system (1.3) without time delay. In addition, the existence and stability of the trivial equilibrium
and the extinction equilibrium of the predator are given. In Section 3, the stability of the positive equi-
librium and the existence of Hopf bifurcation of system with time delay are studied. In addition, the
direction and the stability of Hopf bifurcation are shown based on the center manifold theorem and
normal form theory. Based on Pontryagin’s maximum principle, the optimal harvesting policy of the
system is discussed in Section 4. To support our theoretical predictions, some numerical simulations
are given in Section 5.

2. The system (1.3) without time delay

In order to study some properties of system (1.3), we give system (1.3) without time delay as
follows: 

dx1(t)
dt
= ax2(t) − bx1(t) − r1x1(t) + σ1x1(t)x2(t),

dx2(t)
dt
= bx1(t) − r2x2(t) − dx2

2(t) + σ2x1(t)x2(t) − q1ℏx2(t) −
β(1 − m)x2(t)y(t)
1 + k(1 − m)x2(t)

,

dy(t)
dt
=

cβ(1 − m)x2(t)y(t)
1 + k(1 − m)x2(t)

− r3y(t) − q2ℏy(t),

(2.1)

with the initial conditions

x1(0) ≥ 0, x2(0) ≥ 0 and y(0) ≥ 0.

2.1. Positivity and boundedness of solutions

In natural ecology, the positiveness reflects the ability of populations to survive and sustain them-
selves over a long period, while boundedness ensures that population sizes remain within the limits
imposed by available resources. These properties are crucial for the ecological viability and stability
of populations. To effectively analyze the positiveness and boundedness of system (2.1), it is essential
to carefully define the initial conditions of system (2.1), as they play a important role in determining
the long-term dynamics of system. We can rewrite system (2.1) as the following matrix form:

dX
dt
= H(X), (2.2)
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where X = (x1(t), x2(t), y(t))T ∈ R3, andH(X) are given by

H(X) =


H1(X)
H2(X)
H3(X)

 =


ax2(t) − bx1(t) − r1x1(t) + σ1x1(t)x2(t)
bx1(t) − r2x2(t) − dx2

2(t) + σ2x1(t)x2(t) − q1ℏx2(t) − β(1−m)x2(t)y(t)
1+k(1−m)x2(t)

cβ(1−m)x2(t)y(t)
1+k(1−m)x2(t) − r3y(t) − q2ℏy(t)

 .
Now, let H : R3

+ → R+ satisfy the locally Lipschitz condition and [Hi(X)]X∈R3
+
≥ 0, i = 1, 2, 3.

According to reference [40], the solution of (2.2) is positive, which means that all solutions of system
(2.1) under positive initial conditions are positive. That is to say, each component of X remains in the
interval [0,B) for some B > 0. If B = ∞, then lim sup

t→∞
(x1(t) + x2(t) + y(t)) = ∞.

In the following lemma, we will prove that the solution of system (2.1) is bounded.

Lemma 2.1. All solutions of system (2.1) starting in R3
+ are confined to the region D∗ =

{
(x1(t),

x2(t), y(t)) ∈ R3
+ : V(t) ≤ M∗ = 1

4dr0
(a − q1ℏ

2 )2
}

as t → ∞ for all positive initial values (x1(θ), x2(θ),
y(θ)) ∈ R3

+, where V(t) = x1(t) + x2(t) + 1
c y(t).

Proof. Let x1(t), x2(t), and y(t) be the solution of system (2.1) under the initial condition. In order to
prove the boundedness of the solution of system (2.1), we construct a function V(t) as follows:

V(t) = x1(t) + x2(t) +
1
c

y(t). (2.3)

By differentiating (2.3) with respect to t, we get

dV
dt
=

dx1

dt
+

dx2

dt
+

1
c

dy
dt

= −
[
r1x1 + r2x2 +

1
c

(r3 + q2ℏ)y
]
− dx2

2 + ax2 − q1ℏx2 + (σ1 + σ2)x1x2

≤ −r0V − q1ℏx2

(
1 −
σ1 + σ2

q1ℏ
x1

)
− dx2

2 + ax2,

where r0 = min {r1, r2, r3 + q2ℏ}. In addition, we need to discuss the sign of the q1ℏx2

(
1− σ1+σ2

q1ℏ
x1

)
term

in separate cases:
1) If x1 ≤

q1ℏ

2(σ1+σ2) , then we obtain that q1ℏx2

(
1 − σ1+σ2

q1ℏ
x1

)
≥

q1ℏ

2 x2 by using 1 − σ1+σ2
q1ℏ

x1 ≥
1
2 ;

2) If x1 >
q1ℏ

2(σ1+σ2) , then we know that the above inequality holds if x1 does not exceed this range in the
long-term.

Thus, the above inequality becomes

dV
dt
≤ −r0V −

q1ℏ

2
x2 − dx2

2 + ax2 = −r0V + x2

(
a −

q1ℏ

2
− dx2

)
≤ −r0V +

1
4d

(
a −

q1ℏ

2

)2

.

According to the comparison principle, we have that lim sup
t→∞

V(t) ≤ 1
4dr0

(
a − q1ℏ

2

)2
= M∗ and V(t) ≤

M∗+
(
V0−M∗

)
e−r0t. Hence, there is at least a positive constant M > M∗ and T > 0 such that V(t) < M∗

when t > T . Therefore, we can say that all trajectories of system (2.1) from any points in R3
+ are

located on a fixed bounded area D∗. □
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2.2. Existence and stability of equilibria

In this subsection, we will discuss the existence and the stability of equilibria E0, Ẽ, and E∗, re-
spectively.

2.2.1. The trivial equilibrium

Theorem 2.1. The trivial equilibrium E0 of system (2.1) is locally asymptotically stable if ab < (b +
r1)(r2 + q1ℏ), but E0 is unstable if ab > (b + r1)(r2 + q1ℏ).

Proof. The Jacobian matrix of system (2.1) is as follows:

J =


A11 A12 0
A21 A22 A23

0 A32 A33

 , (2.4)

where

A11 = −(b + r1) + σ1x2, A12 = a + σ1x1, A21 = b + σ2x2,

A22 = −(r2 + q1ℏ) + σ2x1 − 2dx2 −
β(1 − m)y

[1 + k(1 − m)x2]2 , A23 = −
β(1 − m)x2

1 + k(1 − m)x2
,

A32 =
cβ(1 − m)y

[1 + k(1 − m)x2]2 , A33 =
cβ(1 − m)x2

1 + k(1 − m)x2
− (r3 + q2ℏ).

Then, the Jacobian matrix at E0 is

J(E0) =


−(b + r1) a 0

b −(r2 + q1ℏ) 0
0 0 −(r3 + q2ℏ)

 ,
and the characteristic equation of system (2.1) at the trivial equilibrium E0 is

[λ + (r3 + q2ℏ)][λ2 + (b + r1 + r2 + q1ℏ)λ + (b + r1)(r2 + q1ℏ) − ab] = 0. (2.5)

Thus, the first eigenvalue of Eq (2.5) is λ1 = −(r3 + q2ℏ), and the other two eigenvalues are determined
by the following equation:

λ2 + (b + r1 + r2 + q1ℏ)λ + (b + r1)(r2 + q1ℏ) − ab = 0.

Then, we have λ2 + λ3 = −(b + r1 + r2 + q1ℏ) < 0 and λ2λ3 = (b + r1)(r2 + q1ℏ) − ab. Thus, when
ab < (b + r1)(r2 + q1ℏ), the trivial equilibrium E0 is locally asymptotically stable, and the trivial
equilibrium E0 is unstable when ab > (b + r1)(r2 + q1ℏ). □

2.2.2. The predator extinction equilibrium

For the predator extinction equilibrium Ẽ(x̃1, x̃2, 0), we can obtain the following system:ax̃2 − bx̃1 − r1 x̃1 + σ1 x̃1 x̃2 = 0,
bx̃1 − r2 x̃2 − dx̃2

2 − q1ℏx̃2 + σ2 x̃1 x̃2 = 0.
(2.6)
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By calculation from the first equation of (2.6), we get that x̃2 =
(b+r1)x̃1
a+σ1 x̃1

. Furthermore, x̃1 satisfies the
following equation:

Ax̃2
1 + Bx̃1 + 𭟋 = 0,

where A = bσ2
1 + σ1σ2(b + r1), B = σ1[2ab − (b + r1)(r2 + q1ℏ)] + aσ2(b + r1) − d(b + r1)2, and

𭟋 = a[ab − (b + r1)(r2 + q1ℏ)]. Let ∆1 = B2 − 4A𭟋. Then, there is the following conclusion.

Lemma 2.2. The predator extinction equilibria Ẽ(x̃1, x̃2, 0) of system (2.1) are as follows:

(i) If ∆1 = 0 and B < 0, that is, σ1[2ab − (b + r1)(r2 + q1ℏ)] < d(b + r1)2 − aσ2(b + r1), then system
(2.1) has a unique extinction equilibrium given by Ẽ1

(
x̃11,

(b+r1)x̃11
a+σ1 x̃11

, 0
)
, here x̃11 = −

B
2A ;

(ii) If ∆1 > 0 and 0 < 𭟋 < B2

4A , then system (2.1) has two distinct extinction equilibria
Ẽ2

(
x̃12,

(b+r1)x̃12
a+σ1 x̃12

, 0
)

and Ẽ3

(
x̃13,

(b+r1)x̃13
a+σ1 x̃13

, 0
)
, here x̃12 =

√
∆1−B
2A and x̃13 =

−
√
∆1−B
2A ;

(iii) If ∆1 > 0 and 𭟋 < 0, then system (2.1) has a extinction equilibrium Ẽ2

(
x̃12,

(b+r1)x̃12
a+σ1 x̃12

, 0
)
, here

x̃12 =
√
∆1−B
2A .

Now we prove the stability of the predator extinction equilibrium Ẽ1

(
x̃11,

(b+r1)x̃11
a+σ1 x̃11

, 0
)
, at which point

the local stability of other predator extinction equilibria can be proved by using similar methods.

Theorem 2.2. The predator extinction equilibrium Ẽ1 of system (2.1) is locally asymptotically stable
if and only if the condition (Υ1) holds, but Ẽ1 is unstable if (Υ1) does not hold.

Proof. According to the matrix (2.4), we can know that the Jacobian matrix of the system at Ẽ1 is

J(Ẽ1) =


J11 J12 0
J21 J22 J23

0 0 J33

 ,
where

J11 = σ1 x̃2 − (b + r1), J12 = a + σ1 x̃1, J21 = b + σ2 x̃2, J22 = σ2 x̃1 − 2dx̃2 − (r2 + q1ℏ),

J23 = −
β(1 − m)x̃2

1 + k(1 − m)x̃2
, J33 =

cβ(1 − m)x̃2

1 + k(1 − m)x̃2
− (r3 + q2ℏ).

Then, the characteristic equation of system (2.1) at the predator extinction equilibrium Ẽ1 is

λ3 + Dλ2 + Fλ +G = 0, (2.7)

where D = −(J11 + J22 + J33), F = J11J22 + J11J33 + J22J33 − J12J21, and G = J12J21J33 − J11J22J33.
According to the Hurwitz criterion, we find that all eigenvalues of Eq (2.7) have negative real parts if
and only if

(Υ1): (i) 2A(b+r1)(2d−σ1)−σ2(2aA−σ1B)
2A(2aA−σ1B)(b+r1) −

cβ(1−m)
(2aA−σ1B)−k(1−m)(b+r1)B <

r2+r3+q1ℏ+q2ℏ

B(b+r1) − 1
B ;

(ii) a > max
{

2d(b+r1)−σ1(r2+q1ℏ)
aσ2(b+r1) , (b+r1)(r2+q1ℏ)

b

}
and β > (r3+q2ℏ)[2A+k(1−m)(b+r1)B]

c(1−m)B ;
(iii) DF −G > 0

holds. Thus, the predator extinction equilibrium Ẽ1 is locally asymptotically stable, but is unstable if
the condition (Υ1) does not hold. □
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Remark 2.1. For (iii) of condition (Υ1), it should be noted that the explicit analytical expressions of
the predator extinction equilibria x̃11 and x̃12 are not straightforward to derive due to the complexity
of the system. As a result, the form (iii) of the condition (Υ1) is retained here without explicitly solving
for x̃11 and x̃12. To address this limitation, computational techniques can be employed to verify the
validity of this condition under specific parameter settings. These numerical explorations demonstrate
that condition (iii) is indeed satisfied in certain cases, providing confidence in its applicability.

2.2.3. The positive equilibrium

Theorem 2.3. If the condition (Υ2) holds, then the positive equilibrium E∗ of system (2.1) always
exists. But, if one of the conditions does not hold, then the positive equilibrium E∗ does not exist.

Proof. We assume that E∗(x∗1, x
∗
2, y
∗) is a positive equilibrium of system (2.1). Then, x∗1, x

∗
2, and y∗

satisfy the following system:

ax∗2 − bx∗1 − r1x∗1 + σ1x∗1x∗2 = 0,

bx∗1 − r2x∗2 − dx∗22 − q1ℏx∗2 + σ2x∗1x∗2 −
β(1 − m)x∗2y∗

1 + k(1 − m)x∗2
= 0,

cβ(1 − m)x∗2
1 + k(1 − m)x∗2

− r3 − q2ℏ = 0.

(2.8)

By calculation from (2.8), we can obtain that

x∗1 =
a(r3 + q2ℏ)

(b + r1)m̃ − σ1(r3 + q2ℏ)
, x∗2 =

r3 + q2ℏ

m̃
and y∗ =

cP
m̃2[cβ − k(r3 + q2ℏ)]

,

where

m̃ = (1 − m)[cβ − k(r3 + q2ℏ)],
P = [ab − (b + r1)(r2 + q1ℏ)]m̃2 + (r3 + q2ℏ)[d(b + r1) − σ1(r2 + q1ℏ) − aσ2]m̃ + dσ1(r3 + q2ℏ)2.

Thus, if the conditions
(Υ2): cβ − k(r3 + q2ℏ) >

σ1(r3+q2ℏ)
(b+r1)(1−m) , ab > (b + r1)(r2 + q1ℏ) and d > σ1(r2+q1ℏ)+σ2a

(b+r1)
hold, then the positive equilibrium E∗(x∗1, x

∗
2, y
∗) exists. □

Next, we will discuss the stability of the positive equilibrium E∗ of system (1.3).

3. Hopf bifurcation of system with time delay

3.1. The existence of Hopf bifurcation

From a biological perspective, analyzing the stability of the positive equilibrium of system (1.3)
provides deeper insights into the dynamics of system. In this subsection, we discuss the local stability
of the system at the positive equilibrium and the existence of Hopf bifurcation of system (1.3). For
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convenience, let x̄1(t) = x1(t) − x∗1, x̄2(t) = x2(t) − x∗2, and ȳ(t) = y(t) − y∗. We have the following
linearized system: 

˙̄x1(t) = a11 x̄1(t) + a12 x̄2(t) + b11 x̄1(t − τ1),
˙̄x2(t) = a21 x̄1(t) + a22 x̄2(t) + a23ȳ(t) + b21 x̄1(t − τ1),
˙̄y(t) = b31 x̄2(t − τ2) + a33ȳ(t) + b32ȳ(t − τ2),

(3.1)

where

a11 = −r1 + σ1x∗2, a12 = a + σ1x∗1, a21 = σ2x∗2, a23 = −
β(1 − m)x∗2

1 + k(1 − m)x∗2
,

a22 = −(r2 + q1ℏ) − 2dx∗2 + σ2x∗1 −
β(1 − m)y∗

[1 + k(1 − m)x∗2]2 , a33 = −(r3 + q2ℏ),

b11 = −b, b21 = b, b31 =
cβ(1 − m)y∗

[1 + k(1 − m)x∗2]2 , b32 =
cβ(1 − m)x∗2

1 + k(1 − m)x∗2
.

Then, the characteristic equation of system (3.1) can be given by

λ3 + p2λ
2 + p1λ + p0+(s2λ

2 + s1λ + s0)e−λτ1 + (u2λ
2 + u1λ + u0)e−λτ2

+ (v1λ + v0)e−λ(τ1+τ2) = 0,
(3.2)

where
p2 = −(a11 + a22 + a33), p1 = a22a33 + a11a33 + a11a22 − a12a21,

p0 = a12a21a33 − a11a22a33, s2 = −b11, s1 = a33b11 + a22b11 − a12b21, u2 = −b32,

s0 = a12a33b21 − a22a33b11, u1 = (a22 + a11)b32 − a23b31, v1 = b11b32,

u0 = a11a23b31 + a12a21b32 − a11a22b32, v0 = a23b11b31 + a12b21b32 − a22b11b32.

In order to study the distribution of the root of Eq (3.2), we will discuss it in the following cases.
Case 1 : τ1 = τ2 = 0
In this case, the Eq (3.2) is reduced to

λ3 + p12λ
2 + p11λ + p10 = 0, (3.3)

where p12 = p2 + s2 + u2, p11 = p1 + s1 + u1 + v1 and p10 = p0 + s0 + u0 + v0. Thus, we know that all
roots of Eq (3.3) have negative real parts if the assumption

(Υ3) : p12 > 0, p10 > 0 and p12 p11 > p10

holds. That is, system (1.3) is locally asymptotically stable at the positive equilibrium E∗(x∗1, x
∗
2, y
∗) if

condition (Υ3) is satisfied.

Remark 3.1. With Remark 2.1, we can use the computer to determine that this condition can be
established under certain circumstances for the condition (Υ3).

Case 2 : τ1 > 0, τ2 = 0
Equation (3.2) is reduced to

λ3 + p22λ
2 + p21λ + p20 + (u22λ

2 + u21λ + u20)e−λτ1 = 0, (3.4)
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where p22 = p2 + u2, p21 = p1 + u1, p20 = p0 + u0, u22 = s2, u21 = s1 + v1, and u20 = s0 + v0. Let
iω1(ω1 > 0) be a root of Eq (3.4). By separating the real and imaginary parts, it follows thatu21ω1sinω1τ1 + (u20 − u22ω

2
1)cosω1τ1 = p22ω

2
1 − p20,

u21ω1cosω1τ1 − (u20 − u22ω
2
1)sinω1τ1 = ω

3
1 − p21ω1.

(3.5)

Adding squares of Eq (3.5), we can get

ω6
1 + e12ω

4
1 + e11ω

2
1 + e10 = 0, (3.6)

where e12 = p2
22 − 2p21 − u2

22, e11 = p2
21 + 2(u20u22 − p20 p22) − u2

21, e10 = p2
20 − u2

20. Let ω2
1 = n1. Then,

Equation (3.6) can be written as

n3
1 + e12n2

1 + e11n1 + e10 = 0. (3.7)

Here, we denote f1(n1) = n3
1 + e12n2

1 + e11n1 + e10. Then, f1(0) = e10, lim
n1→+∞

f1(n1) = +∞, and f
′

1(n1) =

3n2
1 + 2e12n1 + e11.
After discussion about the roots of Eq (3.7) by the method in [41], we have the following conditions:
(Υ4) : e10 ≥ 0, △= e2

12 − 3e11 ≤ 0,
(Υ5) : e10 ≥ 0, △= e2

12 − 3e11 > 0, n∗1 =
−e12+

√
△

3 > 0 and f1(n∗1) ≤ 0,
(Υ6) : e10 < 0.

Lemma 3.1. For the polynomial Eq (3.7), we have the following results. If (Υ4) holds, then Eq (3.7)
has no positive root. If (Υ5) or (Υ6) holds, then Eq (3.7) has at least one positive root.

Without loss of generality, we assume that Eq (3.7) has three positive roots defined as n11, n12, and
n13. Then, Equation (3.6) has three positive roots ω1k =

√
n1k, k = 1, 2, 3. According to (3.5), if

n1k > 0, then the corresponding critical value of time delay τ( j)
1k is

τ
( j)
1k =

1
ω1k

arccos
{

A14ω
4
1k + A12ω

2
1k + A10

B14ω
4
1k + B12ω

2
1k + B10

}
+

2π j
ω1k
, k = 1, 2, 3; j = 0, 1, 2, . . . ,

where

A14 = u21 − p22u22, A12 = p22u20 + p20u22 − p21u21, A10 = −p20u20,

B14 = u2
22, B12 = u2

21 − 2u20u22, B10 = u2
20.

Therefore, ±iω1k is a pair of purely imaginary roots of Eq (3.4) with τ1 = τ
( j)
1k . And, let τ10 =

mink∈{1,2,3}

{
τ(0)

1k

}
, ω10 = ω1k0 .

Lemma 3.2. Suppose that (Υ7) : f
′

1(ω2
10) , 0. Then, the following transversality condition

sign
{

d(Reλ)
dτ1

∣∣∣∣
λ=iω10

}
, 0 holds.

Proof. Differentiating Eq (3.4) with respect to τ1, we obtain(
dλ
dτ1

)−1

=
3λ2 + 2p22λ + p21

λe−λτ1(u22λ2 + u21λ + u20)
+

2λu22 + u21

λ(u22λ2 + u21λ + u20)
−
τ1

λ
. (3.8)
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From Eq (3.4), we have

e−λτ1 = −
λ3 + p22λ

2 + p21λ + p20

u22λ2 + u21λ + u20
, (3.9)

and then, by substituting Eq (3.9) into Eq (3.8), we can get(
dλ
dτ1

)−1

= −
3λ2 + 2p22λ + p21

λ(λ3 + p22λ2 + p21λ + p20)
+

2λu22 + u21

λ(u22λ2 + u21λ + u20)
−
τ1

λ
.

Thus, we have

Re
(

dλ
dτ1

)−1

λ=iω10

= Re
(
−

3λ2 + 2p22λ + p21

λ(λ3 + p22λ2 + p21λ + p20)

)
λ=iω10

+ Re
(

2λu22 + u21

λ(u22λ2 + u21λ + u20)

)
λ=iω10

=
3ω4

10 + 2(p2
22 − p21)ω2

10 + p2
21 − 2p20 p22

(ω3
10 − p21ω10)2 + (p20 − p22ω

2
10)2

−
2u2

22ω
2
10 + u2

21 − 2u20u22

(u22ω
2
10 − u20)2 + u2

21ω
2
10

.

(3.10)

From Eq (3.10), we obtain that

sign
{

d(Reλ)
dτ1

}
λ=iω10

= sign

Re
(

dλ
dτ1

)−1

λ=iω10

= sign
{

3(ω2
10)2 + 2(p2

22 − p21 − u2
22)ω2

10 + e11

u2
21ω

2
10 + (u20 − u22ω

2
10)2

}
, 0.

It follows that sign
{

d(Reλ)
dτ1

∣∣∣∣
λ=iω10

}
, 0, and the proof is complete. □

By Lemmas 3.1 and 3.2 and the Hopf bifurcation theorem [42, 43], we have the following results.

Theorem 3.1. For system (1.3) with τ1 > 0, τ2 = 0, the following results are true.
1) If (Υ4) holds, then the positive equilibrium E∗(x∗1, x

∗
2, y
∗) is locally asymptotically stable for all

τ1 ≥ 0.
2) If (Υ5) or (Υ6) and (Υ7) hold, then the positive equilibrium E∗(x∗1, x

∗
2, y
∗) is locally asymptotically

stable for all τ1 ∈ [0, τ10) and unstable for τ1 > τ10. Furthermore, system (1.3) undergoes a Hopf
bifurcation at the positive equilibrium E∗(x∗1, x

∗
2, y
∗) when τ1 = τ10.

Case 3 : τ1 = 0, τ2 > 0
Equation (3.2) is reduced to

λ3 + p32λ
2 + p31λ + p30 + (u32λ

2 + u31λ + u30)e−λτ2 = 0, (3.11)

where p32 = p2 + s2, p31 = p1 + s1, p30 = p0 + s0, u32 = u2, u31 = u1 + v1, and u30 = u0 + v0. Let
iω2(ω2 > 0) be a root of Eq (3.11). By separating real and imaginary parts, it follows thatu31ω2sinω2τ2 + (u30 − u32ω

2
2)cosω2τ2 = p32ω

2
2 − p30,

u31ω2cosω2τ2 − (u30 − u32ω
2
2)sinω2τ2 = ω

3
2 − p31ω2.

(3.12)
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Adding the sum of squares of Eq (3.12), we can get

ω6
2 + e22ω

4
2 + e21ω

2
2 + e20 = 0, (3.13)

where e22 = p2
32 − 2p31 − u2

32, e21 = p2
31 + 2(u30u32 − p30 p32) − u2

31 and e20 = p2
30 − u2

30. Let ω2
2 = n2.

Then, Equation (3.13) can be written as

n3
2 + e22n2

2 + e21n2 + e20 = 0. (3.14)

Denote f2(n2) = n3
2 + e22n2

2 + e21n2 + e20. Then, f2(0) = e20, lim
n2→+∞

f2(n2) = +∞, and f
′

2(n2) = 3n2
2 +

2e22n2 + e21.

After discussion about the roots of Eq (3.14) by the method in [41], we have the following assump-
tions:

(Υ8) : e20 ≥ 0, △= e2
22 − 3e21 ≤ 0,

(Υ9) : e20 ≥ 0, △= e2
22 − 3e21 > 0, n∗2 =

−e22+
√
△

3 > 0 and f2(n∗2) ≤ 0,
(Υ10) : e20 < 0.

Lemma 3.3. For the polynomial Eq (3.14), we have the following results. If (Υ8) holds, then Eq (3.14)
has no positive root. If (Υ9) or (Υ10) holds, then Eq (3.14) has at least one positive root.

Generally, we assume that Eq (3.14) has positive roots. Without loss of generality, we assume that
Eq (3.14) has three positive roots defined as n21, n22, and n23. Then, Equation (3.13) has three positive
roots ω2k =

√
n2k, k = 1, 2, 3. According to (3.12), if n2k > 0, the corresponding critical value of time

delay τ( j)
2k is

τ
( j)
2k =

1
ω2k

arccos
{

A24ω
4
2k + A22ω

2
2k + A20

B24ω
4
2k + B22ω

2
2k + B20

}
+

2π j
ω2k
, k = 1, 2, 3; j = 0, 1, 2, . . . ,

where

A24 = u31 − p32u32, A22 = p32u30 + p30u32 − p31u31, A20 = −p30u30,

B24 = u2
32, B22 = u2

31 − 2u30u32, B20 = u2
30.

Therefore, ±iω2k is a pair of purely imaginary roots of Eq (3.11) with τ2 = τ
( j)
2k . And, let τ20 =

mink∈{1,2,3}

{
τ(0)

2k

}
, ω20 = ω2k0 .

Lemma 3.4. Suppose that (Υ11) : f
′

2(ω2
20) , 0. Then, the following transversality condition

sign
{

d(Reλ)
dτ2

∣∣∣∣
λ=iω20

}
, 0 holds.

Proof. Differentiating Eq (3.11) with respect to τ2, we have

Re
(

dλ
dτ2

)−1

=
3ω4

20 + 2(p2
32 − p31)ω2

20 + p2
31 − 2p30 p32

(ω3
20 − p31ω20)2 + (p30 − p32ω

2
20)2

−
2u2

32ω
2
20 + u2

31 − 2u30u32

(u32ω
2
20 − u30)2 + u2

31ω
2
20

.

Then, we have

sign
{

d(Reλ)
dτ2

}
λ=iω20

= sign

Re
(

dλ
dτ2

)−1

λ=iω20

= sign
{

3(ω2
20)2 + 2(p2

32 − p31 − u2
32)ω2

20 + e21

u2
31ω

2
20 + (u30 − u32ω

2
20)2

}
, 0.
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It follows that sign
{

d(Reλ)
dτ2

∣∣∣∣
λ=iω20

}
, 0 if (Υ11) holds. The proof is complete. □

By Lemmas 3.3 and 3.4 and the Hopf bifurcation theorem [42, 43], we have the following results.

Theorem 3.2. For system (1.3) with τ1 = 0, τ2 > 0, the following results are true.
1) If (Υ8) holds, then the positive equilibrium E∗(x∗1, x

∗
2, y
∗) is locally asymptotically stable for all

τ2 ≥ 0.
2) If (Υ9) or (Υ10) and (Υ11) hold, then the positive equilibrium E∗(x∗1, x

∗
2, y
∗) is locally asymptoti-

cally stable for all τ2 ∈ [0, τ20), but unstable for τ2 > τ20. Furthermore, system (1.3) undergoes a Hopf
bifurcation at the positive equilibrium E∗(x∗1, x

∗
2, y
∗) when τ2 = τ20.

Case 4 : τ1 = τ2 = τ , 0
Equation (3.2) is reduced to

(λ3 + p42λ
2 + p41λ + p40)eλτ + u42λ

2 + u41λ + u40 + (s41λ + s40)e−λτ = 0, (3.15)

where p42 = p2, p41 = p1, p40 = p0, u42 = s2 + u2, u41 = s1 + u1, u40 = s0 + u0, s41 = v1, and s40 = v0.
Let iω(ω > 0) be a root of Eq (3.15). By separating the real and imaginary parts, we can getE41sinωτ + E42cosωτ = E45,

E43cosωτ + E44sinωτ = E46,

where

E41 = ω
3 − p41ω + s41ω, E42 = p40 + s40 − p42ω

2, E45 = u42ω
2 − u40,

E43 = −ω
3 + p41ω + s41ω, E44 = p40 − s40 − p42ω

2, E46 = −u41ω.

It follows that 
sinωτ =

A45ω
5 + A43ω

3 + A41ω

ω6 + B44ω4 + B42ω2 + B40
,

cosωτ =
A44ω

4 + A42ω
2 + A40

ω6 + B44ω4 + B42ω2 + B40
,

(3.16)

where

A45 = u42, A44 = u41 − u42 p42, A43 = u41 p42 − u40 − u42(s41 + p41),
A42 = u42(p40 − s40) + u40 p42 + u41(s41 − p41), A40 = u40(s40 − p40), B44 = p2

42 − 2p41,

A41 = u40(p41 + s41) − u41(p40 + s40), B42 = p2
41 − 2p42 p40 − s2

41, B40 = p2
40 − s2

40.

From Eq (3.16), we can get

ω12 + e35ω
10 + e34ω

8 + e33ω
6 + e32ω

4 + e31ω
2 + e30 = 0, (3.17)

where

e35 = 2B44 − A2
45, e30 = B2

40 − A2
40, e34 = B2

44 + 2B42 − A2
44 − 2A45A43,

e33 = 2B40 + 2B44B42 − A2
43 − 2(A41A45 + A42A44), e31 = 2B40B42 − A2

41 − 2A40A42,

Electronic Research Archive Volume 33, Issue 2, 995–1036.



1009

e32 = B2
42 + 2B40B44 − A2

42 − 2(A41A43 + A40A44).

Let ω2 = n3. Then, Equation (3.17) can be written as

n6
3 + e35n5

3 + e34n4
3 + e33n3

3 + e32n2
3 + e31n3 + e30 = 0.

Without loss of generality, we assume that it has six positive roots and define them as n3k, k =
1, 2, . . . , 6. Then, Equation (3.17) has six positive roots ωk =

√
n3k,k = 1, 2, . . . , 6. According to

(3.16), if n3k > 0, the corresponding critical value of time delay τ( j)
k is

τ
( j)
k =

1
ωk

arccos
{

A44ω
4
k + A42ω

2
k + A40

ω6
k + B44ω

4
k + B42ω

2
k + B40

}
+

2π j
ωk
, k = 1, 2, . . . , 6, j = 0, 1, 2, . . . .

Therefore, ±iωk is a pair of purely imaginary roots of Eq (3.15) with τ = τ( j)
k . And, let τ0 = mink∈{1,2,...,6}{

τ(0)
k

}
, ω0 = ωk0 .

Lemma 3.5. Suppose that (Υ12) : A1C1 + B1D1 , 0. Then, the following transversality condition
d(Reλ)

dτ

∣∣∣∣
λ=iω0

, 0 holds.

Proof. Differentiating Eq (3.15) with respect to τ, we obtain

Re
(
dλ
dτ

)−1

λ=iω0

= Re
(

A1 + B1i
C1 + D1i

)
=

A1C1 + B1D1

C2
1 + D2

1

,

where

A1 = (p41 − 3ω2
0)cosω0τ0 − 2p42ω0sinω0τ0 + s41cosω0τ0 + u41,

B1 = (p41 − 3ω2
0)sinω0τ0 + 2p42ω0sinω0τ0 − s41sinω0τ0 + 2u42ω0,

C1 = (p41 − s41 − ω
2
0)ω2

0cosω0τ0 + (s40 + p40 − p42ω
2
0)ω0sinω0τ0,

D1 = (p41 + s41 − ω
2
0)ω2

0sinω0τ0 + (s40 − p40 + p42ω
2
0)ω0cosω0τ0.

Noting that
{

d(Reλ)
dτ

}
λ=iω0

and
{
Re( dλ

dτ )
−1

}
λ=iω0

have the same sign, we get

sign
{

d(Reλ)
dτ

}
λ=iω0

= sign
{

A1C1 + B1D1

C2
1 + D2

1

}
, 0.

If condition (Υ12) holds, then d(Reλ)
dτ

∣∣∣∣
λ=iω0

, 0. This completes the proof. □

By applying Lemma 3.5 to Eq (3.15), we obtain the existence of Hopf bifurcation as stated in the
following theorem.

Theorem 3.3. For system (1.3) with τ1 = τ2 = τ , 0, if (Υ12) holds, then the positive equilibrium
E∗(x∗1, x

∗
2, y
∗) is locally asymptotically stable for all τ ∈ [0, τ0), but unstable for τ > τ0. Furthermore,

system (1.3) undergoes a Hopf bifurcation at the positive equilibrium E∗(x∗1, x
∗
2, y
∗) when τ = τ0.
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Case 5 : τ1 > 0, τ2 ∈ [0, τ20) and τ1 , τ2.

We consider Eq (3.2) with τ2 in its stable interval, and taking τ1 as bifurcation parameter. Let
iω1∗(ω1∗ > 0) be the root of Eq (3.2). Then, we obtainE51sinω1∗τ1 + E52cosω1∗τ1 = E53,

E51cosω1∗τ1 − E52sinω1∗τ1 = E54,
(3.18)

where

E51 = s1ω1∗ + v1ω1∗cosω1∗τ2 − v0sinω1∗τ2, E52 = s0 − s2ω
2
1∗ + v1ω1∗sinω1∗τ2 + v0cosω1∗τ2,

E53 = p2ω
2
1∗ − p0 + (u2ω

2
1∗ − u0)cosω1∗τ2 − u1ω1∗sinω1∗τ2,

E54 = ω
3
1∗ − p1ω1∗ − (u2ω

2
1∗ − u0)sinω1∗τ2 − u1ω1∗cosω1∗τ2.

From Eq (3.18), we have

ω6
1∗ + e52ω

4
1∗ + e51ω

2
1∗ + e50 + (c54ω

4
1∗ + c52ω

2
1∗ + c50)cosω1∗τ2

+ (c55ω
5
1∗ + c53ω

3
1∗ + c51ω1∗)sinω1∗τ2 = 0,

(3.19)

where

e52 = p2
2 − s2

2 − 2p1 + u2
2, e51 = p2

1 + u2
1 − s2

1 − v2
1 + 2(s0s2 − p0 p2 − u0u2), e50 = p2

0 + u2
0 − s2

0 − v2
0,

c55 = −2u2, c52 = 2(u1 p1 − u0 p0 + s0v0 − u2 p0 − s1v1), c54 = 2(u2s2 − u1),
c50 = 2(p0u0 − s0v0), c53 = 2(u0 − u1 p2 + u2 p1 + s2v1), c51 = 2(u1 p0 − u0 p1 + s1v0 − s0v1).

In order to reach some main conclusions, we give the following assumption.
(Υ13) : Eq (3.19) has at least a finite positive root.
We denote the positive roots of Eq (3.19) by ωi

1∗, (i = 1, 2, . . . , 6). For every ωi
1∗(i = 1, 2, . . . , 6), the

corresponding critical value of time delay τ( j)
1i , j = 1, 2, 3 . . . , is

τ
( j)
1i =

1
ω1∗

arccos
{

E51E54 + E52E53

E2
51 + E2

52

}
ω1∗=ω

i
1∗

+
2π j
ω1∗
, i = 1, 2, . . . , 6; j = 0, 1, 2 . . . .

Let τ
′

10 = min
{
τ(0)

1i |i = 1, 2, . . . ; j = 0, 1, 2 . . .
}

and ω
′

10 be the corresponding root of Eq (3.19) with τ
′

10.

Lemma 3.6. Suppose that (Υ14) : A2C2 + B2D2 , 0. Then, the transversality condition d(Reλ)
dτ1

∣∣∣∣
λ=iω′10

, 0

holds.

Proof. Differentiating Eq (3.2) with respect to τ1, we can get

Re
(

dλ
dτ1

)−1

λ=iω′10

= Re
(

A2 + B2i
C2 + D2i

)
=

A2C2 + B2D2

C2
2 + D2

2

,

where

A2 = p1 − 3ω
′2
10 + 2s2ω

′

10sinω
′

10τ
′

10 + s1cosω
′

10τ
′

10 + (−u2ω
′

10τ2 + 2u2ω
′

10

Electronic Research Archive Volume 33, Issue 2, 995–1036.



1011

+ v1sinω
′

10τ
′

10)sinω
′

10τ2 + (u2ω
′2
10τ2 + u1 − u0τ2 + v1cosω

′

10τ
′

10)cosω
′

10τ2,

B2 = 2p2ω
′

10 + 2s2ω
′

10cosω
′

10τ
′

10 − s1sinω
′

10τ
′

10(−u1 + u0τ2 − u2ω
′2
10τ2

− v1cosω
′

10τ
′

10)sinω
′

10τ2 + (2u2ω
′

10 − u1ω
′

10τ2 − v1sinω
′

10τ
′

10)cosω
′

10τ2,

C2 = (s0ω
′

10 − s2ω
′3
10)sinω

′

10τ
′

10 − s1ω
′2
10cosω

′

10τ
′

10 + (v0ω
′

10cosω
′

10τ
′

10

+ v1ω
′2
10sinω

′

10τ
′

10)sinω
′

10τ2 + (v0ω
′

10sinω
′

10τ
′

10 − v1ω
′2
10cosω

′

10τ
′

10)cosω
′

10τ2,

D2 = (s0ω
′

10 − s2ω
′3
10)cosω

′

10τ
′

10 + s1ω
′2
10sinω

′

10τ
′

10 + (−v0ω
′

10sinω
′

10τ
′

10

+ v1ω
′2
10cosω

′

10τ
′

10)sinω
′

10τ2 + (v0ω
′

10cosω
′

10τ
′

10 + v1ω
′2
10sinω

′

10τ
′

10)cosω
′

10τ2.

Noting that
{

d(Reλ)
dτ1

}
λ=iω′10

and
{
Re( dλ

dτ1
)−1

}
λ=iω′10

have the same sign, we have

sign
{

d(Reλ)
dτ1

}
λ=iω′10

= sign
{

A2C2 + B2D2

C2
2 + D2

2

}
, 0.

If condition (Υ14) holds, then we obtain sign
{

d(Reλ)
dτ1

∣∣∣∣
λ=iω′10

}
, 0. This completes the proof. □

Through the above analysis, we have the following theorem.

Theorem 3.4. For system (1.3) with τ1 > 0, τ2 ∈ [0, τ20), and τ1 , τ2, if (Υ13) and (Υ14) hold, then
the positive equilibrium E∗(x∗1, x

∗
2, y
∗) is locally asymptotically stable for all τ1 ∈ [0, τ

′

10), but unstable
for τ1 > τ

′

10. Furthermore, system (1.3) undergoes a Hopf bifurcation at the positive equilibrium
E∗(x∗1, x

∗
2, y
∗) when τ1 = τ

′

10.

Case 6 : τ2 > 0, τ1 ∈ [0, τ10), and τ1 , τ2.

We consider Eq (4.2) with τ1 in its stable interval, and taking τ2 is regarded as the bifurcation
parameter. Let iω2∗(ω2∗ > 0) be the root of Eq (4.2). Then, we obtainE61sinω2∗τ2 + E62cosω2∗τ2 = E63,

E61cosω2∗τ2 − E62sinω2∗τ2 = E64,
(3.20)

where

E61 = u1ω2∗ + v1ω2∗cosω2∗τ1 − v0sinω2∗τ1,

E62 = u0 − u2ω
2
2∗ + v1ω2∗sinω2∗τ1 + v0cosω2∗τ1,

E63 = p2ω
2
2∗ − p0 + (s2ω

2
2∗ − s0)cosω2∗τ1 − s1ω2∗sinω2∗τ1,

E64 = ω
3
2∗ − p1ω2∗ − (s2ω

2
2∗ − s0)sinω2∗τ1 − s1ω2∗cosω2∗τ1.

From Eq (3.20), we have

ω6
2∗ + e62ω

4
2∗ + e61ω

2
2∗ + e60 + (c64ω

4
2∗ + c62ω

2
2∗ + c60)cosω2∗τ1

+ (c65ω
5
2∗ + c63ω

3
2∗ + c61ω2∗)sinω2∗τ1 = 0,

(3.21)

where

e62 = p2
2 − u2

2 − 2p1 + s2
2, e61 = p2

1 + s2
1 − u2

1 − v2
1 + 2(u0u2 − p0 p2 − s0s2), e60 = p2

0 + s2
0 − u2

0 − v2
0,
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c64 = 2(s2u2 − s1), c62 = 2(s1 p1 − s0 p0 + u0v0 − s2 p0 − u1v1), c60 = 2(p0s0 − u0v0),
c65 = −2s2, c63 = 2(s0 − s1 p2 + s2 p1 + u2v1), c61 = 2(s1 p0 − s0 p1 + u1v0 − u0v1).

In order to obtain some main conclusions, we give the following assumption.
(Υ15) : Eq (3.21) has at least a finite positive root.
We denote the positive roots of Eq (3.21) by ωi

2∗, (i = 1, 2, . . . , 6). For every ωi
2∗(i = 1, 2, . . . , 6), the

corresponding critical value of time delay τ( j)
2i , j = 1, 2, 3 . . . , is

τ
( j)
2i =

1
ω2∗

arccos
{

E61E64 + E62E63

E2
61 + E2

62

}
ω2∗=ω

i
2∗

+
2π j
ω2∗
, i = 1, 2, . . . , 6; j = 0, 1, 2 . . . .

Let τ
′

20 = min{τ(0)
2i |i = 1, 2, . . . ; j = 0, 1, 2 . . .} and ω

′

20 be the corresponding root of Eq (3.21) with τ
′

20.

Lemma 3.7. Suppose that (Υ16) : A3C3 + B3D3 , 0. Then, the following transversality condition
d(Reλ)

dτ2

∣∣∣∣
λ=iω′20

, 0 holds.

Proof. Differentiating Eq (3.2) with respect to τ2, we can get

Re
(

dλ
dτ2

)−1

λ=iω′20

= Re
(

A3 + B3i
C3 + D3i

)
=

A3C3 + B3D3

C2
3 + D2

3

,

where

A3 = p1 − 3ω
′2
20 + 2u2ω

′

20sinω
′

20τ
′

20 + u1cosω
′

20τ
′

20 + (−s2ω
′

20τ1 + 2s2ω
′

20 + v1sinω
′

20τ
′

20)sinω
′

20τ1

+ (s2ω
′2
20τ1 + s1 − s0τ1 + v1cosω

′

20τ
′

20)cosω
′

20τ1,

B3 = 2p2ω
′

20 − u1sinω
′

20τ
′

20 + 2u2ω
′

20cosω
′

20τ
′

20 + (s0τ1 − s1 − s2ω
′2
20τ1 − v1cosω

′

20τ
′

20)sinω
′

20τ1

+ (2s2ω
′

20 − s1ω
′

20τ1 − v1sinω
′

20τ
′

20)cosω
′

20τ1,

C3 = (u0ω
′

20 − u2ω
′3
20)sinω

′

20τ
′

20 − u1ω
′2
20cosω

′

20τ
′

20 + (v0ω
′

20cosω
′

20τ
′

20 + v1ω
′2
20sinω

′

20τ
′

20)sinω
′

20τ1

+ (v0ω
′

20sinω
′

20τ
′

20 − v1ω
′2
20cosω

′

20τ
′

20)cosω
′

20τ1,

D3 = (u0ω
′

20 − u2ω
′3
20)cosω

′

20τ
′

20 + u1ω
′2
20sinω

′

20τ
′

20 + (−v0ω
′

20sinω
′

20τ
′

20 + v1ω
′2
20cosω

′

20τ
′

20)sinω
′

20τ1

+ (v0ω
′

20cosω
′

20τ
′

20 + v1ω
′2
20sinω

′

20τ
′

20)cosω
′

20τ1.

Noting that
{

d(Reλ)
dτ2

}
λ=iω′20

and
{
Re

(
dλ
dτ2

)−1
}
λ=iω′20

have the same sign, we get

sign
{

d(Reλ)
dτ2

}
λ=iω′20

= sign
{

A3C3 + B3D3

C2
3 + D2

3

}
, 0.

If condition (Υ16) holds, then d(Reλ)
dτ2

∣∣∣∣
λ=iω′20

, 0. This completes the proof. □

Through the above analysis, we have the following theorem.

Theorem 3.5. For system (1.3) with τ2 > 0, τ1 ∈ [0, τ10) and τ1 , τ2, if (Υ15) and (Υ16) hold, then the
positive equilibrium E∗(x∗1, x

∗
2, y
∗) is asymptotically stable for all τ2 ∈ [0, τ

′

20), but unstable for τ2 > τ
′

20.
Furthermore, system (1.3) undergoes a Hopf bifurcation at the positive equilibrium E∗(x∗1, x

∗
2, y
∗) when

τ2 = τ
′

20.
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3.2. Direction and stability of Hopf bifurcation

In the previous subsection, we analyzed the various cases in which Hopf bifurcation occurs in
system (1.3) at τ1 and τ2. In this subsection, we focus on determining the direction of the Hopf
bifurcation and the stability of the bifurcating periodic solutions of system (1.3). To achieve this, we
employ the normal form theory and center manifold theorem as outlined in [42]. For the analysis in
this subsection, we assume that system (1.3) undergoes a Hopf bifurcation at τ1 = τ

′

10, τ2 ∈ [0, τ20).
Without loss of generality, it is assumed that τ

′

10 > τ
′

2. Let τ1 = τ
′

10 + µ, µ ∈ R, t = sτ1, x1(sτ1) =
x̂1(s), x2(sτ1) = x̂2(s), and y(sτ1) = ŷ(s). We denote x̂1(s) = x1(s), x̂2(s) = x2(s), and ŷ(s) = y(s).
Then, system (2.1) can be written as a functional differential equation (FDE) in C = C([−1, 0],R3) :

u̇(t) = Lµ(ut) + F (µ, ut), (3.22)

where u(t) = (x1(t), x2(t), y(t))T ∈ C, ut(θ) = u(t + θ) = (x1(t + θ), x2(t + θ), y(t + θ))T ∈ C, and
Lµ : C → R3, F : R ×C → R3 are given by

Lµ(ϕ) = (τ
′

10 + µ)
{
Ãϕ(0) + B̃ϕ

− τ′2
τ
′

10

 + C̃ϕ(−1)
}

and
F (µ, ϕ) = (τ

′

10 + µ)(F1,F2,F3)T,

where
ϕ(θ) = (ϕ1(θ), ϕ2(θ), ϕ3(θ))T ∈ C,

Ã =


a11 a12 0
a21 a22 a23

0 0 a33

 , B̃ =


0 0 0
0 0 0
0 b31 b32

 , C̃ =


b11 0 0
b21 0 0
0 0 0

 ,
F1 = k11ϕ1(0)ϕ2(0),
F2 = k21ϕ

2
2(0) + k22ϕ2(0)ϕ3(0),

F3 = k31ϕ2

− τ′2
τ
′

10

 ϕ3

− τ′2
τ
′

10


with

k11 = σ1, k21 = −2d +
kβ(1 − m)2y

(1 + k(1 − m)x2)3 , k22 =
−β(1 − m)

(1 + k(1 − m)x2)2 , k31 =
cβ(1 − m)

(1 + k(1 − m)x2)2 .

By the Riesz representation theorem, there exists a 3 × 3 matrix function η(θ, µ) for θ ∈ [−1, 0) such
that

Lµ(ϕ) =
∫ 0

−1
dη(θ, µ)ϕ(θ), ϕ ∈ C([−1, 0],R3). (3.23)

In fact, we can choose

η(θ, µ) =



(τ
′

10 + µ)(Ã + B̃ + C̃), θ = 0

(τ
′

10 + µ)(B̃ + C̃), θ ∈ (− τ
′

2

τ
′

10
, 0)

(τ
′

10 + µ)C̃, θ ∈ (−1,− τ
′

2

τ
′

10
)

0. θ = −1
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For ϕ ∈ C1([−1, 0],R3), we define

A(µ)ϕ =

 dϕ(θ)
dθ , − 1 ≤ θ < 0∫ 0

−1
dη(µ, s)ϕ(s), θ = 0

and

Rµ(ϕ) =
{

0, − 1 ≤ θ < 0
F (µ, ϕ). θ = 0

Then, system (3.22) can be rewritten as

u̇t = A(µ)ut + R(µ)ut. (3.24)

For φ ∈ C1([−1, 0], (R3)∗), where (R3)∗ is the three-dimensional space of row vectors, we further define
the adjoint operator A∗ of A(0):

A∗φ(s) =

 −dφ(s)
ds , 0 < s ≤ 1∫ 0

−1
dηT(t, 0)φ(−t). s = 0

For ϕ ∈ C1([−1, 0],R3) and φ ∈ C1([−1, 0], (R3)∗), we define the bilinear form

⟨φ(s), ϕ(s)⟩ = φ̄(0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0
φ̄(ξ − θ)dη(θ)ϕ(ξ)dξ, (3.25)

where η(θ) = η(θ, 0), A = A(0), and A∗ are adjoint operators. By the discussion in Section 4, we know
that ±iω

′

10τ
′

10 are eigenvalues of A(0). Thus, they are also the eigenvalues of A∗.
We suppose that γ(θ) = (1, γ2, γ3)Teiω

′

10τ
′

10θ is the eigenvector of A(0) corresponding to the eigenvalue
iω
′

10τ
′

10, and γ∗(s) = D(1, γ∗2, γ
∗
3)e−iω

′

10τ
′

10 s is the eigenvector of A∗ corresponding to the eigenvalue
−iω

′

10τ
′

10. By computation, we obtain

γ2 =
iω
′

10 − a11

a12
, γ3 =

(iω
′

10 − a22)(iω
′

10 − a11) − a12a21

a12a23
,

γ∗2 = −
iω
′

10 + a11 + b11eiω
′

10τ
′

10

a21 + b21eiω′10τ
′

10

, γ∗3 =
a23(iω

′

10 + a11 + b11eiω
′

10τ
′

10)

(a21 + b21eiω′10τ
′

10)(iω′10 + a33 + b33eiω′10τ
′

2)
.

Then, from Eq (3.25), we get

⟨γ∗(s), γ(θ)⟩ = γ̄∗(0)γ(0) −
∫ 0

−1

∫ θ

ξ=0
γ̄∗dη(θ)γ(ξ)dξ

= D̄[γ̄∗γ −
∫ 0

−1

∫ θ

ξ=0
γ̄∗dη(θ)γdξ] = D̄[γ̄∗γ + τ

′

10γ̄
∗Cγ + τ

′

2γ̄
∗B̃γ]

= D̄
[
1 + γ̄∗2γ2 + γ̄

∗
3γ3 + τ

′

10e−iω
′

10τ
′

10(b11 + b21γ̄
∗
2) + τ

′

2e−iω
′

10τ
′

2(b31γ̄
∗
3γ2 + b32γ̄

∗
3γ3)

]
.

Therefore, we choose

D̄ =
[
1 + γ̄∗2γ2 + γ̄

∗
3γ3 + τ

′

10e−iω
′

10τ
′

10(b11 + b21γ̄
∗
2) + τ

′

2e−iω
′

10τ
′

2(b31γ̄
∗
3γ2 + b32γ̄

∗
3γ3)

]−1
,
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such that ⟨γ∗(s), γ(θ)⟩ = 1, ⟨γ∗(s), γ̄(θ)⟩ = 0.
Next, let ut be the solution of Eq (3.24) when µ = 0. We define

z(t) = ⟨γ∗, ut⟩,W(t, θ) = ut − zγ − z̄γ̄ = ut − 2Rez(t)γ(θ). (3.26)

On the center manifold C0, we come to the conclusion that

W(t, θ) = W(z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02

z̄2

2
+ · · · , (3.27)

where z and z̄ are local coordinates for C0 in the direction of γ∗ and γ̄∗.
Note that W is real if ut is real, and we only consider the real solutions. From Eq (3.26), we get

⟨γ∗,W⟩ = ⟨γ∗, ut − zγ − z̄γ̄⟩ = ⟨γ∗, ut⟩ − ⟨γ
∗, γ⟩z − ⟨γ∗, γ̄⟩z̄.

For a solution ut ∈ C0 of Eqs (3.23)–(3.25) and µ = 0, we have

ż(t) = ⟨γ∗, u̇(t)⟩ = ⟨γ∗, A(0)ut + R(0)ut⟩ = ⟨A∗(0)γ∗, ut⟩ + γ̄
∗(θ)F (0, ut)

:= iω0z(t) + γ̄∗F0(z, z̄).
(3.28)

Moreover, the above equation can be rewritten as follows:

ż(t) = iω0z(t) + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2
+ · · · . (3.29)

It follows from Eqs (3.26) and (3.27) that

ut(θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ γTeiω

′

10θz + γ∗Teiω
′

10θz̄ + · · · . (3.30)

By Eqs (3.29) and (3.30), it derives that

g(z, z̄) = γ̄∗(0)F (0)
[
W(z, z̄, 0) + 2Re(z(t)γ(θ))

]
= D̄

{
k11ϕ1(0)ϕ2(0) + γ̄∗2

[
k21ϕ

2
2(0) + k21ϕ2(0)ϕ3(0)

]
+ γ̄∗3

[
k31ϕ2(−

τ
′

2

τ
′

10

)ϕ3(−
τ
′

2

τ
′

10

)
]}

= D̄
{
k11

[
W (1)

20 (0)
z2

2
+W (1)

11 (0)zz̄ +W (1)
02 (0)

z̄2

2
+ z + z̄

][
W (2)

20 (0)
z2

2

+W (2)
11 (0)zz̄ +W (2)

02 (0)
z̄2

2
+ γ2z + γ̄2z̄

]
+ k21γ̄

∗
2
[
W (2)

20 (0)
z2

2
+W (2)

11 (0)zz̄

+W (2)
02 (0)

z̄2

2
+ γ2z + γ̄2z̄

][
W (2)

20 (0)
z2

2
+W (2)

11 (0)zz̄ +W (2)
02 (0)

z̄2

2
+ γ2z + γ̄2z̄

]
+ k22γ̄

∗
2
[
W (2)

20 (0)
z2

2
+W (2)

11 (0)zz̄ +W (2)
02 (0)

z̄2

2
+ γ2z + γ̄2z̄

][
W (3)

20 (0)
z2

2

+W (3)
11 (0)zz̄ +W (3)

02 (0)
z̄2

2
+ γ3z + γ̄3z̄

]
+ k31γ̄

∗
3 ·

[
W (2)

20 (−
τ
′

2

τ
′

10

)
z2

2
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+W (2)
11 (−

τ
′

2

τ
′

10

)zz̄ +W (2)
02 (−

τ
′

2

τ
′

10

)
z̄2

2
+ (γ2z + γ̄2z̄)e−iω

′

10τ
′

2
]

·
[
W (3)

20 (−
τ
′

2

τ
′

10

)
z2

2
+W (3)

11 (−
τ
′

2

τ
′

10

)zz̄ +W (3)
02 (−

τ
′

2

τ
′

10

)
z̄2

2
+ (γ3z + γ̄3z̄)e−iω

′

10τ
′

2
]}
.

Then, from Eq (3.29) and the above equation, we obtain the following relevant parameters, which help
determine the direction and stability of Hopf bifurcation:

g20 = 2D̄τ
′

10
[
k11γ2 + γ̄

∗
2(k21γ

2
2 + k22γ2γ3) + γ̄∗3(k31γ2γ3e−2iω

′

10τ
′

2)
]
,

g11 = D̄τ
′

10
[
k11(γ̄2 + γ2) + γ̄∗2(2k21γ2γ̄2 + k22(γ2γ̄3 + γ̄2γ3))

]
+ D̄τ

′

10
[
γ̄∗3(k31γ2γ̄3e−2iω

′

10τ
′

2 + k31γ̄2γ3e−2iω
′

10τ
′

2)
]
,

g02 = 2D̄τ
′

10
[
k11γ̄2 + γ̄

∗
2(k21γ̄

2
2 + k22γ̄2γ̄3) + γ̄∗3(k31γ̄2γ̄3e−2iω

′

10τ
′

2)
]
,

g21 = 2D̄τ
′

10

{
k11(

1
2

W (1)
20 (0)γ̄2 +W (1)

11 (0)γ2 +
1
2

W (2)
20 (0) +W (2)

11 (0))

+ k21γ̄
∗
2(

1
2

W (2)
20 (0)γ̄2 +W (2)

11 (0)γ2 +
1
2

W (2)
20 (0)γ̄2 +W (2)

11 (0)γ2)

+ k22γ̄
∗
2(

1
2

W (2)
20 (0)γ̄3 +W (2)

11 (0)γ3 +
1
2

W (3)
20 (0)γ̄2 +W (3)

11 (0)γ2)

+ k31γ̄
∗
3e−iω

′

10τ
′

2
[1
2

W (2)
20 (−

τ
′

2

τ
′

10

)γ̄3 +W (2)
11 (−

τ
′

2

τ
′

10

)γ3

+
1
2

W (3)
20 (−

τ
′

2

τ
′

10

)γ̄2 +W (3)
11 (−

τ
′

2

τ
′

10

)γ2
]}
,

with

W20(θ) =
ig20

ω
′

10τ
′

10

γ(0)eiω
′

10τ
′

10θ +
iḡ02

3ω′10τ
′

10

γ̄(0)e−iω
′

10τ
′

10θ + E1e2iω
′

10τ
′

10θ,

W11(θ) = −
ig11

ω
′

10τ
′

10

γ(0)eiω
′

10τ
′

10θ +
iḡ11

ω
′

10τ
′

10

γ̄(0)e−iω
′

10τ
′

10θ + E2,

where E1 =
(
E(1)

1 , E
(2)
1 , E

(3)
1

)T
∈ R3 and E2 =

(
E(1)

2 , E
(2)
2 , E

(3)
2

)T
∈ R3 are also constant vectors and can

be determined by the following equations, respectively:

AE1 E1 = 2


H1

H2

H3

 and AE2 E2 =


P1

P2

P3

 ,
where

AE1 =


AE111 −a12 0
AE121 2iω

′

10 − a22 −a23

0 −b32e−2iω
′

10τ
′

2 AE133

 , AE2 =


−a11 − b11 −a12 0
−a21 − b21 −a22 −a23

0 −b32 −a33 − b33

 ,
and

H1 = k11γ2, H2 = k21γ
2
2 + k22γ2γ3, H3 = k31γ2γ3e−2iω

′

10τ
′

2 ,
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P2 = 2k21γ2γ̄2 + k22(γ2γ̄3 + γ̄2γ3), P3 = k31e−2iω
′

10τ
′

2(γ2γ̄3 + γ̄2γ3),

AE111 = 2iω
′

10 − a11 − b11e−2iω
′

10τ
′

10 , AE121 = −a21 − b21e−2iω
′

10τ
′

10 ,

AE133 = 2iω
′

10 − a33 − b33e−2iω
′

10τ
′

2 , P1 = k11(γ̄2 + γ2).

Therefore, we can calculate g21 and the following values:

C1(0) =
i

2ω′10τ
′

10

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re{C1(0)}
Re{λ′(τ′10)}

,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)} + µ2Im{λ

′

(τ
′

10)}
ω
′

10τ
′

10

,

which determine the properties of bifurcating periodic solutions at τ1 = τ
′

10. From the discussion
above, we have the following result.

Theorem 3.6. For system (1.3), the direction of Hopf bifurcation is determined by the sign of µ2: if
µ2 > 0(µ2 < 0), then the Hopf bifurcation is supercritical (subcritical). The stability of the bifurcating
periodic solutions is determined by the sign of β2: if β2 < 0(β2 > 0), then the bifurcating periodic
solutions are stable (unstable). The period of the bifurcating periodic solutions is determined by the
sign of T2: if T2 > 0(T2 < 0), then the bifurcating periodic solutions increase (decrease).

4. The optimal harvesting policy

The development and sustainable utilization of biological resources are common practices in fish-
eries, forestry, and wildlife management. Effective management of biological species, such as fisheries,
is essential for maintaining ecological balance and ensuring long-term resource availability. With this
in mind, we aim to analyze the optimal strategies that regulators can adopt to maximize the benefits of
harvesting while preserving the ecosystem.

In particular, our study will focus on determining the optimal harvesting policy by employing the
harvesting effort ℏ as a control tool. This involves balancing ecological considerations with economic
gains to achieve a sustainable outcome. To better understand this dynamic, we will explore the rela-
tionship between the population densities of prey species (x1, x2), predator species (y) and the overall
ecosystem response under optimal conditions. Our goal is to investigate the three-dimensional curve
(x1, x2, y) that represents the behavior of the system at the optimal equilibrium level, achieved by ap-
plying the appropriate harvesting effort ℏ. By analyzing this curve, we aim to identify the conditions
that maximize net income from both prey and predator species, while ensuring the system remains
ecologically and economically viable [35].

The net economic income to the society is

π(x1, x2, y, ℏ, t) = p′1q1x2ℏ + p′2q2yℏ − c′ℏ,
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where c′ is the harvesting cost per unit effort, which in turn is given by c′ = c1 + c2. Here, c1 is the
harvesting cost per unit effort corresponding to the adult prey species, and c2 is the harvesting cost per
unit effort corresponding to the predator species. p′1 is the price per unit biomass of x2, and p′2 is the
price per unit biomass of y. p′1, p′2, and c′ are positive constants.

Our main problem is to optimize the objective function

Π =

∫ ∞

0
e−δt(p′1q1x2(t)ℏ + p′2q2y(t)ℏ − c′ℏ)dt

subject to system (1.3) by using Pontryagin’s maximum principle [44]. We construct the Hamiltonian
function as

H(t, x1, x2, y, ℏ,T ) = e−δt(p′1q1x2(t)ℏ + p′2q2y(t)ℏ − c′ℏ) + λ1(t)[ax2 − bx1 − r1x1 + σ1x1x2]

+ λ2(t)
[
bx1 − r2x2 − dx2

2 −
β(1 − m)x2y

1 + k(1 − m)x2
− q1ℏx2 + σ2x1x2

]
+ λ3(t)

[ cβ(1 − m)x2y
1 + k(1 − m)x2

− r3y − q2ℏy
]
,

where λi = λi(t)(i = 1, 2, 3) are adjoint variables corresponding to the variables x1, x2, and y, respec-
tively. ℏ is the restricted control variable, 0 ≤ ℏ ≤ ℏmax, where ℏmax is the feasible upper limit of ℏ
with the infrastructure support available for harvesting. The condition that the Hamiltonian function H
must satisfy is given by

∂H
∂ℏ
= 0,

that is,
e−δtF1(x2, y) − λ2q1x2 − λ3q2y = 0, (4.1)

where F1(x2, y) = p′1q1x2 + p′2q2y − c′.
We suppose that ℏ is the optimal control, and x1, x2, and y are the response functions. By using the

maximum principle, there are adjoint variables λ1, λ2, and λ3 for t ≥ 0. Then, we have,

dλ1

dt
= −
∂H
∂x1
= −

[
(σ1x2 − (b + r1))λ1 + (b + σ2x2)λ2

]
,

dλ2

dt
= −
∂H
∂x2
= −

[
e−δt p′1q1ℏ + (a + σ1x1)λ1 + [−(r2 + q1ℏ) − 2dx2

−
β(1 − m)y

[1 + k(1 − m)x2]2 + σ2x1]λ2 +
cβ(1 − m)y

[1 + k(1 − m)x2]2λ3

]
,

dλ3

dt
= −
∂H
∂y
= −

[
e−δt p′2q2ℏ +

β(1 − m)x2

1 + k(1 − m)x2
λ2 +

( cβ(1 − m)x2

1 + k(1 − m)x2
− (r3 + q2ℏ)

)
λ3

]
.

For positive optimal equilibrium solutions, ẋ2 = ẏ = 0 (in other words, x2, y are not dependent on
t), and from the three equations of system (2.1), we have

ax2 − bx1 − r1x1 + σ1x1x2 = 0, (4.2)

b
x1

x2
− r2 − dx2 + σ2x1 −

β(1 − m)y
1 + k(1 − m)x2

− q1ℏ = 0, (4.3)
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cβ(1 − m)x2

1 + k(1 − m)x2
− r3 − q2ℏ = 0. (4.4)

From the above analysis, it is obvious that ℏ is also independent of t. Furthermore, we get
dλ1

dt
= −
∂H
∂x1
= −

[
(σ1x2 − (b + r1))λ1 + (b + σ2x2)λ2

]
,

dλ2

dt
= −
∂H
∂x2
= −

[
e−δt p′1q1ℏ + (a + σ1x1)λ1 +

(
− dx2 − b

x1

x2
+

kβ(1 − m)2x2y
[1 + k(1 − m)x2]2

)
λ2

+
cβ(1 − m)y

[1 + k(1 − m)x2]2λ3

]
,

dλ3

dt
= −
∂H
∂y
= −

[
e−δt p′2q2ℏ +

β(1 − m)x2

1 + k(1 − m)x2
λ2

]
.

(4.5)

From Eqs (4.1) and (4.5), we get

A11λ1eδt + A12λ2eδt + A13λ3eδt = δF1 − (p′1q2
1x2 + p′2q2

2y)ℏ, (4.6)

where

A11 = −(a + σ1x1)q1x2, A13 =
cβ(1 − m)q1x2y

[1 + k(1 − m)x2]2 ,

A12 = bq1x1 + dq1x2
2 −
βkx2

2y(1 − m)2(q1 − q2) − β(1 − m)q2x2y
[1 + k(1 − m)x2]2 .

By Eqs (4.1) and (4.6), we can get

λ1eδt =
δF1 − (p′1q2

1x2 + p′2q2
2y)ℏ

A11
−

eδt(A12λ2 + A13λ3)
A11

,

λ2eδt =
δF1 − (p′1q2

1x2 + p′2q2
2y)ℏ

A12
−

eδt(A11λ1 + A13λ3)
A12

,

λ3eδt =
δF1 − (p′1q2

1x2 + p′2q2
2y)ℏ

A13
−

eδt(A11λ1 + A12λ2)
A13

.

Now removing ℏ from Eqs (4.3) and (4.4), we obtain

b
x1

x2
− r2 − dx2 + σ2x1 −

β(1 − m)y
1 + k(1 − m)x2

=
q1

q2

[
cβ(1 − m)x2

1 + k(1 − m)x2
− r3

]
, (4.7)

which is the optimal trajectory of the steady state given by the optimal solutions x2 = x2δ, y = yδ. Then,
we substitute λ2 and λ3 into Eq (4.5) and obtain the optimal equilibrium level of effort given by

ℏδ =
δλ3[1 + k(1 − m)x2δ] + λ2[β(1 − m)x2δ]

p′2q1[1 + k(1 − m)x2δ]
eδt. (4.8)

By solving Eqs (4.7) and (4.8) when assigning a certain value to δ, we can obtain the optimal equilib-
rium level (x1δ, x2δ, yδ). The optimal harvesting effort at any time is determined by

ℏ(t) =



ℏmin,
∂H
∂ℏ
< 0,

ℏδ,
∂H
∂ℏ
= 0,

ℏmax,
∂H
∂ℏ
> 0,
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where ℏmin is the minimum harvesting effort. This study not only contributes to theoretical insights
into ecological management, but also provides practical guidelines for policymakers to implement
sustainable harvesting strategies that align with conservation and economic goals.

5. Numerical simulations

To identify the parameters that significantly influence the output variables of system (2.1), we per-
form a global sensitivity analysis on selected parameters. Specifically, we calculate the partial rank
correlation coefficients (PRCCs) for the parameters a, β, d, σ1, σ2, and m in system (2.1). Nonlinear
and monotonic relationships are observed between the input parameters and the outputs of system (2.1),
which is a key prerequisite for computing PRCCs. Then, a total of 1000 simulations of the model per
Latin hypercube sampling (LHS) were carried out using the baseline values tabulated in Table 1.

Table 1. Ranges of variability of the considered sensitive parameters of system (2.1).

Parameter Baseline values Minimum Maximum

a 16.03 15.6832 16.3832
β 1.54 1.1605 1.9282
d 0.60 0.5375 0.6688
σ1 0.099 0.0966 0.1031
σ2 0.009 0.0034 0.0164
m 0.29 0.2647 0.3225
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Figure 1. Sampling results of 1000 times samples for mature prey of the system (2.1).

According to the parameter values in Table 1, we analyze the influence of some parameters in
the system on the correlation of mature prey. By sampling these parameters 1000 times and with a
scatter plot with a fixed time point of 80, we obtain the sampling results in Figure 1 and the scatter
plot in Figure 2. Monotonic increasing (decreasing) indicates a positive (negative) correlation of the
parameter with the model output. It is known from Figure 1 that several selected parameters exhibit
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periodic correlation. From Figure 2, we can know that the parameters a, d, and m show a positive
correlation with the output of the system, the parameters β and σ2 show a negative correlation with the
output of the system, and the parameter σ1 has no correlation with the output of the system.
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Figure 2. Scatter plots with different parameters of the system (2.1). (a) a, (b) β, (c) d, (d)
σ1, (e) σ2, (f) m.

5.1. Dynamics of system without time delay

In this part, we study how different dynamics occur by varying three parameters of system (2.1): the
cooperation coefficients of immature prey and mature prey (σ1 and σ2), and the number of refuge for
prey (m). The values of all parameters in system (2.1) are sourced from Table 2. First, let τ1 = τ2 = 0,
that is, we assume that condition (Υ3) is true. At the same time, we consider the cooperation of the prey
population and provide a certain amount of refuge for the prey. We choose σ1 = 0.1, σ2 = 0.01(σ1 >

σ2), and m = 0.3 (m ∈ [0, 1)) by fixing the values of the other parameters as in Table 2 with initial
conditions (1, 1, 1). By calculation and analysis, system (2.1) is locally asymptotically stable around
the interior equilibrium point (0.8613, 0.1242, 0.2755) (see Figure 3).

Second, we select the number of refuge for prey (m) as a parameter and keep the values of the
other parameters in Table 2. According to the initial conditions, when m = 0.3 and m = 0, the
stability of system (2.1) is given in Figure 4. Although the equilibrium of the system changes from
(0.8613, 0.1242, 0.2755) to (0.6021, 0.0869, 0.2062), system (2.1) is locally asymptotically stable (see
Figure 4). This shows that if the system has no refuges, then the number of various species will
decrease. At the same time, the effect of the refuge parameter m on the steady-state level of prey and
predator species is shown in Figure 5. We can see that the number of prey always increases. The
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predator population initially increases with the increase of m, then begins to decrease when the value
is bigger than m∗ = 0.74, and disappears when m = 0.9. This means that the predator may by extinct
due to lack of food resources. This indicates that if the refuge is lower than critical level, then it has a
positive effect on the two species, but is harmful to the predator population once it exceeds its critical
value. In biological terms, these results highlight the importance of prey refuges in maintaining the
stability of predator-prey systems. A reasonable proportion of refuges help to sustain the dynamic
balance of the ecosystem, while extreme conditions may lead to extinct populations or even instability
of the system.

Table 2. Parameter estimation of system (2.1).

Parameter Value Reference Parameter Value Reference

a 16 [45] m 0.3 Estimated
b 0.12 [45] β 1.5 [45]
r1 2.2 [45] c 10/3 [45]
r2 0.2 [45] k 1 [45]
r3 0.2 [45] q1 0.3 [35]
d 0.6 [45] q2 0.2 [35]
σ1 0.1 Estimated ℏ 1 [35]
σ2 0.01 Estimated
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Figure 3. When σ1 = 0.1, σ2 = 0.01, and m = 0.3, local asymptotic stability of the
interior equilibrium (0.8613, 0.1242, 0.2755) of system (2.1). (a) immature prey population;
(b) mature prey population; (c) predator population.

Next, we will consider the effect of the cooperative relationship between the prey. The mature
prey protects the immature prey from being captured by predators, thus the benefits of mature prey to
immature prey are bigger than the benefits of immature prey to mature prey. Here, let σ1 = 0.1 and
σ2 = 0.01. By calculation, we can get that the interior equilibrium is (0.8570, 0.1242, 0.2620), and
system (2.1) is locally asymptotically stable (see Figure 6). According to Figure 6, we can know that
cooperation has a positive impact for all species. If there is a cooperative relationship between the
prey, the number of immature prey will increase to a certain extent, but the number of mature prey will
basically remain stable.
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Figure 4. When with refuge (m = 0.3) and without refuge (m = 0), local asymptotic stability
of the interior equilibrium (0.6021, 0.0869, 0.2062) of system (2.1). (a) immature prey pop-
ulation; (b) mature prey population; (c) predator population.
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Figure 5. Dynamical responses of system (2.1) with different m. (a) immature prey popula-
tion; (b) mature prey population; (c) predator population.
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Figure 6. Local asymptotic stability of system (2.1) with cooperation and without coopera-
tion. (a) immature prey population; (b) mature prey population; (c) predator population.
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Figure 7. Dynamical behavior of system (2.1). (a) and (b) dynamical responses of system
(2.1) with σ1 = 0.1; (c) and (d) Hopf bifurcation of system (2.1) occurring at σ1 = 1.
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Figure 8. Dynamical responses of system (2.1) with different σ1. (a) immature prey popula-
tion; (b) mature prey population; (c) predator population.

Finally, we choose σ1 as a bifurcation parameter to discuss the stability of system (2.1). When
σ1 = 0.1, we know that system (2.1) is locally asymptotically stable (see Figure 7(a),(b)). As the
value of σ1 increases, it derives that system (2.1) undergoes Hopf bifurcation when σ1 = 1 > 0.8
(see Figure 7(c),(d)). Thus, we can get that system (2.1) is stable when 0 < σ1 < 0.8 and Hopf
bifurcation occurs at the interior equilibrium when σ1 = 0.8 (see Figure 8). We will discuss the
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stability of system (2.1) by takingσ2 as a bifurcation parameter. Whenσ2 = 0.01, we know that system
(2.1) is locally asymptotically stable from Figure 9(a),(b). As the value of σ2 increases, system (2.1)
undergoes Hopf bifurcation around (1.2826, 0.2010, 0.0348) when σ2 = 0.055 (see Figure 9(c),(d)).
Therefore, the benefit of the cooperation between the immature prey and the mature prey becomes
larger, then the number of mature prey increases, and so the number of other species also increases
to a certain extent. By calculations, we can get that system (2.1) is stable when 0 < σ2 < 0.055 and
Hopf bifurcation occurs at the interior equilibrium when σ2 = 0.055 (see Figure 10). These results
indicate the importance of prey cooperation in maintaining the stability of predator-prey systems, and
an appropriate level of cooperation help to sustain the dynamic balance of the ecosystem, while extreme
conditions may lead to periodic fluctuations in population sizes or even instability of the system.
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Figure 9. Dynamical behavior of system (2.1). (a) and (b) dynamical responses of system
(2.1) with σ2 = 0.01; (c) and (d) Hopf bifurcation of system (2.1) occurring at σ2 = 0.07.

5.2. Dynamics of the system in the presence of time delay

In this subsection, we discuss the dynamical behavior of system (1.3) in the presence of time delay
by fixing the values of the other parameters as in Table 2. According to Theorem 2.3, system (1.3) has
a unique positive equilibrium E∗(0.8613, 0.1242, 0.2755).

When τ1 > 0 and τ2 = 0, we can get ω10 = 0.4316, τ10 = 2.2654 in Theorem 3.1. When τ1 = 2 <
τ10 = 2.2654, the positive equilibrium E∗ is locally asymptotically stable (see Figure 11(a)). When
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τ1 = 3 > τ10 = 2.2654, system (1.3) is unstable at the positive equilibrium E∗, and system (1.3)
undergoes Hopf bifurcation at τ10 = 2.2654 (see Figure 11(b)).
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Figure 10. Dynamical responses of system (2.1) with different σ2. (a) immature prey popu-
lation; (b) mature prey population; (c) predator population.
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Figure 11. Dynamical behavior of system (1.3) with τ1 > 0 and τ2 = 0. (a) τ1 = 2 < τ10 =

2.2654; (b) τ1 = 3 > τ10 = 2.2654.

When τ1 = 0, τ2 > 0, according to Theorem 3.2, we can get ω20 = 0.2070, τ20 = 0.8527. When
τ2 = 0.5 < τ20 = 0.8527, the positive equilibrium E∗ is locally asymptotically stable (see Figure 12(a)).
When τ2 = 1 > τ20 = 0.8527, system (1.3) is unstable at the positive equilibrium E∗, and system (1.3)
undergoes Hopf bifurcation at τ20 = 0.8527 (see Figure 12(b)). Taking τ2 as a bifurcation parameter,
the bifurcation diagram obtained is shown in Figure 14(a).

When τ1 = τ2 = τ, we can get ω0 = 0.0587, τ0 = 1.0125 in Theorem 3.3. When τ = 0.5 <
τ0 = 1.0125, the positive equilibrium E∗ is locally asymptotically stable (see Figure 13(a)). When
τ = 3 > τ0 = 1.0125, system (1.3) is unstable at the positive equilibrium E∗, and system (1.3)
undergoes Hopf bifurcation at τ0 = 1.0125 (see Figure 13(b)). Taking τ as a bifurcation parameter, the
bifurcation diagram obtained is shown in Figure 14(b).

When τ1 > 0 and τ2 = 0.8 ∈ [0, τ20), we can get τ
′

10 = 0.1 in Theorem 3.4. When τ1 = 0.01 <
τ
′

10 = 0.1, then the positive equilibrium E∗ is locally asymptotically stable (see Figure15 (a),(b)). When
τ1 = 2 > τ

′

10 = 0.1, we obtain that C1(0) = −0.4109 + 0.6987i, µ2 = 1.9830 > 0, β2 = −0.8218 <
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0,T2 = −0.6724 < 0. From Theorem 3.6, the Hopf bifurcation is supercritical, system (1.3) has stable
bifurcating periodic solutions, the period of the bifurcating periodic solutions is decreasing, and system
(1.3) undergoes Hopf bifurcation at τ

′

10 = 0.1 (see Figure 15(c),(d)).
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Figure 12. Dynamical behavior of system (1.3) with τ1 = 0, τ2 > 0. (a) τ2 = 0.5 < τ20 =

0.8527; (b) τ2 = 1 > τ20 = 0.8527.
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Figure 13. Dynamical behavior of system (1.3) with τ1 = τ2 = τ. (a) τ = 0.5 < τ0 = 1.0125;
(b) τ = 3 > τ0 = 1.0125.

0 0.5 1 1.5 2
0

2

4

τ
1
=0,τ

2
>0

im
m

a
tu

re
 p

re
y

0 0.5 1 1.5 2
0

0.5

m
a

tu
re

 p
re

y

0 0.5 1 1.5 2
0

1

2

τ
2

p
re

d
a

to
r

(a)

0 0.5 1 1.5 2
0

1

2

τ
1
=τ

2
=τ

im
m

at
ur

e 
pr

ey

0 0.5 1 1.5 2
0

0.2

0.4

m
at

ur
e 

pr
ey

0 0.5 1 1.5 2
0

0.5

1

τ

pr
ed

at
or

(b)

Figure 14. Bifurcation diagrams with τ2 and τ as bifurcation parameters. (a) τ2; (b) τ.
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Figure 15. Dynamical behavior of system (1.3) with τ1 > 0, τ2 ∈ [0, τ20). (a) and (b)
τ1 = 0.01 < τ

′

10 = 0.1, τ2 = 0.8 ∈ [0, τ20); (c) and (d) τ1 = 2 > τ
′

10 = 0.1, τ2 = 0.8 ∈ [0, τ20).

When τ2 > 0 and τ1 = 0.5 ∈ [0, τ10), we can get τ
′

20 = 0.8 according to Theorem 3.5. When
τ2 = 0.6 < τ

′

20 = 0.8, then the positive equilibrium E∗ is locally asymptotically stable (see Figure
16(a),(b)). When τ2 = 2 > τ

′

20 = 0.8, the positive equilibrium E∗ is unstable, and system (1.3)
undergoes Hopf bifurcation at τ

′

20 = 0.8 (see Figure 16(c),(d)).

The above numerical simulation analysis shows that when the time delay is small, the system can
maintain local asymptotic stability and the predator and prey populations can coexist under positive
equilibrium. However, when the time delay exceeds the critical value (e.g., τ0), the system loses
stability and undergoes a Hopf bifurcation, leading to periodic fluctuations in the populations. This
result suggests that excessive time delay may disrupt the balance between populations, making the
ecosystem more unstable.

Next, the Lyapunov exponents have been derived numerically from system (1.3) in absence of
time delay for different species (see Figure 17(a)). All Lyapunov exponents are negative (L1 =

−0.2792, L2 = −0.2037, L3 = −3.1328), and thus system (1.3) is stable. We also show the maxi-
mum Lyapunov exponent [46] of system (1.3) for τ1 = 0, τ2 = 1 (see Figure 17(b)). In the figure,
positive values of the maximum Lyapunov exponent indicates that system (1.3) is unstable. Therefore,
it is consistent with Case 3 (Figure 12) in the theoretical results.
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Figure 16. Dynamical behavior of system (1.3) with τ2 > 0, τ1 ∈ [0, τ10). (a) and (b)
τ1 = 0.5 ∈ [0, τ10), τ2 = 0.6 < τ

′

20 = 0.8; (c) and (d) τ1 = 0.5 ∈ [0, τ10), τ2 = 2 > τ
′

20 = 0.8.
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Figure 17. (a) Lyapunov exponent for τ1 = τ2 = 0; (b) maximum Lyapunov exponent for
τ1 = 0, τ2 = 1.

Finally, we consider the following parameter values: a = 6, k = 100, p1 = 0.01, p2 = 0.05, c =
0.1, δ = 0.02, and the other parameters remain unchanged. Figure 18 shows the solution curve of
the state variables. Figure 19(a)–(c) show the variation curves of the adjoint variables λ1, λ2, and λ3,
respectively. It is easy to see from Figure 19 that the adjoint variables λ1, λ2, and λ3 tend ultimately
to 0 with the increase of time. Dynamical responses of system (2.1) for different values of ℏ are
given in Figure 20. From the calculations, we find that the optimal value of the harvesting effort ℏ is
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ℏδ = 1.75. When the value of ℏ is less than ℏδ, the prey and predator populations coexist. However, if
ℏ exceeds ℏδ, the optimal harvesting threshold is surpassed, causing the prey population to gradually
decline and eventually go extinct. Consequently, the predator population also declines due to the
increasing difficulty of capturing prey. Furthermore, the impact of the cooperation coefficients σ1 and
σ2 (representing the cooperation between immature and mature prey) on the optimal harvesting effort
is illustrated in Figure 21. The results indicate that the optimal harvesting effort decreases as σ1 and
σ2 increase.
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Figure 18. The solution curve of state variables of the control system (2.1): (a) immature
prey population; (b) mature prey population; (c) predator population.
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Figure 19. The curve of the adjoint variables of system (2.1): (a) λ1; (b) λ2; (c) λ3.
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Figure 20. Dynamical responses of system (2.1) with time t for different values of ℏ. (a)
immature prey population; (b) mature prey population; (c) predator population.
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Figure 21. The curve of the optimal harvesting of system (2.1) with respect to different
parameters: (a) σ1 ; (b) σ2.

6. Discussion and conclusions

In this article, we study a predator-prey model that incorporates stage-structure prey, prey refuge,
and cooperative behavior. To enhance the realism of the system, we account for the effects of time
delays associated with prey maturity and predator gestation. Additionally, the capture rate of the
predator for the prey population is modeled using a Holling-II type functional response.

According to calculation, system (2.1) has a trivial equilibrium E0, a predator extinction equilibrium
Ẽ and a unique positive equilibrium E∗ when Lemma 2.2 and Theorem 2.3 are satisfied. In the absence
of time delay, we found that the prey refuge m does not influence the stability of system (2.1) when m
is relatively small from Figure 4. However, when m ≥ 0.9, the predator population eventually tends
to zero, which is detrimental to the survival of the predator, leading to the instability of system (2.1)
from Figure 5. Next, for the cooperation coefficients σ1 and σ2 of immature prey and mature prey,
the research shows that the values of parameters σ1 and σ2 could change the stability of system (2.1).
System (2.1) exhibits Hopf bifurcation when σ1 = 0.8 and σ2 = 0.055 (see Figures 7 and 9). In biolog-
ical terms, these results highlight the importance of prey refuges and prey cooperation in maintaining
the stability of predator-prey systems. A reasonable proportion of refuges and an appropriate level of
cooperation help to sustain the dynamic balance of the ecosystem, while extreme conditions may lead
to periodic fluctuations in population sizes or even instability of the system. This suggests that it is
crucial to balance the protection of prey and the survival of predators to avoid ecological imbalances
caused by excessive interventions in ecological conservation.

In the presence of time delay, we divided them into six cases to discuss the stability of the positive
equilibrium and the existence of the Hopf bifurcation of system (1.3). For example, under the fourth
case τ1 = τ2 = τ, the critical value of τ is τ0, then system (1.3) is locally asymptotically stable
when τ < τ0, but is unstable when τ > τ0. That is, the Hopf bifurcation occurs at τ = τ0, which is
demonstrated by Figure 13. Finally, we calculated the optimal value of harvesting effort ℏ is ℏδ = 1.75
when ℏ < ℏδ, the prey and predator populations coexist, and the number of prey and predators gradually
decrease when ℏ > ℏδ. In the long run, optimal control strategies are not only applicable to population
harvesting, but can also be utilized for controlling epidemics in both homogeneous and heterogeneous
networks [47]. In a biological sense, these results highlight the importance of studying the control of
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time delay in maintaining ecosystem stability, and provide a theoretical basis for understanding the
impact of time delay on the dynamic behavior of ecosystems.

From an ecological perspective, this study holds greater realistic significance. Additionally, our
research provides insights into the reasons behind the periodic dynamics observed in prey and preda-
tor populations in real life, effectively validating the reliability of the theoretical results. From the
perspective of human economic interests, we examine the impact of harvesting on prey and predator
populations, offering valuable reference points for sustainable harvesting practices. In the future, let
u1(t), u2(t), and v(t) be the densities of immature prey, mature prey, and predator populations at time t,
respectively, then we can consider the exponential transformation between the prey and the nonlinear
harvest into our model:

du1

dt
= au2 − r1u1 − be−r1τ1u1(t − τ1) + σ1u1u2,

du2

dt
= be−r1τ1u1(t − τ1) − r2u2 − du2

2 + σ2u1u2 −
q1Eu2

E + m1u2
−
β(1 − m)u2v

1 + k(1 − m)u2
,

dv
dt
=

cβ(1 − m)u2(t − τ2)v(t − τ2)
1 + k(1 − m)u2(t − τ2)

− r3v −
q2Ev

E + m2v
,

with the initial conditions

u1(θ) = ϕ1(θ), u2(θ) = ϕ2(θ), v(θ) = ϕ3(θ), θ ∈ [−τ, 0),
τ = max{τ1, τ2}, ϕ1(0) ≥ 0, ϕ2(0) ≥ 0, ϕ3(0) ≥ 0.

Additionally, due to the heterogeneity of spatial distribution, populations often migrate and diffuse
within a certain spatial range. Therefore, future research can further incorporate stage-structure
predator-prey models with spatial diffusion to more comprehensively describe the spatial behavioral
characteristics and interaction mechanisms in population dynamics. Let u1(t, x), u2(t, x), and v(t, x)
represent the population densities of immature prey, mature prey, and predator populations at location
x ∈ Ω and time t, respectively. Here, Ω ⊂ Rn is a bounded, open, and connected domain with smooth
boundary ∂Ω, then we have the following model:

∂u1(t, x)
∂x

= d1∆u1(t, x) + au2(t, x) − be−r1τ1u1(t − τ1, x) − r1u1(t, x) + σ1u1(t, x)u2(t, x),

∂u2(t, x)
∂x

= d2∆u2(t, x) + be−r1τ1u1(t − τ1, x) − r2u2(t, x) − du2
2(t, x) + σ2u1(t, x)u2(t, x)

− q1ℏu2(t, x) −
β(1 − m)u2(t, x)v(t, x)
1 + k(1 − m)u2(t, x)

,

∂v(t, x)
∂x

= d3∆v(t, x) +
cβ(1 − m)u2(t − τ2, x)v(t − τ2, x)

1 + k(1 − m)u2(t − τ2, x)
− r3v(t, x) − q2ℏv(t, x),

∂u1(t, x)
∂n

=
∂u2(t, x)
∂n

=
∂v(t, x)
∂n

= 0, x ∈ ∂Ω,

with the initial conditions

u1(t, x) = ϕ1(t, x) ≥ 0, u2(t, x) = ϕ2(t, x) ≥ 0, v(t, x) = ϕ3(t, x) ≥ 0,
τ = max{τ1, τ2}, (t, x) ∈ [−τ, 0) ×Ω,

where d1, d2, and d3 are the diffusion rates for immature prey, mature prey, and predator populations,
respectively.
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