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Abstract: Dynamic modeling, analysis, and control of fish ecosystems are important for promoting the
sustainable development of fish stocks. The objective of this study is to analyze the dynamic behavior
of prey-predator systems with discontinuous prey refuge effect and different types of harvesting
activities in an uncertain environment. Initially, a Filippov-type prey-predator model with fuzzy
parameters is formulated and the positivity and bounded-ness of the solutions and the dynamic
properties of Filippov prey-predator system are discussed. Next, from the perspective of effective
exploitation and utilization of fish resources, a state linearly dependent fishing strategy is adopted into
the system and a fishing model based on threshold feedback is established, as well as an analysis on
the complex dynamics of the control system. Finally, to illustrate the theoretical results, computer
simulations are presented step by step with an explanation on the practical significance. This study
provides a reference for in-depth understanding of the development dynamics of fish resources and
scientific planning of fishery resources exploitation.
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1. Background and motivation

As an important branch of ecosystem research, the study on population dynamic model has always
been one of the important topics in bioscience and mathematics. Especially in the fishery industry,
understanding the relations between predator fish and prey fish is helpful for the utilization and
development of fish resources in a sustainable and reasonable way. On the theoretical side,
mathematical models play a key role in understanding changes in biological systems and the effects of
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related control measures [1, 2]. The classical model in literature describing the relationship between
predator species and prey species is the well-known Lotka-Volterra model [3, 4]. Subsequently, for
different application scenarios, scholars considered different factors in the modeling process [5, 6]. In
natural ecosystems, most prey species perceive the danger of predators well and hide in cover to avoid
being eaten when predators are present. Thus, the predator does not use the entire prey population as
its food resource, and the prey refuge concept was introduced into the predator-prey system [7]. In the
literature, various types of prey refuge effect were studied, which can be roughly divided into three
types: constant quantity [7], constant proportion [8], and variable proportion [9]. In this paper,
inspired by the piecewise form of prey refuge, a Filippov type prey-predator model with piecewise
form of prey refuge is put forward, where prey refuge makes sense once the number of predator
exceeds a certain threshold related to the number of prey. The Filippov theory, a primary tool for
analyzing Filippov models, is widely applied and studied. For example, Tang and Liang [10]
investigated a Filippov predator-prey system with non-smooth refuge. Chen and Huang [11] analyzed
a Filippov ratio-dependent prey-predator model with behavioral refuges caused by prey instinct
anti-predator behavior. Li et al. [12] analyzed a Filippov-type plant disease models with an interaction
ratio threshold. Subsequently, Li et al. [13] studied a Filippov predator-prey model with two
thresholds for integrated pest management. In this study, considering the piecewise form of prey
refuge, a fishery model involving discontinuous prey refuge effect is presented and investigated.

In the actual world, the natural environment is always in change and fluctuation, which will
naturally influence the survival and reproduction of the species living there. To describe the influence
caused by environment fluctuation, scholars introduced different models with interval-valued
imprecise parameters and fuzzy parameters, for example, Pal et al. [14] replaced the deterministic
parameters in the predator-prey models with interval-valued imprecise parameters and fuzzy
parameters. Zhang and Zhao [15] discussed the bifurcation and optimal harvesting of a diffusive
predator-prey system with delays and interval biological parameters. Pal et al. [16, 17] discussed the
stability and bionomic analysis of a prey-predator with fuzzy parameters. Xiao et al. [18] analyzed a
competition fishery model with interval-valued parameters and discussed the extinction, coexistence,
bionomic equilibria, and optimal harvesting policy. Wang et al. [19] incorporated prey refuge into a
predator-prey system with imprecise parameter estimates. Yu et al. [20] analyzed a predator-prey
fishery model with interval imprecise parameters, taking into account the interaction between
predators in the system and the refuge effect of prey. Meng and Wu [21] analyzed the dynamics of a
fuzzy phytoplankton-zooplankton model with refuge, fishery protection, and harvesting.
Wang et al. [22] discussed the stability and optimal harvesting of a predator-prey system combining
prey refuge with fuzzy biological parameters. Chen and Zheng [23] discussed the diffusion-driven
instability of a predator-prey model with interval biological coefficients. Xu et al. [24] discussed the
optimal harvesting of a fuzzy water hyacinth-fish model with Kuznets curve effect. Guo et al. [25]
analyzed the dynamics of two fishery capture models with a variable search rate and fuzzy biological
parameters. Cao et al. [26] discussed the Hopf bifurcation in a predator-prey model under fuzzy
parameters involving prey refuge and fear effects. Studies on freshwater fish have shown that fish
species are more vulnerable to environmental changes. In addition, environmental changes affect
different fish species in different ways [27]. In view of this feature, species related imprecise
parameters were introduced into the prey-predator model [28] and the impact of imprecise parameters
on the dynamics of the systems were discussed. In the current work, a Filippov type prey-predator
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model with triangle fuzzy parameters is studied and the impact of fuzzy parameters on the dynamic
behaviour is analyzed.

Fishing is the main way for human to obtain fish resources, and its pattern presents two types:
continuous and discontinuous. For continuous fishing activities, the modeling is relatively simple,
which can be directly described by adding fishing items in the model. For intermittent fishing
patterns, fishing activities are usually taken at discrete moments. Among many intermittent fishing
activities, state-dependent feedback fishing is a typical one, which takes into account the current state
of prey or predator and is able to avoid destroying the sustainability of fish resources. There are many
studies on state-dependent feedback control in the literature, which can be roughly divided into
several types, such as prey-dependent [29], predator-dependent [30], nonlinear-dependent [31],
weighted-dependent [32], and ratio-dependent [33]. Among these kinds of state-dependent feedback
control, ratio-dependent feedback control considers the relation between prey population and predator
population and implements control when the ratio of predator population to prey population reaches a
certain threshold. In this study, a state’s linearly dependent feedback fishing strategy is considered
and the fishery model with such control is analyzed.

Motivated by above discussions, a Filippov type prey-predator model with discontinuous refuge
effect, triangle fuzzy biological parameters and continuous harvesting is put forward and analyzed.
The paper is organized as follows: In Section 2, two types of prey-predator models with different
fishing model and fuzzy parameters are presented and followed by a presentation of some preliminaries.
In Section 3, the dynamics of Filippov type prey-predator with a continuous harvesting strategy is
analyzed. Then, the complex dynamics of the fishery model with state linearly dependent feedback
harvesting is investigated. In Section 4, numerical simulations are presented to illustrate the main
results. In the last section, a conclusion is summarized with a presentation of the future work.

2. Model formulation and preliminaries

Prey refuge is a common phenomenon among fish species. Let xr denote the volume of prey in
refuge. In this work, a discontinuous refuge effect is considered, that is,

xr =

{
mx, y > nx + yT ,

0, y < nx + yT ,

where m ∈]0, 1[ is the proportion of refuge prey; yT > 0 is the minimum level of predators, when the
density of predators is lower than yT , prey will come out of the refuge; n > 0 is the threshold for the
ratio of predator to prey in the system, and if the ratio exceeds the threshold of n in the case of sufficient
prey density, the prey will choose to hide in the shelter.

2.1. Fishery model with continuous harvesting

Then, the Filippov type prey-predator model with continuous harvesting is expressed as
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

dx(t)
dt
= rx(t)

(
1 −

x(t)
K

)
− a(x(t) − xr)y − q1E1(x(t) − xr),

dy(t)
dt
= −dy(t) + ca(x(t) − xr)y − q2E2y(t),

x(0) = x0 > 0, y(0) = y0 > 0,

(2.1)

where t ∈ [0,+∞[, x(t) and y(t) represent the biomass of prey and predator species at time t,
respectively. r characterizes the prey’s growth rate; K characterizes the prey’s environmental capacity;
a characterizes the predator’s predation rate, x(t) − xr is the density of prey outside the shelter; d
characterizes the predator’s death rate; c characterizes the conversion efficiency from prey biomass
into predator biomass; E1 and E2 represent fishing effort for prey and predator, respectively; q1 and q2

represent the capture rate for prey and predator species.
To consider the impact of environmental changes and fluctuations, triangular fuzzy

numbers (TFNs) [20] are adopted to describe the uncertainty of parameters. For a TFN
Ũ ≡ (u1, u2, u3) and α ∈ (0, 1], the α-cut set is denoted by [Ul(α),Ur(α)], where
Ul(α) = {x : µŨ(x) ≥ α} = u1 + α(u2 − u1), Ur(α) = {x : µŨ(x) ≥ α} = u3 + α(u3 − u2). Given that the
birth rate of prey, the death rate and conversion rate of predator most susceptible to environmental
changes, these three parameters are assumed to present some imprecision, represented by TFNs, that
is, r̃ = (rL, rM, rR), d̃ = (dL, dM, dR) and c̃ = (cL, cM, cR). Using theory of α-cut fuzzy number, we
introduce fuzzy triangle parameters into above model:



(
dx(t)

dt

)
l(α)
= rl(α)x(t)

(
1 −

x(t)
K

)
− a(x(t) − xr)y − q1E1(x(t) − xr),(

dx(t)
dt

)
u(α)
= ru(α)x(t)

(
1 −

x(t)
K

)
− a(x(t) − xr)y − q1E1(x(t) − xr),(

dy(t)
dt

)
l(α)
= −du(α)y(t) + cl(α)a(x(t) − xr)y(t) − q2E2y(t),(

dy(t)
dt

)
u(α)
= −dl(α)y(t) + cu(α)a(x(t) − xr)y(t) − q2E2y(t).

(2.2)

Using the utility function method [16], there is


dx(t)

dt
= w1

(
dx(t)

dt

)
l(α)
+ (1 − w1)

(
dx(t)

dt

)
u(α)

,

dy(t)
dt
= w2

(
dy(t)

dt

)
l(α)
+ (1 − w2)

(
dy(t)

dt

)
u(α)

,

(2.3)

where 0 ≤ w1,w2 ≤ 1. For convenience, define

r̂ = w1rl(α) + (1 − w1)ru(α), d̂ = w2du(α) + (1 − w2)dl(α), ĉ = w2cl(α) + (1 − w2)cu(α). (2.4)
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Combining Eqs (2.4) and (2.1) gives

dx(t)
dt
= r̂x(t)

(
1 −

x(t)
K

)
− a(x(t) − xr)y(t) − q1E1(x(t) − xr),

dy(t)
dt
= −d̂y(t) + ĉa(x(t) − xr)y(t) − q2E2y(t),

x(0) = x0 > 0, y(0) = y0 > 0.

(2.5)

For y(t) < nx(t) + yT , system complies with the model

dx(t)
dt
= r̂x(t)

(
1 −

x(t)
K

)
− ax(t)y(t) − q1E1x(t) := x(t) f11(x(t), y(t)),

dy
dt
= −d̂y(t) + ĉax(t)y(t) − q2E2y := y(t) f12(x(t)),

x(0) = x0 > 0, y(0) = y0 > 0.

(2.6)

and for y > nx + yT , system complies with the model

dx(t)
dt
= r̂x(t)

(
1 −

x(t)
K

)
− a(x(t) − mx(t))y(t) − q1E1(x(t) − mx(t)) := x(t) f21(x(t), y(t)),

dy(t)
dt
= −d̂y(t) + ĉa[x(t) − mx(t)]y(t) − q2E2y(t) := y(t) f22(x(t)),

x(0) = x0 > 0, y(0) = y0 > 0.

(2.7)

2.2. Fishery model with threshold harvesting

In this subsection, we consider a scenario where fishing is allowed only when prey and predator
populations exceed a certain limit. Let yH be the minimum fishing level of the predator, below which
fishing activity may cause the extinction of the predator fish. Moreover, predator fish feed on prey
populations, and when the ratio of predator to prey exceeds a certain threshold, denoted by l, fishing
activity is conducive to the sustainable development of fish resources. Based on the above
consideration, we establish the following harvesting model with uncertain parameters:

dx(t)
dt
= r̂x(t)

(
1 −

x(t)
K

)
− a(x(t) − xr)y

dy(t)
dt
= −d̂y(t) + ĉa(x(t) − xr)y

x(0) = x0 > 0, y(0) = y0 > 0.


y(t) < lx(t) + yH,

∆x(t) := x(t+) − x(t) = −q1E1(x(t) − xr)
∆y(t) := y(t+) − y(t) = −q2E2y(t)

}
y(t) = lx(t) + yH.

(2.8)

where l > 0, yH > 0 are predetermined constants.

2.3. Preliminaries

2.3.1. TFN

Let Ũ be a fuzzy set on the real set R, i.e., Ũ ∈ F (R), µŨ(·) be the membership function of Ũ.
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Definition 1 (α-cut set [16, 25]). For α ∈]0, 1], the α-cut set for Ũ is defined as Ũα =
{
x : µŨ(x) ≥ α

}
.

Definition 2 (TFN [16, 25]). If Ũ is normal (i.e., there is x ∈ R and µŨ(x) = 1), and for any α ∈]0, 1[,
Ũα is a closed interval, then Ũ is said to be a fuzzy number (FN). A TFN Ũ ≡ (uL, uM, uR) is a FN with
membership defined by

µŨ(u) =


u − uL

uM − uL
, if uL ≤ u ≤ uM,

uR − u
uR − uM

, if uM ≤ u ≤ uR,

0, otherwise.

Clearly, α-cut set of TFN Ũ ≡ (aL, aM, aR) is [Ul(α),Ur(α)], where Ul(α) = inf {x : µŨ(x) ≥ α} =
uL + α(uM − uL) and Ur(α) = sup {x : µŨ(u) ≥ α} = uR + α(uR − uM).

Definition 3 (Utility function [16, 25]). Given Ui, i = 1, 2, · · · ,N, and denoted wi as the weight of
items Ui, ΣN

i=1wi = 1. Then, a utility function U is defined by U = ΣN
i=1wiUi.

2.3.2. Filippov system

Consider a piecewise-continuous system
du
dt
dv
dt

 =
 F1(u, v), if (u, v) ∈ S1 =

{
(u, v) ∈ R2

+ : H(u, v) > 0
}
,

F2(u, v), if (u, v) ∈ S2 =
{
(u, v) ∈ R2

+ : H(u, v) < 0
}
,

(2.9)

where H : R2
+ → R, and the discontinuous demarcation is Σ =

{
(u, v) ∈ R2

+ : H(u, v) = 0
}
.

Let

FiH ≜ ⟨∇H,Fi⟩ =

(
∂H
∂u

,
∂H
∂v

)
· ( fi1, fi2)T = fi1

∂H
∂u
+ fi2

∂H
∂v
, i = 1, 2.

Then, Fm
i H =

〈
∇

(
Fm−1

i H
)
,Fi

〉
for i = 1, 2, m ∈ N with m ≥ 2. The discontinuous demarcation Σ can

be distinguished into three regions:
1) sliding region: Σs = {(u, v) ∈ Σ : F1H < 0 and F2H > 0};
2) crossing region: Σc = {(u, v) ∈ Σ : F1H · F2H > 0};
3) escaping region: Σe = {(u, v) ∈ Σ : F1H > 0 and F2H < 0}.
The dynamics of system (2.9) along Σs is determined by

du
dt
dv
dt

 = Fs(u, v), (u, v) ∈ Σs,

where Fs = λF1 + (1 − λ)F2 with λ =
F2H

F2H − F1H
∈]0, 1[.

Definition 4 (Real, virtual and pseudo-equilibrium [11]). For system (2.9), E∗ is a real equilibrium
if ∃i ∈ {1, 2} so that Fi (E∗) = 0, E∗ ∈ S i; E∗ is a virtual equilibrium if ∃i, j ∈ {1, 2}, i , j so that
Fi (E∗) = 0, E∗ ∈ S j; E∗ is a pseudo-equilibrium if Fs (E∗) = λF1 (E∗)+ (1−λ)F2 (E∗) = 0,H (E∗) = 0,

λ =
F2H

F2H − F1H
∈]0, 1[.
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2.4. Impulsive semi-continuous system

For a given planar model
du
dt
= f1(u, v),

dv
dt
= f2(u, v), ϕ(u, v) , 0,

∆u = I1(u, v),∆v = I2(u, v), ϕ(u, v) = 0.
(2.10)

Definition 5 (Order-k periodic solution [32]). The solution z̃(t) = (ũ(t), ṽ(t)) of system (2.10) is called
periodic if there exists m(⩾ 1) satisfying z̃m = z̃0. Furthermore, z̃ is an order-k T-periodic solution with
k ≜ min{l|1 ≤ l ≤ m, z̃l = z̃0}.

Lemma 1 (Analogue of Poincaré criterion [32]). The order-k T-periodic solution z(t) = (ξ(t), η(t))T of
system (2.10) is orbitally asymptotically stable if |µk| < 1, where

µk =

k∏
j=1

∆ j exp
∫ T

0

[
∂ f1

∂u
+
∂ f2

∂v

]
(ξ(t),η(t))

dt
 ,

with

∆ j =

f +1

(
∂I2

∂v
∂ϕ

∂u
−
∂I2

∂u
∂ϕ

∂v
+
∂ϕ

∂u

)
+ f +2

(
∂I1

∂u
∂ϕ

∂v
−
∂I1

∂v
∂ϕ

∂u
+
∂ϕ

∂v

)
f1
∂ϕ

∂u
+ f2

∂ϕ

∂v

,

f +1 = f1(ξ(τ+j ), η(τ+j )), f +2 = f2(ξ(τ+j ), η(τ+j )) and f1, f2,
∂I1

∂u
,
∂I1

∂v
,
∂I2

∂u
,
∂I2

∂v
,
∂ϕ

∂u
,
∂ϕ

∂v
are calculated

at (ξ(τ j), η(τ j)), where 0 < τ1 < · · · < τ j−1 < τ j < τ j+1 < · · · < τk = T and ϕ(ξ(τ j), η(τ j)) = 0.

3. Dynamic properties of systems (2.5)

Define

E1 ≜
r̂
q1
, E2(E1) ≜

ĉa(1 − m)(r̂ − q1E1(1 − m))K − r̂d̂
r̂q2

,

K1
min(E1, E2) ≜

r̂
r̂ − q1E1(1 − m)

·
d̂ + q2E2

aĉ
, K2

min(E1, E2) ≜
r̂

r̂ − q1E1(1 − m)
·

d̂ + q2E2

aĉ(1 − m)
.

Obviously, when E1 ≥ E1, there is
dx
dt

< 0, then x(t)→ 0 when t → ∞.
To avoid the extinction of prey and predator fish populations by fishing activity, it is required that

E1 < E1 and E2 < E2(E1).

3.1. Positivity and bounded-ness of the solutions

Theorem 1. For given w1, w2, and α, the solution of the Filippov system (2.5) with x(0) = x0 > 0 and
y(0) = y0 > 0 always keeps positive, that is, x(t) > 0, y(t) > 0 for t ∈ [0,+∞).

Proof. Suppose that (x(0), y(0)) ∈ S 1 = {(x, y) ∈ R2
+|y − nx − yT < 0}. If z(t) = (x(t), y(t)) intersects

with region Σ and then stay in region Σ all the time, it can be easily obtained that x(t) > 0 and y(t) > 0
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for t ∈ [0,+∞). Otherwise, define ti, i = 1, 2, ... as the time when trajectory intersects with Σ and
subsequently enters into another region. Note that due to the definition of function xr, we can write

dx
dt
= x

(
r
(
1 −

x
K

)
−

{
ay

a(1 − m)y

}
− q1E1

{
1

1 − m

})
=

{
x f11(x, y), (x0, y0) ∈ S 1,

x f21(x, y), (x0, y0) ∈ S 2.

Since in S i there is
dx
x
= fi1(x, y)dt,

then we have

x(t1) = x(0) exp
(∫ t1

0
f11(x(s), y(s))ds

)
(> 0),

x(t2) = x(t1) exp
(∫ t2

t1
f21

(
x(s), y(s)

)
ds

)
(> 0),

...

x(t2n−1) = x(t2n−2) exp
(∫ t2n−1

t2n−2

f11(x(s), y(s))ds
)

(> 0),

x(t2n) = x(t2n−1) exp
(∫ t2n

t2n−1

f21
(
x(s), y(s)

)
ds

)
(> 0),

thus it has x(t) > 0 for t ∈ [0,+∞[. Similarly, there is y(t) > 0 for t ∈ [0,+∞[. □

Theorem 2. For given w1, w2, and α, the solution (x(t), y(t)) of the Filippov system (2.5) with x(0) =
x0 > 0 and y(0) = y0 > 0 is uniformly bounded.

Proof. Define z(t) = ĉx(t) + y(t). Then,

dz
dt
= ĉ

dx
dt
+

dy
dt
= ĉr̂x

(
1 −

x
K

)
− ĉq1E1(x − xr) − d̂y − q2E2y.

Choosing 0 < s ≤ d̂ + q2E2, we have

dz
dt
+ sz = ĉ(r̂ − q1E1 + s)x −

ĉr̂x2

K
− (d̂ + q2E2 − s)y

≤ ĉ(r̂ − q1E1(1 − m) + s)x −
ĉr̂x2

K
≤

ĉK(r̂ − q1E1(1 − m) + s)2

4r̂
≜ Θ,

which implies that

0 ≤ z(t) ≤
Θ

s
(1 − e−st) + z(x(0), y(0))e−st.

For t → +∞, there is 0 ≤ z(t) ≤
Θ

s
. Moreover, if z0 = z(x(0), y(0)) <

Θ

s
, then 0 ≤ z(t) ≤

Θ

s
for all

t ≥ 0. □
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3.2. Dynamics of the subsystems (2.6) and (2.7)

Denote

H(x, y) = nx − y + yT , lH: y = nxy + yT ,

F1(x, y) =
(
r̂x

(
1 −

x
K

)
− axy − q1E1x,−d̂y + ĉaxy − q2E2y

)T
,

F2(x, y) =
(
r̂x

(
1 −

x
K

)
− a(1 − m)xy − q1E1(1 − m)x,−d̂y + ĉa(1 − m)xy − q2E2y

)T
,

S1 = {(x, y) ∈ R+ : H(x, y) > 0},S2 = {(x, y) ∈ R+ : H(x, y) < 0},

Σ = {(x, y) ∈ R+ : H(x, y) = 0},K1
E =

K(r̂ − q1E1)
r̂

,K2
E =

K(r̂ − q1E1(1 − m))
r̂

.

Note that P0(0, 0) is a real equilibrium for subsystem (2.6) and a virtual equilibrium for
subsystem (2.6). If E1 < E1, then PB1

(
K1

E, 0
)

exists, which is a real boundary equilibrium for

subsystem (2.6); PB2

(
K2

E, 0
)

exists, which is a virtual equilibrium for subsystem (2.7).

Theorem 3. For subsystems (2.6) and (2.7) with given w1, w2, and α, P0(0, 0), PB1

(
K1

E, 0
)
, and

PB2

(
K2

E, 0
)

are unstable if E1 < E1, E2 < E2(E1). Moreover, subsystem (2.6) has a unique globally
asymptotically stable interior equilibrium P1(x∗1, y

∗
1), subsystem (2.7) has a unique globally

asymptotically stable interior equilibrium P2(x∗2, y
∗
2), where

x∗1 =
d̂ + q2E2

ĉa
, y∗1 =

r̂
(
1 − x∗1

K̂

)
− q1E1

a
; x∗2 =

d̂ + q2E2

ĉa(1 − m)
, y∗2 =

r̂
(
1 − x∗2

K

)
− q1E1(1 − m)

a(1 − m)
.

Proof. In case of E1 < E1, E2 < E2(E1), the equation set
{

f11(x, y) = 0
f12(x, y) = 0

has a positive solution

(x, y) = (x∗1, y
∗
1), that is, subsystems (2.6) has a unique interior equilibrium P1(x∗1, y

∗
1). Similarly, the

subsystem (2.7) has a unique interior equilibrium P2(x∗2, y
∗
2).

The Jacobian matrix of the subsystems (2.6) at P̄(x̄, ȳ) is

J|P̄(x̄,ȳ) =

 f11(x̄, ȳ) + x
∂ f11(x̄, ȳ)

∂x
x̄
∂ f11(x̄, ȳ)

∂y
ȳ f ′21(x̄) f21(x̄)

 .
At P0(0, 0), there is

J|P0 =

(
r̂ − q1E1 0

0 −d − q2E2

)
,

then λ1 = r̂ − q1E1 > 0 and λ2 = −d − q2E2 < 0, which implies that O(0, 0) is saddle and unstable.
At PB1

(
K(r̂−q1E1)

r̂ , 0
)
, there is

J|PB =

(
−r̂ −a K(r̂−q1E1)

r̂
0 aĉ K(r̂−q1E1)

r̂ − d − q2E2

)
,

then λ1 = −r̂ < 0 and λ2 = aĉ K(r̂−q1E1)
r̂ − d − q2E2 > 0, which implies that PB1

(
K(r̂−q1E1)

r̂ , 0
)

is saddle
and unstable.
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At P∗1(x∗1, y
∗
1), there is

J|P∗1 =

− r̂
K

x∗1 −ax∗1
aĉy∗1 0

 ,
then λ1+λ2 = −

r̂
K x∗1, λ1λ2 = a2ĉx∗1y∗1 > 0, which implies that P∗1(x∗1, y

∗
1) is locally asymptotically stable.

Define D(x, y) = 1
xy . Then, we have

∂D(x, y)x f11(x, y)
∂x

+
∂D(x, y)y f21(x)

∂x
= −

r̂
Ky

< 0,

then by the Bendixson-Dulac theorem [34], there does not exist a closed orbit in R2
+, so P∗1(x∗1, y

∗
1) is

globally asymptotically stable.

The stability of the equilibria P0, PB2 , and P∗2 for the subsystems (2.7) can be proved similarly. □

3.3. Sliding mode dynamics

It is obvious that x∗1 < x∗2 and y∗1 < y∗2. Define

lP:
y − y∗1
y∗2 − y∗1

=
x − x∗1
x∗2 − x∗1

.

Then, the slope and the intercept are, respectively,

kP =
y∗2 − y∗1
x∗2 − x∗1

> 0, yl =
r̂x∗2
aK

> 0.

Theorem 4. For Filippov system (2.5) with given w1, w2 and α, for case-I): yT > yl, n > (y2 − yT )x2,
P1 is real, P2 is virtual; for case-II): yT > yl, 0 < n < (y1 − yT )x1, P∗1 is virtual, P∗2 is real; for case-III):
yT > yl, (y1 − yT )x1 < n < (y2 − yT )x2, P∗1 is real, P∗2 is real; for case-IV): yT < yl, n < (y2 − yT )x2, P∗1 is
virtual, P∗2 is real; for case-V): yT < yl, n > (y1 − yT )x1, P∗1 is real, P∗2 is virtual; for case-VI): yT < yl,
(y2 − yT )x2 < n < (y1 − yT )x1, P∗1 is virtual, P∗2 is virtual.

Proof. For case-I, that is, yT > yl, n > y2−yT
x2

, both of P∗1 and P∗2 are under the line lH, as presented in
Figure 1. F1(P∗1) = 0 and P∗1 ∈ S 1, so P∗1 is a real equilibrium; F2(P∗2) = 0 and P∗2 ∈ S 1, so P∗2 is a
virtual equilibrium. Similarly, the results for case II-VI can be proved.
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Figure 1. Schematic representation of the properties of equilibrium in different cases in
Theorem 4.

□

Next, it discusses the existence of pseudo- equilibrium. Since ∇H = (n,−1) and

F1H|(x,y)∈Σ =n
(
r̂x

(
1 −

x
K

)
− ax(nx + yT ) − q1E1x

)
+ d̂(nx + yT )

− ĉax(nx + yT ) + q2E2(nx + yT )

=

(
−

nr̂
K
− n2a − nĉa

)
x2 +

(
nr̂ − nayT − nq1E1 + nd̂ − ĉayT + nq2E2

)
x

+
(
d̂yT + q2E2yT

)
:= M(x).

Since
M(0) =d̂yT + q2E2yT > 0,

M(K1
E) = − naK1

E(nK1
E + yT ) +

(
d̂ + q2E2 − ĉaK1

E

)
(nK1

E + yT )

< − naKE(nK1
E + yT ) +

(
d̂ + q2E2 − ĉaK1

E

)
(nK1

E + yT ) < 0,

then there exists a unique x1
s ∈]0,KE[ such that M(x1

s) = 0, where

x1
s =
−B1 +

√
B1

2 − 4A1C1

2A1

with
A1 = −

nr̂
K
− n2a − nĉa,

B1 = nr̂ − nayT − nq1E1 + nd̂ − ĉayT + nq2E2,

C1 = d̂yT + q2E2yT .

Electronic Research Archive Volume 33, Issue 2, 973–994.



984

For x ∈]0, x1
s[, there is F1H > 0, and for x ∈]x1

s ,KE[, there is F1H < 0.
Similarly, there is

F2H|(x,y)∈Σ =n
(
r̂x

(
1 −

x
K

)
− a(1 − m)x(nx + yT ) − q1E1(1 − m)x

)
+ d̂(nx + yT )

− ĉa(1 − m)x(nx + yT ) + q2E2(nx + yT )

=

(
−

nr̂
K
− n2a(1 − m) − nĉa(1 − m)

)
x2

+
(
nr̂ − na(1 − m)yT − nq1E1(1 − m) + nd̂ − ĉa(1 − m)yT + nq2E2

)
x

+
(
d̂yT + q2E2yT

)
:= G(x).

Since
G(0) = d̂yT + q2E2yT > 0,

G(K2
E) = − na(1 − m)K2

E(nK2
E + yT ) +

(
d̂ + q2E2 − ĉa(1 − m)K2

E

)
(nK2

E + yT )

< − na(1 − m)K2
E(nK2

E + yT ) +
(
d̂ + q2E2 − ĉa(1 − m)K2

E

)
(nK2

E + yT ) < 0,

then there exists a unique x2
s ∈]0,K

1
E[ such that G(x2

s) = 0, where

x2
s =
−B2 +

√
B2

2 − 4A2C2

2A2

with

A2 =

(
−

nr̂
K
− n2a(1 − m) − nĉa(1 − m)

)
,

B2 =
(
nr̂ − na(1 − m)yT − nq1E1(1 − m) + nd̂ − ĉa(1 − m)yT + nq2E2

)
,

C2 =
(
d̂yT + q2E2yT

)
.

For x ∈]0, x2
s[, there is F2H > 0, and for x ∈]x2

s ,K
2
E[, there is F2H < 0.

Since M(0) = G(0) = d̂yT + q2E2yT and M(x) < G(x) for x > 0, then it has xs1 < xs2. Thus,∑
s = {(x, y) ∈

∑
: xs1 < x < xs2} and

∑
c =

∑
c1
∪

∑
c2

, where
∑

c1
= {(x, y) ∈

∑
: 0 < x < x∗1} and∑

c2
= {(x, y) ∈

∑
: x > x∗2}.

Utilizing the Filippov convex method, the dynamics on
∑

s is determined by
dx
dt
=

F2H
(
r̂x

(
1 − x

K

)
− axy − q1E1x

)
− F1H(r̂x

(
1 − x

K

)
− a(1 − m)xy − q1E1(1 − m)x)

F2H − F1H
,

dy
dt
=

F2H
(
−d̂y + ĉaxy − q2E2y

)
− F1H(−d̂y + ĉa(1 − m)xy − q2E2y)

F2H − F1H
,

where

F1H = n
(
r̂x

(
1 −

x
K

)
− q1E1x

)
+ d̂(nx + yT ) + q2E2(nx + yT ) − (na + ĉa)x(nx + yT ),

F2H = n
(
r̂x

(
1 −

x
K

)
− q1E1(1 − m)x

)
+ d̂(nx + yT ) + q2E2(nx + yT )

− (na + ĉa)x(nx + yT ) + (na + ĉa)mx(nx + yT ).
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Since on
∑

s, there is H(x, y) = 0, then we have

dx
dt
=

amx(nx + yT )
{
ĉ
(
r̂x

(
1 − x

K

)
− q1E1x

)
−

(
d̂ + q2E2

)
(nx + yT )

}
q1E1mx + (na + ĉa)mx(nx + yT )

:= Q(x).

Define

A = −
ĉr̂
K
< 0, B = ĉ(r̂ − q1E1) − n

(
d̂ + q2E2

)
, C = −

(
d̂ + q2E2

)
yT , ∆ = B2 − 4AC.

Then, we have the following result:

Theorem 5. For given w1, w2, and α, if ∆ > 0 and Q(x1
s)Q(x2

s) < 0, then Filippov system (2.5) has a
unique pseudo-equilibrium EP(xP, nxP + yT ).

3.4. Complex dynamics system (2.8)

For system (2.8), we have

M = {(x, y) ∈ R2
+|y = lx + yH},N =

{
(x, y) ∈ R2

+|y = l
1 − q2E2

1 − q1E1
x + yH(1 − q2E2)

}
.

To ensure thatM and N do not intersect, it requires that q2E2 > q1E1, in such case N is belowM.
Let L1, L2, L3, L4 be the isolines in system, that is,

L1 : r̂
(
1 −

x
K

)
− ay = 0, L2 : −d̂ + ĉax = 0,

L3 : r̂
(
1 −

x
K

)
− a(1 − m)y = 0, L4 : −d̂ + ĉa(1 − m)x = 0.

According to the relative position between M, N , and lH, two situations are discussed for the
dynamic of system (2.8):

Case I: n > l, yT > yH, that is, bothM and N lie below lH in S 1.

Case II: n < l(1 − q2E2)/(1 − q1E1), yT < yH(1 − q2E2), that is, bothM and N lies above lH in S 2.

Definition 6 (Successor function). For a point S ∈ N , if the trajectory from S directly intersectsM,
denote the intersection point by S − ∈ M. And then S − is impulsed to S + ∈ N due to impulse effect. In
such case, we can define f I

sor: N → R, S → f I
sor(S ) ≜ yS + − yS . If the trajectory from S first passes

through N , and then intersectsM, then we can define f II
sor: N → R, S → f I

sor(S ) ≜ yS + − yS .

Theorem 6. For given w1, w2 and α and Case I, an order-1 periodic solution exists in system (2.8) for
any one of the following conditions: I-1) yT > yl, n > (y2−yT )/x2, 0 < yH < H1 ≜ y1− lx1; I-2) yT > yl,
0 < n < (y1 − yT )/x1; I-3) yT > yl, (y1 − yT )/x1 < n < (y2 − yT )/x2; I-4) yT < yl, n < (y2 − yT )/x2; I-5)
yT < yl, n > (y1 − yT )/x1, 0 < yH < H1; I-6) yT < yl, (y2 − yT )/x2 < n < (y1 − yT )/x1.

Proof. For case I-1) yT > yl, n > (y2 − yT )/x∗2, P∗1 is real equilibrium, P∗2 is virtual equilibrium.
Moreover, P∗1 is locally asymptotically stable.

Electronic Research Archive Volume 33, Issue 2, 973–994.



986

Denote B as the interaction point between L1 andN . Since 0 < yH < H1 ≜ y1− lx1, then f I
sor(B) < 0.

Let A ∈ N such that
dy
dx
|A = kN ≜ l

1 − q2E2

1 − q1E1
.

The coordinates of A are obtained from the following equations:
−d̂y + ĉaxy

r̂x
(
1 −

x
K

)
− axy

= kN ,

y = l
1 − q2E2

1 − q1E1
x + yH(1 − q2E2).

Define Ê2 ≜ (1 − yA/yA−)/q2. Then,

1) for E2 = Ê2, there is f I
sor(A) = 0, that is, the orbit from A forms an order-1 periodic orbit;

2) for E2 < Ê2, there is f I
sor(A) > 0. Then, ∃S ′ ∈ AB ⊂ N such that f I

sor(S
′) = 0;

3) for E2 > Ê2, there is f I
sor(A) < 0. Then, f II

sor(A
+) > 0. Besides, for ε =d(A, A+)/4 > 0,

∃δ < ε and A1 ∈ U(A, δ) ∩ N so that d(A+, A+1 ) < ϵ, then it has f II
sor(A1) < 0. Thus

∃S ′ ∈ A1B+ ⊂ N such that f I
sor(S

′) < 0.

To sum up, ∃S ′ ∈ N , the trajectory of system (2.8) starting from S ′ forms an order-l periodic
solution. Similarly, the results for case I-2)–I-6) can be proved. □

Theorem 7. For given w1, w2, and α and Case II, an order-1 periodic solution exists in system (2.8)
for any one of following two conditions: II-1) yT > yl, 0 < n < (y1 − yT )/x1, 0 < yH < H2 ≜ y2 − lx2;
II-2) yT < yl, n < (y2 − yT )/x2, 0 < yH < H2.

Proof. The proof is similar to that of Theorem 5 and is omitted here. □

Let z(t) = (ξ (t; w1,w2, α) , η (t; w1,w2, α)), (n−1)T ≤ t ≤ nT , n ∈ N be the order-1 periodic solution.
Denote

ξ0 ≜ ξ (0; w1,w2, α) , η0 ≜ η (0; w1,w2, α) = l(1 − q2E2)/(1 − q1E1)ξ0 + (1 − q2E2)yH,

ξ1 ≜ ξ (T ; w1,w2, α) = ξ0/(1 − q1E1), η1 ≜ η (T ; w1,w2, α) = lξ1 + yH,

φi
0 = fi1 (ξ0, η0) , φi

1 = fi1 (ξ1, η1) , ψi
0 = fi2 (ξ0, η0) , ψi

1 = fi2 (ξ1, η1) ,

and define

χi (ξ0) ≜
K
r̂

ln


∣∣∣∣∣∣∣∣
(
l (1 − q2E2)φi

0 − (1 − q1E1)ψi
0

)(
lφi

1 − ψ
i
1

)
(1 − q1E1)(1 − q2E2)

∣∣∣∣∣∣∣∣
 .

Theorem 8. For given w1, w2, and α and Case I, z(t) = (ξ (t; w1,w2, α) , η (t; w1,w2, α)), (n− 1)T ≤ t ≤
nT , n ∈ N is orbitally asymptotically stable if∫ T

0
ξ (t; w1,w2, α) dt > χ1 (ξ0) .
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Proof. For Case I, z(t) = (ξ (t; w1,w2, α) , η (t; w1,w2, α)) lies in the region S 1. Then,

f1 (x, y) = r̂x
(
1 −

x
K

)
− axy, f2 (x, y) = −d̂y + ĉaxy,

I1(x, y) = −q1E1(x − xr), I2(x, y) = −q2E2y, ϕ(x, y) = lx − y + H,

so that
∂ f1

∂x
= r̂

(
1 −

2x
K

)
− ay,

∂ f2

∂y
= −d̂ + ĉax,

∂I1

∂x
= −q1E1,

∂I2

∂x
= 0,

∂ϕ

∂x
= l,

∂I1

∂y
= 0,

∂I2

∂y
= −q2E2,

∂ϕ

∂y
= −1.

Thus, it has

∆1 =
l (1 − q2E2)φ1

0 − (1 − q1E1)ψ1
0

lφ1
1 − ψ

1
1

and ∫ T

0

(
∂ f1

∂x
+
∂ f2

∂y

)∣∣∣∣∣∣
(ξ(t;w1,w2,α),η(t;w1,w2,α))

dt

=

∫ T

0

((
r̂
(
1 −

2x
K

)
− ay

)
+ (−d̂ + ĉax)

)∣∣∣∣∣∣
(ξ(t;w1,w2,α),η(t;w1,w2,α))

dt

=

∫ T

0

(
1
y

(−d̂y + ĉaxy) +
1
x

(
r̂x

(
1 −

2x
K

)
− axy

))∣∣∣∣∣∣
(ξ(t;w1,w2,α),η(t;w1,w2,α))

dt

= ln
(
η1

η0

)
+ ln

(
ξ1

ξ0

)
−

r̂
K

∫ T

0
ξ (t; w1,w2, α) dt.

Therefore,

µ1 =

(
l (1 − q2E2)φ1

0 − (1 − q1E1)ψ1
0

lφ1
1 − ψ

1
1

)
× exp

(
ln

(
η1

η0

)
+ ln

(
ξ1

ξ0

)
−

r̂
K

∫ T

0
ξ (t; w1,w2, α) dt

)
.

To sum up, there is µ1 < 1 if∫ T

0
ξ (t; w1,w2, α) dt >

K
r̂

ln


∣∣∣∣∣∣∣∣
(
l (1 − q2E2)φ1

0 − (1 − q1E1)ψ1
0

)(
lφ1

1 − ψ
1
1

)
(1 − q1E1)(1 − q2E2)

∣∣∣∣∣∣∣∣
 .

□

Remark 1. For Case II, it is only necessary to consider that z̃(t) = (̃ξ(t), η̃(t)) ((n−1)T̃ ≤ t ≤ nT̃ ), n ∈ N
interacts with

∑
s. In such situation, z̃(t) = (̃ξ(t), η̃(t)) ((n − 1)T̃ ≤ t ≤ nT̃ ), n ∈ N is always orbitally

asymptotically stable since it always leaves the sliding region
∑

s from the same point.

4. Numerical simulations

To illustrate the theoretical results, we present the numerical simulations, which are implemented
in MATLAB simulations. The model parameters are assumed to be K = 150, a = 0.3, q1 = 0.02,
q2 = 0.02, r̃ = (5, 6, 7), d̃ = (0.4, 0.5, 0.6), c̃ = (0.08, 0.1, 0.12), which are arbitrarily selected within
their reasonable range.
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4.1. Verification of system (2.7)

For system (2.7), three aspects of the imprecision indicator (w1,w2, α), the coefficient of refuge m,
and fishing efforts E = (E1, E2) together affect the dynamical behavior of the system. To illustrate the
effect of different parameters on the system, we will verify it by fixing two parameters and changing
one parameter.

Figure 2. Verification of impact of imprecision indicators on the dynamic behaviour of
system (2.7) for α = 0.2 and different (w1,w2). In the sub-figures, the blue point is the
interior of subsystem (2.6), the green point is the interior of subsystem (2.7), the black solid
line represents the discontinuous boundary Σ.

First, we consider a scenario where fishing activity is not allowed, that is, E = 0. For m = 0.25,
that is, about 25% prey fishes can go into the shelter, the dynamics of the system (2.7) for different
imprecise index on the system are presented in Figures 2–4. It can be observed that for α = 0.2, when
w2 is small (for example w2 = 0.2), P∗1 is a virtual equilibrium and P∗2 is a real equilibrium; when w2

is big (for example w2 = 0.8), P∗1 is a real equilibrium and P∗2 is a virtual equilibrium; when w1 is
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small (for example w1 = 0.2), P∗1 is a virtual equilibrium and P∗2 is a real equilibrium for smaller w2;
with the increasing of w2 (for example w2 = 0.65), both P∗1 and P∗2 are virtual equilibria; while for
bigger w2 (for example w2 = 0.8), P∗1 is a real equilibrium and P∗2 is a virtual equilibrium. Next, for
(w1,w2, α) = (0.9, 0.4, 0.9), the impact of the refuge coefficient on the dynamics of the system (2.7)
is demonstrated, where m is selected to characterize the relative size of the refuge. The dynamics of
the system for different m is presented in Figure 5. Obviously, the prey’s refuge level does affect the
system’s dynamic behaviour.

Figure 3. Verification of impact of imprecision indicators on the dynamic behaviour of
system (2.7) for α = 0.5 and different (w1,w2). In the sub-figures, the blue point is the
interior of subsystem (2.6), the green point is the interior of subsystem (2.7), the black solid
line represents the discontinuous boundary Σ.

Second, we consider a scenario where fishing activity is allowed. For m = 0.25, (w1,w2, α) =
(0.5, 0.5, 0.5), the dynamics of the system for different E are presented in Figure 6. It can be observed
that the fishing efforts E have a certain impact on the dynamics of system (2.7). For smaller fishing
efforts (for example E = (0.1, 0.14)), P∗1 is a virtual equilibrium and P∗2 is a real equilibrium; with the
increasing of fishing efforts (for example E = (1, 1.4)), both P∗1 and P∗2 are virtual equilibria; for bigger
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fishing efforts (for example E = (5, 7)), P∗1 is a real equilibrium and P∗2 is a virtual equilibrium.

Figure 4. Verification of the effect of imprecision index on the dynamics of (2.7) when
α = 0.8 and different (w1,w2). In the figures, the blue point is the interior of subsystem
(2.6), the green point is the interior of subsystem (2.7), the black solid line represents the
discontinuous boundary Σ.

Figure 5. Verification of the impact of the refuge level m on the dynamic behaviour of the
system (2.7) for (w1,w2, α) = (0.9, 0.4, 0.9).

Electronic Research Archive Volume 33, Issue 2, 973–994.



991

Figure 6. Verification of the impact of capture effects (E1, E2) on the dynamic behaviour
of the system (2.7). In the sub-figures, the blue point is the interior of subsystem (2.6), the
green point is the interior of subsystem (2.7), the black solid line represents the discontinuous
boundary Σ.

4.2. Verification of model (2.8)

Given that m = 0.3. For control parameters (w1,w2, α) = (0.2, 0.3, 0.5), (E1, E2) = (2, 18), l =
1, when yH = 1, an order-1 periodic solution exists for case I, which totally lies in the region S 1,
as presented in Figure 7(a); when yH = 0.1, an order-1 periodic solution exists for case II, which
totally lies in the region S 2, as presented in Figure 7(b). While for control parameters (w1,w2, α) =
(0.505, 0.505, 0.01), (E1, E2) = (2, 18), l = 1, yH = 0.1, an order-I periodic solution exists for case II,
which includes a sliding trajectory in region

∑
s, as shown in Figure 7(c).
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Figure 7. Presentation of the order -1 periodic solution of system (2.8) for different cases.

5. Conclusions

In the natural ecosystem, prey species may exhibit refuge effect when facing the threat of predator
species. When the number of predators is relative high compared to the prey, certain percentages of
the prey will hide, and when the number of predators is relative small compared to the prey, prey
choose not to hide. In addition, natural species are affected by environmental changes in ecosystems,
resulting in certain inaccuracies or uncertainties in some key biological parameters. Considering this
phenomenon, a Filippov-type fishery model with discontinuous refuge effect and triangle fuzzy
number was proposed. Through the Filippov theorem, the sliding mode dynamics of Filippov-type
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predator-prey system with continuous harvesting were analyzed. The results show that the system
may present different types (real, virtual, and pseudo) of equilibrium under different conditions
(Theorem 4, Theorem 5, Figures 2–6).

Considering the exploitation of fish resources, a fishing model with threshold control was
established by adopting a linear dependent feedback fishing strategy. The complex dynamic
properties of the control model are analyzed, including the existence and stability of coexisting
order-1 periodic solutions. For two special cases, we provide conditions for the existence of
first-order periodic solutions that depend on the relative values of yT and n (Theorem 6, Theorem 7,
Figure 7). The results show that different dynamic behaviors can be obtained in the system with
discontinuous refuge and different type of harvesting activities.
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