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Abstract: In this paper, we investigate an initial boundary value problem of a planar
magnetohydrodynamics system with temperature-dependent viscosity, heat conductivity, and
resistivity. When all of the relative coefficients mentioned above are power functions of temperature,
the existence and uniqueness of a global-in-time non-vacuum strong solutions are proved under some
special assumptions. At the same time, we obtain the nonlinear exponential stability of the solution. In
fact, the initial data could be large if the power of viscosity is small enough.
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1. Introduction

The governing equations of a planar magnetohydrodynamics (MHD) compressible flow can be
written in Lagrange variable form as:

vt = ux, (1.1)

ut + (P +
1
2
|b|2)x =

(
µ

ux

v

)
x
, (1.2)

wt − bx =

(
λ

wx

v

)
x
, (1.3)

(vb)t − wx =

(
ν

bx

v

)
x
, (1.4)
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(
e +

u2 + |w|2 + v|b|2

2

)
t
+

(
u(P +

1
2
|b|2) − w · b

)
x
=

(
κ
θx

v
+ µ

uux

v
+ λ

w · wx

v
+ ν

b · bx

v

)
x
. (1.5)

Here t > 0 represents the time, and x ∈ Ω = (0, 1) denotes the Lagrange mass coordinate. The
unknown functions v(x, t) > 0, u(x, t), w = (w1(x, t),w2(x, t)), b = (b1(x, t), b2(x, t)), θ(x, t) > 0, e,
and P are the specific volume of the gas, longitudinal velocity, transverse velocity, transverse magnetic
field, absolute temperature, internal energy, and pressure, respectively. µ and λ are the viscosity of the
flow, ν is the resistivity, and κ is the heat conductivity.

In this paper, we consider the MHD flow of a perfect gas. Thus, P and e satisfy:

P =
Rθ
v

and e = Cvθ +Const. (1.6)

Here R > 0 denotes the specific gas constant, and Cv > 0 stands for the heat capacity at constant
volume. It is assumed that µ, λ, ν, and κ satisfy

µ = µ̃θα, λ = λ̃θα, ν = ν̃θα, and κ = κ̃θβ, (1.7)

which contain the positive constants µ̃ > 0, λ̃ > 0, ν̃ > 0, κ̃ > 0, α > 0, and β > 0.
The systems (1.1)–(1.7) are supplemented with initial conditions

(v, u,w, b, θ) (x, 0) = (v0, u0,w0, b0, θ0) , (1.8)

and boundary ones

(u,w, b, θx)
∣∣∣
∂Ω
= 0. (1.9)

Obviously, the initial data (1.8) should be compatible with the boundary conditions (1.9).
When w = b = 0, the Eqs (1.1)–(1.5) are converted into the compressible Navier–Stokes equation,

which can be derived from Boltzmann’s equation, assuming that the space and time scales are larger
than all inherent scale–lengths, such as the Debye length or the gyro-radii of the charged particles [1–5].
Also, one can deduce from the Chapman–Enskog expansion for the first level of approximation in
kinetic theory that the viscosity µ and λ may depend on the temperature or the density (see Chapman
and Cowling [6]). Experimental results [7] show that the transport coefficients µ and κ vary according
to gas temperature and density at very high temperatures and densities.

The central point of magnetohydrodynamics theory is that conductive fluids can support magnetic
fields. Li and Shang [8] proved the existence and uniqueness of the global-in-time classical solution to
the initial-boundary value problem when the viscosity, resistivity, and heat conductivity depend on the
specific volume v and the temperature θ. In that paper, the coefficients are assumed to be proportional
to h(v)θα, where h(v) is a non-degenerate and smooth function satisfying some natural conditions,
and the absolute value of the exponent α is sufficiently small. It’s worth noting that Li and Shang
considered the planar compressible magnetohydrodynamic system for the domain [0, 1]×R2. Besides,
Huang et al. [9] proved the large-time behavior of strong solutions to equations of compressible planar
magnetohydrodynamic flow with the heat conductivity is the power function of temperature. Similar
results can be observed in various other reports [10–16].
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Recently, Sun et al. [17] verified the existence and uniqueness of a global-in-time non-vacuum
strong solution to a one-dimensional compressible Navier–Stokes system for a viscous and
heat-conducting ideal polytropic gas. It was assumed that the viscosity µ and heat conductivity κ
depend on temperature θ with µ(θ) = θα and κ(θ) = θβ for sufficiently small α > 0 and arbitrary β ≥ 0.

Before presenting our main results, we need to provide some explanations of the symbols first.
Throughout this paper, the positive general constant C will be different in different lines. For 1 ≤ p ≤
∞, and integer k ≥ 0, we adopt the simplified notations for the standard Sobolev space as follows:

Lp = Lp(Ω), Wk,p = Wk,p(Ω), Hk = Wk,2(Ω).

Without loss of generality, we assume that λ̃ = µ̃ = ν̃ = κ̃ = R = cv = 1, and∫ 1

0
v0dx = 1,

∫ 1

0

(
θ0 +

u2
0 + |w0|

2 + v0|b0|
2

2

)
dx = 1. (1.10)

Inspired above, we have the following main results.

Theorem 1.1. For given positive constants M0 > 0 and V0 > 0. Assume that

∥(v0, u0,w0, b0, θ0)∥H2 ≤ M0, inf
x∈[0,1]
{v0, θ0} ≥ V0 > 0.

Then there exist ϵ0 > 0, C0 > 0 and C1 > 0 which depend only on β, M0, V0, such that the initial
boundary value problem (1.1)–(1.9) with 0 ≤ α ≤ ε0 (see (3.5)) admits a unique global-in-time strong
solution (v, u,w, b, θ)(x, t) on [0, 1] × [0,+∞) satisfying

C−1
0 ≤ v(x, t) ≤ C0, C1 ≤ θ(x, t) ≤ C−1

1 , (1.11)

and 
(v, u,w, b, θ) ∈ C([0,+∞); H2),
vx ∈ L2(0,+∞; H1),
(ux,wx, bx, θx) ∈ L2(0,+∞; H2).

Furthermore, for any t ≥ 0, it holds that

∥(v − 1, u,w, b, θ − 1)∥H1 ≤ Ce−η0t,

where C, η0 > 0 are some positive constants.

Remark 1.1. From the view of physics, the resistance is a function of temperature (e.g., [18]). This
implies that our results is physical. Dou et al.’s 2021 study [19], published in Scientific Reports,
delves into a variety of issues, including Enhanced Oil Recovery, where the technology can
potentially improve the extraction of residual oil from oil fields. The equations presented in our study,
especially those related to magnetic force distribution and the relationship between magnetic force
and displacement, are pivotal for understanding and optimizing these applications. They assist in
predicting the behavior of magnetic foams under various conditions, which is crucial for designing
effective systems in the aforementioned fields.
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In this paper, we try to use the framework of Li and Liang [20] to prove the global wellposedness
of the solution. It should be emphasized that the key step is to derive the time–independent positive
lower and upper bounds of specific volume and temperature. The foremost obstacles lie in the strong
non-linearities caused by the temperature-dependent viscosity, resistivity, and heat-conductivity from
Eq (1.7). Fortunately, these nonlinear terms are involved with µx, λx, νx, µt, λt, or νt which can be
controlled by the smallness of α. With the help of upper and lower bounds of the specific volume,
we can then estimate the higher-order derivatives of the solutions, and the upper and lower bounds of
the temperature.

The rest of this paper is organized as follows. Section 2 is devoted to a discussion of a number of a
priori estimates independent of time, which are required to extend the local solution to the time global.
Based on the estimates given in Section 2, the main results of Theorem 1.1 are established in Section 3.

2. A priori estimates

For constants N,m1,m2, and T , define

X(0,T ; m1,m2,N)
:= {(v, u, θ,w, b) : (v − 1, u,w, b, θ − 1) ∈ C([0,T ]; H2),
vx ∈ L2(0,T ; H1), (ux, θx,wx, bx) ∈ L2(0,T ; H2),
vt ∈ C([0,T ]; H1), (ut, θt,wt, bt) ∈ L2(0,T ; H1),
v(x, t) ≥ m1, θ(x, t) ≥ m2,E(0,T ) ≤ N2,∀(x, t) ∈ [0, 1] × [0,T ]},

where

E(0,T ) := sup
0≤t≤T
∥(u,w, b, vx, θx)∥2H1 +

∫ T

0
∥θt∥

2
L2dt.

The main purpose of this section is to derive certain t-dependent a priori estimates for the
variables (v, u, θ,w, b) in the function space X(0,T ; m1,m2,N), relevant to the initial boundary value
problem (1.1)–(1.9) for T > 0 and 0 < mi ≤ 1(i = 1, 2), 2 ≤ N < +∞. It follows from Sobolev’s
inequality that

m1 ≤ v(x, t) ≤ 2N, m2 ≤ θ(x, t) ≤ 2N, for ∀(x, t) ∈ [0, 1] × [0,T ].

Firstly, let us derive the time-independent lower and upper bounds of v.

Lemma 2.1. Assume that the conditions listed in Theorem 1.1 hold; then there exists a constant 0 <
ϵ1 ≤ 1 depending only on β, M0, and V0, such that if

m−α2 ≤ 2, Nα ≤ 2, αH(m1,m2,N) ≤ ϵ1, (2.1)

where
H(m1,m2,N) := (m−1

1 + m−1
2 + N + 1)8.

Then for (x, t) ∈ [0, 1] × [0,T ],
C−1

0 ≤ v(x, t) ≤ C0. (2.2)

Here (and in what follow), C0,Ci(i = 1, 2, · · · , 10), and C denote some generic positive constants
depending only on β, ∥(v0, u0,w0, b0, θ0)∥H2 , infx∈(0,1) v0(x), and infx∈(0,1) θ0(x).
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Proof. The proof is divided into four steps.
Step 1. (Basic energy estimate)
According to (1.1), (1.5), (1.9), and (1.10), for t > 0, one has∫ 1

0
v(x, t)dx = 1,

∫ 1

0

(
θ +

u2 + |w|2 + v|b|2

2

)
(x, t)dx = 1. (2.3)

In light of (2.1), it is deduced that

∥θα + θ−α∥L∞([0,1]×[0,T ]) ≤ m−α2 + (2N)α ≤ 2 + 4 = 6. (2.4)

Simplifying (1.5) gives

θt +
θ

v
ux =

(
θβθx

v

)
x
+
θα(u2

x + |wx|
2 + |bx|

2)
v

. (2.5)

Then, multiplying (1.1)–(1.4), and (2.5) by (1−v−1), u, w, b, and (1−θ−1), respectively, and integrating
them over [0, 1] × [0,T ], together with (2.4) gives

sup
0≤t≤T

∫ 1

0

(
u2 + |w|2 + v|b|2

2
+ (v − ln v) + (θ − ln θ)

)
dx +

∫ T

0
W(s)ds ≤ E0, (2.6)

where

W(t) =
∫ 1

0

(
θαθ2x
vθ2
+
θα(u2

x + |wx|
2 + |bx|

2)
vθ

)
(x, t)dx, (2.7)

and E0 is the initial total entropy defined by

E0 =

∫ 1

0

(
u2

0 + |w0|
2 + v|b0|

2

2
+ (v0 − ln v0) + (θ0 − ln θ0)

)
dx.

Step 2. (Representation formula for v)
First, (1.2) can be written as

ut + (P +
1
2
|b|2)x = µ(ln v)xt + µx

ux

v
,

that is, (
u
µ

)
t
+ g +

(
µ−1(P +

1
2
|b|2)

)
x
= (ln v)xt, (2.8)

where
g = −(µ−1)tu − (µ−1)x(P +

1
2
|b|2) −

µxux

µv
.

Integrating (2.8) over [0, t] × [x1(t), x], it follows∫ x

x1(t)

(
u
µ
−

u0

µ0

)
dξ +

∫ 1

0

∫ x

x1(t)
gdξds +

∫ t

0

P + 1
2 |b|

2

µ
−

P + 1
2 |b|

2

µ
(x1)

 ds

= ln v(x, t) − ln v(x1(t), t) − [ln v0(x) − ln v(x1(t), 0)],

Electronic Research Archive Volume 33, Issue 2, 938–972.



943

where x1(t) ∈ [0, 1] is determined by the following steps and µ0 = µ(θ0). Moreover, for ease of
notation, define

F =
ux

v
− µ−1(P +

1
2
|b|2) −

∫ x

0
g(ζ)dζ,

φ =

∫ t

0
F(x, s)ds +

∫ x

0

u0

µ0
dζ.

Based on the above definitions that

φx =
u
µ
, φt = F. (2.9)

It is easy to show that ∫ t

0

[
µ−1(P +

1
2
|b|2)(x1(t), s) +

∫ x1(t)

0
g(ξ, s)dξ

]
ds

=

∫ t

0

(
ux

µ
− F

)
(x1(t), s)ds =

∫ t

0
[(ln v)t − F](x1(t), s)ds

= ln v(x1(t), t) − ln v(x1(t), 0) −
∫ t

0
F(x1(t), s)ds.

(2.10)

With the help of (1.1) and (2.9) that

(vφ)t − (uφ)x = vφt − uφx = vF −
u2

µ

= ux −
v
µ

(P +
1
2
|b|2) − v

∫ x

0
g(ξ)dξ −

u2

µ
.

(2.11)

Integrating (2.11) over [0, t] × [0, 1], it follows∫ 1

0
vφdx =

∫ 1

0
v0

∫ x

0

u0

µ0
dξdx −

∫ t

0

∫ 1

0

[
v
µ

(P +
1
2
|b|2) + v

∫ x

0
g(ξ)dξ +

u2

µ

]
dxds. (2.12)

Hence, according to the mean value theorem, there exists x1(t) ∈ [0, 1] such that φ(x1(t), t) =
∫ 1

0
vφdx.

By the definition of φ, (2.9) and (2.12), one obtains∫ t

0
F(x1(t), s)ds = φ(x1(t), t) −

∫ x1(t)

0

u0

µ0
dξ =

∫ 1

0
v0

∫ x

0

u0

µ0
dξdx

−

∫ t

0

∫ 1

0

[
v
µ

(P +
1
2
|b|2) + v

∫ x

0
g(ξ)dξ +

u2

µ

]
dxds −

∫ x1(t)

0

u0

µ0
dξ.

(2.13)

Substituting (2.13) into (2.10) gives∫ t

0

[
µ−1(P +

1
2
|b|2)(x1(t), s) +

∫ x1(t)

0
g(ξ, s)dξ

]
ds

= ln v(x1(t), t) − ln v(x1(t), 0) −
∫ 1

0
v0

∫ x

0

u0

µ0
dξdx +

∫ x1(t)

0

u0

µ0
dξ

+

∫ t

0

∫ 1

0

[
v
µ

(P +
1
2
|b|2) + v

∫ x

0
g(ξ)dξ +

u2

µ

]
dxds.

(2.14)
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Moreover, substituting (2.14) into (2.9),∫ t

0
µ−1(P +

1
2
|b|2)ds +

∫ t

0

∫ x

0
gdξds −

∫ t

0

∫ 1

0

[
v
µ

(P +
1
2
|b|2) + v

∫ x

0
g(ξ)dξ +

u2

µ

]
dxds

+

∫ x

x1(t)

(
u
µ
−

u0

µ0

)
dξ +

∫ 1

0
v0

∫ x

0

u0

µ0
dξdx −

∫ x1(t)

0

u0

µ0
dξ = ln v(x, t) − ln v(x, 0).

(2.15)

It follows from (2.15) that
v = B−1AD, (2.16)

where

A := exp
{∫ t

0

[
µ−1(P +

1
2
|b|2) +

∫ x

0
gdζ

]
ds

}
;

B := exp
{∫ t

0

∫ 1

0

[
v
µ

(P +
1
2
|b|2) + v

∫ x

0
g(ζ)dζ +

u2

µ

]
dxds

}
;

D := v0 exp
{∫ x

x1(t)

(
u
µ
−

u0

µ0

)
dζ +

∫ 1

0
v0

∫ x

0

u0

µ0
dζdx −

∫ x1(t)

0

u0

µ0
dζ

}
.

From (2.16), one has
vD−1B = A. (2.17)

Furthermore, we define

J :=
1
µ

(P +
1
2
|b|2) +

∫ x

0
dζ.

Then, multiplying (2.17) by J, we have

vD−1BJ =
∂

∂t
A.

Since A(0) = 1, integrating the above equality over (0, t) with respect to time, one obtains

v = DB−1 +

∫ t

0

B(s)
B(t)
·

D(t)
D(s)

· v
[
1
µ

(P +
1
2
|b|2) +

∫ x

0
gdξ

]
ds. (2.18)

Step 3. (Lower bound for v)
Applying Jensen’s inequality to the convex function θ − ln θ leads to∫ 1

0
θdx − ln

∫ 1

0
θdx ≤

∫ 1

0
(θ − ln θ)dx,

which, together with (2.3) and (2.6), leads to

θ̄(t) =
∫ 1

0
θ(x, t)dx ∈ [α1, 1], (2.19)

where 0 < α1 < α2 are two roots of
x − ln x = e0.
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The expression of D and ∫ x

x1(t)

u
µ

dξ ≤
∫ 1

0
θ−αudx ≤ m−2α

2 +

∫ 1

0
u2dx ≤ C,

imply that
C−1 ≤ D ≤ C. (2.20)

Next, we will estimate B. It follows from (2.3) and (2.4) that∫ 1

0

(
v
µ

(P +
1
2
|b|2) +

u2

µ

)
dx =

∫ 1

0
θ−α(θ +

1
2

v|b|2 + u2)dx

≤ m−α2

∫ 1

0
(θ +

1
2

v|b|2 + u2)dx ≤ 4,
(2.21)

and ∫ 1

0

(
v
µ

(P +
1
2
|b|2) +

u2

µ

)
dx ≥

∫ 1

0
θ−α(θ +

1
2

v|b|2 + u2)dx ≥ (2N)−α
∫ 1

0
θdx ≥

α1

4
. (2.22)

On the other hand, by the expression of g, there exists a sufficiently small ϵ > 0 such that∫ 1

0

∫ x

0
g(ξ)dξ =

∫ 1

0
v
∫ x

0
αθ−α−1(θtu + θx(P +

1
2
|b|2) −

θαθxux

v
)dξdx

≤ αm−α−1
2

∫ 1

0
v
∫ 1

0
(θtu + m−1

1 θθx +
1
2
θx|b|2 − m−α2 m−1

1 θxux)dξdx

≤ αm−α−1
2 (∥θt∥2L2 + ∥u∥2L2 + m−1

1 ∥θx∥L2∥θ∥L2 + ∥θx∥L2∥ux∥L2) ≤ ϵt.

(2.23)

Putting (2.21)–(2.23) into the expression of B, we will find that there exist C2,C3, such that

eC2t ≤ B(t) ≤ eC3t.

That means
e−C2(t−s) ≤

B(s)
B(t)

≤ e−C3(t−s).

Thus, for 0 ≤ t < t0, one has

v ≥ DB−1 −Cε
∫ t

0
e−C2(t−s)ds ≥ Ce−Ct0 −Cε(1 − e−C2t0).

For large enough t > t0, it follows

inf
x∈Ω

v(x, t) ≥ C
∫ t

0

B(s)
B(t)
θ1−αds −Cε(1 − e−C3t). (2.24)

Therefore, one needs the estimates of θ and B(s)
B(t) . By the mean value theorem and (2.3), there exists

x2(t) ∈ [0, 1], such that C−1 ≤ θ(x2(t), t) ≤ C. Based on Cauchy-Schwarz’s inequality, one has∣∣∣∣[ln(θ + 1)]
β
2+1
− [ln(θ(x2(t), t) + 1)]

β
2+1

∣∣∣∣ = ∣∣∣∣∣∣
∫ x

x2

(ln(θ + 1))β · θx
√

v(θ + 1)
·
√

v(ζ)dζ

∣∣∣∣∣∣
≤ C

(∫ 1

0

(ln(θ + 1))β θ2x
vθ2

dx
) 1

2

·

(∫ 1

0
vdx

) 1
2

≤ C
(∫ 1

0

(ln(θ + 1))β θ2x
vθ2

dx
) 1

2

,
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which implies
θ ≥ C −CW(t).

From (2.18), (2.20), (2.21), and (2.23), one has∫ t

0

B(s)
B(t)
θ1−αds ≥

∫ t

0

B(s)
B(t)

(
1 −

∫ 1

0

θβθ2x
vθ2

dx
)

ds

≥ C − e−Ct −C


∫ t

2

0

B(s)
B(t)

∫ 1

0

θβθ2x
vθ2

dxds +
∫ t

t
2

B(s)
B(t)

∫ 1

0

θβθ2x
vθ2

dxds


≥ C − e−Ct −Ce−

C
2 t −C

∫ t

t
2

∫ 1

0

θβθ2x
vθ2

dxds ≥ C.

(2.25)

For the large enough time T0, when t > T0, plugging (2.25) into (2.24) gives

inf
x∈Ω

v(x, t) ≥ C.

Step 4. (Upper bound for v)
According to Holder’s inequality, for 0 < β ≤ 1, one has∣∣∣∣θ 1

2 (x, t) − θ
1
2 (x2(t), t)

∣∣∣∣ ≤ ∫ 1

0
θ−

1
2 · θxdx

≤ ∥v∥
1
2
∞ ·

(∫ 1

0

θβθ2x
vθ2

dx
) 1

2

·

(∫ 1

0
θ1−βdx

) 1
2

≤ ∥v∥
1
2
∞ ·

(∫ 1

0

θβθ2x
vθ2

dx
) 1

2

.

(2.26)

That means

θ(x, t) ≤ C + ∥v∥∞

∫ 1

0

θβθ2x
vθ2

dx. (2.27)

For 1 < β < ∞, one has

∣∣∣∣θ β2 (x, t) − θ
β
2 (x2(t), t)

∣∣∣∣ ≤ ∫ 1

0

θ
β
2−1 · θx

θ
dx ≤

(∫ 1

0

θβθ2x
vθ2

dx
) 1

2

·

(∫ 1

0
θ1−βdx

) 1
2

≤

(∫ 1

0

θβθ2x
vθ2

dx
) 1

2

,

which means

θ(x, t) ≤ C +
∫ 1

0

θβθ2x
vθ2

dx. (2.28)

Then the standard calculations give

max
x∈[0,1]

|b|2(x, t) ≤ C
∫ 1

0
|b · bx|dx ≤ C

∫ 1

0

θα|bx|
2

vθ
dx +C

∫ 1

0
vθ1−α|b|2dx

≤ C
∫ 1

0

θα|bx|
2

vθ
dx +C.

(2.29)
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It follows from the expression of v and (2.26)–(2.29) that

∥v∥∞ ≤ Ce−Ct +C
∫ t

0
e−C(t−s)

(
(1 + ∥v∥∞)

∫ 1

0

θβθ2x
vθ2

dx +
∫ 1

0

θα|bx|
2

vθ
dx

)
ds.

By using Grönwall’s inequality, one has

∥v∥∞ ≤ C.

Up to now, the proof of Lemma 2.1 has been finished.

Lemma 2.2. Assume that the conditions listed in Lemma 2.1 hold; then for any p > 0, there exists
some positive constant C(p) such that

sup
0≤t≤T

∫ 1

0
θ1−pdx +

∫ T

0

∫ 1

0

(
θβθ2x
θp+1 +

u2
x + |wx|

2 + |bx|
2

θp

)
dxdt ≤ C(p). (2.30)

Proof. From (2.6), we see that (2.30) holds for p = 1. Then we assume p > 0 and p , 1.
Multiplying (2.5) by θ−p and integrating by parts, one can arrive at

1
p − 1

(∫ 1

0
θ1−pdx

)
t
+ p

∫ 1

0

θβθ2x
vθp+1 dx +

∫ 1

0

θα(u2
x + |wx|

2 + |bx|
2)

vθp dx

=

∫ 1

0

(θ1−p − 1)ux

v
dx +

∫ 1

0

ux

v
dx ≤ C(p)

∫ 1

0
|θ

1
2 − 1|(θ

1
2−p + 1)|ux|dx +

∫ 1

0

vt

v
dx

≤ C(p) max
x∈[0,1]

|θ
1
2 − 1|

∫ 1

0
(θ

1
2−p + 1)|ux|dx +

∫ 1

0
(ln v)tdx

≤ C(p) max
x∈[0,1]

|θ
1
2 − 1|

(∫ 1

0
(θ

1
2−p)|ux|dx +

∫ 1

0
|ux|dx

)
+

(∫ 1

0
ln vdx

)
t

≤ C(p) max
x∈[0,1]

|θ
1
2 − 1|

(∫ 1

0

vθ1−p

θα
dx

) 1
2
(∫ 1

0

θαu2
x

vθp dx
) 1

2

+C(p) max
x∈[0,1]

|θ
1
2 − 1|

(∫ 1

0

u2
x

vθ
dx

) 1
2
(∫ 1

0
vθdx

) 1
2

+

(∫ 1

0
ln vdx

)
t

≤
1
2

∫ 1

0

θαu2
x

vθp dx +C(p) max
x∈[0,1]

|θ
1
2 − 1|

(∫ 1

0

vθ1−p

θα
dx + 1

)
+

(∫ 1

0
ln vdx

)
t
.

(2.31)

Moreover, it follows from (2.3) and (2.19) that

α1 ≤

∫ 1

0
θdx ≤

∫ 1

0

θ + ηθα
(
u2 + |w|2 + v|b|2

)
2

 dx ≤ 1.
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For any real number q, it follows from (2.2) and (2.4) that

|1 − θ̄q| =

∣∣∣∣∣∣∣∣
∫ 1

0

d
dη

∫ 1

0

θ + ηθα
(
u2 + |w|2 + v|b|2

)
2

 dx


q

dη

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫ 1

0
q

∫ 1

0
θ + η

θα
(
u2 + |w|2 + v|b|2

)
2

dx


q−1

dη ·
∫ 1

0

θα
(
u2 + |w|2 + v|b|2

)
2

dx

∣∣∣∣∣∣∣∣
≤ C(q) max

x∈[0,1]
(|u| + |w| + |b|)

(∫ 1

0

(
u2 + |w|2 + v|b|2

)
dx

) 1
2

≤ C(q)
∫ 1

0
(|ux| + |wx| + |bx|)dx

≤ C(q)

∫ 1

0

θα
(
u2

x + |wx|
2 + |bx|

2
)

vθ
dx


1
2 (∫ 1

0
vθ1−αdx

)
≤ C(q)W

1
2 (t).

(2.32)

After that, for β ∈ (0, 1), it follows from (2.27), (2.28), and (2.19) that

max
x∈[0,1]

|θ
1
2 − 1| ≤ max

x∈[0,1]
|θ

1
2 − θ̄

1
2 | + max

x∈[0,1]
|θ̄

1
2 − 1| ≤ C

∫ 1

0
θ−

1
2 |θx|dx +CW

1
2 (t)

≤ C
(∫ 1

0

θβθ2x
vθ2

dx
) 1

2

·

(∫ 1

0
vθ1−βdx

) 1
2

+CW
1
2 (t) ≤ CW

1
2 (t),

(2.33)

when β ≥ 1, one has

max
x∈[0,1]

|θ
1
2 − 1| ≤ max

x∈[0,1]
|θ

1
2 − θ̄

1
2 | + max

x∈[0,1]
|θ̄

1
2 − 1| ≤ max

x∈[0,1]
|θ
β
2 − θ̄

β
2 | +CW

1
2 (t)

≤ C
∫ 1

0
θ
β
2−1|θx|dx +CW

1
2 (t) ≤ C

(∫ 1

0

θβθ2x
vθ2

dx
) 1

2
(∫ 1

0
vθ1−βdx

) 1
2

+CW
1
2 (t)

≤ CW
1
2 (t).

(2.34)

Therefore, for β > 0, it follows from (2.33), (2.34), and (2.6) that∫ T

0
max
x∈[0,1]

(θ
1
2 − 1)2dt ≤ C. (2.35)

Finally, we see that for p ∈ [0, 1], one has∫ 1

0
θ1−pdx ≤

∫ 1

0
θdx + 1 ≤ C.

And for β ≥ 0, it follows from (2.33), (2.34), and (2.6) that

sup
0≤t<∞

∫ 1

0
| ln v|dx ≤ C. (2.36)

As a result, according to (2.33), (2.34), (2.7), (2.35), and Grönwall’s inequality, we derive (2.30)
from (2.31), which finishes the proof of Lemma 2.2.
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Lemma 2.3. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0,

sup
0≤t≤T

∫ 1

0
v2

xdx +
∫ T

0

∫ 1

0
(v2

x(1 + θ) + u2
x + |wx|

2 + |bx|
2)dxdt ≤ C4. (2.37)

Proof. First, integrating (2.5) over [0, 1] × [0, t], by (2.36), one has

∫ T

0

∫ 1

0

θα
(
u2

x + |wx|
2 + |bx|

2
)

v
dxdt

=

∫ 1

0
θdx −

∫ 1

0
θ0dx +

∫ T

0

∫ 1

0

θ − 1
v

uxdxdt +
∫ 1

0
ln vdx −

∫ 1

0
ln v0dx

≤
1
2

∫ T

0

∫ 1

0

θαu2
x

v
dxdt +C

∫ T

0

∫ 1

0

(θ − 1)2

vθα
dxdt +C

≤
1
2

∫ T

0

∫ 1

0

θαu2
x

v
dxdt +C

∫ T

0
max
x∈[0,1]

|θ
1
2 − 1|2

∫ 1

0
(θ

1
2 + 1)2dxdt +C

≤
1
2

∫ T

0

∫ 1

0

θαu2
x

v
dxdt +C

∫ T

0
max
x∈[0,1]

|θ
1
2 − 1|2dt +C

≤
1
2

∫ T

0

∫ 1

0

θαu2
x

v
dxdt +C

∫ T

0
W(t)dt +C ≤ C,

thus it follows from (2.2) and (2.4) that

∫ T

0

∫ 1

0

(
u2

x + |wx|
2 + |bx|

2
)

dxdt ≤ C. (2.38)

Next, since (
θαvx

v

)
t
= θα

(vx

v

)
t
+ αθα−1θt

vx

v
= θα

(vt

v

)
x
+ αθα−1θt

vx

v

=

(
θα

vt

v

)
x
− αθα−1θx

vt

v
+ αθα−1θt

vx

v
=

(
θα

vt

v

)
x
+
αθα−1

v
(vxθt − θxvt),

the momentum equation (1.2) can be rewritten as

(
u − θα

vx

v

)
t
= −

(
θ

v
+

1
2
|b|2

)
x
−
αθα−1

v
(vxθt − θxvt). (2.39)
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Multiplying (2.39) by
(
u − θ

αvx
v

)
and integrating it over [0, 1] × [0, t] yields that for any t ∈ [0,T ],

1
2

∫ 1

0

(
u −
θαvx

v

)2

dx −
1
2

∫ 1

0

(
u −
θαvx

v

)2

(x, 0)dx =
∫ T

0

∫ 1

0

(
θvx

v2 −
θx

v
− b · bx

)
·

(
u −
θαvx

v

)
dxdt −

∫ T

0

∫ 1

0

αθα−1

v
(vxθt − θxvt)

(
u −
θαvx

v

)
dxdt

= −

∫ T

0

∫ 1

0

(
θα+1v2

x

v3

)
dxdt +

∫ T

0

∫ 1

0

θuvx

v2 dxdt −
∫ T

0

∫ 1

0

θx

v

(
u −
θαvx

v

)
dxdt

−

∫ T

0

∫ 1

0
b · bx

(
u −
θαvx

v

)
dxdt −

∫ T

0

∫ 1

0

αθα−1

v
(vxθt − θxvt)

(
u −
θαvx

v

)
dxdt

= −

∫ T

0

∫ 1

0

(
θα+1v2

x

v3

)
dxdt +

4∑
i=1

Ii.

(2.40)

Each Ii(i = 1, 2, 3, 4) can be estimated as follows. First, based on Cauchy’s inequality, we have

|I1| =

∣∣∣∣∣∣
∫ T

0

∫ 1

0

θuvx

v2 dxdt

∣∣∣∣∣∣
≤

1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C
∫ T

0

∫ 1

0

θ1−αu2

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C,

(2.41)

where it has been used∫ T

0

∫ 1

0

θ1−αu2

v
dxdt ≤ C

∫ T

0

∫ 1

0
θu2dxdt ≤ C

∫ T

0
max
x∈[0,1]

|u|2
∫ 1

0
θdxdt

≤ C
∫ T

0
max
x∈[0,1]

|u|2dt ≤ C
∫ T

0

∫ 1

0
u2

xdxdt ≤ C.

Next, by using (2.4), (2.6), and (2.30) with p = β, it follows

|I2| =

∣∣∣∣∣∣
∫ T

0

∫ 1

0

θx

v

(
u −
θαvx

v

)
dxdt

∣∣∣∣∣∣
≤

1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C
∫ T

0

∫ 1

0

θ1−αu2

v
dxdt +C

∫ T

0

∫ 1

0

θαθ2x
vθ

dxdt

≤
1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C.

(2.42)

Combining (2.42) with Cauchy’s inequality leads to

|I3| =

∣∣∣∣∣∣
∫ T

0

∫ 1

0
b · bx

(
u −
θαvx

v

)
dxdt

∣∣∣∣∣∣
=

∫ T

0

∫ 1

0

|bx|
2 + |b|2

(
u −
θαvx

v

)2 dxdt

≤ C
∫ T

0
W(t)

∫ 1

0

(
u −
θαvx

v

)2

dxdt +C.

(2.43)

Electronic Research Archive Volume 33, Issue 2, 938–972.



951

Rewriting (2.5) as

θt = −
θβθxvx

v2 +
βθβ−1θ2x

v
+
θβθxx

v
+
θα

(
u2

x + |wx|
2 + |bx|

2
)

v
−
θ

v
ux.

We set
Y = −(uv − θαvx)(vxθt − θxvt) = θαv2

xθt − uvvxθt − θ
αθxuxvx + uvθxux

= uvθxux +

(
θαθt +

uθβθx

v

)
v2

x −
(
βθβ−1uθ2x + θ

βuθxx

+ θαu(u2
x + |wx| + |bx|

2) − θuux + θ
αθxux

)
vx

= uvθxux + R1v2
x + R2vx,

(2.44)

where

R1 := θαθt +
uθβθx

v
,

and
R2 := −(βθβ−1uθ2x + θ

βuθxx + θ
αu(u2

x + |wx| + |bx|
2) − θuux + θ

αθxux).

Then from (2.44), one has

|I4| =

∣∣∣∣∣∣
∫ T

0

∫ 1

0

αθα−1

v2

(
uvθxux + R1v2

x + R2vx

)
dxdt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ T

0

∫ 1

0

αθα−1uθxux

v
dxdt

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ T

0

∫ 1

0

αθα−1

v2 R1v2
xdxdt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ T

0

∫ 1

0

αθα−1

v2 R2vxdxdt

∣∣∣∣∣∣ :=
3∑

i=1

Ji.

(2.45)

Each Ji(i = 1, 2, 3) can be estimated as follows. First, by means of Cauchy’s inequality

J1 ≤

∫ T

0
∥αθ

1+α−β
2 ∥∞

(∫ 1

0

θβθ2x
vθ2

dx +
∫ 1

0

θαu2
x

vθ
dx

)
dt ≤ C. (2.46)

According to the definition of R1, one has

J2 =

∣∣∣∣∣∣
∫ T

0

∫ 1

0

(
αθα−1v2

x

v2 ·
uθβθx

v
+
αθα−1v2

x

v2 · θαθt

)
dxdt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ T

0

∫ 1

0

αθα+β−1uv2
xθx

v3 dxdt

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ T

0

∫ 1

0

αθ2α−1v2
xθt

v2 dxdt

∣∣∣∣∣∣
≤

∫ T

0
∥αθ

α+β−1
2

vxu
v
∥∞

(∫ 1

0

θα+1v2
x

v3 dx +
∫ 1

0

θβθ2x
vθ2

dx
)

dt

+

∫ T

0
∥αθ

3
2 (α−1) vx

√
v
∥∞

(∫ 1

0

θα+1v2
x

v3 dx +
∫ 1

0
θ2t dx

)
dt

≤
1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C
∫ T

0

∫ 1

0

θβθ2x
vθ2

dxdt +C∥α∥∞

∫ T

0

∫ 1

0
θ2t dxdt

≤
1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C.

(2.47)
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It follows from the definition of R2 that

R2
2 ≤ C

(
θ2αθ2xu2

x + u2β2θ2β−2θ4x + θ
2βu2θ2xx + u2θ2αu4

x + u2θ2α|wx|
4 + u2θ2α|bx|

4 + u2
xθ

2α+2
)
,

then, one has

J3 =

∣∣∣∣∣∣
∫ T

0

∫ 1

0

αθα−1

v2 R2vxdxdt

∣∣∣∣∣∣
≤

1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C
∫ T

0

∫ 1

0

α2θα−3R2
2

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C.

(2.48)

Inserting (2.46)–(2.48) into (2.45) gives

|I4| ≤
1
4

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt +C. (2.49)

Putting (2.41)–(2.43), and (2.49) into (2.40), combining Grönwall’s inequality gives∫ 1

0

(
u −

vx

v

)2
dx +

∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt ≤ C.

Note that ∫ 1

0

(
u −

vx

v

)2
dx =

∫ 1

0

(
u2 − 2u

vx

v
+

v2
x

v2

)2

dx

=

∫ 1

0
u2dx +

∫ 1

0

v2
x

v2 dx − 2
∫ 1

0
u

vx

v
dx,

that means ∫ 1

0
u2dx +

∫ 1

0

v2
x

v2 dx +
∫ T

0

∫ 1

0

θα+1v2
x

v3 dxdt

≤ C + 2
∫ 1

0
u

vx

v
dx ≤

1
2

∫ 1

0

v2
x

v2 dx +C
∫ 1

0
u2dx +C ≤ C.

On the other hand, it follows from (2.33) and (2.34) that∫ 1

0
v2

xdx =
∫ 1

0
v2

x(1 − θ)dx +
∫ 1

0
θv2

xdx

≤ C max
x∈[0,1]

|θ
1
2 − 1|2

∫ 1

0
v2

xdx +
∫ 1

0
θv2

xdx

≤ CW(t)
∫ 1

0
v2

xdx +
∫ 1

0
θv2

xdx.

Together with (2.38), the proof of Lemma 2.3 has been completed.

Lemma 2.4. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0, one has

sup
0≤t≤T

∫ 1

0

(
|bx|

2 + |wx|
2
)

dx +
∫ T

0

∫ 1

0

(
|bt|

2 + |wt|
2 + |bxx|

2 + |wxx|
2
)

dxdt ≤ C5. (2.50)

Electronic Research Archive Volume 33, Issue 2, 938–972.



953

Proof. First, rewrite (1.3) as

wt =
θαwxx

v
−
θαwxvx

v2 +
αθα−1θxwx

v
+ bx. (2.51)

Multiplying (2.51) by wxx and integrating over [0, 1] × [0,T ], one obtains:

1
2

∫ 1

0
|wx|

2dx +
∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt =

∫ T

0

∫ 1

0

θαvxwx · wxx

v2 dxdt

+

∫ T

0

∫ 1

0

αθα−1wx · wxx

v
dxdt +

∫ T

0

∫ 1

0
bx · wxxdxdt =

3∑
i=1

Ii.

(2.52)

Each Ii(i = 1, 2, 3) is estimated as follows. From Cauchy’s inequality and (2.4), it shows

I1 =

∫ T

0

∫ 1

0

θαvxwx · wxx

v2 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0

∫ 1

0

θα|wx|
2v2

x

v3 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0
max
x∈[0,1]

|wx|
2
∫ 1

0

θαv2
x

v3 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0
max
x∈[0,1]

|wx|
2dt

≤
1
4

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C,

(2.53)

where it has been used

∫ T

0
max
x∈[0,1]

|wx|
2dt ≤

∫ T

0

∫ 1

0
|wx| · |wxx|dxdt +C

∫ T

0

∫ 1

0
|wx|

2dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0

∫ 1

0
|wx|

2dxdt ≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C.

(2.54)

Next, from the a priori assumption, one has
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I2 = −

∫ T

0

∫ 1

0

αθα−1θxwx · wxx

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0

∫ 1

0

α2θα−2θ2x|wx|
2

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0
max
x∈[0,1]

|wx|
2 · |α|2

∫ 1

0

θα−2θ2x
v

dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0
max
x∈[0,1]

|wx|
2 · |α|2 · mα−2

2 · ∥θ2x∥
2
L2dt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0
max
x∈[0,1]

|wx|
2 · |α|2 · H(m1,m2,N)dt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0
max
x∈[0,1]

|wx|
2dt

≤
1
4

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C.

(2.55)

Furthermore, according to (2.37), one has

I3 =

∫ T

0

∫ 1

0
bx · wxxdxdt ≤

1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C

∫ T

0

∫ 1

0

|bx|
2θ−α

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v
dxdt +C.

(2.56)

Substituting (2.53), (2.55), and (2.56) into (2.52), one has

∫ 1

0
|wx|

2dx +
∫ T

0

∫ 1

0
|wxx|

2dxdt ≤ C. (2.57)

Combining (2.51) with (2.54) gives

∫ T

0

∫ 1

0
|wt|

2dxdt

≤

∫ T

0

∫ 1

0

(
θ2αw2

xx

v2 +
θ2α|wx|

2v2
x

v4 +
α2θ2α−2θ2x|wx|

2

v2 + |bx|
2
)

dxdt

≤ C
∫ T

0
max
x∈[0,1]

|wx|
2dt +C ≤ C.

(2.58)

Next, rewrite (1.4) as

bt =
θαbxx

v2 −
θαbxvx

v3 +
αθα−1θxbx

v2 −
uxb
v
+

wx

v
. (2.59)
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Multiplying (2.59) by bxx and integrating the result over [0, 1] × [0,T ] yields

1
2

∫ 1

0
|bx|

2dx +
∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt

= −

∫ T

0

∫ 1

0

αθα−1θxbx · bxx

v2 dxdt +
∫ T

0

∫ 1

0

θαvxbx · bxx

v3 dxdt

+

∫ T

0

∫ 1

0

uxb · bxx

v
dxdt −

∫ T

0

∫ 1

0

wx · bxx

v
dxdt :=

4∑
i=1

Ji.

(2.60)

Each Ji(i = 1, 2, 3) is estimated as follows. From Cauchy’s inequality and (2.4), one has

J1 = −

∫ T

0

∫ 1

0

αθα−1θxbx · bxx

v2 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0

∫ 1

0

α2θα−2θ2x|bx|
2

v2 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0
max
x∈[0,1]

|bx|
2 · |α|2

∫ 1

0

θα−2θ2x
v2 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0
max
x∈[0,1]

|bx|
2 · |α|2 · mα−2

2 · ∥θ2x∥
2
L2dt

≤
1
8

∫ T

0

∫ 1

0

θα|wxx|
2

v2 dxdt +C
∫ T

0
max
x∈[0,1]

|bx|
2 · |α|2 · H(m1,m2,N)dt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0
max
x∈[0,1]

|bx|
2dt ≤

1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C,

(2.61)

where it has been used∫ T

0
max
x∈[0,1]

|bx|
2dt ≤

∫ T

0

∫ 1

0
|bx| · |bxx|dxdt +C

∫ T

0

∫ 1

0
|bx|

2dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0

∫ 1

0
|bx|

2dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C.

(2.62)

It follows from (2.2), (2.4), (2.37), and (2.62) that

J2 =

∫ T

0

∫ 1

0

θαvxbx · bxx

v3 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0
max
x∈[0,1]

|bx|
2
∫ 1

0

θαv2
x

v4 dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0
max
x∈[0,1]

|bx|
2dt

≤
1
4

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C.

(2.63)
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From (2.2)–(2.4), one has

J3 =

∫ T

0

∫ 1

0

uxb · bxx

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt + max
(x,t)∈[0,1]×[0,T ]

|b|2 ·C
∫ T

0

∫ 1

0
u2

xdxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt + max
(x,t)∈[0,1]×[0,T ]

|b|2

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C sup
0<t<T

∫ 1

0
|b| · |bx|dx

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +
1
8

sup
0<t<T
|bx|

2 +C.

(2.64)

According to (2.37), it follows

J4 =

∫ T

0

∫ 1

0

wx · bxx

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C
∫ T

0

∫ 1

0
|wx|

2dxdt

≤
1
8

∫ T

0

∫ 1

0

θα|bxx|
2

v2 dxdt +C.

(2.65)

Inserting (2.61), (2.63)–(2.65) into (2.60), which implies

sup
0<t<T

∫ 1

0
|bx|

2dx +
∫ T

0

∫ 1

0
|bxx|

2dxdt ≤ C. (2.66)

From (2.59), one obtains∫ T

0

∫ 1

0
|bt|

2dxdt ≤ C
∫ T

0

∫ 1

0

(
θ2α|bxx|

2

v4 +
α2θ2α−2θ2x|bx|

2

v4

+
θ2α|bx|

2v2
x

v6 +
u2

x|b|2

v2 +
|wx|

2

v2

)
dxdt ≤ C.

(2.67)

Therefore, it follows from (2.57), (2.58), (2.66), and (2.67) that (2.50) is correct. Then the Lemma 2.4
has been proved.

Lemma 2.5. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0,∫ T

0

∫ 1

0
θ2xdxdt ≤ C6.

Proof. For the case of β > 1, setting p = β − 1 in (2.30) will give∫ T

0

∫ 1

0
θ2xdxdt ≤ C. (2.68)

Electronic Research Archive Volume 33, Issue 2, 938–972.



957

For 0 < β ≤ 1, multiplying (2.5) by θ1−
β
2 and integrating by parts, it gives

2
4 − β

(∫ 1

0
θ2−

β
2 dx

)
t
+

2 − β
2

∫ 1

0

θ
β
2 θ2x
v

dx

= −

∫ 1

0

θ2−
β
2 ux

v
dx +

∫ 1

0

θα+1− β2
(
u2

x + |wx|
2 + |bx|

2
)

v
dx

=

∫ 1

0

(θ̄2−
β
2 − θ2−

β
2 )ux

v
dx +

∫ 1

0

(1 − θ̄2−
β
2 )ux

v
dx −

∫ 1

0

ux

v
dx

+

∫ 1

0

θα+1− β2 (u2
x + |wx|

2 + |bx|
2)

v
dx :=

4∑
i=1

Ii.

(2.69)

Each Ii(i = 1, 2, 3, 4) can be estimated as follows. First, by (2.7), one has

I1 =

∫ 1

0

(θ̄2−
β
2 − θ2−

β
2 )ux

v
dx

=

∫ 1

0

∣∣∣∣θ̄1− β4 − θ1− β4 ∣∣∣∣ (θ̄1− β4 + θ1− β4 )|ux|dx

≤ C max
x∈[0,1]

∣∣∣∣θ̄1− β4 − θ1− β4 ∣∣∣∣ (∫ 1

0
(θ2−

β
2 + 1)dx

) 1
2
(∫ 1

0
u2

xdx
) 1

2

≤
1
8

max
x∈[0,1]

∣∣∣∣θ̄1− β4 − θ1− β4 ∣∣∣∣ +C
∫ 1

0
(θ2−

β
2 + 1)dx

∫ 1

0
u2

xdx

≤
1
8

(∫ 1

0
θ−
β
4 |θx|dx

)2

+C
∫ 1

0
(θ2−

β
2 + 1)dx

∫ 1

0
u2

xdx

≤
1
8

∫ 1

0

θ
β
2 θ2x
v

dx +C
∫ 1

0

θβθ2x
vθ2

dx +C
∫ 1

0
(θ2−

β
2 + 1)dx

∫ 1

0
u2

xdx

≤
1
8

∫ 1

0

θ
β
2 θ2x
v

dx +CW(t) +C
∫ 1

0
θ2−

β
2 dx

∫ 1

0
u2

xdx +C
∫ 1

0
u2

xdx.

(2.70)

According to (2.32), one obtains

I2 =

∫ 1

0

(1 − θ̄2−
β
2 )ux

v
dx ≤ max

x∈[0,1]

∣∣∣∣1 − θ̄2− β2 ∣∣∣∣ ∫ 1

0
uxdx

≤ max
x∈[0,1]

∣∣∣∣1 − θ̄2− β2 ∣∣∣∣2 +C
∫ 1

0
u2

xdx ≤ CW(t) +C
∫ 1

0
u2

xdx.

(2.71)

It follows

I3 = −

∫ 1

0

ux

v
dx ≤ C

∫ 1

0
u2

xdx ≤ C. (2.72)
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Next, it follows from (2.4) that

I4 =

∫ 1

0

θα+1− β2
(
u2

x + |wx|
2 + |bx|

2
)

v
dx

≤ C max
x∈[0,1]

(∣∣∣∣θ1− β2 − θ̄1− β2 ∣∣∣∣ + 1
) ∫ 1

0
(u2

x + |wx|
2 + |bx|

2)dx

≤
1
8

∫ 1

0
θ−
β
2 |θx|dx

∫ 1

0
(u2

x + |wx|
2 + |bx|

2)dx +C
∫ 1

0
(u2

x + |wx|
2 + |bx|

2)dx

≤
1
8

∫ 1

0

θ
β
2 θ2x
v

dx +C
∫ 1

0

θβθ2x
vθ2

dx +C
∫ 1

0
(u2

x + |wx|
2 + |bx|

2)dx

+C
(∫ 1

0
u2

xdx
)2

+C
(∫ 1

0
|wx|

2dx
)2

+C
(∫ 1

0
|bx|

2dx
)2

≤
1
8

∫ 1

0

θ
β
2 θ2x
v

dx +CW(t) +C
∫ 1

0
(u2

x + |wx|
2 + |bx|

2)dx

+C
(∫ 1

0
u2

xdx
)2

+C
(∫ 1

0
|wx|

2dx
)2

+C
(∫ 1

0
|bx|

2dx
)2

.

(2.73)

Substituting (2.70)–(2.73) into (2.69), integrating on [0,T ], and combining (2.37) and Grönwall’s
inequality, one has when 0 < β ≤ 1, ∫ T

0

∫ 1

0
θ2xdxdt ≤ C. (2.74)

Then from (2.68) and (2.74) the proof of Lemma 2.5 has ended.

Lemma 2.6. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0, one has

sup
0≤t≤T

∫ 1

0
u2

xdx +
∫ T

0

∫ 1

0
u2

xxdxdt ≤ C7. (2.75)

Proof. Rewrite (1.2) as

ut =
θαuxx

v
−
θαuxvx

v2 +
αθα−1θxux

v
−
θx

v
+
θvx

v2 − b · bx. (2.76)

Multiplying (2.76) by uxx and integrating the result over [0, 1] × [0,T ], it shows

1
2

∫ 1

0
u2

xdx +
∫ T

0

∫ 1

0

θαu2
xx

v
dxdt

≤

∫ T

0

∫ 1

0

θαvxuxuxx

v2 dxdt −
∫ T

0

∫ 1

0

αθα−1θxuxuxx

v
dxdt +

∫ T

0

∫ 1

0

θxuxx

v
dxdt

−

∫ T

0

∫ 1

0

θvxuxx

v2 dxdt +
∫ T

0

∫ 1

0
b · bxuxxdxdt =

5∑
i=1

Ji.

(2.77)
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Each Ji can be estimated as follows. First, according to (2.37), one has

J1 =

∫ T

0

∫ 1

0

θαvxuxuxx

v2 dxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0
max
x∈[0,1]

|ux|
2
∫ 1

0
v2

xdxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0
max
x∈[0,1]

|ux|
2dt

≤
1
4

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C,

(2.78)

where it has been used∫ T

0
max
x∈[0,1]

|ux|
2dt ≤

∫ T

0

∫ 1

0
|ux| · |uxx|dxdt +C

∫ T

0

∫ 1

0
u2

xdxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0

∫ 1

0
u2

xdxdt ≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C.

(2.79)

Secondly, combining (2.30) with p = β + 1 − α, one obtains

J2 = −

∫ T

0

∫ 1

0

αθα−1θxuxuxx

v
dxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0
max
x∈[0,1]

|ux|
2 · |α|2mα−2

2

∫ 1

0
θ2xdxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0
max
x∈[0,1]

|ux|
2dt

≤
1
4

∫ 1

0

θαu2
xx

v
dx +C.

(2.80)

Next, from (2.2) and (2.4), one has

J3 =

∫ T

0

∫ 1

0

θxuxx

v
dxdt ≤

1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0

∫ 1

0
θ2xdxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C.

(2.81)

Furthermore, from (2.37), one has

J4 = −

∫ T

0

∫ 1

0

θvxuxx

v2 dxdt ≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0

∫ 1

0
θ2v2

xdx

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0

(
max
x∈[0,1]

(θ − θ̄)2 + 1
) ∫ 1

0
v2

xdxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0
max
x∈[0,1]

(θ − θ̄)2dt +C
∫ T

0

∫ 1

0
v2

xdxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dx +C

∫ T

0

∫ 1

0
θ2xdxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dx +C,

(2.82)
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where we have used ∫ T

0
max
x∈[0,1]

|θ − θ̄|2dt ≤ C.

In fact, for 0 < β < 2, ∫ T

0
max
x∈[0,1]

|θ − θ̄|2dt ≤ C
∫ T

0

∫ 1

0
|θx|

2dxdt ≤ C,

and for β ≥ 2, ∫ T

0
max
x∈[0,1]

|θ − θ̄|2dt ≤ C
∫ T

0
max
x∈[0,1]

|θ
β
2 − θ̄

β
2 |2dt ≤ C

∫ T

0

∫ 1

0
θβ−2|θx|

2dxdt

≤ C
(∫ T

0

∫ 1

0

θβθ2x
vθ2

dxdt
) 1

2
(∫ T

0

∫ 1

0
vdxdt

) 1
2

≤ C.

Finally, it follows from (2.62) that

J5 =

∫ T

0

∫ 1

0
b · bxuxxdxdt ≤

1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0
max
x∈[0,1]

|bx|
2
∫ 1

0
v|b|2dxdt

≤
1
8

∫ T

0

∫ 1

0

θαu2
xx

v
dxdt +C

∫ T

0
max
x∈[0,1]

|bx|
2dt ≤

1
8

∫ 1

0

θαu2
xx

v
dx +C.

(2.83)

Substituting (2.78) and (2.80)–(2.83) into (2.77) gives∫ 1

0
u2

xdx +
∫ T

0

∫ 1

0
u2

xxdxdt ≤ C. (2.84)

On the other hand, from (1.2), one has

|ut|
2 ≤ C(u2

xx + v2
xu

2
x + α

2θ2α−2θ2xu2
x + θ

2
x + θ

2v2
x + |b|

2|bx|
2),

and ∫ T

0

∫ 1

0
u2

t dxdt ≤ C.

Combining this with (2.84), the proof of Lemma 2.6 has been finished.

Lemma 2.7. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0,

C1 ≤ θ(x, t) ≤ C−1
1 , (2.85)

sup
0≤t≤T

∫ 1

0
θ2xdx +

∫ T

0

∫ 1

0
(θ2t + θ

2
xx)dxdt ≤ C8. (2.86)

Proof. Multiplying (2.5) by θ gives

1
2

d
dt

∫ 1

0
θ2dx +

∫ 1

0

θβθ2x
v

dx

=

∫ 1

0

(1 − θ2)ux

v
dx −

(∫ 1

0
ln vdx

)
t
+

∫ 1

0

θα+1(u2
x + |wx|

2 + |bx|
2)

v
dx

≤ C max
x∈[0,1]

(|1 − θ|2 + u2
x + |wx|

2 + |bx|
2) −

(∫ 1

0
ln vdx

)
t
.
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It follows from (2.32), (2.74), and (2.6) that∫ T

0
max
x∈[0,1]

(θ − 1)2dt

≤ C
∫ T

0
max
x∈[0,1]

(θ − θ̄)2dt +C
∫ T

0
max
x∈[0,1]

(θ̄ − 1)2dt

≤ C
∫ T

0

∫ 1

0
θ|θx|dxdt +C

∫ T

0
V(t)dt

≤

∫ T

0
θ2xdxdt +C

∫ T

0

∫ 1

0
θ2dxdt +C

∫ T

0
V(t)dt

≤ C
∫ T

0

∫ 1

0
θ2dxdt +C.

By combining this with (2.3), (2.37), and Grönwall’s inequality, one has∫ T

0

∫ 1

0
θβθ2xdxdt ≤ C. (2.87)

Next, multiplying (2.5) by θβθt and integrating it over (0, 1), by (2.4), one has

1
2

d
dt

∫ 1

0

(θβθx)2

v
dx +

∫ 1

0
θβθ2t dx

= −
1
2

∫ 1

0

(θβθx)2

v2 uxdx −
∫ 1

0

θβ+1θtux

v
dx +

∫ 1

0

θα+βθt(u2
x + |wx|

2 + |bx|
2)

v
dx

≤
1
2

∫ 1

0
θβθ2t dx +C max

x∈[0,1]
|ux|θ

β
2

∫ 1

0

θ
3β
2 θ2x
v2 dx +C

∫ 1

0
θβ+2u2

xdx

+

∫ 1

0
θβ(u4

x + |wx|
4 + |bx|

4)dx

=
1
2

∫ 1

0
θβθ2t dx +

3∑
i=1

Ii.

(2.88)

Moreover, each Ii(i = 1, 2, 3) can be estimated as follows. First,

I1 = C max
x∈[0,1]

|ux|θ
β
2

∫ 1

0

θ
3β
2 θ2x
v2 dx ≤ C max

x∈[0,1]
u2

xθ
β +C

(∫ 1

0
θ

3
2βθ2xdx

)2

≤ C max
x∈[0,1]

u2
x max

x∈[0,1]
(1 + θ2β+2) +C

∫ 1

0
θβθ2xdx ·

∫ 1

0
θ2βθ2xdx.

(2.89)

Second,

I2 ≤ C
∫ 1

0
(1 + θ2β+2)u2

xdx ≤ C max
x∈[0,1]

u2
x max

x∈[0,1]
(1 + θ2β+2). (2.90)

Finally,
I3 ≤ C max

x∈[0,1]
(u4

x + |wx|
4 + |bx|

4) max
x∈[0,1]

(1 + θ2β+2).
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Substituting (2.88)–(2.90) into (2.87) gives

1
2

d
dt

∫ 1

0

(θβθx)2

v
dx +

∫ 1

0
θβθ2t dx

≤ C max
x∈[0,1]

(u2
x + u4

x + |wx|
4 + |bx|

4) max
x∈[0,1]

(1 + θ2β+2)

+C
∫ 1

0
θβθ2xdx

∫ 1

0
θ2βθ2xdx.

Direct calculations yield

max
x∈[0,1]

|θβ+1 − θ̄β+1| ≤ C +C
∫ 1

0
θ2βθ2xdx, (2.91)

and

max
x∈[0,1]

(1 + θ2β+2) ≤ max
x∈[0,1]

(1 + θβ+1)2 ≤ C
(∫ 1

0
θβ|θx|dx

)2

≤ C
∫ 1

0
θ2βθ2xdx.

From this and (2.91), and integrating over [0,T ], together with Grönwall’s inequality, one has

sup
0≤t≤T

∫ 1

0
θ2βθ2xdx +

∫ T

0

∫ 1

0
θβθ2t dxdt ≤ C. (2.92)

Combining with (2.91), one has

max
(x,t)∈[0,1]×[0,T ]

θ(x, t) ≤ C. (2.93)

On the one hand, (2.93) gives∫ T

0

∫ 1

0
(θβ+1 − θ̄β+1)2dxdt ≤ C

∫ T

0

∫ 1

0
θ2βθ2xdxdt ≤ C. (2.94)

Together with (2.4), (2.37), (2.91), and (2.92), one has∫ T

0

∣∣∣∣∣∣ d
dt

∫ 1

0
(θβ+1 − θ̄β+1)2dx

∣∣∣∣∣∣ dt

≤ C
∫ T

0

∫ 1

0
(θβ+1 − θ̄β+1)2dxdt +C

∫ T

0

∫ 1

0
(θ2βθ2t + θ̄

2
t )dxdt

≤ C
∫ T

0

∫ 1

0
u2

xdxdt +C ≤ C.

(2.95)

Combining (2.37), (2.93), and (2.94) leads to

lim
t→+∞

∫ 1

0
(θβ+1 − θ̄β+1)2dx = 0.

Then combining (2.91) gives

max
x∈[0,1]

(θβ+1 − θ̄β+1)4 ≤

∫ 1

0
(θβ+1 − θ̄β+1)2dx

∫ 1

0
θ2βθ2xdx→ 0, as t → +∞. (2.96)
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Therefore, it follows from (2.19) and (2.95) that there exists some T0, such that

θ(x, t) ≥
γ1

2
,

for all (x, t) ∈ [0, 1] × [T0,+∞).
On the other hand, for p > 2, multiplying (2.5) by 1

θp , one has

1
p − 1

∫ 1

0

(
1
θ

)p−1

dx


t

+

∫ 1

0

µu2
x

vθp dx ≤
∫ 1

0

ux

vθp−1 dx

≤
1
2

∫ 1

0

µu2
x

vθp dx +
1
2

∫ 1

0

1
µvθp−2 dx.

That means ∥∥∥∥∥1
θ

∥∥∥∥∥p−2

Lp−1

d
dt

∥∥∥∥∥1
θ

∥∥∥∥∥
Lp−1
≤ C

∥∥∥∥∥1
θ

∥∥∥∥∥p−2

Lp−2
≤ C

∥∥∥∥∥1
θ

∥∥∥∥∥p−2

Lp−1
, (2.97)

where the positive constant C independent of p and T . (2.97) gives

sup
0<t<T
∥θ−1∥Lp−1 ≤ C(T + 1).

Letting p→ +∞, there exists a positive constant C1 ≤
γ1
2 such that

θ(x, t) ≥ C1,

for all (x, t) ∈ [0, 1] × [0,T0]. Combining this, (2.96), and (2.92) yields that for all (x, t) ∈ [0, 1] ×
[0,+∞),

C1 ≤ θ ≤ C−1
1 . (2.98)

Together with (2.91), one has

sup
0≤t≤T

∫ 1

0
θ2xdx +

∫ T

0

∫ 1

0
θ2t dxdt ≤ C. (2.99)

Finally, it follows from (2.5) that

θβθxx

v
= θt +

θ

v
ux −

βθβ−1θ2x
v

+
θβvxθx

v2 −
θα(u2

x + |wx|
2 + |bx|

2)
v

,

from this and (2.37), (2.97), (2.98) yields∫ T

0

∫ 1

0
θ2xxdxdt ≤ C

∫ T

0

∫ 1

0
(θ2t + u2

x + θ
4
x + v2

xθ
2
x + u4

x + |bx|
4 + |wx|

4)dxdt ≤ C. (2.100)

Combining with (2.98)–(2.100), the proof of Lemma 2.7 has been finished.

Lemma 2.8. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0, one has

sup
0<t<T

∫ 1

0
(u2

t + |wt|
2 + |bt|

2 + θ2t + u2
xx + θ

2
xx + |wxx|

2 + |bxx|
2)dx

+

∫ T

0

∫ 1

0
(u2

xt + |wxt|
2 + |bxt|

2 + θ2xt)dxdt ≤ C9.

(2.101)
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Proof. First, differentiating (1.2) with respect to t shows

utt +

(vθt − θux

v2 + b · bt

)
x
=

(
(
µ

v
)tux +

µ

v
uxt

)
x
.

Multiplying the above equation by ut, one obtains after integration by parts,

1
2

d
dt

∫ 1

0
u2

t dx +
∫ 1

0

µ

v
u2

xtdx

=

∫ 1

0

vθt − θux

v2 uxtdx +
∫ 1

0
b · btuxtdxdt −

∫ 1

0

(
µ

v

)
t
uxuxtdx

≤
1
2

∫ 1

0

µ

v
u2

xtdx +C
∫ 1

0
(θ2t + u2

x + |b|
2|bx|

2 + θ2t u2
x + u4

x)dx

≤
1
2

∫ 1

0

µ

v
u2

xtdx +C
∫ 1

0
(θ2t + u2

x + u4
x)dx +C max

x∈[0,1]
|b|2

∫ 1

0
|bt|

2dx

+C max
x∈[0,1]

u2
x

∫ 1

0
θ2t dx,

(2.102)

where in the last inequality it has been used∫ 1

0

(
µ

v

)
t
uxuxtdx =

∫ 1

0

µtv − µvt

v2 uxuxtdx ≤
1
4

∫ 1

0

µ

v
u2

xtdx +C
∫ 1

0
(θ2t u2

x + u4
x)dx.

Next, differentiating (1.3) with respect to t shows

wtt − bxt =

((
λ

v

)
t
wx +

λ

v
wxt

)
x
.

Multiplying the above equation by wt, one also gets after integration by parts,

1
2

d
dt

∫ 1

0
|wt|

2dx +
∫ 1

0

λ

v
|wxt|

2dx

= −

∫ 1

0
bt · wxtdx −

∫ 1

0

(
λ

v

)
t
wx · wxtdx

≤
1
2

∫ 1

0

λ

v
|wxt|

2dx +C
∫ 1

0
(|bt|

2 + θ2t |wx|
2 + u2

x|wx|
2)dx.

(2.103)

Similarly, differentiating (1.4) with respect to t shows

btt =
wxt

v
−

uxtb
v
−

2uxbt

v
+

((
ν

v

)
t
bx +

ν

v
bxt

)
x
.

Multiplying the above by bt, one gets after integration by parts that

1
2

d
dt

∫ 1

0
|bt|

2dx +
∫ 1

0

ν

v
|bxt|

2dx

= −

∫ 1

0

wt · bxt

v
dx −

∫ 1

0

uxtb · bt

v
dx − 2

∫ 1

0

ux|bt|
2

v
dx −

∫ 1

0

(
ν

v

)
t
bx · bxtdx

≤
1
2

∫ 1

0

ν

v
|bxt|

2dx +
1
8

∫ 1

0

µ

v
u2

xtdx +C
∫ 1

0
(|wt|

2 + |b|2|bt|
2 + θ2t |bx|

2 + u2
x|bx|

2)dx

+C max
x∈[0,1]

|ux|

∫ 1

0
|bt|

2dx.

(2.104)
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At the end, differentiating (2.5) with respect to t shows

θtt +
θt
v

ux +
θuxt

v
−
θu2

x

v2

=

((
θβ

v

)
t
θx +
θβ

v
θxt

)
x

+

(
θα

v

)
t
(u2

x + |wx|
2 + |bx|

2)

+
2θα

v
(uxuxt + wx · wxt + bx · bxt).

Multiplying the above by θt and integrating by parts, one obtains

1
2

d
dt

∫ 1

0
θ2t dx +

∫ 1

0

θβ

v
θ2xtdx

= −

∫ 1

0

(
θβ

v

)
t
θxθxtdx −

∫ 1

0

(
θt
v

ux +
θuxt

v
−
θu2

x

v2

)
θtdx

+

∫ 1

0

(
θ

v

)
t
(u2

x + |wx|
2 + |bx|

2)θtdx +
∫ 1

0

2µ
v

(uxuxt + wx · wxt + bx · bxt)θtdx

≤
1
2

∫ 1

0

θβ

v
θ2xtdx +

1
8

∫ 1

0

µ

v
u2

xtdx +
1
8

∫ 1

0

λ

v
|wxt|

2dx

+
1
8

∫ 1

0

ν

v
|bxt|

2dx +C max
x∈[0,1]

(u2
x + |wx|

2 + |bx|
2 + 1)

∫ 1

0
θ2t dx

+C
∫ 1

0
(θ2xθ

2
t + u2

xθ
2
x + u4

x + |wx|
4 + |bx|

4)dx.

(2.105)

According to (2.86), one has∫ 1

0
θ2xθ

2
t dx ≤ max

x∈[0,1]
θ2t

∫ 1

0
θ2xdx ≤ C

∫ 1

0
|θt||θxt|dx

≤
1
8

∫ 1

0

θβ

v
θ2xtdx +C

∫ 1

0
θ2t dx.

Combining (2.102)–(2.105) and Grönwall’s inequality, we deduce

sup
0<t<T

∫ 1

0
(u2

t + |wt|
2 + |bt|

2 + θ2t )dx +
∫ T

0

∫ 1

0
(u2

xt + |wxt|
2 + |bxt|

2 + θ2xt)dxdt ≤ C. (2.106)

Finally, we rewrite (1.2) as

µ

v
uxx = ut +

θxv − θvx

v2 + b · bx −
µxv − µvx

v2 ux.

It follows from (2.106), (2.85), (2.86) and (2.37) that∫ 1

0
u2

xxdx ≤ C
∫ 1

0
(u2

t + θ
2
x + v2

x + |b|
2|bx|

2)dx +C max
x∈[0,1]

u2
x

∫ 1

0
(θ2x + v2

x)dx

≤
1
2

∫ 1

0
u2

xxdx +C.
(2.107)
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Similarly, rewriting (2.5) as

θβ

v
θxx = θt +

θ

v
ux −

(
θβ

v

)
x
θx −
θα(u2

x + |wx|
2 + |bx|

2)
v

.

Using (2.5), (2.106), (2.85), (2.86), (2.37), and (2.107), one has∫ 1

0
θ2xxdx ≤ C

∫ 1

0
(u2

x + θ
2
t + θ

4
x + v2

xθ
2
x + u4

x + |wx|
4 + |bx|

4)dx ≤ C +
1
2

∫ 1

0
θ2xxdx. (2.108)

Next, rewriting (1.3) as
λ

v
wxx = wt − bx −

(
λ

v

)
x

wx.

Then it follows that∫ 1

0
|wxx|

2dx ≤ C
∫ 1

0
(|bx|

2 + |wt|
2 + θ2x|wx|

2 + v2
x|wx|

2)dx ≤ C +
1
2

∫ 1

0
|wxx|

2dx. (2.109)

At the end, rewriting (1.4) as
ν

v
bxx = (vb)t − wx −

(
ν

v

)
x

bx,

thus, one has ∫ 1

0
|bxx|

2dx ≤ C
∫ 1

0
(v2

t + |bt|
2 + |wx|

2 + θ2x|bx|
2 + v2

x|bx|
2)dx

≤
1
2

∫ 1

0
|bxx|

2dx +C.
(2.110)

Combining (2.106)–(2.110), the proof of Lemma 2.8 has been proved.

Lemma 2.9. Assume that the conditions listed in Lemma (2.1) hold; then for all T > 0, one has

sup
0<t<T

∫ 1

0
v2

xxdx +
∫ T

0

∫ 1

0
(v2

xx + v2
xxt + u2

xxx + |wxxx|
2 + |bxxx|

2 + θ2xxx)dxdt ≤ C10. (2.111)

Proof. First, differentiating (1.2) with respect to x gives

uxt − µ
(vx

v

)
xt
= −

(
θxv − θvx

v2 + b · bx

)
x
+ µx

(uxxv − vxux

v2

)
+

(
µx

ux

v

)
x
. (2.112)

Multiplying (2.112) by
(

vx
v

)
x

, and integrating it over [0, 1], we arrive at

1
2

d
dt

∫ 1

0
µ
(vx

v

)2

x
dx +

∫ 1

0

θ

v

(vx

v

)2

x
dx

=

∫ 1

0

(
uxt +

(
θx

v

)
x
+

(
θ

v

)
x

vx

v

) (vx

v

)
x

dx

+

∫ 1

0

(
(b · bx)x − µx

(uxx − vxux

v2

)
−

(
µx

ux

v

)
x

) (vx

v

)
x

dx

≤
1
2

∫ 1

0

(vx

v

)2

x
dx +C

∫ 1

0
(u2

xt + θ
2
xx + θ

2
xv2

x + v4
x + u2

xx + u2
xv

2
x + |bx|

2)dx

+C max
x∈[0,1]

(θ2x + u2
x + |b|

2)
∫ 1

0

(vx

v

)2

x
dx.
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Together with (2.37), (2.75), (2.85), (2.86), (2.101), and Grönwall’s inequality, one has

sup
0<t<T

∫ 1

0
µ
(vx

v

)2

x
dx +

∫ T

0

∫ 1

0

θ

v

(vx

v

)2

x
dxdt ≤ C.

That means

sup
0<t<T

∫ 1

0
v2

xxdx +
∫ T

0

∫ 1

0
v2

xxdxdt ≤ C. (2.113)

Furthermore, (2.112) can be written as

µ

v
uxxx = uxt +

(
θxv − θvx

v2

)
x
+ (b · bx)x +

µvx − µxv
v2 uxx +

(
µuxvx

v2

)
x
−

(
µx

ux

v

)
x
.

Together with (2.37), (2.75), (2.85), (2.86), (2.101), and (2.113), one has∫ T

0

∫ 1

0
u2

xxxdxdt ≤ C
∫ T

0
max
x∈[0,1]

(θ2x + |b|
2 + v2

x + u2
x + θ

2
xv2

x)dt +C ≤ C. (2.114)

Next, differentiating (2.5) with respect to x, it shows

θβθxxx

v
= θxt −

(
θβ

v

)
x
θxx +

(
βθβ−1θx

v
−
θβθxvx

v2

)
x
+

(
θα(u2

x + |wx|
2 + |bx|

2)
v

)
x
.

Thus, one has ∫ T

0

∫ 1

0
u2

xxxdxdt ≤ C. (2.115)

Similarly, differentiating (1.4) with respect to x, one has

ν

v
bxxx = (uxb + vbt)x − wxx −

(
νxv − νvx

v2

)
x

bx − 2
(
ν

v

)
x

bxx.

It implies that ∫ T

0

∫ 1

0
|bxxx|

2dxdt ≤ C. (2.116)

Finally, differentiating (1.3) with respect to x gives

λ

v
wxxx = wxt − bxx −

(
λxv − λvx

v2

)
x

wx − 2
(
λ

v

)
x

wxx.

Then, one has ∫ T

0

∫ 1

0
|wxxx|

2dxdt ≤ C. (2.117)

Combining with (2.113)–(2.117), we obtain (2.111). The Lemma 2.9 has been proved.
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3. The proof of Theorem 1.1

With all the a priori estimates in Section 2 at hand, we will complete the proof of Theorem 1.1. For
this purpose, it will be shown that the existence and uniqueness of local solutions to the initial-boundary
value problem (1.1)–(1.9), which can be obtained by using the Banach theorem and the contractivity
of the operator defined by the linearization of the problem on a small time interval.

Lemma 3.1. Letting the (1.10) holds, then there exists T0 = T0(V0,V0,M0) > 0, depending only on β,
V0 and M0, such that the initial boundary value problem (1.1)–(1.9) has a unique solution
(v, u,w, b, θ) ∈ X(0,T0; 1

2V0,
1
2V0, 2M0).

Proof of Theorem 1.1 First, using Lemma 3.1, the problem (1.1)–(1.9) has a unique solution
(v, u,w, b, θ) ∈ X(0,T1; 1

2V0,
1
2V0, 2M0), where T1 = T0(V0,V0,M0).

For the positive constants α ≤ α1 with α1 being small enough such that(
1
2

V0

)−α1

≤ 2, (2M0)α1 ≤ 2, α1H(
1
2

V0,
1
2

V0, 2M0) ≤ ϵ1, (3.1)

where ϵ1 is chosen in Lemma 2.1, one deduces from Lemmas 2.1–2.9 with T = T1 that the solution
(v, u,w, b, θ) satisfies

C0 ≤ v(x, t) ≤ C−1
0 ,C1 ≤ θ(x, t) ≤ C−1

1 , x ∈ [0, 1] × [0,T1], (3.2)

and

sup
0≤t≤T1

∥(v, u,w, b, θ)∥2H2 +

∫ T1

0
∥θt∥

2
L2dt ≤ C2

11, (3.3)

where Ci(i = 2, · · · , 10) is chosen in Section 2, and C11 :=
∑10

i=2 Ci. It follows from Lemmas 2.8
and 2.9 that (v, u,w, b, θ) ∈ C([0,T1); H2). If one takes (v, u,w, b, θ)(·,T1) as the initial data and applies
Lemma 3.1 again, the local solution (v, u,w, b, θ) can be extended to the time interval [T1,T1+T2] with
T2(C0,C1,C11). Moreover, one obtains

v(x, t) ≥
1
2

C0, θ(x, t) ≥
1
2

C1, (x, t) ∈ [0, 1] × [T1,T1 + T2],

and

sup
0≤t≤T1+T2

∥(v, u,w, b, θ)∥2H2 +

∫ T1+T2

0
∥θt∥

2
L2dt ≤ 4C2

11.

Combining with (3.2), (3.3) implies

v(x, t) ≥
1
2

C0, θ(x, t) ≥
1
2

C1, (x, t) ∈ [0, 1] × [T1,T1 + T2],

and

sup
0≤t≤T1+T2

∥(v, u,w, b, θ)∥2H2 +

∫ T1+T2

0
∥θt∥

2
L2dt ≤ 5C2

11. (3.4)

Taking α ≤ min{α1, α2}, where α1 is chosen in (3.1) and α2 is chosen to be such that(
1
2

V0

)−α2

≤ 2,
(√

5C11

)α2
≤ 2, α2H(

1
2

C0,
1
2

C1,
√

5C11) ≤ ϵ1,
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where ϵ1 is chosen in Lemma 2.1. Then one can employ Lemmas 2.1–2.9 with T = T1 +T2 to infer the
local solution (v, u,w, b, θ) satisfies (3.2) and (3.3).

Thus, choosing
ϵ0 = min{α1, α2}, (3.5)

and repeating the above procedure, one can then extend the solution (v, u,w, b, θ) step by step to a
global one provided that 0 ≤ α ≤ ϵ0. Furthermore, one derives the initial boundary value
problem (1.1)–(1.9) has a unique global solution (v, u,w, b, θ) satisfying (3.2) and (3.3). Moreover,
(v, u,w, b, θ) ∈ X(0,+∞; C0,C1,C11).

The large-time behavior (1.11) follows from Lemmas 2.3–2.9 by using a standard argument (see
Reference [21]).

First, similar to (2.6), multiplying (1.1) by (1−v−1), (1.2) by u, (1.3) by w, (1.4) by b, (2.5) by 1−θ−1

and adding them altogether, integrating the resultant equality over (0, 1), one has after using (2.2)
and (2.85) that

d
dt

∫ 1

0

(
u2 + |w|2 + v|b|2

2
+ (v − ln v − 1) + (θ − ln θ − 1)

)
dx

+C10

∫ 1

0
(θ2x + u2

x + |wx|
2 + |bx|

2)dx ≤ 0,

where (and in what follows) Ci, i = 12, · · · , 18 and C,C∗ denote some generic positive constants
depending only on β and M0,V0.

By means of (2.87), (2.2), (2.85), (2.86), (2.101) and Sobolev’s inequality, one obtains

d
dt

∫ 1

0

(θβθx)2

v
dx +C13

∫ 1

0
θ2t dx ≤ C14

∫ 1

0
θ2xdx + ϵ∥uxx∥

2
L2 +Cϵ∥ux∥

2
L2 . (3.6)

Next, multiplying (2.39) by (u − θα vx
v ) and integrating the resultant equality over (0, 1), using (2.2),

(2.85), (2.50), (2.75), and Poincare’s inequality yields that

d
dt

∫ 1

0

(
u − θα

vx

v

)2
dx +C15

∫ 1

0
v2

xdx

≤ C
∫ 1

0

(
|uvx| + |uθx| + |b · bx| + |vxθt| + |uxθx| + |θxvX | + |bxvx|

)
dx

≤ C16∥(ux, θx, θt, bx)∥2L2 +
C15

2
∥vx∥

2
L2 .

(3.7)

By the virtue of (2.50), (2.75), and (2.54), one obtains that

d
dt

∫ 1

0
u2

xdx +C18

∫ 1

0
u2

xxdx ≤ C17∥(vx, θx)∥2L2 . (3.8)

Furthermore, adding (3.5) multiplied by 2(C17+1)
C15

, (2.7) multiplied by 1
C13

(
2C16(C17+1)

C15
+ 1

)
, and (3.4)

multiplied by C∗, which satisfy

C∗ :=
1

C12

[
C14 +Cϵ

C13

(
2C16(C17 + 1)

C15
+ 1

)
+

2C16(C17 + 1)
C15

+C17 + 1 +
4C12(C17 + 1)

C15

]
.
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From (3.6) and choosing ϵ suitably small, it follows

d
dt

Q +
1
2
∥(ux, θx, vx)∥2L2 ≤ 0,

where

Q :=
∫ 1

0
C∗

(
u2 + |w|2 + v|b|2

2
+ (v − ln v − 1) + (θ − ln θ − 1)

)
+

2C16(C17 + 1) +C15

C13C15

(θβθx)2

v
+

2(C17 + 1)
C15

(
u − θα

vx

v

)2
+ u2

xdx.

By using Cauchy–Schwarz’s inequality, one obtains∣∣∣∣∣µuvx

v

∣∣∣∣∣ ≤ (
µvx

v

)2
+ u2,

which along with Poincare’s inequality, yields that

C−1∥vx∥
2
L2 − ∥u∥2L2 ≤

∫ 1

0

(
u − θα

vx

v

)2
dx ≤ C∥(ux, vx)∥2L2 .

Finally, using Poincare’s inequality and (3.7) implies that

C−1∥(v − 1, u, θ − 1)∥2H1 ≤ Q ≤ C∥(ux, vx, θx)∥2L2 ,

where it has been used the conservation of energy implied by (1.5), (2.30), and the following fact:

∥θ − 1∥L2 ≤

∫ 1

0
|θ − θ̄|2dx +C∥u∥2L2 ≤ C∥(θx, ux)∥2L2 .

By means of (3.6) and (3.8), one obtains that

∥(v − 1, u, θ − 1)(t)∥2H1 ≤ Ce−η0t.

Thus, the proof of Theorem 1.1 has been completed.
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