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Abstract: In this paper, we investigate an initial boundary value problem of a planar
magnetohydrodynamics system with temperature-dependent viscosity, heat conductivity, and
resistivity. When all of the relative coefficients mentioned above are power functions of temperature,
the existence and uniqueness of a global-in-time non-vacuum strong solutions are proved under some
special assumptions. At the same time, we obtain the nonlinear exponential stability of the solution. In
fact, the initial data could be large if the power of viscosity is small enough.
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1. Introduction

The governing equations of a planar magnetohydrodynamics (MHD) compressible flow can be
written in Lagrange variable form as:

— (1.1)
. 5 Uy
w + (P+ bl )x:(u—) : (1.2)
V /x
w,—bx:(aﬁ) , (1.3)
VvV /x

b)), —w, = (v%) , (1.4)
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2 2 2 1 . .
42 +Iwl” + vibl ) +(u(P+—|b|2)—w-b) :(K& +,uuux P AL +vb bx) ) (1.5)
2 , 2 . % v % %

Here t > 0 represents the time, and x € Q = (0, 1) denotes the Lagrange mass coordinate. The
unknown functions v(x,t) > 0, u(x,t), w = (wi(x,1),wa(x,1)), b = (bi(x,1),b(x,1)), 0(x,t) > 0, e,
and P are the specific volume of the gas, longitudinal velocity, transverse velocity, transverse magnetic
field, absolute temperature, internal energy, and pressure, respectively. ¢ and A are the viscosity of the
flow, v is the resistivity, and « is the heat conductivity.

In this paper, we consider the MHD flow of a perfect gas. Thus, P and e satisfy:

RO
P=— and e=C,0+ Const. (1.6)
v

Here R > 0 denotes the specific gas constant, and C, > 0 stands for the heat capacity at constant
volume. It is assumed that u, 4, v, and « satisfy

u=poe*, A=10°, v=v0", and «k=ké, (1.7)

which contain the positive constants i >0, 1> 0,7 > 0,k > 0, > 0, and 8 > 0.
The systems (1.1)—(1.7) are supplemented with initial conditions

(v, u,w,b,0) (x,0) = (vo, ttg, Wo, bo, 0o) , (1.8)
and boundary ones

(M’ w’ b’ Ox)

20 =0. (1.9)

Obviously, the initial data (1.8) should be compatible with the boundary conditions (1.9).

Whenw = b = 0, the Eqgs (1.1)—(1.5) are converted into the compressible Navier—Stokes equation,
which can be derived from Boltzmann’s equation, assuming that the space and time scales are larger
than all inherent scale—lengths, such as the Debye length or the gyro-radii of the charged particles [1-5].
Also, one can deduce from the Chapman-Enskog expansion for the first level of approximation in
kinetic theory that the viscosity u and A may depend on the temperature or the density (see Chapman
and Cowling [6]). Experimental results [7] show that the transport coefficients u and « vary according
to gas temperature and density at very high temperatures and densities.

The central point of magnetohydrodynamics theory is that conductive fluids can support magnetic
fields. Li and Shang [8] proved the existence and uniqueness of the global-in-time classical solution to
the initial-boundary value problem when the viscosity, resistivity, and heat conductivity depend on the
specific volume v and the temperature 6. In that paper, the coefficients are assumed to be proportional
to h(v)8*, where h(v) is a non-degenerate and smooth function satisfying some natural conditions,
and the absolute value of the exponent « is sufficiently small. It’s worth noting that Li and Shang
considered the planar compressible magnetohydrodynamic system for the domain [0, 1] x R?. Besides,
Huang et al. [9] proved the large-time behavior of strong solutions to equations of compressible planar
magnetohydrodynamic flow with the heat conductivity is the power function of temperature. Similar
results can be observed in various other reports [10-16].

Electronic Research Archive Volume 33, Issue 2, 938-972.



940

Recently, Sun et al. [17] verified the existence and uniqueness of a global-in-time non-vacuum
strong solution to a one-dimensional compressible Navier—Stokes system for a viscous and
heat-conducting ideal polytropic gas. It was assumed that the viscosity u and heat conductivity «
depend on temperature @ with u(6) = 6% and «(#) = €° for sufficiently small @ > 0 and arbitrary 8 > 0.

Before presenting our main results, we need to provide some explanations of the symbols first.
Throughout this paper, the positive general constant C will be different in different lines. For 1 < p <
oo, and integer k > 0, we adopt the simplified notations for the standard Sobolev space as follows:

LP = LP(Q), WrP = WEP(Q), H* = WRA(Q).

Without loss of generality, we assume that A = i =V =k =R =¢, = 1, and
! ! U2 + [wol* + volbol?
f vodx = 1, f (90+ o+ ol volbolT) g, (1.10)
0 0

Inspired above, we have the following main results.

Theorem 1.1. For given positive constants My > 0 and Vy > 0. Assume that

l(vo, uo, wo, bo, Oo)ll2 < Mo, xiﬁl)fl]{vo,@o} >Vy>0.

Then there exist € > 0, Cy > 0 and Cy > 0 which depend only on 8, My, V,, such that the initial
boundary value problem (1.1)—(1.9) with 0 < a < g (see (3.5)) admits a unique global-in-time strong
solution (v,u,w,b,0)(x,t) on [0, 1] X [0, +00) satisfying

Cyl <vx,t)<Cy,  Cy <6(x,1) < Ci', (1.11)
and
(v, u,w,b,0) € C([0, +o0); H?),

vy € L*(0, +00; HY),
(u)ﬁ WX5 bx’ 0)() € LZ(O’ +OO; Hz)'

Furthermore, for any t > 0, it holds that
v = 1,u,w,b,0 = Dl < Ce™,

where C,ny > 0 are some positive constants.

Remark 1.1. From the view of physics, the resistance is a function of temperature (e.g., [18]). This
implies that our results is physical. Dou et al’s 2021 study [19], published in Scientific Reports,
delves into a variety of issues, including Enhanced Oil Recovery, where the technology can
potentially improve the extraction of residual oil from oil fields. The equations presented in our study,
especially those related to magnetic force distribution and the relationship between magnetic force
and displacement, are pivotal for understanding and optimizing these applications. They assist in
predicting the behavior of magnetic foams under various conditions, which is crucial for designing
effective systems in the aforementioned fields.
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In this paper, we try to use the framework of Li and Liang [20] to prove the global wellposedness
of the solution. It should be emphasized that the key step is to derive the time—independent positive
lower and upper bounds of specific volume and temperature. The foremost obstacles lie in the strong
non-linearities caused by the temperature-dependent viscosity, resistivity, and heat-conductivity from
Eq (1.7). Fortunately, these nonlinear terms are involved with p,, A, vy, y;, 4;, or v, which can be
controlled by the smallness of . With the help of upper and lower bounds of the specific volume,
we can then estimate the higher-order derivatives of the solutions, and the upper and lower bounds of
the temperature.

The rest of this paper is organized as follows. Section 2 is devoted to a discussion of a number of a
priori estimates independent of time, which are required to extend the local solution to the time global.
Based on the estimates given in Section 2, the main results of Theorem 1.1 are established in Section 3.

2. A priori estimates

For constants N, m;, m,, and T, define

X0, T;m;,my,N)

={(v,u,0,w,b): v—1,u,w,b,0—1) € C([0,T]; H),

vy € L2(0,T; HY, (uy, 6, wy, b,) € L*(0,T; H),

v, € C([0,T); HY, (u,, 0,,w,,b,) € L*(0,T; H),

v(x, 1) > my, 0(x, 1) > my, &0, T) < N>, ¥(x,1) € [0,1] x [0, T1},

where

T
E(0,T) := sup |I(u, w, b, vy, 6)ll7, +f 16,117dzr.
0

0<t<T
The main purpose of this section is to derive certain ¢-dependent a priori estimates for the
variables (v, u, 6,w,b) in the function space X(0,T;m;,m,, N), relevant to the initial boundary value
problem (1.1)—(1.9) for T > 0and 0 < m; < 1(i = 1,2),2 < N < +oo. It follows from Sobolev’s
inequality that

m; < v(x,t) < 2N, my < 6(x,t) <2N, for Y(x,1) € 0,11 x[0,T].

Firstly, let us derive the time-independent lower and upper bounds of v.

Lemma 2.1. Assume that the conditions listed in Theorem 1.1 hold; then there exists a constant 0 <
€ < 1 depending only on 3, My, and V,, such that if

m," <2, N® <2, aH(my,my,N) < €, 2.1

where
H(mi,my,N) := (m;" + m5' + N + 1)%,

Then for (x,t) € [0,1] X [0, T],
Cy' <v(x, 1) < C,. (2.2)

Here (and in what follow), Cy,Ci(i = 1,2,---,10), and C denote some generic positive constants
depending only on S, ||(vo, uo, wo, bo, 60)llg2, Inf 0.1y vo(x), and inf e 1) Op(x).
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Proof. The proof is divided into four steps.
Step 1. (Basic energy estimate)
According to (1.1), (1.5), (1.9), and (1.10), for ¢ > 0, one has

1 1 2 2 b2
fv(x,t)dle,f (9+” +|w|2+vl | )(x,t)dle.
0 0

In light of (2.1), it is deduced that

6% + 6™l Lqo.1x0.7) < M;" + (2N)* <2+ 4 =6.

Simplifying (1.5) gives

9 (egex) 6°(u? + w.* + b,
91‘ + —th = + .
V X

v v

(2.3)

(2.4)

(2.5)

Then, multiplying (1.1)—=(1.4), and (2.5) by (1—=v™!), u, w, b, and (1 —67"), respectively, and integrating

them over [0, 1] X [0, T], together with (2.4) gives

- ) 5 T
+ w|* +vb X W
sup f (u Wi+ Vb +(@v—-Inv)+(@-1In 9))d + f (s)ds < Ey,
o 0

0<i<T 2

where

L0002 07l + ot + 1B
W(t) = =+ (x, )dx,
0 Ve VH

and E| is the initial total entropy defined by

Ylug + [wol* + vibol*
Ey = > + (vo —Invg) + (6y — In b)) | dx.
0

Step 2. (Representation formula for v)
First, (1.2) can be written as

1 Uy
Uy + (P + Elblz)x = ,u(ln V)xl + /~1x7’

that is,
u 1 .,
—| +g+ P+ =Unv)y,
K, 20,

where

1 Uy
§ =~ = P+ 5P - Ballx
uv

Integrating (2.8) over [0, ¢] X [x;(?), x], it follows

o Lo (P+ LB P+ 1P
f (E—@)d§+ff gdgds+f( PP+ o (xl))ds
a0 \M Mo 0 Jxi 0 M H

=Inv(x,t) — Inv(x(¢), 1) — [In vo(x) — In v(x;(¢), 0)],

(2.6)

2.7)

(2.8)
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where x(t) € [0, 1] is determined by the following steps and py = u(6y). Moreover, for ease of
notation, define

Uy

1 X
F=t_ipr Lpp) - f o)L,
y 2 0

! X
wsz(x,s)ds+f @d{.
0 o Mo

Based on the above definitions that
¢y =—,¢, =F. (2.9)
u

It is easy to show that

t 1 x1 (1)
f [u‘l(P+5|b|2)(x1(z),s)+ f g(f,s)df]ds
0 0
= f (%—F)m(r), s)ds = f [(Inv), = F1(xi(2), $)ds (2.10)
0 0

= Inv(x(¥), 1) — Inv(x;(¢),0) — f F(x((¢), s)ds.
0

With the help of (1.1) and (2.9) that

u2

(V‘P)t - (u(p)x = VY — Uy = vF — —
K @2.11)

% 1 x u?
=u,— —(P+=bf’) - VI g(&)dé — —.
M 2 0 M
Integrating (2.11) over [0, 7] X [0, 1], it follows

1 1 xuo t 1 v 1 X u?
f vodx = f v [ “aedx - f f [—<P+—|b|2>+v f @+
0 0 0o Mo 0o Jo M 2 0 H

Hence, according to the mean value theorem, there exists x;(¢) € [0, 1] such that ¢(x,(?),1) = fol vdax.
By the definition of ¢, (2.9) and (2.12), one obtains

t xl(l)
fF(xl(t),S)dS=<P(X1(t),t)—f df fvof — dédx
0
t 1 xl(t)
—ff [3(P+1|b|2)+vf g(§)d§+— dxds—f 20 4e.
0 Jo [M 2 0 H 0 Ho

Substituting (2.13) into (2.10) gives

¢ x1 ()
f[ﬂ_l(P+ =[BP)(x1 (1), S)+f 8(&, S)df] ds

x1 (1)
= Inv(x(2), 1) — Inv(x;(2), ())—f Vof —dfdx f ?df (2.14)
0 0

+ff [—(P+—|b|2)+vf g(é)d§+—
o Jo [u 2 0 u
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Moreover, substituting (2.14) into (2.9),

t B 1 ) t X t 1 v 1 5 X u2
[ gepass [ [ edeas— [ {2 gwPrey [ sene
0 2 0 Jo 0o Jo [M 2 0 H

X 1 X )C](l)
+ f (E - @) dé + f Vo @dfdx - f @d‘f = Inv(x, 1) — Inv(x,0).
x@ \H Mo 0 0 Mo 0o Ho

It follows from (2.15) that

dxds

(2.15)

= B 'AD, (2.16)

A :=exp {f[ [,u_l(P+ 1|b|2) + fxgdg] ds};
0 2 0
t 1 X 2
B :=exp {ff [3(P+ 1|b|2)+vf e()de + M—]dxds};
0o Jo u
X x1 (1)
D = voexp{f (———)dg“+f vof —d{dx f @d{}.
xi) \H  Ho 0o Ho

From (2.16), one has

where

vD™'B = A. (2.17)
Furthermore, we define
1 1 *
J:=—(P+=bP +f dc.
H 2 0
Then, multiplying (2.17) by J, we have

0
D~ 'BJ = —A.
Y ot

Since A(0) = 1, integrating the above equality over (0, ) with respect to time, one obtains

oo ("B D@ [L 1, (7
v=DB +fB(t) ok ['u(P+2|b|)+ngd§]ds. (2.18)

Step 3. (Lower bound for v)
Applying Jensen’s inequality to the convex function 6 — In 6 leads to

1 1 1
f 6dx — In f 6dx < f (6 — InO)dx,
0 0 0

which, together with (2.3) and (2.6), leads to

1
0(t) = f O(x, t)dx € [ay, 1], (2.19)
0

where 0 < a; < @, are two roots of
—Inx = e.
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The expression of D and
Xy 1 1
—dé < f 0 udx < my>* + f u*dx < C,
xi(n) M 0 0

imply that
c'<b<cC (2.20)

Next, we will estimate B. It follows from (2.3) and (2.4) that

1 2 1
1 1
f (K(P +~IbP) + ”—) dx = f 07(0 + ~vlb + u?)dx
0 \HM 2 H 0 2

1 1 (2.21)
< my” f 0+ 5v|b|2 +u?)dx < 4,
0
and
1 2 1 1
1 1
f (K(P +21bP) + ”—)dx > f 0O + ~vbP + ud)dx > @N) [ 6dx> 2L, (2.22)
0o \H 2 H 0 2 0 4
On the other hand, by the expression of g, there exists a sufficiently small € > 0 such that
1 X 1 X
1 0°0,u,
[ [ = [ v [ aotou o e - T2 agas
0 Jo 0 0 2 v
1 1
1 2.23
< am;’_1 f vf (Ou + ml_ll%x + Eé)xlbl2 - m;’ml_lGxux)dfdx ( )
0 0
< amy (1617 + lully> + m 102116112 + 16xllp2 sllr2) < €.
Putting (2.21)—(2.23) into the expression of B, we will find that there exist C,, C3, such that
e < B(t) < €.
That means
o Ca=9) < B(s) < o C3l=9)
B0 =
Thus, for 0 < ¢ < £y, one has
!
v> DB - Ce f e™"ds > Ce—Cty — Ce(1 — ™).
0
For large enough t > 1, it follows
" B(s) C
: > - _ _ ,—Cat
}crelgfz v(x,t) > Cfo _B(t) 6% s — Ce(1 — e ™). (2.24)
B(s)

Therefore, one needs the estimates of 8 and B0 By the mean value theorem and (2.3), there exists
x(1) € [0, 1], such that C~! < (x»(1), t) < C. Based on Cauchy-Schwarz’s inequality, one has

Y (In(@ + DY - 6,
n o W@+ 1)

1 2 2 1 3 1 2 2
Sc(f de) (f vdx) Sc(f de),
0 VGZ 0 0 V@Z

Electronic Research Archive Volume 33, Issue 2, 938-972.
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which implies
0>C—-CW(@).

From (2.18), (2.20), (2.21), and (2.23), one has
! 2
f B pioagy > f B(s) (1 f A de) ds
o B() B(1) 0 V&?
—ct : B(s) (" 6°6: " B(s) (" 6P
>C-e —C{L % s dXdS+£ % \ ngd xds (2.25)

>C—eC'—Ce o = f f —dxds >C.

For the large enough time T, when ¢ > T, plugging (2.25) into (2.24) gives

i >
}crelgt; vix,t) > C.

Step 4. (Upper bound for v)
According to Holder’s inequality, for O < 8 < 1, one has

1
9%(x,t)—9%(x2(t),t)‘s f 0% . 0.dx
0

1 1
9892 2 1 2
< VI - ( f Vezxdx) ( f el—ﬂdx) (2.26)
0 0
1 L oPo? :
< |l - (jo‘ s dx) .
2

Nl
0(x,t) < C + ||v||oof —dx. 2.27)
0 vl

That means

For 1 < 8 < o0, one has

LAy 2 \2 1 3 2 \2
0i-1. 0, 00 o

Hg(x,t)—eg(xz(t),t)‘ﬁ f dx < f x| - f 0'Pdx| < f x| |
0 0 0 v6’2 0 0 VHZ

which means

2

s
0(x,1) < C + f —dx. (2.28)
0

Then the standard calculations give

1 9a|bx|2 1
max |b| (x,1) < C f b-b|dx < C f - dx+C f v ~b)*dx
0 v 0

f 6 bel2
<

Electronic Research Archive Volume 33, Issue 2, 938-972.
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It follows from the expression of v and (2.26)—(2.29) that

t I pa 2
Gl
IVl < Ce™ Cf+cf e ((1 + [Vlleo) de f i dx)ds.
0 0

v

By using Gronwall’s inequality, one has

IVl < C.
Up to now, the proof of Lemma 2.1 has been finished.

Lemma 2.2. Assume that the conditions listed in Lemma 2.1 hold; then for any p > 0, there exists
some positive constant C(p) such that

- L0t w4 b
sup 9 Pdx + dxdt < C(p). (2.30)

0<t<T or+! or

Proof. From (2.6), we see that (2.30) holds for p = 1. Then we assume p > 0 and p # 1.
Multiplying (2.5) by 677 and integrating by parts, one can arrive at

1 1 0 Lot (ul + wil + b
—(f Gl_pdx) + f fl f @ty + wal” + 15, )dx
p—1\Uo ; vopP 0 vopP
1 1- 1 1
0 p_l X X FY ==
:f gdx+f u—dst(p)f 0% — 1/(6 ”+1)|ux|dx+f 2 dx
0 v oV 0 oV

1 1
< C(p) rr1[0a51<]|9%—1| f 077 + Dlu,ldx + f (In v),dx
x€[0, 0

0

1 1 1
1 1
< C(p) max |62 — 1 627 ")|u,|dx + Lldx| + In vd
(P)xe[0’7]<]| |( . ( uldx I} |ua.| x) (f(; v X)[ (2.31)
Lygl-r 2 Loru? 1
< C(p) max |02 -1 dx dx
x€[0.1] 0 0° o vor
1 L2\ 3 1
+ C(p) max |02 — 1| (f —xdx) (f v0dx) + (f In vdx)
x€[0,1] 0 vl 0 0 ¢
1 1 Ha/MZ . 1 vgl_P 1
S—f ~dx + C(p) max |62 — 1] f de+ 1]+ f Invdx] .
2 0 vgP x€[0,1] 0 6 0 ¢

Moreover, it follows from (2.3) and (2.19) that

1 1 0° (u2 + W + v|b|2)
aléfedxéf 0+n 3 dx<1
0 0
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For any real number ¢, it follows from (2.2) and (2.4) that

tg (o 6 (i + WP + vibP)) '

— 0+n dx| dn
o dn{Jo 2

V(e e (R vpl) ) v (i + P + vibP)
qu9+n dx dn-f dx
0 0 2 0 2

1 >
S(Xq)nmxdm+ﬂwk+wD(Jﬁ(u2+hwz+vwf)da
xe[0,1] 0

11-6 =

1
sC(q)f (sl + ol + |b.Ddx
0

1

Lo (2 + Wi+ BLP) ) !
< C(g) f dx ( f vel_adx)
0 ve 0

< C(q)W2(t).
After that, for g8 € (0, 1), it follows from (2.27), (2.28), and (2.19) that

1
nmxwl—usnmﬂw-ﬁﬂ+nmxmb-uscjﬂaﬂ@wx+cwkn
0

x€[0,1] x€[0,1] x€[0,1]
1 1
1 6802 2 1 2
chpfgm)(j\@ﬁm)+anscwhm
0o Vv 0

when 8 > 1, one has

1 R ~1 g B 1
max |§2 — 1] < max |02 — 62| + max |02 — 1| < max |02 — 02| + CWi(¢r)
x€[0,1] x€[0,1] €[0,1]

x€[0,1] x€|
iy 1 I gBe2 3 ol 3 1
5—1 5 X 1-6 5
< Cf 02770, Jdx + CW2(r) < C f dx f vl Pdx| + CW2a(¢)
0 o V6&? 0
< CWI(p).

Therefore, for > 0, it follows from (2.33), (2.34), and (2.6) that

T
flmﬂﬁ—Wmsc
o xel01]

Finally, we see that for p € [0, 1], one has

1 1
jﬁﬁﬂﬂxsjﬁ&u+lsC.
0 0

And for 8 > 0, it follows from (2.33), (2.34), and (2.6) that

1
supfllnvldeC.
0<t<oo JO

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

As a result, according to (2.33), (2.34), (2.7), (2.35), and Gronwall’s inequality, we derive (2.30)

from (2.31), which finishes the proof of Lemma 2.2.
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Lemma 2.3. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0,

1 T 1
0 0 0

0<t<T

Proof.  First, integrating (2.5) over [0, 1] X [0, #], by (2.36), one has

T (u§+|wx|2+|bx|2)

f f dxdr

1 1
f 6dx — f Hodx+f f uxdxdt+f lnvdx—f In vodx
0

o 2 _1)\2

f "dxdt+Cf f © )ddt+C

f xdxdt+Cf m[(a)uf] |6’2 — 17 f (02 + 1)2dxdr + C

0 x€lV,

"dxdt+C max |07 — 1[3dt + C
o x€l0.1]

ff xdxdt+Cf W(rdr + C < C,

thus it follows from (2.2) and (2.4) that

T 1
f f (12 + w P + b, dxdr < C.
0 0

1
=2Js
1
=2Js
1
=2Js
1
=2

Next, since

00 X X — X — X
( 4 ) = HQ(V—) + at” ]H,V— = Ha(vt) + at” 19tv—
¢ t 1% 1%

» 9(1—1
- (9”— af® 19 Ll (6“3) + &6, -6,
\% V/x \%

X 1%

(2.37)

(2.38)

(2.39)
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Multiplying (2.39) by (u - mv“”) and integrating it over [0, 1] X [0, 7] yields that for any ¢ € [0, T],

1 @ 2
%f(u—evx)d‘lf(”— Vx)( O)dx_ff %———b b)
0
a—1
( V")dd—ff‘“g (v,6, - xv»(
(x+12 104
ff(e )dxdt+f f wadd—ff ( gvx)dxdt (2.40)
—f fb-bx( )dd—ffaed_ (v,6, — Hvt)(
0 0
v 1 QQ-HVi
__j; j;( 3 )dxdt+;li.

Each I;(i = 1,2, 3,4) can be estimated as follows. First, based on Cauchy’s inequality, we have

)d dt

)d dt

! Ouv,

2 dxdt

1 a+l 2 1 91—(} 2
- f f *dxdf + C f f Y dxdr (2.41)
8 0 \%

1 a+1 2
— f f “dxdt + C,
8

where it has been used

91 a 2
f f dxdt < C f f Ouldxdr < C maX |u|? dedt
0 XE

<C max|u|d¢<cffu§dxdrsc.
0 0

0 x€[0,1

|| =

Next, by using (2.4), (2.6), and (2.30) with p = g, it follows

Lo, 6,
—(u— ld )dxdt

9a+1 2 T 1 61—0/ 2 T 1 95202
< f f xdxdt+Cf f - dxdt+Cf f * dxdt (2.42)
8 0 1% 0 0 VG
oz+1 2
< Sf f xdxdt+C.

Combining (2.42) with Cauchy’s inequality leads to

Tl
[ Lo
o Jo
T Al
-[ [ (|bx|2+|b|2(
0o Jo
T 1 2
SCf W(t)f (u—%) dxdr + C.
0 0 v
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Vx) dxdt
.

0%v, 2
dxdt (2.43)
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Rewriting (2.5) as

Fov, B o, O (B+wl+b.L) g
+ + +

0, = — - —u,.
' V2 v v v vu
We set
Y=—-uv-0v)(v 0, —0v,) = eaviet —uw, 0, — 0°6.u v, + uvl u,
0,
= uvl.u, + (9"@ 4 )vi - (ﬁe‘f—luei + Pub,,
(2.44)
+ Gau(ui + 1wl + 6. - Ouu, + Qaexux)vx
= uwl,u, + Rlvi + Rovy,
where o
0.
Ry = 0760, + —2,
and
Ry := —(B ' ub> + Pub, + 0" u(® + w.| + |b.*) — Quu, + 6°6,u,).
Then from (2.44), one has
1
L = (uvBou, + RiV? + Rov, ) dxdr
1 -1 1 a—1
0“'ub,u, 0
udxdz + & Rp2dxdr (2.45)
0& 1 3
@ Rovdxdi] Z
=1
Each J;(i = 1,2, 3) can be estimated as follows. First, by means of Cauchy’s inequality
T . 9802 0%y 2
i sf et T (f Sy + f xdx)dt<C (2.46)
0 0 o VO
According to the definition of R, one has
90 1 2 Qx ga 1 2
Jr= f f (a = T Gaet)dxdt
Qa+ﬁ luv29 92a 1 29t
— T dxde| + ——d d‘
v, 6?2 L oPe?
f oo™+ =2, (f f gzxdx) dr
oV (2.47)
vy 9&+1v2 1
f [FrECunas |0<, (f —dx + f 92dx) dt
1 a+1 2
§f f xdxdt + cf f dedr + Cllalloof f 67dxdt
<

1 a+1v2
—f f Tdxdr + C.
8 0 0 V
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It follows from the definition of R, that
R < C (07000 + 12F20720, + P10, + 207Ut + 2P w [ + 1267 b + 1267 )

then, one has
1 aea—l

J3 = Rov,dxdr

a+l 2 29(2 3R2
f f s gt +C f f T xar (2.48)
o Jo v
a+1 2
f f xdxdt+C.

Inserting (2.46)—(2.48) into (2.45) gives

a+l 2
|4 < = f f xdxdt + C. (2.49)

Putting (2.41)—(2.43), and (2.49) into (2.40), combining Gronwall’s inequality gives

a+l2
f u—— d +ff xdxdtSC.

1 v 2 1
f(u——x) dx—f (u —2u—+—2) dx
Vv v
2 x Vx
u-dx + —dx 2 u—dx,
%

a+12
f 2dx+\f xdx+ff xdxdt
0 V
1
<C+2fu dx < = f—"d +cf wdx+C < C.
0 0 0

On the other hand, it follows from (2.33) and (2.34) that

1 1 1
f vidx = f vi(1 — @)dx + f Ovidax
0 0 0
1 1 1
< C max |62 — 1] f vidx + f 6vidx
x€[0,1] 0 0

1 1
< CW() f vidx + f 6vidx.
0 0

Together with (2.38), the proof of Lemma 2.3 has been completed.

Note that

that means

Lemma 2.4. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0, one has

1 T 1
sup f (16, + w.[?) dx + f f (1B + [ + Ibs + W) dxdr < Cs. (2.50)
0 0 0

0<t<T
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Proof. First, rewrite (1.3) as

9(1 XX ea xVx ga_lgx X
wy = e TWale (BT ey 2.51)
1% 1% \%

Multiplying (2.51) by w,, and integrating over [0, 1] X [0, T'], one obtains:

1 1 T 19& xx2 T 19& Wy Wy
S f I 2dx + f f Wl g xar = f f TP P e
2 Jo 0o Jo v 0o Jo %
T 1 -1 T 1 3
(ol x " Wxx
+ f f T W Wer gdr + f f by wadxdr = Y I,
0o Jo 14 0 Jo i=1

Each I;(i = 1,2, 3) is estimated as follows. From Cauchy’s inequality and (2.4), it shows

H(I X X )C)C
11 f f VW W dxdr
o 2 o x2 2
S‘ff |wxx| ff |w|xddt
8
o xx2
f f Wl 4ar + € f max [w,|? f dedr (2.53)
o x€l0.1]
b w MI2 2
———dxdr + C max |w,["dt
o x€l0.1]
1 % 2
—f f —9| Wl dxdt + C,
4 0 0 \%

(2.52)

I/\

I/\

IA

where it has been used

T T 1 T 1
max lw.[>dr < f f w.| - [w.|dxdt + C f f lw.[>dxds
o *elb, 0 0 0 0
2.54
L (e wal - L (e wal 239
<= dxdr + C w.[>dxds < = dxdr + C.
8 Jo 0 v 0 0 8 Jo 0 v

Next, from the a priori assumption, one has
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T 1 na-1
GHXX)C)C
fa/ wwdd
0

c%

1 T 1 9 xx|2 29a 202|wx|2
< 3 dxdt + C ————dxdr
0 0
1 T 1 9 W |2 6%~ 2 2
< gf f =_dxdt + C max |wx| laf? f xdxdt
0 Jo o *lo
L T ’
<= f f “—dxdt+ C | max w* -l - m37 - 67117, dr (2.55)
8 o x€l0.1]
1 Iwml2 ! s o
<- dxdt+ C max |w,|" - |a|” - H(my, my, N)dt
8 0 xel0,1]
1 0 Mz
< —f f Wl g+ [ max pwofdr
8 o x€l0.1]
1 0 xx2
< —f f Wl dxdr + C.
4 0 0 1%

Furthermore, according to (2.37), one has

T 1 1 T 1 o xx2 T 1 bx 20—(1/
L :f f b, -w,.dxdr < gf f W dxdt+Cf -] dxdt
1% 1%
10 TO lgalw |2 0 0 0 0 (256)
< —f f =_dxdt + C.
8 0 0 1%

Substituting (2.53), (2.55), and (2.56) into (2.52), one has

1 T 1
f Iw.|>dx + f f w..|*dxdr < C. (2.57)
0 0 0

Combining (2.51) with (2.54) gives

T 1
f f lw,|>dxdz
0 0

T 1 20 4,,2 2 2.2 2n02a-2n2 2
0 H X 0 0 X
< f f Wi OV @ 2 dar (2.58)
0 0 V2 V2
T

V4

<C max|wx| dt+C <C.
0 XG[

Next, rewrite (1.4) as

@b @by, ot'0b, uwbh w,
b= — T 7 A B2 M (2.59)
1% 1% 1% 1% 1%
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Multiplying (2.59) by b,, and integrating the result over [0, 1] X [0, T] yields

s [ [ 0L
—1 "4
ffae 0.b. bxxdd+ff0vxb bxxd

2y

Each J;(i = 1,2, 3) is estimated as follows. From Cauchy’s inequality and (2.4), one has

xb 'bxx x " xx
- dxdt—f f Wa D gxds = § J.
v 0 Jo v i=1

T 1 a—1
o exbx'bxx
, f f O P gy

IA

IA

IA

IA

IA

v 2
ffglb”ldd

where it has been used

T

0 x€[0,1]
1 T 1
5
1 T 1
51 )

v 2 29a 292bx2
ff”’”'amwff @O 6P s
eabxx2 1 [2 2 2
f f b..d dxdt+ C maX |bx| la|? f xdxdt
0 )CE

1

8

1

8

lf f galb”Fd dr+C

8 0 xe[Ol]
1

8 Jo

1

8

2 -2 102112
max |b,[* - |af* - m3~ - ||6}17,ds

49“|WM|2 _—
dxdt + C m[a)li] |b,|” - |a|” - H(my,m,, N)dt
0 x€[0.

H"b”z
t+C max|bx|2dt< ff | ldd+C

o xel0.1]

T 1 T 1
max |b.[>dr < f f b,| - |b.|dxdr + C f f b, |>dxdt
0 0 0 0

01D .. T
'2 Cxde +C f f Ib.|*dxdr
v 0o Jo

0%b..*
|2 | dxdr + C.

It follows from (2.2), (2.4), (2.37), and (2.62) that

Jz_ffﬁ"vxb bxx duds

_8

IA

IA

T
AN
L

Electronic Research Archive

t9"|bxx|2

dxdr + C max |b.* f xdxdt

0 XG[ 1]

Qabxx2
] dxdr + C

max |b,|>dt
0 xe[O,l]

t9"|bxx|2

dxdr + C.

(2.60)

(2.61)

(2.62)

(2.63)
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From (2.2)—(2.4), one has

T pl
Jy = f f usb bxxdxdt
0 Jo v
1 (T e b,m2 Tt
<_f f | |ddt+ max |b|2-Cf fuidxdz

8 (x,0€[0,11X[0,T1] o Jo
1 6” b,m2
— f f b dxdr+ max |p] (2.64)
8 (x,0€l0,11x[0,T]
1 6 b,m2 !
—f f b dxdr + C sup f |b| - |b,|dx
8 0<t<T Jo
1 f f 6"‘|b,m|2 1
- dxdr + = sup b, + C.
8 8 O<t<pT

According to (2.37), it follows

T pl
I, = f f s b”dxdz
o bxx 2 T 1
< f f . dxdt + C f f lw|*dxdr (2.65)
8 0 Jo
o bm2
< 8 f f .d dxdr + C.

Inserting (2.61), (2.63)—(2.65) into (2.60), which implies

1 T 1
sup | b, Jdx + f f Ib.|*dxdt < C. (2.66)
0 0

0<t<T JO

From (2.59), one obtains

Tl T Al Ra 2 22a-2221% |2

6-“|b ., 0-7°0|b,
[ [ mrasc [ [ (Cbet, i,
0 Jo 0 Jo v v

200 1202 2B 12 2
N 0=1b.| vy N u|b| N Wl )

(2.67)

Vo V2

Therefore, it follows from (2.57), (2.58), (2.66), and (2.67) that (2.50) is correct. Then the Lemma 2.4
has been proved.

Lemma 2.5. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0,

T 1
f f 6>dxdt < C.
0 0

Proof. For the case of g > 1, setting p = 5 — 1 in (2.30) will give

T 1
f f 62dxdr < C. (2.68)
0 0
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For 0 < 8 < 1, multiplying (2.5) by 9'~% and integrating by parts, it gives

2 (f Hz‘zdx) 2= (104,
4-p

6>3u ! 9‘”1 w2+ w. > + b,
=—f dx+f ( )dx
o Vv v (2.69)

1 p2-8 28 1 -8 1
62 - ¢ -
:f< i g +f mdx_f LN
0 v o Vv

4

19“*“’(u + o> + b, )
N f ; Z

=1

Each [;(i = 1,2, 3,4) can be estimated as follows. First, by (2.7), one has

1 732-8 05
672 — 67 2)u,
I] :f ( )u dx
0 1%
! B B
:f 6% - g%
0
i | 3
< C max 5"~ - 0| ( f @+ 1)dx) ( f uidx)
x€[0,1] 0
1 1
< — max ‘9 s _gs|+C f (@ + Ddx f W2dx (2.70)
8 x€[0,1] 0
1 1 1
sg(f |9|dx)+Cf(922+1)dxf uldx
0
1 [rte 9,% 6 > >
< - +C dx+C (9 2+1)dx urdx
8 0 \%
1 (656 !
sgf i xdx+CW(t)+Cf 6>~ def 2dx+Cf uldx.
0 0

According to (2.32), one obtains

1 -2
1-6 x B
Isz ﬂdxs max‘l—@z‘g
0

v x€[0,1]

(8% +6'")lu,ldx

u,dx
0 2.71)

2 1 1
+C f uidx < CW(t) + C f urdx.
0 0

.y
< max ‘1 — 62
x€[0,1]

It follows

f Zdx<C f uldx < C. (2.72)
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Next, it follows from (2.4) that

X

LTS (2 + il + 1bP)
14:f d
0

1%

B —1_B
< C max (|91_f -9z
x€[0,1]

1
N 1) f W2 + w2 + b, P)dx
0
1 1 1 1
sg f 0721, |dx f (U2 + w,* + b [Hdx + C f (U2 + [ * + b [Hdx
0 0 0

1 67 6 I 98g? !
<- f rdx+ C f Sdx+ C f W2+ W + b P)dx 2.73)
0

— 8 v

+C( f zdx) +c( f |wx|2dx) +C( f |bx|2dx)

1 ! 9§9)2C 2 2 2
< - dx+CW@) +C (ux + [wl” + |b,|")dx
0 0

8 v

1 2 1 2 1 2
+c( f uidx) +c( f walzdx) +c( f |bx|2dx) :
0 0 0

Substituting (2.70)—(2.73) into (2.69), integrating on [0, T'], and combining (2.37) and Grénwall’s

inequality, one has when 0 < 8 < 1,
Tl
f f f2dxdr < C. (2.74)
0o Jo

Then from (2.68) and (2.74) the proof of Lemma 2.5 has ended.

Lemma 2.6. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0, one has

1 T 1
sup f uidx+f f u? dxdt < C;. (2.75)
o<t<T Jo 0o Jo

Proof. Rewrite (1.2) as

E XX 6 xXVx E _IHX X ex 6 X
u; = w7 UV + i Ue O —v -b-b,. (2.76)
y V2 v v v2

Multiplying (2.76) by u,, and integrating the result over [0, 1] X [0, T], it shows

1 o 2
f 2dx+ff 7 Lex g
6* xUxUyxx r ! Qa—lex xUxx ! 19)5 XX
< f f Tttt 4y f f 7 Ot g qr 4 f f 20 vt (2.77)
0 Jo v 0 Jo v o Jo V¥
T ol T rl >
H.X.X.x
_ff e dxdt+f fb-bxuxxdxdt:ZJi.
o Jo V 0 Jo i=1
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Each J; can be estimated as follows. First, according to (2.37), one has

T 1
HQ/ XX XX
Ji = f f &dxdt
6%u 2 T 1
f f Tl axdr+C | max f vidxdt
o I Jo (2.78)

0{2 2 T
f f W —=dxdr + C max |u,|>dt
o xel0.1]

(1 2
f f W —Xdxdr + C,
where it has been used

T T 1 T 1
max |u,|*dt < f f || - |t |dxdt + C f f udxdt
o *€l0.1] 0
.y o (2.79)
<—f f ”dxdt+Cf f 2dxdz<—f f Z e dxdr + C.

Secondly, combining (2.30) with p = 8+ 1 — @, one obtains

ga 10 XXX
f f a U U 0" Oty
1 9(1/ 2 1
<3z f f u”dxdt+C max | - lal*ms 2 f 62dxdt
) 0 Jo wvz %<0, 0 (2.80)
— f ”dxdt +C f max |u,|*dt
0 0 x€[0,1]

1 19(1 2
S—f ﬂdx+C.
4 0 1%

Next, from (2.2) and (2.4), one has

9 - 0% 2 T 1
J3—f f Mo dxdt <—f f ”dxdt+Cf f@ﬁdxdr
0 Jo (2.81)
< 8[ f ”dxdt+C

Furthermore, from (2.37), one has

9 X¥PXX 90’ g !
f f P dxdr < - f f ”dxdt+Cf f@zvidx
0 Jo
1 T 19 l/l 1
- f f —Xdxdt + C f (max(e 9)2+1) f vidxdt
8 o Jo Vv 0 \x€l0.1] 0
1 T 19 Mxx T ) T 1 5
— —Xdxdt + C max (6 — 6)*dt + C vodxdz (2.82)
8Jo Jo v o xel0.1] 0o Jo
1 T 19 l/l T 1
§f f —dx +cf feidxdt
o Jo V 0
1 ("o,
= f f —=dx + C,
8 0 0 1%
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where we have used ,

max |6 — 6]*dt < C.
o xel01]

In fact, for 0 < 8 < 2,
T T 1
max |0 — 6dt < C f f |6.]*dxdr < C,
0 0

o x€l0.1]

T 1
f max |6 — 8dr < C f max [6% — 8%2dr < C f f 66216, |2 dxdt
o xel0.1] o *<l0.1] 0 Jo
1 3
< C(f f xdxdt) (f f vdxdt) <C.
0 0

Finally, it follows from (2.62) that

Js = f f b-b.u,dxdt < - f f ”dxdt +C max b.[* f vib|*dxdr
e, nes
< f f dxdt+Cf max |b,| dts—f —=dx+ C.
8 0 x€[0,1] 8 0 1%

Substituting (2.78) and (2.80)—(2.83) into (2.77) gives

1 T 1
f udx + f f u? dxdt < C. (2.84)
0 0 0

On the other hand, from (1.2), one has

and for 8 > 2,

(2.83)

lu > < C?, + Vv + *0° 207U + 6> + 64 + |b*|b,[%),

T 1
f f uldxdt < C.
0 0

Combining this with (2.84), the proof of Lemma 2.6 has been finished.

and

Lemma 2.7. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0,

Ci < 6(x,1) < C;', (2.85)

1 T 1
sup f 6dx + f f (67 + 6% )dxdt < Cg. (2.86)
0<t<T JO 0 0
Proof. Multiplying (2.5) by 6 gives

0>dx xd
2dtf f *
om 1 1 pa+ly, 2 2 2
:f a-6)u G)thdx—(f lnvdx) +f Oy + wol” + 1B )dx
0 % 0 ¢ 0 v

1
< C max (|1 — 6] +u +w )+ b)) - (f lnvdx).
0 t

x€[0,1]
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It follows from (2.32), (2.74), and (2.6) that

f max (0 — 1)*dr
o el 1]
T

<C max(e 6)*dt + C max(e—l) dr
0 x€[0,1] 0 x€[0,1]

<C f f 6|0,|dxdt + C f V(r)dt
T
< f 6*dxdt + C f f ¢*dxdt + C f V(r)dt
0
<Cf f@zdxdt+C

By combining this with (2.3), (2.37), and Gronwall’s inequality, one has

T 1
f f ¢*0>dxdr < C. (2.87)
0 0

Next, multiplying (2.5) by #°6, and integrating it over (0, 1), by (2.4), one has

(¢989x)2 )
2dtf f 989 dx

1 f G f Flom, f 0O + Wi+ 1BP)
0 0

1% \%

1 iﬂ 1
0
< —f 6°6*dx + C max |ux|92 f 22 ~dx + Cf P uldx (2.88)
o Vv 0

+ f Pt +w, |+ b, |")dx
0

1 :
:Ev[oV OBGIdx+;I,-.

Moreover, each I;(i = 1,2, 3) can be estimated as follows. First,

s (ore L, ?
Iy = C max Ju 6> f *dx < C max P + c( f ezﬂeidx)
x€[0,1] 0 V2 x€[0,1] 1 0 (2.89)
< C max u? max (1 + 6%*%) + Cf 6P6>dx - f 6*62dx.
x€[0,1] xe[O 1] 0 0
Second,
L<C f (1 + 6% uPdx < C max u® max (1 + 6%#%2). (2.90)
x€[0,1] xe[O 1]
Finally,

I; < C max (u} + [w,|* +|b,]") max (1 + 6%*2).
xe[0,1] x€[0,1]
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Substituting (2.88)—(2.90) into (2.87) gives

(989x)2 )
2dt dx +f 650 dx

< Cm[OaX](u + 1t + wolt + by )max(l + 6752
XE

+C f 6P dx f 6%6%dx.
0 0

1
max [P - <C+C f 6*6dx,
0

x€[0,1]

Direct calculations yield

and

1 2 1
max (1 + 6% < max (1 + 6Py < c( f 08|9x|dx) <C f 6*62dx.
XE 0 0

From this and (2.91), and integrating over [0, 7], together with Gronwall’s inequality, one has
1 Tl
sup f 6%262dx + f f ¢°67dxdr < C.
0<t<T Jo 0o Jo
Combining with (2.91), one has

max  O(x,t) <C.
(x.)€[0,11x[0.T]

On the one hand, (2.93) gives

T 1 T 1
f f (@' - 6Py dxdt < C f f 6*6>dxdr < C.
0 0 0 0

Together with (2.4), (2.37), (2.91), and (2.92), one has

v d 1 _
- f (@ — P2 dx| dr
0

0
T 1 _ T 1 _
<C f f @' — 2 dxdr + C f f (6%6? + 6%)dxds
0 0 0 0
T 1
scf fuidxdt+C$C.
0 0

Combining (2.37), (2.93), and (2.94) leads to

lim (98“ FHdx =0

f—+00

Then combining (2.91) gives

1 1
max (°*! — 9Pyt < f (@' — Py dx f 6*0°dx - 0, as  t— +oo.
0 0

x€[0,1]

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)
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Therefore, it follows from (2.19) and (2.95) that there exists some T}, such that
Y1
9 9t Z A
(x, 1) >

forall (x, ) € [0, 1] X [Ty, +00).
On the other hand, for p > 2, multiplying (2.5) by 4, one has

or>

1 1 1 p-1 1 2 1 N
—f - dx +f ﬂuxdxﬁf “ dx
p—l 0 9 P 0 V@p 0 VHP‘I

1 (! 2 |
S—f 'uuxdx+—f dx
2 Jo vor 2 Jo pvor2
p-2 p-
Y el <]
9 Lpr-1 9

1 2
HE -1 & Lr-2 0
where the positive constant C independent of p and T. (2.97) gives

That means

1 1|72

2

L1

sup |67 |-1 < C(T + 1).

0<t<T

Letting p — +oo, there exists a positive constant C; < & such that

9(x9 t) = Cla

(2.97)

for all (x,¢) € [0,1] X [0,Ty]. Combining this, (2.96), and (2.92) yields that for all (x,7) € [0, 1] X

[0, +00),
C,<o<Cy.

1 Tl
sup f 6dx + f f 67dxdr < C.
0<t<T Jo 0o Jo

Finally, it follows from (2.5) that
%6, 0 ,898‘102 #v.0, Oa(ui + wil> + 15,7

:91+_Mx_
1%

Together with (2.91), one has

% V2 %
from this and (2.37), (2.97), (2.98) yields

T 1 T 1
f f 6> dxdt < C f f 6 +u>+ 6+ +ul + b, + w,|Hdxdr < C.
0 0 0 0

Combining with (2.98)—(2.100), the proof of Lemma 2.7 has been finished.

Lemma 2.8. Assume that the conditions listed in Lemma 2.1 hold; then for all T > 0, one has

2 2 2 2 2 2 2
supf(u + wil” +1b]" + 07 + w4+ O+ Wal” + bi]T)dx

0<t<T

f f U2, + Wul® + b l* + 62)dxdt < Co.

(2.98)

(2.99)

(2.100)

(2.101)
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Proof.  First, differentiating (1.2) with respect to ¢t shows

6, — Ou,
Uy + (# +b- bt) = ((/_l)tux + E”xt) .
1% X 1% 1%

X

Multiplying the above equation by u,, one obtains after integration by parts,

f 2dx+f —u dx
0, — Ou, !
f Y ux,dx+f b- b,uxtdxdt—f ('li) U dx
0 V 0 V/t

1
<5 f Eldx+c f (07 +u + BIIb. > + 671 + ub)dx (2.102)
v 0
1 U 1 1
<= f Ci2dx+C f (6* + 12 + u*)dx + C max |p|* f b, /2dux
2Jo v xe[0,1] 0

1
+ C max u f thdx,
0

x€[0,1]

where in the last inequality it has been used

1 1
- 1
f (’L—l) Ul dx = f Muxuxtdx < —f uldx + Cf (67u + u})dx.
o \v/i 0 v 4

Next, differentiating (1.3) with respect to ¢ shows

A A
Wy —by = ((_) Wy + _th) .
t x

1% \%
Multiplying the above equation by w,, one also gets after integration by parts,

f w,2dx + f Ziw o Pdx
\%
P
fbt wdx — f( )wx wdx (2.103)
t

< Ef wazlde+Cf (B.> + 67w * + ullw.[*)dx.
1%

Similarly, differentiating (1.4) with respect to # shows
btl = & - M - 2’/[th + ((Z) bx + Kbxt) .
1% V/t 1% X

1% 1%

Multiplying the above by b,, one gets after integration by parts that

2
14 f b Pdx + f "
) 1 . 1 2 1
:_f w, bxrdx—f uyb b[dx_zf ulb,| dx_f (Z) b,.-b,dx
oV 0 v oV 0o AV/i

1 (! 1 !
< - f Klbxtlzdx + = f H “u? dx + cf (wi* + BB + 621b* + 12[b,[*)dx
2Jo v 8Jo Vv

(2.104)

1
+ C max |u, f b,|>dx.
x€[0,1] 0
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At the end, differentiating (2.5) with respect to # shows

% V2
& & 6v
= ((_) 0, + _gxt) + (_) (ui + |wx|2 + |bx|2)
v t v X v t
26
+ _(uxuxt T Wy Wy + bx - bxt)-
\%

Multiplying the above by 6, and integrating by parts, one obtains

fe%i +f —6%dx
& Lo Ou, 6
:—f( )exex,dx f(—’ux+ ”’—i)etdx
0 Vv ! 0 \% 1% V

Lo 2 2 2 12,“
¥ f (—) W2 + Wil + b0, dx + f ity + Wy Wy + by - by
0o \WV/t o V

1 (e 1 ! 1 ta
< —f —6%dx + —f Hui,dx + —f “wql*dx
2 o V 8 o V 8 o V

1

+ 8f —1b., dx+Cmax(u +w. ]+ b +1)f 67dx

(2.105)

+C f (0267 + 120> + ut + w.|* + |b,|")dx.

According to (2.86), one has

1 1 1
f 6%67dx < max 67 f 62 dx < C f 16,116.,|dx
0 x€[0,1] 0 0
1 (e :
< —f —6%dx + Cf 6%dx.
8Jo v 0

Combining (2.102)—(2.105) and Gronwall’s inequality, we deduce
1 Tl
2 2 2, 2 2 2 2
sup f W’ + il + b, + 62)dx + f f 1, + Waul® + by + 62)dxdt < C. (2.106)
0<t<T JO 0 0
Finally, we rewrite (1.2) as

ng - evx HxV — UVx

—Uyy = Uy + — +b-b, - > X

1% 1%

It follows from (2.106), (2.85), (2.86) and (2.37) that

1 1 1
f uixdx < Cf (u,2 + 9§ + vi + B)1b.[H)dx + erg(a)ul(] uif (Qi + vi)dx
0 0 : 0

1
S—fuixdx+C.
2Jo
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Similarly, rewriting (2.5) as

¢ 6 & 0" (3 + w.l* + b
—0 =60+ —u, — 0, — .
% v .

14 1%

Using (2.5), (2.106), (2.85), (2.86), (2.37), and (2.107), one has

1 1
f 6> dx < Cf B+ +0 +v20 +ult +w, ' + b Hdx < C + 3 f 6% dx.
0

Next, rewriting (1.3) as
A
Wy =W, — b, — (—) W,
v v/«
Then it follows that

1 1 1
1
f w.[>dx < C f (b + W + Pw, > +viw [Hdx < C + 3 f W |>dx.
0 0 0

At the end, rewriting (1.4) as
bex = (Vb)t — Wy — (Z) bxa
V v/x

thus, one has

1 1
f b, |*dx < C f 07 + b + w,? + @b + Vb, *)dx
0 0

1 1
< - f b.>dx + C.
2 Jo

Combining (2.106)—(2.110), the proof of Lemma 2.8 has been proved.

(2.108)

(2.109)

(2.110)

Lemma 2.9. Assume that the conditions listed in Lemma (2.1) hold; then for all T > 0, one has

0<t<T

Proof.  First, differentiating (1.2) with respect to x gives

Vi HXV - va UyxV — Vyly Uy
wnl3), = O o b o (B ().
Multiplying (2.112) by (V—v‘) , and integrating it over [0, 1], we arrive at
1d (! L0 v\
5 a; #(vx) dx+f —(E) dx
2dt J, v /x 0o V\Vv/x
1
HX 6 X X
= s (5) ()0, e
0 V /x V/ix vV V /x
1 —_—
+f ((b 'bx)x_,ux(uxx ZVXMX)_ (:ux&) )(E) dx
0 1% VIix/)\V/x

gy x
f v d +C‘f(um+t92 92v2+v +u +u +|bx|)dx

2

1 2
+C max (@ + i + |b|2)f (V—) d
x€[0,1] 0o \V/x

1 T 1
2 2 2 2 2 2 2
sup f V2 dx + f f 02 V2 1+ Wl + brl? + 62,)dxdr < Cy.
0 0 0

2.111)

(2.112)
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Together with (2.37), (2.75), (2.85), (2.86), (2.101), and Gronwall’s inequality, one has

1 2 T 19 2
supfp(ﬁ) dx+f f —(E) dxdr < C.
0<t<T JO V /x 0 o V\V/x

supfv dx+f fvxdxdtsc.
0<t<T

Furthermore, (2.112) can be written as

That means

gx -0 X x T Mx xVx X
o = g (S0 o, o B () ()
1% 1% X 1% X

V2 v /x

Together with (2.37), (2.75), (2.85), (2.86), (2.101), and (2.113), one has

ff dedt<Cf max (62 + [b|* + v + u? + 6v?)dt + C < C.
0

x€[0,1]
Next, differentiating (2.5) with respect to x, it shows

—1 @ (;,2 2 2
00,5 ﬂ_(f) Hxx+(ﬁ98 ex_eﬁexvx) +(9 W2+ w. | +1b,| )) .

v v V2 v

Thus, one has

T 1
f f u?, dxdr < C.
0 0

Similarly, differentiating (1.4) with respect to x, one has

V v

b = (Uxh + Vb)) — W — (sz") b, - 2(—) b,..
v 1% x V/x

T 1
f f b, |>dxdt < C.
0 0

Finally, differentiating (1.3) with respect to x gives

A Ay — Avy A
Wi = Wy — by — (#) w,—2 (_) Wix.
\% \% x X

1%
T 1
f f w..|*dxdz < C.
0 0

Combining with (2.113)—(2.117), we obtain (2.111). The Lemma 2.9 has been proved.

It implies that

Then, one has
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(2.116)

(2.117)
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3. The proof of Theorem 1.1

With all the a priori estimates in Section 2 at hand, we will complete the proof of Theorem 1.1. For
this purpose, it will be shown that the existence and uniqueness of local solutions to the initial-boundary
value problem (1.1)—(1.9), which can be obtained by using the Banach theorem and the contractivity
of the operator defined by the linearization of the problem on a small time interval.

Lemma 3.1. Letting the (1.10) holds, then there exists Ty = To(Vy, Vo, My) > 0, depending only on 3,
Vo and M, such that the initial boundary value problem (1.1)-(1.9) has a unique solution
(v, u,w,b.6) € X(0,To; 5 Vo, 5 Vo, 2My).

Proof of Theorem 1.1 First, using Lemma 3.1, the problem (1.1)-(1.9) has a unique solution
(V7 u,w, b’ 0) € X(O’ Tla %VO’ %VO’ 2M0)’ Where Tl = TO(VO’ VO’ MO)
For the positive constants @ < a; with @ being small enough such that

1 o 1 1
(EVO) <2, (2Mp)* <2, CY1H(§V0, EVo,zMo) <€, 3.1

where € is chosen in Lemma 2.1, one deduces from Lemmas 2.1-2.9 with T = T that the solution
(v,u,w, b, 0) satisfies

Co <v(x,H) <C;',C) <0(x,t) <C;',  x€[0,1]1x[0,T,], (3.2)
and
T
sup |(v,u,w, 0,017, +f 16,117,dt < C7,, (3.3)
0<t<T, 0
where C;(i = 2,---,10) is chosen in Section 2, and Cy; := Z}fz C;. It follows from Lemmas 2.8

and 2.9 that (v, u,w, b, 6) € C([0, T}); H?). If one takes (v, u,w, b, 8)(-, T;) as the initial data and applies
Lemma 3.1 again, the local solution (v, u, w, b, 8) can be extended to the time interval [T, T| + T,] with
T,(Cy,Cy, Cy1). Moreover, one obtains

1 1
v(x, 1) > ECOa O(x,1) > ECI’ (x,1) € [0, 1] X [T, T + T>],

and

T1+T>
sup [|(v, u,w, b, 60)|l7, + f 16:]17.dr < 4CF,.
0

0<t<T1+T>

Combining with (3.2), (3.3) implies
1 1
V(X, t) > EC()a G(X’ t) > ECI’ (-x’ t) € [0’ 1] X [Tl’ Tl + TZ]’
and

T1+T>
sup  [|(v, u, w, b, 6)|l7 +f 64]17.dz < 5CF,. (3.4)
0

0<t<T+T>»

Taking @ < min{a, a,}, where @, is chosen in (3.1) and a, is chosen to be such that

1 s @ 1 1
(EVO) <2, (‘/§C11) f<2, a’2H(§CO’ §C1, Vae)) < e,
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where €, is chosen in Lemma 2.1. Then one can employ Lemmas 2.1-2.9 with T = T, + T} to infer the
local solution (v, u, w, b, ) satisfies (3.2) and (3.3).
Thus, choosing
€ = min{a;, as}, 3.5)

and repeating the above procedure, one can then extend the solution (v, u, w,b, ) step by step to a
global one provided that 0 < @ < ¢. Furthermore, one derives the initial boundary value
problem (1.1)—(1.9) has a unique global solution (v, u,w, b, 6) satistfying (3.2) and (3.3). Moreover,
(V, u,w, b, 9) € X(O, +00; Co, C1, Cll)-

The large-time behavior (1.11) follows from Lemmas 2.3-2.9 by using a standard argument (see
Reference [21]).

First, similar to (2.6), multiplying (1.1) by (1-v7!), (1.2) by u, (1.3) by w, (1.4) by b, (2.5) by 1-6~!
and adding them altogether, integrating the resultant equality over (0, 1), one has after using (2.2)
and (2.85) that

d ({2 2 b?
(u iR +(V-—Inv-1D+(@-Inf-1)|dx

dr J, 2
1
+Cy f (6% + u + |w, > + b, [H)dx < 0,
0

where (and in what follows) C;,i = 12,---,18 and C,C* denote some generic positive constants
depending only on 8 and M, V.
By means of (2.87), (2.2), (2.85), (2.86), (2.101) and Sobolev’s inequality, one obtains

d (')
dt 0 Vv

1 1
dx + Ci3 f g7dx < Ci4 f 02dx + €ellul?, + Cellull?». (3.6)
0 0

Next, multiplying (2.39) by (u — 6%**) and integrating the resultant equality over (0, 1), using (2.2),
(2.85), (2.50), (2.75), and Poincare’s inequality yields that

d o\ :
— (u—Q“V—) dx+C15f vidx
dt 0 \% 0
1
<C f (luvil + 16, + b - bl + V.0 + .0, + 10,vx] + by )dx (3.7)
0

Cis

2
By the virtue of (2.50), (2.75), and (2.54), one obtains that

2 2
< Cigll(u, 0y, 0, DI, + —=Ivally

d 1 1
T wydx + Cg f hdx < Call(v, 0117 (3.8)
0 0

Furthermore, adding (3.5) multiplied by *%Z2, (2.7) multiplied by Z- (%wnm + 1), and (3.4)
multiplied by C*, which satisfy
1

Cc" = —
Cn

4C1p(Ci7 + 1)
Cop+1+—1~
Cis 1 Cis

C
14+ Ce (2C16(C17 +1) N 1) N 2C16(C17 + 1) N
Cis Cis
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From (3.6) and choosing € suitably small, it follows

_Q + ||(l/lx, 9,\’9 vx)“LZ < 0

where

2 2
0 f (u +|W| + vib| +(v—1nv—1)+(9—1n9_1))

+ 2C16(C7 + 1) + Cy5 (6°6,)° + 2(Ci7 + 1)
Ci3Cs v Cis

2
(u - 9“2) + uldx.
v

By using Cauchy—Schwarz’s inequality, one obtains

2
v
< (,u x) +u2,
v

puv,
1%

which along with Poincare’s inequality, yields that

1 2
_ o Vx
C vl = Il < f (= 0") dx < Cllwe vl
0
Finally, using Poincare’s inequality and (3.7) implies that
CUv—1,u,6 = DI, < Q < Cli(ty, v, 01172,

where it has been used the conservation of energy implied by (1.5), (2.30), and the following fact:
1 —_
160 — 1|2 < f 16— 6°dx + Cllull}, < Cll(0x, w7
0
By means of (3.6) and (3.8), one obtains that
v = 1,u,6 = D@l < Ce™".
Thus, the proof of Theorem 1.1 has been completed.
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